
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

H
ab
ili
ta
ti
on

th
es
is

Methods for Structural Pattern
Recognition: Complexity and

Applications

Daniel Pr̊uša

prusapa1@fel.cvut.cz

March 26, 2018

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Contents

1 Introduction 1

2 Background 2
2.1 Structural analysis . 2
2.2 Min-sum labeling problem . 3
2.3 Two-dimensional grammars 5

3 Contributions 8
3.1 Universality of min-sum problem LP relaxation 8
3.2 Binary min-sum problem . 9
3.3 Properties of two-dimensional context-free grammars 10
3.4 Regular-like two-dimensional grammars 11

References 13

A Included Publications 19

1 Introduction

The thesis comprises a collection of selected publications preceded by an
introductory text. It studies methods for structural analysis, which is a
stage of structural pattern recognition. Two formalisms suitable for structure
modelling are examined: the min-sum labeling problem and two-dimensional
grammar. The main focus is put on a contribution to the properties and
complexity of these tools. The motivation for their study does not come
purely from structural pattern recognition. The min-sum labeling problem
has many applications in low-level computer vision where it needs to be
solved for large-scale instances. The properties described in the thesis indi-
cate where are the limits of some methods designed to tackle the problem
in this setting. Two-dimensional grammars also have use in other fields, for
example in computer-aided design.

Besides the theoretical results, the thesis presents two complete recogni-
tion systems, which have been implemented and tested on real data. Recog-
nition of diagrammatic domains (flowcharts, finite-state automata) is cast
as the binary min-sum labeling problem. Logical layout structure of PDF
documents is defined and analysed via a novel type of a two-dimensional
regular-like grammar.

The thesis is organized as follows. Section 2 gives a background on struc-
tural analysis, min-sum labeling problem and two-dimensional grammars.
Section 3 overviews the contributions. Seven publications (5 journal and
2 conference papers) presenting the described results are included in Ap-
pendix A.

1

2 Background

This section reviews structural analysis, which is an important stage within
the structural pattern recognition process, and two formalisms that are useful
to implement it: the min-sum labeling problem and two-dimensional context-
free grammars.

2.1 Structural analysis

The task of structural pattern recognition is to identify elementary units and
interrelationships among them in input data. In contrast to statistical pattern
recognition, it is has good use when data exhibit rich structure, which can
not be handled by flat, numerical feature vectors of fixed dimensionality.

Several domains with very rich structure can be found in the field of
document analysis and recognition (see Figure 1 for examples): mathemati-
cal formulas, chemical formulas, flowcharts, electric circuits, music notes or
document layouts. There are also rich structural patterns e.g. in images
of building facades. All these domains were considered by researchers as a
subject for recognition in several past decades (Fahmy and Blostein, 1993;
Kiyko, 1995; Savchynsky et al., 2003; Lemaitre et al., 2011; Sadawi et al.,
2012; Álvaro et al., 2014, 2015; Liu and Liu, 2014).

(a) (b)

Figure 1: Examples of hand-written documents with rich structure: (a)
flowchart, (b) finite-state automaton.

Two types of inputs are distinguished in the case of electronic documents
– raster images (we speak about off-line recognition) and temporally ordered
lists of strokes, captured by an electronic device like a tablet (we speak about
on-line recognition).

The existing recognition methods are usually composed of several sub-
tasks. Classifiers are required to identify elementary symbols, while struc-

2

2

1

3

4

55

66

77

88

99

1010

1Document

2Tests

3Test

<image> 5Text

7Assign. 8Expl.

4Test

<image> 6Text

9Assign. 10Expl.

<number>

. . .

Figure 2: PDF document layout recognition: Structural analysis result rep-
resented as a derivation tree. Each inner node of the tree corresponds to a
logical section in the document. Leaves of the tree correspond to terminal
elements, which are words, numbers and images.

tural analysis takes care for establishing relations among the symbols and
revealing thus a document structure. An example of a structural analysis
result is depicted in Figure 2. More advanced methods do not treat symbols
detection and structural analysis as two separate processes. An interaction
is implemented to help to increase accuracy of both stages. This so called
structural construction paradigm is explicated in (Schlesinger and Hlaváč,
2012).

Several formalisms have been used to model structure of documents. They
include two-dimensional context-free grammars (Liang et al., 2005), graph
grammars (Lavirotte and Pottier, 1998) and discrete optimization problems,
e.g. finding a minimum-spanning tree (Eto and Suzuki, 2001). Moreover, at-
tribute and stochastic grammars are grammar extensions that support com-
bining structural and statistical approaches.

2.2 Min-sum labeling problem

The min-sum (labeling) problem is an NP-complete problem which arises in
MAP inference in Markov random fields (Schlesinger, 1976; Wainwright and
Jordan, 2008). It is also known as discrete energy minimization (Kappes
et al., 2015) or valued constraint satisfaction (Thapper and Živný, 2012).
The problem is quite flexible and can be applied to various structures. It
has many applications in computer vision. As a tool for statistical-structural
modelling, it has been applied in pattern recognition (Zeng and Liu, 2008).

3

And, as confirmed by the thesis contributions, it is also suitable for the
structural analysis described in the previous subsection.

Given a set of discrete variables and a set of unary and binary (also called
pairwise) functions, the task is to minimize the sum of the functions over all
variables. Formally, let (V,E) be an undirected graph, where V is a finite
set of objects and E ⊆

(
V
2

)
is a set of object pairs . Let K be a finite set

of labels . Let gu: K → R and guv: K × K → R be unary and binary cost
functions , where R = R ∪ {∞} and adopt that guv(k, `) = gvu(`, k). The
min-sum problem is defined as

min
k∈KV

(∑

u∈V
gu(ku) +

∑

{u,v}∈E
guv(ku, kv)

)
. (1)

The problem has a natural linear programming (LP) relaxation, proposed
by a number of authors (Schlesinger (1976); Koster et al. (1998); Chekuri
et al. (2001); Wainwright and Jordan (2008)): It reads

min

(∑

u∈V

∑

k∈K
gu(k)xu;k +

∑

{u,v}∈E

∑

k∈K

∑

`∈K
guv(k, `)xuv;k`

)
(2)

s.t.
∑

`∈K
xuv;k` = xu;k, u ∈ V, v ∈ Nu, k ∈ K (3)

∑

k∈K
xu;k = 1, u ∈ V (4)

x ≥ 0 (5)

where Nu = { v | {u, v} ∈ E } is the set of neighbours of u. We also assume
xuv;k` = xvu;`k.

The relaxation is equivalent to the dual (Lagrangian) decomposition of
the min-sum problem (Johnson et al., 2007; Komodakis et al., 2011). While
the min-sum problem can be formulated as a linear optimization over the
marginal polytope, the LP relaxation approximates this polytope by its outer
bound, the local marginal polytope (Wainwright and Jordan, 2008). This
polytope is the set of vectors fulfilling constraints (3), (4) and (5).

The relaxation is exact for a large class of min-sum instances and is a basis
for constructing good approximations to many other instances (Thapper and
Živný, 2012; Werner, 2007; Kappes et al., 2015). It is therefore of great
practical interest to have efficient algorithms to solve the LP relaxation,
however, the simplex and interior point methods are prohibitively inefficient
for large-scale instances. They are neither suitable for real-time applications
processing medium-sized instances.

4

The situation is much more favourable in the case of the min-sum problem
with two labels (binary min-sum problem). It is known that the LP relaxation
of this variant is half-integral, i.e., there is always an optimal solution whose
all components are in {0, 1

2
, 1}. Moreover, the LP reduces in linear time to

the quadratic pseudo-boolean optimization, whose LP relaxation reduces in
linear time to the maximum flow (Boros and Hammer, 2002; Rother et al.,
2007). A very efficient implementation solving the maximum flow problem
is available (Kolmogorov and Rother, 2007). It outputs an exact optimal
solution for submodular instances and plays an important role in methods
dealing with the general problem as every multi-label min-sum reduces to the
binary one (Ishikawa, 2003; Schlesinger and Flach, 2006), preserving the sub-
modularity property. It is also utilized in methods seeking for approximate
solutions (Boykov et al., 2001).

Regarding the min-sum problem with at least 3 labels, no really efficient
algorithm (running e.g. in nearly linear time and space) is known to solve
the LP relaxation. There are fast message passing algorithms (Kolmogorov,
2006; Werner, 2007; Globerson and Jaakkola, 2008) converging to a local
optimum of the dual LP relaxation, characterized by arc consistency of the
locally optimal tuples. This local optimum is nevertheless often good in
practice.

2.3 Two-dimensional grammars

Two-dimensional (2D) grammars are natural extensions of grammars gener-
ating strings over a finite alphabet. They have been studied from 60’s of the
past century, within the theory of two-dimensional languages as well as in
the scope of document structure recognition. For example, Anderson consid-
ered 2D grammars in his seminal paper on printed mathematical formulas
recognition (Anderson, 1967).

Early models of 2D context-free grammars generating 2D arrays of sym-
bols (so called pictures) include the matrix and Kolam type grammars (Siro-
money et al., 1972, 1973). The Kolam grammar forms a natural extension of
the context-free grammar in the Chomsky normal form. This explains why
it has attracted attention of several researchers and was proposed indepen-
dently more times (Schlesinger, 1989; Matz, 1997). Beside that, extensions of
the grammar have been studied. They include the two-dimensional context-
free grammar with general right-hand sides of productions (Pr̊uša, 2004) and
regional tile grammar (Pradella et al., 2011).

Let as give a definition of the Kolam grammar.

Definition 2.1. A 2D Kolam grammar is a tuple G = (VN , VT ,P , S0), where

5

.
a a a a b b b b b

a a a a b b b b b

a a a a b b b b b

a a a a b b b b bPA PB

(a) (b)

Figure 3: (a) 2D Kolam grammar: Applying production N → AB to con-
catenate pictures PA and PB by columns to derive a picture of size 4×9. It is
assumed that PA is generated from A and PB is generated from B. (b) Math-
ematical formula recognition (Stria and Pr̊uša, 2011): Applying a production
with a spatial constraint to derive a sum of two expressions. S1, S2 and S3

are bounding boxes of sets (regions) of elementary symbols. Constraining
rectangles C1 and C2 are computed with respect to symbol +. The circled
point in S1 and S3 is required to be in C1 and C2, respectively. If the spatial
constraint holds, S1, S2 and S3 can be united into a new region representing
a sum.

VN is a finite set of non-terminals, VT is a finite set of terminals, S0 ∈ VN
is the initial non-terminal and P is a finite set of productions in one of the
following forms:

N → a (6) S0 → Λ (7)

N → AB (8) N → A
B

(9)

where N,A,B ∈ VN , a ∈ VT and Λ denotes the empty picture.

The grammar generates pictures over the set of terminals VT . For each
non-terminal N ∈ VN , let L(G, N) be the set of pictures generated by G from
N . Each production N → a of type (6) states that the picture P of size 1×1
consisting of the single symbol a is in L(G, N). Moreover, assuming there
are pictures P1 ∈ L(G, A1) and P2 ∈ L(G, A2), both having the same number
of rows, and there is a production N → A1A2 of type (8), then the column
concatenation of pictures P1 and P2 is in L(G, N). This case is illustrated
in Figure 3(a). The same rule applies to productions of type (9) and row
concatenations of pictures. The picture language generated by G is defined
as L(G) = L(G, S0) where L(G, S0) contains also the empty picture Λ if and
only if the set of productions P contains production (7).

Classical parsing algorithms for string grammars can be extended to work
with 2D context-free grammars. A 2D version of CKY algorithm (Younger,

6

1967) has been presented for the Kolam grammar (Reghizzi and Pradella,
2008; Schlesinger and Hlaváč, 2012). If an input picture is of size m×n, it is
parsed in time O (m2n2(m+ n)). However, the complexity increases for more
general 2D context-free grammars where the right-hand sides of productions
consist of more variables. An extension of Earley parser (Earley, 1970) has
also been proposed (Tomita, 1991).

2D arrays of symbols are not sufficient to model relationships occurring
among elementary symbols (terminals) of real documents. These symbols
have to be described by bounding boxes located at some coordinates. The
grammar productions have to combine sets (regions) of elementary sym-
bols into larger sets (regions). Moreover, spatial constraints are assigned to
productions to specify when a particular production is applicable (see Fig-
ure 3(b)). Stochastic productions are used to deal with uncertainty. All these
extensions make using the grammar more difficult, including more demand-
ing parsing. In theory, the 2D topology and grammar ambiguity might result
in parsing time exponential in the number of terminals. From this reason,
techniques limiting the set of hypotheses examined and tested are required for
acceleration (Liang et al., 2005). Nevertheless, 2D grammars are considered
a powerful tool for document structure analysis and they are still popular
nowadays and serve as a base for recognition in many domains (Lemaitre
et al., 2011; Álvaro et al., 2014; Le et al., 2014; Álvaro et al., 2015).

7

3 Contributions

This section surveys my contributions to methods of structural analysis,
complexity of solving the min-sum labeling problem and properties of two-
dimensional grammars. The contributions are organized into four subsections
below. Publications included in the thesis appendix relevant to each of the
topics are indicated at the end of each subsection.

3.1 Universality of min-sum problem LP relaxation

In a joint work with my colleague Tomáš Werner, we answer the question
whether it is possible to propose a very efficient algorithm solving the linear
programming relaxation of the min-sum problem with 3 and more labels.
Our results are negative as we showed that solving this special LP is not
easier than solving any linear program. Precisely, we proved the following
theorems.

Theorem 3.1. Every linear program can be reduced in linear time to a linear
optimization over a local marginal polytope with 3 labels.

Theorem 3.2. Every polytope is (up to scale and translation) a coordinate-
erasing projection of a face of a local marginal polytope with 3 labels, whose
description can be computed from the input polytope in linear time.

An important consequence of these results is that finding a very fast
algorithm to solve the LP relaxation would imply improving the best-known
complexity of general LP, which is unlikely.

Having these negative results, one may ask whether the LP relaxation
can be solved efficiently for some useful subclasses of the min-sum problem.
One such subclass is planar min-sum problems or min-sum problems with
Potts costs. Both these subclasses frequently occur in practical applications.
We show that even in these cases, there is an efficient reduction of a general
LP to the LP relaxation.

Theorem 3.2 is the reason why we speak about universality of the local
marginal polytope. Similar universality results are also known for few other
polytopes, e.g., the three-way transportation polytope (De Loera and Onn,
2006) and the travelling salesman polytope (Billera and Sarangarajan, 1996).

In (Pr̊uša and Werner, 2017a) we further extended the results on univer-
sality of LP relaxations. We proved that LP relaxations of more classical
combinatorial NP-hard problems (set cover, maximum independent set, fa-
cility location, maximum satisfiability, etc.) are also as hard as any LP.

Publications included in the thesis: Pr̊uša and Werner (2015, 2017b).

8

3.2 Binary min-sum problem

As the next contribution, I showed how the simplex algorithm can be tai-
lored to the linear programming relaxation of the binary min-sum problem.
A special structure formed by basic and non-basic variables in each stage of
the algorithm is identified and utilized to perform the whole iterative process
combinatorially over the input graph rather than algebraically over the sim-
plex tableau. This leads to a new efficient solver. It is demonstrated that for
some artificial as well as computer vision instances it is faster than methods
reducing the binary min-sum problem to finding maximum flow in a network.

This result illustrates that to solve the LP relaxation of the min-sum prob-
lem with 2 labels is really easier task when compared to the LP relaxation of
the min-sum with at least 3 labels. Special versions of the simplex method
with similar properties have already been proposed for transportation, assign-
ment and minimum cost-flow problems (Dantzig and Thapa, 1997). They
are known as network simplex algorithms.

There two open problems for future research. The first problem is how
the proposed algorithm changes when some additional linear constraints are
added to the LP relaxation. For example, one can incorporate a cardinality
constraint giving a range for the sum of LP variables representing usages of
one of the labels. We can conjecture that a constant number of added con-
straints would not change the basis structure too much, hence the algorithm
could adapt.

The second open problem is whether the approach can be efficiently gen-
eralized to some multi-label instances since a similar, although a bit richer,
graph structure of basic variables is observable. The universality results from
Section 3.1 imply that such an approach will not be efficient in general, but
there is a chance that the method might work well for some practical in-
stances.

The second contribution to the binary min-sum problem is a joint work
with Ph.D. student Martin Bresler, supervised by Václav Hlaváč and co-
supervised by me. We introduced a new, on-line, stroke-based recognition
system for hand-drawn diagrams which belong to a group of documents with
an explicit structure obvious to humans but only loosely defined from the
machine point of view. Examples of such diagrams are flowcharts or diagrams
of finite-state automata.

The proposed method is a pipeline consisting of several stages: text/non-
text separation, symbol candidate segmentation, symbol classification, ar-
row detection and structural analysis. Structural analysis is formulated as
a binary max-sum problem, which is the maximization counterpart to the

9

binary min-sum problem. Each symbol candidate (a group of strokes which
can potentially represent an input symbol) acts like a vertex of a graph. As-
signing label 1 to a vertex means that the corresponding symbol candidate
is recognized as a symbol in the document (assigning label 0 means it is
not recognized as a symbol). Graph edges are added to represent relations
between pairs of symbol candidates. Three types of relations are defined:
1) Conflict – two candidates share one or more strokes, or two arrows are
connected to the same symbols; 2) Overlap – two symbol candidates have
overlapping bounding boxes; 3) Endpoint – each arrow requires existence of
both symbols it connects. Costs (scores) are assigned to symbol candidates
(based on the classifier output) and relations (they are either positive or
negative, depending on the relation type). Then we search for a 0-1 labeling
of the graph with maximum cumulative score. Such an optimal labeling is
found by writing the max-sum problem as an integer linear program (the
formulation is similar to the LP relaxation, the only difference is that the
variables attain value 0 or 1) and IBM ILOG CPLEX is used to solve it.

A thorough evaluation on benchmark databases shows that the accuracy
of the system reaches the state-of-the-art.

Publications included in the thesis: Pr̊uša (2015a); Bresler et al. (2016).

3.3 Properties of two-dimensional context-free gram-
mars

I have studied some theoretical properties of 2D context-free grammars. It
is a well known phenomenon that the properties of picture languages recog-
nized/generated by two-dimensional automata/grammars differ a lot when
compared to their one-dimensional counterparts (Giammarresi and Restivo,
1997). The results I obtained for the two-dimensional context-free grammars
are in line with this fact.

The emptiness problem is decidable for the one-dimensional context-free
grammar (Hopcroft et al., 2006). This means there is an algorithm taking
a context-free grammar as an input and computing whether the grammar
generates at least one string or not. On the other hand, the problem is not
decidable for the Kolam grammar. I first proved the undecidability for the
more general 2D context-free grammar (Pr̊uša, 2014) and later for the 3D
Kolam grammar (Pr̊uša, 2015b). The final proof for the 2D Kolam grammar
has been established in a joint work with Klaus Reinhardt (Halle University,
Germany) (Pr̊uša and Reinhardt, 2017). As an interesting consequence, there
is no generalization of the pumping lemma for the Kolam grammar. This

10

suggests that the grammar is much more difficult regarding its automatic
analysis, checking, etc. On the other hand, we have proved that the emptiness
problem is decidable at least for the limited variant of the Kolam grammar
– the matrix grammar.

The next result addresses succinctness of 2D grammars and automata. A
description size of a grammar/automaton is measured in the number of its
states, instructions or productions. An important question is how the size
scales when an automaton/grammar of one type is replaced by an equivalent
automaton/grammar of another type. We speak about so called trade-offs
between the models. This descriptional complexity of systems has been stud-
ied heavily in the theory of one-dimensional languages. For example, it is
well known that, for an n-state non-deterministic automaton, there is always
an equivalent deterministic automaton with O(2n) states (Hopcroft et al.,
2006). The trade-off between these one-dimensional models is exponential.

Despite the extensive studies in the theory of formal languages, no com-
parison was done with respect to the descriptional complexity of 2D models.
This gap has been filled in (Pr̊uša, 2016). I have shown that trade-offs be-
tween pairs of basic models of 2D context-free grammars and 2D finite-state
automata are non-recursive (the size of the description of an equivalent au-
tomaton/grammar can not be bounded from above by any recursive func-
tion). Again, this result illustrates that two-dimensional arrays of symbols
are quite complex objects.

Publications included in the thesis: Pr̊uša and Reinhardt (2017); Pr̊uša
(2016).

3.4 Regular-like two-dimensional grammars

In a joint work with Akio Fujiyoshi (Ibaraki University, Japan), we con-
tributed to the portfolio of 2D grammars by defining a subclass of the 2D
Kolam grammar. Our goal was to propose a simpler version, which can be
more easily parsed, but which is still powerful enough to have a practical sig-
nificance. We restricted the 2D Kolam grammar by introducing productions
with a non-terminal rank-reducing property.

Definition 3.1. Let G = (VN , VT ,P , S0) be a 2D Kolam grammar. A func-
tion σ : VN ∪ VT → N is called a rank function of G if it fulfils ∀a ∈ VT :
σ(a) = 0 and ∀N ∈ VN : σ(N) > 0. For V ∈ VN ∪ VT , σ(V) is called a rank
of V .

Definition 3.2. We say that a 2CFG G = (VN , VT ,P , S0) is rank-reducing iff
there is a rank function σ : VN ∪ VT→ N such that

11

1. σ(N) ≥ σ(A) for each production N → A ∈ P ,

2. σ(N) ≥ σ(B) > σ(A) for each production N → AB ∈ P or N →
A
B
∈ P .

If a rank-reducing grammar does not have any production of type (9), it
generates a set of one-row pictures (i.e. strings) and this set is a regular lan-
guage. The same holds for a rank-reducing grammar without any production
of type (8). The language of one-column pictures generated by the grammar
is again regular.

Next, we proposed a top-down parsing algorithm strengthened by strongly
discriminative rules for finding branching points. These rules are based on
one-dimensional grammars describing sequences of terminal elements that
can form borders of 2D arrays generated from non-terminals. As mentioned
above, these one-dimensional grammars are regular. They can be extracted
fully automatically from the 2D rank-reducing grammar, together with equiv-
alent non-deterministic finite-state automata used to recognize the sequences
of terminals. We show that with this method the number of backtracks dur-
ing the parsing is minimal, hence the proposed algorithm is very efficient.

With some effort, the grammar and introduced technique of parsing can
be extended to inputs where terminal symbols are freely located in a plane.
We showed that this grammar extension is suitable for modelling document
layouts that consist of logical sections like titles, paragraphs, lists of items,
footnotes, etc. The method was tested on PDF documents since we are mo-
tivated by a development of digital document access methods for people with
disabilities in which a retrieval of structural information plays an important
role.

Publications included in the thesis: Pr̊uša and Fujiyoshi (2017).

12

References

Álvaro, F., Sánchez, J.-A., and Bened́ı, J.-M. Recognition of on-line hand-
written mathematical expressions using 2D stochastic context-free gram-
mars and hidden Markov models. Pattern Recognition Letters, 35(0):58 –
67, 2014. ISSN 0167-8655. Frontiers in Handwriting Processing.

Álvaro, F., Cruz, F., Sánchez, J.-A., Ramos Terrades, O., and Bened́ı, J.-
M. Structure detection and segmentation of documents using 2D stochastic
context-free grammars. Neurocomputing, 150(PA):147–154, February 2015.
ISSN 0925-2312.

Anderson, R. H. Syntax-directed recognition of hand-printed two-
dimensional mathematics. In Symposium on Interactive Systems for Ex-
perimental Applied Mathematics: Proceedings of the Association for Com-
puting Machinery Inc. Symposium, pages 436–459, New York, NY, USA,
1967. ACM.

Billera, L. J. and Sarangarajan, A. All 0-1 polytopes are traveling salesman
polytopes. Combinatorica, 16(2):175–188, 1996.

Boros, E. and Hammer, P. L. Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1-3):155–225, 2002. ISSN 0166-218X.

Boykov, Y., Veksler, O., and Zabih, R. Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1222–1239, November 2001. ISSN 0162-8828.

Bresler, M., Pr̊uša, D., and Hlaváč, V. Online recognition of sketched arrow-
connected diagrams. IJDAR, 19(3):253–267, 2016.

Chekuri, C., Khanna, S., Naor, J., and Zosin, L. Approximation algorithms
for the metric labeling problem via a new linear programming formulation.
In Symposium on Discrete Algorithms, pages 109–118, 2001.

Dantzig, G. and Thapa, M. Linear Programming 1: Introduction. Springer,
1997.

De Loera, J. A. and Onn, S. All linear and integer programs are slim 3-way
transportation programs. SIAM Journal on Optimization, 17(3):806–821,
2006.

Earley, J. An efficient context-free parsing algorithm. Communications of
the ACM, 13(2):94–102, February 1970. ISSN 0001-0782.

13

Eto, Y. and Suzuki, M. Mathematical formula recognition using virtual link
network. In Proceedings of Sixth International Conference on Document
Analysis and Recognition, pages 762–767, 2001.

Fahmy, H. and Blostein, D. A graph grammar programming style for recog-
nition of music notation. Machine Vision and Applications, pages 83–99,
1993. ISSN 0932-8092.

Giammarresi, D. and Restivo, A. Two-dimensional languages. In Rozenberg,
G. and Salomaa, A., editors, Handbook of Formal Languages, Vol. 3, pages
215–267. Springer, New York, 1997.

Globerson, A. and Jaakkola, T. Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations. In Conference on Neural In-
formation Processing Systems, pages 553–560, 2008.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN
0321455363.

Ishikawa, H. Exact optimization for Markov random fields with convex priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):
1333–1336, October 2003. ISSN 0162-8828.

Johnson, J. K., Malioutov, D. M., and Willsky, A. S. Lagrangian relax-
ation for MAP estimation in graphical models. In Allerton Conference on
Communication, Control and Computing, 2007.

Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S.,
Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis,
N., Savchynskyy, B., and Rother, C. A comparative study of modern
inference techniques for structured discrete energy minimization problems.
Int. J. Comput. Vision, 115(2):155–184, November 2015. ISSN 0920-5691.

Kiyko, V. Recognition of objects in images of paper based line drawings. In
Third International Conference on Document Analysis and Recognition,
pages 970–973, Montreal, 1995.

Kolmogorov, V. Convergent tree-reweighted message passing for energy min-
imization. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(10):1568–1583, 2006.

14

Kolmogorov, V. and Rother, C. Minimizing nonsubmodular functions with
graph cuts-a review. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(7):1274–1279, 2007. ISSN 0162-8828.

Komodakis, N., Paragios, N., and Tziritas, G. MRF energy minimization and
beyond via dual decomposition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(3):531–552, 2011.

Koster, A., van Hoesel, S. P., and Kolen, A. W. The partial constraint
satisfaction problem: Facets and lifting theorems. Operations Research
Letters, 23(3–5):89–97, 1998.

Lavirotte, S. and Pottier, L. Mathematical formula recognition using graph
grammar. In Proceedings of the SPIE 1998, volume 3305, pages 44–52, San
Jose, CA, 1998.

Le, A. D., Van Phan, T., and Nakagawa, M. A system for recognizing on-
line handwritten mathematical expressions and improvement of structure
analysis. In 11th IAPR International Workshop on Document Analysis
Systems (DAS), 2014, pages 51–55, April 2014.

Lemaitre, A., Mouchère, H., Camillerapp, J., and Coüasnon, B. Interest of
syntactic knowledge for on-line flowchart recognition. In 9th IAPR In-
ternational Workshop on Graphics Recognition, 2011. GREC 2011, pages
85–88, 2011.

Liang, P., Narasimhan, M., Shilman, M., and Viola, P. Efficient geometric
algorithms for parsing in two dimensions. International Conference on
Document Analysis and Recognition, pages 1172–1177, 2005. ISSN 1520-
5263.

Liu, J. and Liu, Y. Local regularity-driven city-scale facade detection from
aerial images. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages
3778–3785. IEEE Computer Society, 2014. ISBN 978-1-4799-5118-5.

Matz, O. Regular expressions and context-free grammars for picture lan-
guages. In In 14th Annual Symposium on Theoretical Aspects of Computer
Science, pages 283–294. Springer-Verlag, 1997.

Pradella, M., Cherubini, A., and Reghizzi, S. C. A unifying approach to
picture grammars. Information and Computation, 209(9):1246 – 1267,
2011. ISSN 0890-5401.

15

Pr̊uša, D. Non-recursive trade-offs between two-dimensional automata and
grammars. In Jürgensen, H., Karhumäki, J., and Okhotin, A., editors,
Descriptional Complexity of Formal Systems - 16th International Work-
shop, DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings, volume
8614 of Lecture Notes in Computer Science, pages 352–363. Springer, 2014.
ISBN 978-3-319-09703-9.

Pr̊uša, D. Graph-based simplex method for pairwise energy minimization
with binary variables. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
475–483. IEEE Computer Society, 2015a. ISBN 978-1-4673-6964-0.

Pr̊uša, D. (Un)decidability of the emptiness problem for multi-dimensional
context-free grammars. In Drewes, F., editor, Implementation and Appli-
cation of Automata - 20th International Conference, CIAA 2015, Ume̊a,
Sweden, August 18-21, 2015, Proceedings, volume 9223 of Lecture Notes
in Computer Science, pages 250–262. Springer, 2015b. ISBN 978-3-319-
22359-9.

Pr̊uša, D. Non-recursive trade-offs between two-dimensional automata and
grammars. Theoretical Computer Science, 610:121–132, 2016.

Pr̊uša, D. and Fujiyoshi, A. Rank-reducing two-dimensional grammars for
document layout analysis. In 14th International Conference on Document
Analysis and Recognition (ICDAR 2017), 9-15 November, Kyoto, Japan,
pages 1120–1125, 2017.

Pr̊uša, D. and Werner, T. Universality of the local marginal polytope. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(4):898–
904, 2015.

Pr̊uša, D. and Werner, T. LP relaxations of some np-hard problems are
as hard as any LP. In Klein, P. N., editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, January 16-19, pages 1372–1382. SIAM, 2017a.
ISBN 978-1-61197-478-2.

Pr̊uša, D. and Werner, T. LP relaxation of the Potts labeling problem is as
hard as any linear program. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(7):1469–1475, 2017b.

Pr̊uša, D. Two-dimensional Languages. PhD thesis, Faculty of Mathematics
and Physics, Charles University, Prague, Czech Republic, 2004.

16

Pr̊uša, D. and Reinhardt, K. Undecidability of the emptiness problem
for context-free picture languages. Theoretical Computer Science, 679
(Supplement C):118 – 125, 2017. ISSN 0304-3975. Implementation and
Application of Automata.

Reghizzi, S. C. and Pradella, M. A CKY parser for picture grammars. In-
formation Processing Letters, 105(6):213 – 217, 2008. ISSN 0020-0190.

Rother, C., Kolmogorov, V., Lempitsky, V. S., and Szummer, M. Optimizing
binary MRFs via extended roof duality. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2007.

Sadawi, N. M., Sexton, A. P., and Sorge, V. Chemical structure recognition:
a rule-based approach. In Viard-Gaudin, C. and Zanibbi, R., editors, Doc-
ument Recognition and Retrieval XIX, part of the IS&T-SPIE Electronic
Imaging Symposium, Burlingame, California, USA, January 25-26, 2012,
Proceedings, volume 8297 of SPIE Proceedings, page 82970E. SPIE, 2012.
ISBN 978-0-819-48944-9.

Savchynsky, B., Schlesinger, M., and Anochina, M. Parsing and recognition
of printed notes. In Proceedings of the conference Control Systems and
Computers, pages 30–38, Kiev, Ukraine, 2003. in Russian, preprint in
English available.

Schlesinger, D. and Flach, B. Transforming an arbitrary MinSum problem
into a binary one. Technical Report TUD-FI06-01, Dresden University of
Technology, Germany, April 2006.

Schlesinger, M. I. Matematiceskie sredstva obrabotki izobrazenij, in Russian,
(Mathematic tools for image processing). Naukova Dumka, Kiev, 1989.

Schlesinger, M. I. and Hlaváč, V. Ten Lectures on Statistical and Structural
Pattern Recognition (Computational Imaging and Vision). Springer, 1
edition, May 2012. ISBN 9048160278.

Schlesinger, M. I. Syntactic analysis of two-dimensional visual signals in
noisy conditions. Cybernetics and Systems Analysis, 12(4):612–628, 1976.
Translation from Russian.

Siromoney, G., Siromoney, R., and Krithivasan, K. Abstract families of
matrices and picture languages. Computer Graphics and Image Processing,
1(3):284 – 307, 1972. ISSN 0146-664X.

17

Siromoney, G., Siromoney, R., and Krithivasan, K. Picture languages with
array rewriting rules. Information and Control, 22(5):447 – 470, 1973.
ISSN 0019-9958.

Stria, J. and Pr̊uša, D. Web application for recognition of mathematical for-
mulas. In Lopatková, M., editor, Proceedings of the Conference on Theory
and Practice of Information Technologies, Vrátna Dolina, Slovak Repub-
lic, September 23-27, 2011, volume 788 of CEUR Workshop Proceedings,
pages 47–54. CEUR-WS.org, 2011.

Thapper, J. and Živný, S. The power of linear programming for valued
CSPs. In Symposium on Foundations of Computer Science (FOCS), pages
669–678. IEEE, 2012.

Tomita, M. Parsing 2-dimensional language. In Tomita, M., editor, Current
Issues in Parsing Technology, pages 277–289. Springer US, Boston, MA,
1991. ISBN 978-1-4615-3986-5.

Wainwright, M. J. and Jordan, M. I. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning,
1(1-2):1–305, 2008.

Werner, T. A linear programming approach to max-sum problem: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):
1165–1179, 2007.

Younger, D. Recognition of context-free languages in time n3. Information
and Control, 10:189–208, 1967.

Zeng, J. and Liu, Z. Q. Markov random field-based statistical character
structure modeling for handwritten Chinese character recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(5):767–
780, May 2008. ISSN 0162-8828.

18

A Included Publications

As the rest of the thesis, the following publications are included (listed in
the order they appear):

• Universality of the local marginal polytope (Pr̊uša and Werner, 2015),

• LP relaxation of the Potts labeling problem is as hard as any linear
program (Pr̊uša and Werner, 2017b),

• Graph-based simplex method for pairwise energy minimization with
binary variables (Pr̊uša, 2015a),

• On-line recognition of sketched arrow-connected diagrams (Bresler et al.,
2016),

• Undecidability of the emptiness problem for context-free picture lan-
guages (Pr̊uša and Reinhardt, 2017),

• Non-recursive trade-offs between two-dimensional automata and gram-
mars (Pr̊uša, 2016),

• Rank-reducing two-dimensional grammars for document layout analy-
sis (Pr̊uša and Fujiyoshi, 2017).

Universality of the Local Marginal Polytope

Daniel Pru
� �sa and Tom�a�s Werner

Abstract—We show that solving the LP relaxation of the min-sum labeling

problem (also known as MAP inference problem in graphical models, discrete

energy minimization, or valued constraint satisfaction) is not easier than solving

any linear program. Precisely, every polytope is linear-time representable by a

local marginal polytope and every LP can be reduced in linear time to a linear

optimization (allowing infinite costs) over a local marginal polytope. The reduction

can be done (though with a higher time complexity) even if the local marginal

polytope is restricted to have a planar structure.

Index Terms—Graphical model, Markov random field, discrete energy

minimization, valued constraint satisfaction, linear programming relaxation,

local marginal polytope

Ç

1 INTRODUCTION

THE min-sum (labeling) problem is defined as follows: given a set of
discrete variables and a set of functions depending on one or two
variables, minimize the sum of the functions over all variables.
This problem arises in MAP inference in graphical models [22] and
it is also known as discrete energy minimization [9] or valued con-
straint satisfaction [21].

This NP-complete problem has a natural linear programming
(LP) relaxation, proposed by a number of authors [4], [13], [18],
[22]. This relaxation is equivalent to the dual (Lagrangian) decom-
position of the min-sum problem [8], [12], [19]. While the min-sum
problem can be formulated as a linear optimization over the mar-
ginal polytope, the LP relaxation approximates this polytope by its
outer bound, the local marginal polytope [22].

The relaxation is exact for a large class of min-sum instances
and it is a basis for constructing good approximations for many
other instances [9], [20], [23]. It is therefore of great practical inter-
est to have efficient algorithms to solve the LP relaxation.

To solve the LP relaxation, the simplex and interior point meth-
ods are prohibitively inefficient for large-scale instances (which
often occur, e.g., in computer vision). For min-sum problems with
two labels, the LP relaxation can be solved efficiently because it
reduces in linear time to max-flow [3], [17]. For more general prob-
lems, no really efficient algorithm is known to solve the LP.

In this paper we show that the quest for efficient algorithms to
solve the LP relaxation of the general min-sum problem has a fun-
damental limitation, because this task is not easier than solving
any linear program. Precisely, we prove the following theorems.

Theorem 1. Every polytope is (up to scale) a coordinate-erasing projec-
tion of a face of a local marginal polytope with three labels, whose
description can be computed from the input polytope in linear time.

The input polytope is described by a set of linear inequalities
with integer coefficients. By coordinate-erasing projection, we
mean a projection that copies a subset of coordinates and erases
the remaining ones.

Theorem 2. Every linear program can be reduced in linear time to a lin-
ear optimization (allowing infinite costs) over a local marginal poly-
tope with three labels.

While Theorem 2 immediately follows from Theorem 1, the sit-
uation is more complex when infinite costs are not allowed. In
this case, the reduction time and the output size are quadratic
(see Theorem 9).

Given these negative results, one may ask whether the LP relax-
ation can be solved efficiently for some useful subclasses of the
min-sum problem. One such subclass is the planar min-sum prob-
lem, which frequently occurs in computer vision. We show (in
Theorem 11) that even in this case, the reduction can be done (with
infinite costs allowed), in better than quadratic time.

Similar universality results are known also for other polytopes,
e.g., the three-way transportation polytope [6] and the traveling
salesman polytope [2].

2 THE LOCAL MARGINAL POLYTOPE

Let ðV;EÞ be an undirected graph, where V is a finite set of objects

and E � V
2

� �
is a set of object pairs. LetK be a finite set of labels. Let

gu: K ! R and guv: K �K ! R be unary and binary cost functions,

where R ¼ R [f1g and we adopt that guvðk; ‘Þ ¼ gvuð‘; kÞ. The
min-sum problem is defined as

min
k2KV

X
u2V

guðkuÞ þ
X

fu;vg2E
guvðku; kvÞ

0
@

1
A: (1)

All the costs guðkÞ; guvðk; ‘Þ form a vector g 2 R
I

where I ¼
ðV �KÞ [ffðu; kÞ; ðv; ‘Þg j fu; vg 2 E; k; ‘ 2 K g. The problem instance
is given by a tuple ðV;E;K; gÞ.

The local marginal polytope [22] is the set L of vectors mm 2 RI
þ

satisfying X
‘2K

muvðk; ‘Þ ¼ muðkÞ; u 2 V; v 2 Nu; k 2 K; (2a)

X
k2K

muðkÞ ¼ 1; u 2 V; (2b)

where Nu ¼ f v j fu; vg 2 E g are the neighbors of u and we assume
muvðk; ‘Þ ¼ mvuð‘; kÞ. The numbers muðkÞ;muvðk; ‘Þ are known as
pseudomarginals [22]. The local marginal polytope is given by a
triplet ðV;E;KÞ.

The LP relaxation of the min-sum problem reads

L�ðgÞ ¼ argmin
mm2L

hg;mmi; (3)

where in the scalar product hg;mmi we define 0 � 1 ¼ 0. The set (3)
contains all vectors mm for which hg;mmi attains minimum over L. It
is itself a polytope, a face of L.

We will depict min-sum problems by diagrams, as in Fig. 1.
Objects u 2 V are depicted as boxes, labels ðu; kÞ 2 I as nodes, label
pairs fðu; kÞ; ðv; ‘Þg 2 I as edges. Each node is assigned a unary
pseudomarginal muðkÞ and cost guðkÞ. Each edge is assigned a
binary pseudomarginal muvðk; ‘Þ and cost guvðk; ‘Þ.

Note the meaning of constraints (2) in Fig. 1. Constraint (2b)
imposes for unary pseudomarginals a; b; c that aþ bþ c ¼ 1. Con-
straint (2a) imposes for binary pseudomarginals p; q; r that
a ¼ pþ q þ r.

3 INPUT POLYHEDRON

We consider the input polyhedron in the form

P ¼ fx ¼ ðx1; . . . ; xnÞ 2 Rn jAx ¼ b; x � 0 g; (4)

where1 A ¼ ½aij� 2 Zm�n, b ¼ ðb1; . . . ; bmÞ 2 Zm, m 	 n. We assume
there is at least one non-zero entry in each row and column of A.

 The authors are with the Department of Cybernetics, Czech Technical University,
Karlovo n�am�est�ı 13,12135 Praha, Czech Republic.
E-mail: {prusapa1, werner}@cmp.felk.cvut.cz.

Manuscript received 16 Aug. 2013; revised 15 July 2014; accepted 28 July 2014. Date of
publication 28 Aug. 2014; date of current version 3 Mar. 2015.
Recommended for acceptance by C. H. Lampert.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2014.2353626

1. The assumption that ðA;bÞ are integer-valued is common, see e.g., [10]. In
the more general case of rational-valued ðA;bÞ, Lemma 4 would not hold. Linear
complexity of the reduction could probably be maintained under some additional
assumptions, such as prior bounds on the sizes of coordinates of the vertices of P .

898 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015

0162-8828� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

The instance of polyhedron (4) is given by ðA;bÞ or, in short, by the
extended matrix

�A ¼ ½aij� ¼ ½A jb� 2 Zm�ðnþ1Þ: (5)

It will be convenient to rewrite the systemAx ¼ b as follows. In
the ith equation

ai1x1 þ � � � þ ainxn ¼ bi; (6)

it is assumed that bi � 0 (if not, multiply the equation by �1). Fur-
ther, the terms with negative coefficients are moved to the right-
hand side, such that both sides have only non-negative terms.
Thus, (6) is rewritten as

aþi1x1 þ � � � þ aþinxn ¼ a�i1x1 þ � � � þ a�inxn þ bi; (7)

where aþij � 0, a�ij � 0, aij ¼ aþij � a�ij. We assume w.l.o.g. that

aþi1 þ � � � þ aþin 6¼ 0 and a�i1 þ � � � þ a�in þ bi 6¼ 0.

The following lemmas give some bounds that will be needed in
the encoding algorithm.

Lemma 3. For every matrixA 2 Rn�n with columnsAj,

detAj j 	
Yn
j¼1

kajk2 	
Yn
j¼1

kajk1:

Proof. The first inequality is well-known as Hadamard’s inequal-
ity. The second inequality holds because kak2 	 kak1 for every
a 2 Rn. tu

Lemma 4. Let b 6¼ 0. Let ðx1; . . . ; xnÞ be a vertex of P . Then for each j

we have xj ¼ 0 orM�1 	 xj 	 M where

M ¼
Ynþ1

j¼1

Xm
i¼1

jaijj: (8)

Proof. It is well-known from the theory of linear programming
that every vertex x of P is a solution of a system A0x0 ¼ b0,
where x0 ¼ ðx01; x02; . . .Þ are the non-zero components of x, A0

is a non-singular submatrix of A, and b0 is a subvector of b.
By Cramer’s rule,

x0j ¼
detA0

j

detA0 ; (9)

where A0
j denotes A0 with the jth column replaced by b0.

Lemma 3 implies jdetA0
jj; jdetA0j 	 M . tu

Lemma 5. Let P be bounded. Then for every x 2 P , each side of equa-
tion (7) is not greater than

N ¼ Mmax
m

i¼1

Xn
j¼1

jaijj: (10)

Proof. Since every point ðx1; . . . ; xnÞ of P is a convex combination

of vertices of P , we have xj 	 M for each j. Hence, aþi1x1 þ � � �þ
aþinxn 	 Mðjai1j þ � � � þ jainjÞ 	 N for each i. tu

4 ENCODING A POLYTOPE

In this section, we prove Theorem 1 by constructing, in linear time,
a min-sum problem ðV;E;K;gÞ with costs g 2 f0; 1gI such that the
input polyhedron P is a scaled coordinate-erasing projection of
L�ðgÞ. We assume that P is bounded, i.e., a polytope.2

4.1 Elementary Constructions

The output min-sum problem will be constructed from small build-
ing blocks, which implement certain simple operations on unary
pseudomarginals. We call these blocks elementary constructions. An
elementary construction is a min-sum problem with jKj ¼ 3 labels,
zero unary costs guðkÞ ¼ 0, binary costs guvðk; ‘Þ 2 f0; 1g, and opti-
mal value minm2Lhg;mi ¼ 0. It follows that m 2 L is optimal to the

LP relaxation if and only if

guvðk; ‘Þmuvðk; ‘Þ ¼ 0; fu; vg 2 E; k; ‘ 2 K: (11)

We will define elementary constructions by diagrams such as in
Fig. 1, in which we draw only edges with costs guvðk; ‘Þ ¼ 1. Edges
with costs guvðk; ‘Þ ¼ 0 are not drawn. We will use the following
elementary constructions (see Fig. 2):

COPY enforces equality of two unary pseudomarginals a; d in
two objects while imposing no other constraints on b; c; e; f . Pre-
cisely, given any feasible unary pseudomarginals a; b; c; d; e; f ,
there exist feasible binary pseudomarginals satisfying (11) if and
only if a ¼ d.

ADDITION adds two unary pseudomarginals a; b in one object and
represents the result as a unary pseudomarginal c ¼ aþ b in
another object. No other constraints are imposed on the remaining
unary pseudomarginals.

EQUALITY enforces equality of two unary pseudomarginals a; b in
a single object, introducing two auxiliary objects. No other con-
straints are imposed on the remaining unary pseudomarginals.
In the sequel, this construction will be abbreviated by omitting the
two auxiliary objects and writing the equality sign between the
two nodes, as shown in Fig. 2d.

POWERS creates the sequence of unary pseudomarginals with
values 2ia for i ¼ 0; . . . ; d, each in a separate object. We call d the
depth of the pyramid.

NEGPOWERS is similar to POWERS but constructs values 2�i for
i ¼ 0; . . . ; d.

Fig. 3 shows an example of how the elementary constructions
can be combined. The edge colors distinguish different elementary
constructions. By summing selected bits from NEGPOWERS, the num-
ber 5

8 is constructed. The example can be easily generalized to con-

struct the value 2�dk for any d; k 2 N such that 2�dk 	 1.

4.2 The Algorithm

Nowwe are ready to describe the encoding algorithm. The input of
the algorithm is a set of equalities (7). Its output will be a min-sum
problem ðV;E;K;gÞ with jKj ¼ 3 labels and costs guðkÞ ¼ 0,
guvðk; ‘Þ 2 f0; 1g. We will number labels and objects by integers,
K ¼ f1; 2; 3g and V ¼ f1; . . . ; jV jg.

The algorithm is initialized as follows:

1.1. For each variable xj in (4), introduce a new object j into V .
The variable xj will be represented (up to scale) by pseudo-

marginal mjð1Þ.
1.2. For each such object j, build POWERS to the depth dj ¼

blog2 maxmi¼1jaijjc based on label 1. This yields the sequence

of numbers 2imjð1Þ for i ¼ 0; . . . ; dj.

1.3. Build NEGPOWERS to the depth d ¼ dlog2 Ne.

Fig. 1. A pair of objects fu; vg 2 E with jKj ¼ 3 labels.

2. If the input polytope is in the general form fx 2 Rn jAx 	 b g, it can be
transformed to the form (4) by adding slack variables and translating.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015 899

Then the algorithm proceeds by encoding each equation (7). The ith

equation is encoded as follows:

2.1. Construct pseudomarginals with non-zero values jaijjxj,
j ¼ 1; . . . ; n, by summing selected values from POWERS built
in Step 1.2, similarly as in Fig. 3. Note that the depths dj are

large enough to make this possible.
2.2. Construct a pseudomarginal with value 2�dbi by summing

selected bits from NEGPOWERS built in Step 1.3, similarly as

in Fig. 3. The value 2�dbi represents bi, which sets the scale
(mentioned in Theorem 1) between the input and output

polytope to 2�d. Note, the depth d is large enough to ensure
that all pseudomarginals are bounded by 1.

2.3. Sum all the terms on each side of the equation by repeti-
tively applying ADDITION and COPY.

2.4. Apply COPY to enforce equality of the two sides of the
equation.

Fig. 4 shows the output min-sum problem for an example poly-
tope P . By construction, the resulting min-sum problem encodes
the input polytope as follows:

 If P ¼ ; thenminmm2Lhg;mmi > 0.

 If P 6¼ ; thenminmm2Lhg;mmi ¼ 0 and

P ¼ pðL�ðgÞÞ; (12)

where p: RI ! Rn is the scaled coordinate-erasing projec-
tion given by

ðx1; . . . ; xnÞ ¼ pðmmÞ ¼ 2dðm1ð1Þ; . . . ;mnð1ÞÞ: (13)

Let us make some remarks on this construction. The output
min-sum problem has costs g 2 f0; 1gI but we could also use

g 2 f0;1gI without affecting the result. The min-sum problem

with costs in f0;1g is well-known as the constraint satisfaction prob-
lem (CSP). An instance of CSP is arc consistent [1] if

min
‘2K

guvðk; ‘Þ ¼ guðkÞ; u 2 V; v 2 Nu; k 2 K: (14)

Our constructed min-sum problem is arc consistent.
Solving the LP relaxation of the problem ðV;E;K; gÞ decides

whether P 6¼ ; and if so, it finds x 2 P . But this in fact means it sol-
ves the system fAx ¼ b; x � 0 g. Thus, we have the following
side-result.

Theorem 6. Solving any system of linear inequalities reduces in linear
time to the LP relaxation of an arc consistent min-sum problem with
three labels and costs in f0;1g.

4.3 The Complexity of Encoding

Let us show that the running time of the algorithm in Section 4.2 is
linear in the size of P , i.e., in the size of the matrix (5). It is usual
(see e.g. [10]) to define the description size of a matrix as the num-
ber of bits needed to encode all its entries in binary. Since an inte-
ger a 2 Z needs at least log2ðjaj þ 1Þ bits to encode, the number

L1 ¼
Xnþ1

j¼1

Xm
i¼1

log2ðjaijj þ 1Þ (15)

is a lower bound on the size of A. Now it suffices to show that the
running time is OðL1Þ because then it will clearly be linear also in
the true size of P .

Note that zero entries aij ¼ 0 do not contribute to L1. Thus L1 is

a lower bound on a sparse representation of A, in which only non-
zero entries are stored.

The running time of the algorithm is obviously3 linear in jEj.
Object pairs are created only when an object is created and the
number of object pairs added with one object is bounded by a con-
stant, hence jEj ¼ OðjV jÞ. So it suffices to show that jV j ¼ OðL1Þ.

On initialization, the algorithm creates
Pn

j¼1ðdj þ 1Þ objects in
Step 1.2 and dþ 1 objects in Step 1.3. It is easy to verify that both
these numbers are OðL1Þ. To show that dþ 1 ¼ OðL1Þ, one needs to
show (referring to (10)) that log2 M ¼ OðL1Þ and log2 maxi

P
j jaijj ¼

OðL1Þ.
For illustration, we only prove log2 M ¼ OðL1Þ and leave the

rest up to the reader. For every j, we haveXm
i¼1

jaijj 	
Ym
i¼1

ðjaijj þ 1Þ

because multiplying out the left-hand side yields the right-hand
side plus additional non-negative terms. Taking logarithm and

Fig. 2. Elementary constructions.

Fig. 3. Construction of the number 5
8.

3. The only thing that may not be obvious is how to multiply large integers
a; b in linear time. But this issue can be avoided by instead computing

pða; bÞ ¼ 2dlog2 aeþdlog2 be, which can be done in linear time using bitwise operations.
Since ab 	 pða; bÞ 	 ð2aÞð2bÞ, the bounds like M become larger but this does not
affect the overall complexity.

900 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015

summing over j yields

log2 M ¼
Xnþ1

j¼1

log2
Xm
i¼1

jaijj 	
Xnþ1

j¼1

Xm
i¼1

log2ðjaijj þ 1Þ ¼ L1:

Finally, encoding one equality (7) adds at most as many objects
as there are bits in the binary representation of all its coefficients.
Thus, the number of objects added to encode all equalities (7) is
OðL1Þ.

5 ENCODING A LINEAR PROGRAM

Here we show how to reduce any linear program to linear opti-
mization over a local marginal polytope. By saying that problem
A reduces to problem B we mean there is an algorithm to solve
problem A that can repeatedly4 call an oracle for problem B

(this is known as Turing reduction [15]). The complexity of the
reduction is the complexity of this algorithm, assuming that the
oracle for B takes constant time and space. If B is a linear pro-
gram, we assume the oracle returns not only the optimal value
but also an optimal argument.

We assume the input linear program in the form

P �ðcÞ ¼ argmin
x2P

hc;xi; (16)

where c ¼ ðc1; . . . ; cnÞ 2 Zn. Since the encoding in Section 4 can be
applied only to a bounded polyhedron but the LP (16) can be
unbounded, we first need a lemma.

Lemma 7. Every linear program can be reduced in linear time to a linear
program over a bounded polyhedron.

Proof. Denote HðaÞ ¼ fx 2 Rn j h1;xi 	 a g. By Lemma 4, all verti-
ces of P are contained in the halfspaceHðnMÞ. Clearly,

min
x2P\HðnMÞ

hc;xi � min
x2P\Hð2nMÞ

hc;xi: (17)

Each side of (17) is a linear program over a bounded polyhe-
dron. Inequality (17) is tight if and only if (16) is bounded, in
which case (17) has the same optimum as (16). The linear pro-
grams (17) are infeasible if and only if (16) is infeasible.

The description size of numbers nM and 2nM is OðL1Þ, thus
the reduction is done in linear time. tu
By Lemma 7, we further assume that P is bounded. We also

assume that P 6¼ ; because P ¼ ; is indicated byminmm2Lhg0;mmi > 0.

By Theorem 1, optimizing a linear function over P can be
reduced in linear time to optimizing a linear function over a face of
L. Given an oracle to optimize a linear function over L, it may
seem unclear how to optimize a linear function over a face of L.
This can be done by setting non-zero binary costs to a large
constant.

Precisely, let ðV;E;K; g0Þ be the min-sum problem that encodes

P , constructed in Section 4. Define g 2 R
I
by

giðkÞ ¼ ci; if k ¼ 1 and i 	 n;
0; if k > 1 or i > n;

�
(18a)

gijðk; ‘Þ ¼ 0; if g0ijðk; ‘Þ ¼ 0;
g1; if g0ijðk; ‘Þ ¼ 1;

�
(18b)

where the constant g1 � 0 is large enough to ensure that every
mm 2 L�ðgÞ satisfies (11). It follows that

P �ðcÞ ¼ pðL�ðgÞÞ: (19)

It remains to choose g1. The situation is different depending on
whether or not we are allowed to use infinite costs. If infinite costs
are allowed, we simply set g1 ¼ 1. This proves Theorem 2.

Fig. 4. The output min-sum problem for the polytope P ¼ f ðx; y; zÞ jxþ 2yþ 2z ¼ 3; �xþ 3y ¼ �1; x; y; z � 0 g.

4. In our case, the oracle is called only twice, as given by Lemma 7.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015 901

If infinite costs are not allowed, g1 must be large enough but
finite. Unfortunately, manipulation with these large numbers
increases the complexity of the reduction. This is given by Theorem
9. To prove it, we first need a lemma, which refines Lemma 4 for
the special case of the local marginal polytope.

Lemma 8. Let mm 2 RI be a vertex of the local marginal polytope defined
by ðV;E;KÞ with jKj ¼ 3. Then each component m of mm satisfies

m ¼ 0 or m � M�1
L where

ML ¼ 2jV jþ6jEj: (20)

Proof. Write the local marginal polytope in the form (4), i.e., con-
straints (2) read Ax ¼ b. Matrix A has jV j þ 6jEj rows and
3jV j þ 9jEj columns. Each row of matrix ½A jb� has exactly 4
non-zeros, each of them in f�1; 1g. By Hadamard’s inequality,

in (9) we have j detA0
jj; jdetA0j 	 ML. tu

Theorem 9. Every linear program (16) can be reduced to a linear optimi-
zation (allowing only finite costs) over a local marginal polytope with
three labels. The size of the output and the reduction time are
OðL1ðL1 þ L2ÞÞ where L2 is the description size of c.

Proof. Choose g1 ¼ 1þMLðC2 � C1Þwhere

C1 ¼
Xn
i¼1

minf0; cig; C2 ¼
Xn
i¼1

maxf0; cig:

We show that now every mm 2 L�ðgÞ satisfies (11). It suffices to
show this only for vertices of L�ðgÞ because taking convex com-
binations of vertices preserves (11).

Since mm 2 ½0; 1�I , the contribution of the unary terms to hg;mmi
is in the interval ½C1; C2�. Since P 6¼ ;, we have minmm2Lhg0;mmi ¼
0 and thereforeminmm2Lhg;mmi 	 C2.

Suppose there is a vertex mm of L�ðgÞ and a label pair
fðu; kÞ; ðv; ‘Þg such that guvðk; ‘Þ ¼ g1 and muvðk; ‘Þ > 0. By

Lemma 8, we have muvðk; ‘Þ � M�1
L . Thus

min
mm2L

hg;mmi � g1M�1
L þ C1 > C2;

which is a contradiction.
Let us prove the claimed complexity. The binary length of

g1 is OðL1 þ L2Þ. It occurs in g at OðL1Þ positions, thus the
binary length of g is OðL1ðL1 þ L2ÞÞ. tu

6 REDUCTION TO PLANAR MIN-SUM

In this section, we show that the reduction can be done even if we
require the graph ðV;EÞ of the output min-sum problem to be pla-
nar. For that, it suffices to modify the construction in Section 4.2 to
ensure that ðV;EÞ is planar.

Consider a drawing of the graph ðV;EÞ in the plane, in which
vertices are distinct points and edges are straight line segments
connecting the vertices. We assume w.l.o.g. that no three edges
intersect at a common point, except at graph vertices.

The main idea is to replace every edge crossing with an equiva-
lent planar min-sum problem. Consider a pair fu; zg; fv; wg 2 E of
crossing edges, as shown in Fig. 5a. This pair is replaced by a con-
struction in Fig. 5b. The cost functions guu0 ¼ gvv0 copy unary pseu-
domarginals, i.e., they enforce mu ¼ mu0 and mv ¼ mv0 . The other
cost functions are set as gu00z ¼ guz and gv00w ¼ gvw. Problem H is a
planar min-sum problem that enforces unary pseudomarginals in
objects u0; u00 and v0; v00 to be equal, mu0 ¼ mu00 and mv0 ¼ mv00 . This
problem can be drawn arbitrarily small so that it is not intersected
by any other edges.

Fig. 6 shows how the planar min-sum problem H can be
designed. We work with halves of unary pseudomarginals, the
first two from each object. The order of unary pseudomarginals
is changed by swapping neighbors, imitating bubble sort on
four elements.

Recall that the (non-planar) min-sum problem constructed in
Section 4.2 has E ¼ OðL1Þ object pairs. Thus, there are OðL2

1Þ
edge crossings in this problem, which yields a reduction to a
planar min-sum problem (allowing infinite costs) done in time

OðL2
1 þ L2Þ.
It turns out that a more careful strategy of drawing the graph

decreases the bound on edge crossings to OðmL1Þ. Before proving
this in Theorem 11, we need a lemma.

Suppose we are given numbers a1; . . . ; ap and sets I1; . . . ; Iq �
f1; . . . ; pg and we want to compute numbers bj ¼

P
i2Ij ai,

j ¼ 1 . . . ; q. The jth sum is constructed using a binary tree, Tj, in

which every non-leaf vertex is the sum of its children (i.e., every
non-leaf vertex with two children is ADDITION and every edge is
COPY, as in Fig. 3). The leaves of Tj are ai, i 2 Ij, and its root is bj. We

refer to this construction as SUMTREES.

Lemma 10. LetSUMTREES be drawn such that the leaves a1; . . . ;ap lie
on a common horizontal line and their positions on the line are
given, and the roots b1; . . . ;bq lie on a different horizontal line

and their positions on the line can be arbitrary. Under this constraint,
SUMTREES can be drawn withOðqPq

j¼1 jIjjÞ edge crossings.

Fig. 5. Eliminating an edge crossing.

Fig. 6. Planar edge crossing using three labels.

902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015

Proof. The construction is drawn as follows (see Fig. 7a). Each tree
is drawn without edge crossings. In each tree Tj, all the leaves
ai, i 2 Ij, have the same distance (i.e., the number of edges) to

the root bj. Let the height of a tree vertex be defined as its dis-

tance to the nearest leaf. The vertical coordinate of every non-
root vertex is equal to its height. All the roots b1; . . . ;bq have the

same vertical coordinate h ¼ dlog2 maxqj¼1jIjje.
Let us focus on tree T1. It is built in the bottom-upmanner. All

non-leaf vertices with the same height have two children except
the right-most one, which can have only one child. The horizontal
coordinate of a vertex equals the horizontal coordinate of its sec-
ond child; if there is only one child, it equals the horizontal coor-
dinate of this child. When a layer containing only one vertex has
been drawn and its height is less than h, the vertex is linked by a
single vertical edge with the layer of height h (thus, this edge can
jump over several layers), where it forms the root b1. Clearly,
adding this vertical edge does not affect the overall complexity.

The trees T2; . . . ; Tq are drawn similarly. The only differ-
ence is that all non-leaf vertices are shifted to the left by a
small offset, to ensure that the non-leaf vertices of all the
trees are distinct.

We will show that the number of edge crossings between
two trees Ti and Tj is OðjIij þ jIjjÞ. Consider all vertices with
heights k and kþ 1 (see Fig. 7b). For a vertex u with height
kþ 1, let Xu � R denote the smallest interval containing the
horizontal coordinates of u and its children. Edges going down
from u and v to height k can cross each other only if the intervals
Xu andXv intersect. Note that if u and v belong to the same tree,
thenXu andXv are disjoint.

Let qi;k and qj;k be the number of vertices with height k of Ti

and Tj, respectively. The number of pairs of intersecting inter-

vals is Oðqi;k þ qj;kÞ. To see this, observe that if an interval is

included in another, then it appears only in one intersecting
pair. If all such included intervals are discarded, each interval
intersects at most two others. Thus the number of intersections
is Oðqi;k þ qj;kÞ.

It follows that the number of edge crossings between Ti and
Tj is OðjTij þ jTjjÞ, where jT j denotes the number of vertices of

tree T . But we have jTjj ¼ OðjIjjÞ, because qj;kþ1 ¼ dqj;k=2e for

every j; k (recall, in every tree the highest non-root layer with a
single node is linked with the root layer by a single edge).

The total number of crossings in the whole SUMTREES graph isP
1	i 6¼j	q OðjIij þ jIjjÞ ¼ OðqPq

j¼1 jIjjÞ. tu
Theorem 11. Every linear program can be reduced inOðmL1 þ L2Þ time

to a linear optimization (allowing infinite costs) over a local marginal
polytope with three labels over a planar graph.

Proof. It suffices to show how to draw, in the algorithm from Sec-
tion 4.2, the graph ðV;EÞ with OðmL1Þ edge crossings. We show
this in the rest of the proof.

We start by drawing POWERS for variable x1 horizontally.
Then we draw SUMTREES over the objects of POWERS, with roots
being non-zero numbers jai1jx1, i ¼ 1; . . . ; m. The ith tree has
Oðlog2ðjai1j þ 1ÞÞ leaves, therefore, by Lemma 10, this SUMTREES

construction has OðmPm
i¼1 log2ðjai1j þ 1ÞÞ edge crossings.

This is repeated for the remaining variables x2; . . . xn, result-
ing in n independent SUMTREES constructions. The numbers

2�dbi, i ¼ 1; . . . ;m, are constructed similarly, by drawing SUM-

TREES over NEGPOWERS. The total number of edge crossings is

O
�Xn

j¼1

m
Xm
i¼1

log2ðjaijj þ 1Þ þm
Xm
i¼1

log2ðjbij þ 1Þ
�
¼OðmL1Þ:

At this stage, we have objects representing all non-zero num-
bers jaijjxj and 2�dbi. We assume that the vertical positions of all
SUMTREES were such that all these objects lie on a single horizon-
tal line. Now we proceed to sum the terms of each side of each
equality (7). This is done by drawing SUMTREES over these
objects, with 2m roots being the left-hand and right-hand sides
of all equalities (7). The tree associated with any side of the ith
equality (7) has OðniÞ leaves, where ni is the number of non-
zeros in the ith row of A. Therefore, the number of edge cross-

ings is OðmPm
i¼1 niÞ ¼ OðmL1Þ.

At this stage, all objects representing both sides of all equali-
ties (7) lie on a common horizontal line. It remains to join corre-
sponding left- and right-hand sides using COPY. This creates

Oðm2Þ � OðmL1Þ edge crossings. tu

7 CONSEQUENCES

Let us discuss some consequences of our results.
Most importantly, our results show that solving the LP relaxa-

tion of the min-sum problem is comparably hard as solving any
LP. This is straightforward if infinite costs are allowed. Then, by
Theorem 2, the reduction is done in time OðLÞ where L ¼ L1 þ L2,
while the best known algorithm [10] for general LP has time com-

plexity5 Oðn3:5L2 log L log log LÞ. Finding a very fast algorithm,

such as OðL2 log LÞ, to solve the LP relaxation would imply
improving the best-known complexity of LP, which is unlikely.

The cases in which the reduction time is polynomial but higher
than linear (Theorems 11 and 9) still impose a restriction on possi-
ble search for an efficient algorithm to solve the LP relaxation.
There are not many principles how to solve the general LP in poly-
nomial time (one is the ellipsoid algorithm), and finding a new
such principle is expected to be difficult. Therefore, we should
restrict our search to modifying these known principles rather than
to discovering a new principle.

Our results make more precise the known observation that the
LP relaxation of the min-sum problem is easier for two labels than
for the general case. It is known that for two labels the LP relaxa-
tion reduces in linear time to max-flow [3], [17] and the local mar-
ginal polytope has half-integral vertices [11], [23]. For three labels,
the coordinates of the vertices of local marginal polytopes can have
much more general values, as shown in Section 4.1. Moreover,
there is not much difference in complexity between the LP relaxa-
tion for three labels and for more than three labels (allowing infi-
nite costs) because, by Theorem 2, the latter can be reduced to the
former in linear time.

Rather than solving directly the LP relaxation (3), it is often
more desirable to solve its dual. The dual seeks to maximize a
lower bound on (1) by reparameterizations. One class of algorithms
to tackle this dual LP converges only to its local minimum,

Fig. 7. (a) A drawing of SUMTREES for p ¼ 6, q ¼ 2, I1 ¼ f1; 3; 4; 5g, I2 ¼
f2; 3; 4; 5; 6g. (b) Crossing edges between two layers.

5. Note, Karmarkar [10] assumes full encoding of the LP matrix but we allow
sparse encoding (see Section 4.3). To the best of our knowledge, the complexity of
solving sparse LPs is largely open [16].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015 903

characterized by arc consistency. This class includes popular mes-
sage passing algorithms [23, Section 6], [11], [7] and the algorithms
[14], [23, Section 7], [5]. Theorem 6 has an interesting consequence.
Suppose we are given a fixed point of say min-sum diffusion [23,
Section 6] and want to decide whether it is (globally) optimal to the
dual LP relaxation and if so, find a corresponding optimal solution
to the primal LP (3). This problem is equivalent to the LP relaxation
of an arc consistent min-sum problem with costs in f0;1g, there-
fore it is as hard as solving the general system of linear inequalities.

ACKNOWLEDGMENTS

The authors were supported by the Czech Science Foundation
grant P202/12/2071. Besides, Tom�a�s Werner was supported by the
European Commission grant FP7-ICT-270138.

REFERENCES

[1] C. Bessiere, “Constraint propagation,” in Handbook of Constraint Program-
ming. Amsterdam, The Netherlands: Elsevier, 2006, ch. 3.

[2] L. J. Billera and A. Sarangarajan, “All 0-1 polytopes are traveling salesman
polytopes,” Combinatorica, vol. 16, no. 2, pp. 175–188, 1996.

[3] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete Appl.
Math., vol. 123, nos. 1–3, pp. 155–225, 2002.

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “Approximation algorithms
for the metric labeling problem via a new linear programming for-
mulation,” in Proc. 12th Annu. Symp. Discrete Algorithms, 2001, pp. 109–118.

[5] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T.
Werner, “Soft arc consistency revisited,” Artif. Intell., vol. 174, nos. 7/8,
pp. 449–478, 2010.

[6] J. A. De Loera and S. Onn, “All linear and integer programs are slim 3-way
transportation programs,” SIAM J. Optim., vol. 17, no. 3, pp. 806–821, 2006.

[7] A. Globerson and T. Jaakkola, “Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations,” in Proc. 21st Annu. Conf. Neu-
ral Inf. Process. Syst., 2008, pp. 553–560.

[8] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Lagrangian relaxation
for MAP estimation in graphical models,” in Proc. Allerton Conf. Commun.,
Control Comput., 2007.

[9] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schn€orr, S. Nowozin, D. Batra,
S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis, and C. Rother, “A com-
parative study of modern inference techniques for discrete energy minimi-
zation problem,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2013,
pp. 1328–1335.

[10] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in Proc. 16th Anuu. ACM Symp. Theory Comput., 1984, pp. 302–
311.

[11] V. Kolmogorov, “Convergent tree-reweighted message passing for energy
minimization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10,
pp. 1568–1583, Oct. 2006.

[12] N. Komodakis, N. Paragios, and G. Tziritas, “MRF energy minimization
and beyond via dual decomposition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 3, pp. 531–552, Mar. 2011.

[13] A. Koster, S. P. van Hoesel, and A. W. Kolen, “ The partial constraint satis-
faction problem: Facets and lifting theorems,” Oper. Res. Lett., vol. 23,
nos. 3–5, pp. 89–97, 1998.

[14] V. K. Koval and M. I. Schlesinger, “Dvumernoe programmirovanie v zada-
chakh analiza izobrazheniy (Two-dimensional programming in image
analysis problems),” USSR Acad. Sci., Autom. Telemech., vol. 8, pp. 149–168,
1976, in Russian.

[15] C. M. Papadimitriou, Computational Complexity. Reading, MA, USA: Addi-
son-Wesley, 1994.

[16] P. M. Pardalos and S. A. Vavasis, “Open questions in complexity theory for
numerical optimization,”Math. Program., vol. 57, pp. 337–339, 1992.

[17] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szummer, “Optimizing
binary MRFs via extended roof duality,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2007, pp. 1–8.

[18] M. I. Shlezinger, “Syntactic analysis of two-dimensional visual signals in
noisy conditions,” Cybern. Syst. Anal., vol. 12, no. 4, pp. 612–628, 1976.

[19] D. Sontag, A. Globerson, and T. Jaakkola, “Introduction to dual decomposi-
tion for inference,” in Optimization for Machine Learning, Cambridge, MA,
USA: MIT Press, 2011.

[20] J. Thapper and S. �Zivn�y, “The power of linear programming for valued
CSPs,” in Proc. Symp. Found. Comput. Sci., 2012, pp. 669–678.

[21] S. �Zivn�y, The Complexity of Valued Constraint Satisfaction Problems. New
York, NY, USA: Springer, 2012.

[22] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fami-
lies, and variational inference,” Found. Trends Mach. Learn., vol. 1, nos. 1/2,
pp. 1–305, 2008.

[23] T. Werner, “A linear programming approach to max-sum problem:
A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 7, pp. 1165–
1179, Jul. 2007.

904 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 4, APRIL 2015

LP Relaxation of the Potts Labeling Problem
Is as Hard as Any Linear Program

Daniel Pru
� �sa and Tom�a�s Werner

Abstract—In our recent work, we showed that solving the LP relaxation of the

pairwise min-sum labeling problem (also known as MAP inference in graphical

models or discrete energy minimization) is not much easier than solving any linear

program. Precisely, the general linear program reduces in linear time (assuming

the Turing model of computation) to the LP relaxation of the min-sum labeling

problem. The reduction is possible, though in quadratic time, even to the min-sum

labeling problem with planar structure. Here we prove similar results for the

pairwise min-sum labeling problem with attractive Potts interactions (also known

as the uniform metric labeling problem).

Index Terms—Markov random field, graphical model, MAP inference, discrete

energy minimization, valued constraint satisfaction, linear programming relaxation,

uniform metric labeling problem, Potts model

Ç

1 INTRODUCTION

THE pairwise min-sum (labeling) problem consists in minimizing a
sum of unary and binary (also called pairwise) cost functions of dis-
crete variables. It is also known as (pairwise) discrete energy mini-
mization [1], [2], valued constraint satisfaction [3], or MAP inference
in graphical models [4]. It hasmany applications in computer vision,
machine learning, and other fields. This NP-hard problem has a nat-
ural linear programming (LP) relaxation [4], [5], [6], [7], [8], which
underlies many successful algorithms to tackle the problem (see [2]
and the references therein). Therefore it would have a great practical
impact to have efficient algorithms to solve this LP relaxation. The
popular simplex and interior point methods are prohibitively ineffi-
cient for large instances of the LP relaxation, often arising, e.g., in
computer vision. Our recent work [9] showed that, unfortunately,
solving the LP relaxation of the pairwise min-sum problem with
three variable states (labels) is as hard as solving the general linear
program. Precisely, the latter reduces to the former in linear time,
assuming the Turing model of computation. Therefore it is unlikely
that a very efficient algorithm for the LP relaxation exists.

This negative result suggests the question whether there are any
interesting subclasses of the min-sum problem for which the LP
relaxation is easier than the general LP and thus there is a hope for
efficient algorithms. One such subclass is the pairwise min-sum
problem with two labels, for which the LP relaxation has half-inte-
gral solutions and reduces in linear time to max-flow [10], [11].
Thus the LP relaxation can be solved very efficiently because the
complexity of best known algorithms for max-flow is much better
than for the general LP.

Another subclass is the metric labeling problem [12], [13], [14], a
pairwise min-sum problem in which the pairwise cost functions
satisfy the axioms of a metric. An important special case is the uni-
form metric, in statistical physics known as the attractive Potts inter-
action. We refer to the pairwise min-sum problem with attractive
Potts interactions as the Potts (labeling) problem. The LP relaxation
for this (still NP-hard) problem was proposed in [13] and later

generalized to any metric in [14]. For the Potts problem, the LP
relaxation [4], [5], [6], [7], [8] coincides with that in [13], [14].

The LP relaxation is the basis for approximation algorithms to
the metric labeling problem with theoretical approximation guar-
antees, in particular for the uniform metric where the approxima-
tion ratio is most favorable [13], [14], [15]. There is another class
of approximation algorithms for metric labeling problems,
a-expansion algorithms [12], which call a max-flow solver a small
number of times and thus they are very efficient. They achieve
comparable worst-case approximation guarantees [16] but the
algorithms based on LP relaxation are often more accurate in
practice [1], [2]. Moreover, for the multiway cut problem, closely
related to the Potts labeling problem, the LP relaxation is the only
known way to achieve the best possible approximation [17].

In this article, we show that solving the LP relaxation is hard
even for the Potts labeling problem. Precisely, the general linear pro-
gram can be reduced in linear time to the LP relaxation of the Potts
labeling problem with three labels (Theorem 4). Unlike in [9] where
the input LP is directly encoded by amin-sum problem, we proceed
in a different way. By duality, the LP problem is linear-time equiva-
lent to the linear feasibility (LF) problem (Lemma 3), therefore it suf-
fices to construct a reduction from LF. We do this in two steps: first
LF with rational coefficients is reduced to LF with coefficients in
f�1; 0; 1g by algebraic manipulations (Section 3) and then this prob-
lem is reduced to the LP relaxation of the Potts problem (Section 4).

This construction allows us to strengthen the result from [9] for
general min-sum problem because infinite costs are no longer
needed to achieve linear time. It allows us to formulate several
other results. As in [9], the reduction has a polyhedral formulation
(Theorem 5): any polytope is linear-time representable as a face of
the feasible set of the LP relaxation [13] of a Potts problem, which
we call the relaxed Potts polytope. We show (Theorem 8) that the
reduction to the LP relaxation of the Potts problem can be also
understood as a reduction to the LP relaxation of the multiway cut
problem [17]. Finally, again similarly to [9], the reduction can be
modified such that the output Potts problem is planar, but this
needs more than linear time (Theorem 9).

2 LP RELAXATION OF MIN-SUM PROBLEM

The pairwise min-sum (labeling) problem is defined as

min
k2KV

 X
u2V

guðkuÞ þ
X

fu;vg2E
guvðku; kvÞ

!
; (1)

where ðV;EÞ is a graph with V a finite set of objects and E � V
2

� �
a

set of object pairs, K is a finite set of labels, and gu: K ! R and
guv: K �K ! R are unary and pairwise cost functions, adopting
that guvðk; ‘Þ ¼ gvuð‘; kÞ.

The LP relaxation of this problem reads

min
m2L

hg;mmi; (2)

where g 2 RI and mm 2 RI is the vector with components
guðkÞ; guvðk; ‘Þ and muðkÞ;muvðk; ‘Þ, respectively, and

I ¼ ðV �KÞ [f fðu; kÞ; ðv; ‘Þg j fu; vg 2 E; k; ‘ 2 K g:
The set L � RI contains all vectors mm � 0 satisfying

X
‘2K

muvðk; ‘Þ ¼ muðkÞ; u 2 V; v 2 Nu; k 2 K; (3a)

X
k2K

muðkÞ ¼ 1; u 2 V; (3b)

� The authors are with the Department of Cybernetics, Faculty of Electrical Engineer-
ing, Czech Technical University, Karlovo n�am�est�ı 13, Praha 12135, Czech Republic.
E-mail: {prusapa1, werner}@fel.cvut.cz.

Manuscript received 10 Feb. 2016; revised 3 June 2016; accepted 6 June 2016. Date of
publication 19 June 2016; date of current version 12 June 2017.
Recommended for acceptance by S. Nowozin.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2582165

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017 1469

0162-8828� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

where Nu ¼ f v j fu; vg 2 E g denotes the neighbors of object u. Fol-
lowing [4], we refer to L as the local marginal polytope and to
muðkÞ;muvðk; ‘Þ as pseudomarginals. The meaning of constraints 3a is
illustrated in Fig. 1.

A reparameterization of a cost vector g 2 RI is a cost vector

g0 2 RI given by

g0uðkÞ ¼ guðkÞ �
X
v2Nu

’uvðkÞ (4a)

g0uvðk; ‘Þ ¼ guvðk; ‘Þ þ ’uvðkÞ þ ’vuð‘Þ; (4b)

where ’uvðkÞ 2 R (u 2 V , v 2 Nu, k 2 K). Reparameterizations pre-
serve hg;mmi for every mm satisfying (3).

2.1 Potts Labeling Problem

Problem (1) in which pairwise cost functions guv satisfy metric axi-
oms has been called the metric labeling problem [12], [13], [14], [15].
Its special case is obtained for the uniform metric (the attractive Potts
interaction)

guvðk; ‘Þ ¼ huv½½k 6¼ ‘��; (5)

where huv � 0, and ½½k 6¼ ‘�� ¼ 1 if k 6¼ ‘ and ½½k 6¼ ‘�� ¼ 0 if k ¼ ‘. We
refer to problem (1) with pairwise costs (5) as the Potts (labeling)
problem.

In this case, problem (2) can be simplified [14] by minimizing
out the pairwise pseudomarginals muv. For a fixed object pair
fu; vg 2 E, minimizing hguv;muvi over muv � 0 subject to (3a) is a
discrete transportation problem with transport costs guv. If guv has
the form (5), the optimal value of this problem is given explicitly as
1
2huv

P
k2K jmuðkÞ � mvðkÞj. Therefore (2) is equivalent to minimizing

X
u2V

X
k2K

guðkÞmuðkÞ þ
X

fu;vg2E

1

2
huv

X
k2K

jmuðkÞ � mvðkÞj; (6)

over unary pseudomarginals muðkÞ � 0 subject to (3b). This is the
relaxation of the Potts problem proposed by Kleinberg and
Tardos [13]. It can be written also as

min
n2P

hh; ni; (7)

where h 2 RðV�KÞ[E is the vector with components huðkÞ ¼ guðkÞ
and huv, and P is the set of all vectors n 2 ½0; 1�ðV�KÞ[E with compo-
nents nuðkÞ; nuv satisfyingX

k2K
jnuðkÞ � nvðkÞj 	 2nuv; fu; vg 2 E; (8a)

X
k2K

nuðkÞ ¼ 1; u 2 V: (8b)

We will refer to P as the relaxed Potts polytope.

3 INPUT POLYHEDRON

Our key construction in the paper will be a linear-time representa-
tion of any convex polyhedron as the optimal set of the LP

relaxation of a Potts problem. We assume the input polyhedron in
the form

P ¼ f x 2 Rn jAx ¼ 0; xn ¼ 1; x � 0 g; (9)

where A ¼ ½aij� 2 Qm�n and xn denotes the last component of the
vector x ¼ ðx1; . . . ; xnÞ. Note that the equation xn ¼ 1 makes the
homogeneous linear system Ax ¼ 0 non-homogeneous, with the
right-hand side being the negative last column of A. Each row and
column of A is assumed to have at least one non-zero.

By ‘linear time’ we mean time OðNÞ where N is the size of the
input, i.e., the number of bits needed to encode matrix A in binary.
That is, we assume the Turing model of computation. Let us define
the size of a matrix precisely. For a scalar a 2 Q, we define

sizeðaÞ ¼ log 2ðjpqj þ 1Þ; (10)

where p; q 2 Z are such that a ¼ p=q assuming that q does not
divide p unless q ¼ 1 or p ¼ 0. For a matrix A 2 Qm�n, we define

sizeðAÞ ¼
Xn
j¼1

Xm
i¼1

sizeðaijÞ: (11)

As sizeðaÞ ¼ 0 for a ¼ 0, (11) underestimates the true size of
matrix A by neglecting the space needed, e.g., for storing the indi-
ces of zero entries. This does not matter because if the time of an
algorithm is linear in sizeðAÞ, it is at most linear in the true size
of A. On the contrary, not counting zero entries makes our results
stronger because it allows for a sparse representation of A.

In the rest of this section, we transform the description (9) of the
input polyhedron by algebraic manipulations to a form suitable for
encoding by a Potts problem.

3.1 From Rationals to Integers

First, the homogeneous linear system Ax ¼ 0 in (9) with rational
coefficients is transformed to a linear system with integer coeffi-
cients.1 For each non-zero input coefficient aij ¼ pij=qij 2 Q with

pij; qij 2 Z, we create an auxiliary variable yij and the equation

jqijjyij ¼ jpijjxj: (12)

Then in the input system we replace every non-zero term aijxk with
sgnðaijÞyij. The size of the output is clearly linear in the size of the

input.2

Example 1. The system

2

7
x1 þ 3

5
x2 � 2x3 ¼ 0

7

3
x1 � 1

2
x2 ¼ 0;

is transformed to the system

2x1 ¼ 7y11 3x2 ¼ 5y12 2x3 ¼ y13
7x1 ¼ 3y21 x2 ¼ 2y22

y11 þ y12 � y13 ¼ 0
y21 � y22 ¼ 0:

3.2 From Integers to f�1; 0; 1g
The system Ax ¼ 0with integer coefficients A 2 Zm�n is now trans-
formed in linear time to a homogeneous system with coefficients
in f�1; 0; 1g.

Instead of the usual ðx1; . . . ; xnÞ, let us name the input variables
ðx10; . . . ; xn0Þ. The key idea is similar to [18, Section 3.1]. Suppose

Fig. 1. One object pair fu; vg 2 E with jKj ¼ 3 labels. Objects u; v 2 V are depicted
as boxes, labels ðu; kÞ 2 I as nodes, and label pairs fðu; kÞ; ðv; ‘Þg 2 I as edges.
Note the meaning of constraints (3): for unary pseudomarginals a; b; c and pairwise
pseudomarginals p; q; r, equality (3a) reads a ¼ pþ q þ r and equality (3b) reads
aþ bþ c ¼ 1.

1. In [9] we assumed that the input LP has integer coefficients, in other words,
this step was omitted.

2. Note that the most obvious reduction, multiplying each equation by the
least common multiple of the denominators, would take more than linear time.

1470 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

we want to construct a product aijxj0 for some aij 2 N. Create the

equation system

xj1 ¼ xj0 þ yj0 yj0 ¼ xj0
xj2 ¼ xj1 þ yj1 yj1 ¼ xj1

..

. ..
.

xj;dj ¼ xj;dj�1 þ yj;dj�1 yj;dj�1 ¼ xj;dj�1

(13)

The first line of this system enforces xj1 ¼ 2xj0, the second line
enforces xj2 ¼ 2xj1, etc. Consequently,

xjk ¼ 2kxj0: (14)

The product aijxj0 can be now obtained by summing appropriate
bits of the binary code of aij. E.g., 11xj0 ¼ xj0 þ xj1 þ xj3 because

11 ¼ 20 þ 21 þ 23.
The whole reduction proceeds as follows:

1) For each j ¼ 1; . . . ; n, create equation system 13 with

dj ¼
�
log 2maxmi¼1jaijj

�
.

2) For each i ¼ 1; . . . ;m, construct non-zero terms aijxj0, sum
them, and equate the result to zero.

It is easy to verify that the number of non-zero output terms is
linear in sizeðAÞ.
Example 2. The system

2x10 þ 11x20 � 3x30 þ x40 ¼ 0

3x10 þ 6x20 � 5x40 ¼ 0

is transformed to the system

x11 ¼ x10 þ y10 y10 ¼ x10
x21 ¼ x20 þ y20 y20 ¼ x20
x22 ¼ x21 þ y21 y21 ¼ x21
x23 ¼ x22 þ y22 y22 ¼ x22
x31 ¼ x30 þ y30 y30 ¼ x30
x41 ¼ x40 þ y40 y40 ¼ x40
x42 ¼ x41 þ y41 y41 ¼ x41

x11 þ ðx20 þ x21 þ x23Þ � ðx30 þ x31Þ þ x40 ¼ 0
ðx10 þ x11Þ þ ðx21 þ x22Þ � ðx40 þ x42Þ ¼ 0:

3.3 Scaling

A polyhedron (9) with A 2 f�1; 0; 1gm�n is now scaled down such

that all its vertices are contained in the box ½0; 1n�n. This ensures that
all quantities represented by pseudomarginals fit into the
interval ½0; 1� (see Sections 4.2 and 5.1).

Lemma 1. Each vertex x of convex polyhedron 9 with

A 2 f�1; 0; 1gm�n satisfies x 2 ½0;M�n where

M ¼
Yn
j¼1

Xm
i¼1

jaijj: (15)

Moreover, sizeðMÞ ¼ OðsizeðAÞÞ.
Proof. See Lemma 4 and Section 4.3 in [9]. tu

By Lemma 1, the polyhedron must be scaled down by the
factor nM . This can be conveniently done during the transforma-

tion in Section 3.2. Let A 2 f�1; 0; 1gm�n be the output matrix and
j the index of the last variable of the input system in Section 3.2.
Without scaling, we would set xj ¼ 1. To achieve scaling, set

dj ¼ dlog 2ðnMÞe and xj;dj ¼ 1. By (14), this yields xj ¼
2�dj 	 ðnMÞ�1.

Though the number nM can be big, by Lemma 1 its size, and
hence the number of added equations, is OðsizeðAÞÞ.

To summarize Section 3, polyhedron (9) with rational coeffi-
cients has been transformed in linear time to a polyhedron of the
same form with coefficients f�1; 0; 1g and vertices in ½0; 1n�n. More
precisely, the input polyhedron is a scaled coordinate-erasing pro-
jection of the output polyhedron, where the erased coordinates cor-
respond to the auxiliary variables introduced in Sections 3.1
and 3.2. Here, we call a projection coordinate-erasing if it acts by
erasing a subset of coordinates.

4 ENCODING BY POTTS PROBLEM

Here we will represent the polyhedron obtained in Section 3 by the
LP relaxation of a Potts problem. In fact, the output problem will
be a reparameterized Potts problem, i.e., a min-sum problem with
arbitrary unary costs guðkÞ and pairwise costs (4b) with guvðk; ‘Þ
given by (5). By moving ’uvðkÞ to the unary costs, such a problem
can be reparameterized in linear time to a Potts problem with
unary costs (4a) and pairwise costs (5).

4.1 Gadgets

We will construct the output problem by gluing small subpro-
blems, called gadgets,3 which encode simple operations on unary
pseudomarginals. Each gadget is a reparameterized Potts problem
with unary costs guðkÞ 2 f0; 1g and pairwise costs

guvðk; ‘Þ ¼ 2½½k 6¼ ‘�� þ ’uvðkÞ þ ’vuð‘Þ; (16)

(i.e., we set4 huv ¼ 2 for all fu; vg 2 E in (5)) where
’uvðkÞ 2 f�1; 0; 1g. In addition, the costs satisfy

min
k2K

guðkÞ ¼ 0; u 2 V; (17a)

min
k;‘2K

guvðk; ‘Þ ¼ 0; fu; vg 2 E: (17b)

Each gadget is designed such that its LP relaxation has zero opti-
mal value. It follows that anymm 2 L is optimal to (2) if and only if

guðkÞmuðkÞ ¼ 0; u 2 V; k 2 K; (18a)

guvðk; ‘Þmuvðk; ‘Þ ¼ 0; fu; vg 2 E; k; ‘ 2 K; (18b)

i.e., whenever a cost is positive then the corresponding pseudomar-
ginal must vanish.

We will define gadgets by diagrams such as in Fig. 1, adopting
the following conventions. Each non-zero number ’uvðkÞ is written
near node ðu; kÞ on the side of object v, where ‘þ’ stands for
’uvðkÞ ¼ 1 and ‘�’ for ’uvðkÞ ¼ �1. A node ðu; kÞ is black if
guðkÞ ¼ 0 and white if guðkÞ ¼ 1. An edge fðu; kÞ; ðv; ‘Þg is drawn
only if guvðk; ‘Þ ¼ 0 and both of its end-nodes are black, otherwise
it is invisible. Fig. 2 shows an example.

We will use the following gadgets, defined in Fig. 3:

� SWAP swaps two unary pseudomarginals, one of them zero.
Precisely, the LP relaxation of this gadget has zero optimal
value if and only if the unary pseudomarginals linked by
visible edges are equal and the unary pseudomarginals in
the white nodes are zero.

� PERMUTE applies SWAP several times to arbitrarily permute
all the three unary pseudomarginals, one of them zero. The
figure shows one possible permutation.

� COPY copies all the three unary pseudomarginals, one of
them zero, from one object to another object.

3. When constructing reductions in complexity theory, a gadget is a small
instance of the output problem that implements a certain simple functionality of
the input problem. In [9] we used the term ‘elementary construction’ instead of
‘gadget’.

4. We could have just as well set huv ¼ 1; we chose huv ¼ 2 only for conve-
nience because then all ’uvðkÞ can be integer.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017 1471

� UNIT enforces a unary pseudomarginal to be 1.
� ADD1 adds two unary pseudomarginals in a single object

and copies the result in another object. The third unary
pseudomarginal is copied.

� ADD adds two unary pseudomarginals in two different
objects. This is done by gluing three ADD1gadgets.

Each gadget has several versions obtained by permuting the
three labels. Each interface object of COPY, SWAP and ADD has two
black nodes and one white node. This ensures that any versions of
COPY and ADD can be glued together, possibly after permuting the
nodes by PERMUTE. UNIT can be glued with any gadget with black
node linked to the black node labeled 1. When several gadets are
glued, the unary costs in identified nodes ðu; kÞ of their interface
objects are summed.

4.2 Encoding

We now describe the encoding algorithm. The input of the algo-
rithm is a polyhedron (9) with A 2 f�1; 0; 1gm�n and the vertices in

½0; 1n�n. Its output is a reparameterized Potts problem with jKj ¼ 3

labels.
First, we rewrite the system Ax ¼ 0 in (9) as

Aþx ¼ A�x; (19)

where aþij ¼ maxfaij; 0g and a�ij ¼ maxf�aij; 0g so that

aþij; a
�
ij 2 f0; 1g. That is, we have moved negative terms in each

equation to the other side of the equation.
Let the three labels of the output problem be named

K ¼ f1; 2; 3g. The encoding proceeds as follows:

1) Set V ¼ f1; . . . ; ng and E ¼ ;. Each variable xj is now rep-
resented by unary pseudomarginal mjð1Þ.

2) For each i ¼ 1; . . . ;m, encode the ith equation of system (19)
as follows:
a) Construct a unary pseudomarginal equal to the LHS of

the equation using ADD, permuting labels by PERMUTE

if necessary.
b) Do the same for the RHS.
c) Equate the LHS and RHS using COPY, permuting labels

by PERMUTE if necessary.
3) Encode the equation xn ¼ 1 using UNIT.
Assume that the input polyhedron P is bounded (i.e., a poly-

tope). Due to the scaling done in Section 3.3, Aþx ¼ A�x 	 1 for
all x 2 P . Therefore every expression formed in Steps 2a and 2b
fits into the feasible interval ½0; 1� of pseudomarginals. Recall
that the LP relaxation of each gadget has zero optimal value.
Since the gadgets are glued such that they encode the input sys-
tem Ax ¼ 0, the LP relaxation of the output problem will have
zero optimal value if and only if P is non-empty. In other
words, the output min-sum problem encodes the input polytope
as follows:

� If P ¼ ; thenminmm2Lhg;mmi > 0.
� If P 6¼ ; thenminmm2Lhg;mmi ¼ 0 and

P ¼ p
�
argmin

mm2L
hg;mmi

�
; (20)

where ‘argmin’ denotes the set of all minimizers and

p: RI ! Rn; pðmmÞ ¼ ðm1ð1Þ; . . . ;mnð1ÞÞ; (21)

is the coordinate-erasing projection that erases all pseudo-
marginals not representing the input variables (see Step 1
of the algorithm).

Fig. 4 shows the constructed reparameterized Potts problem for
an example input polyhedron.

As for each aij 6¼ 0 a constant number of objects and object pairs
is created, the encoding time is OðsizeðAÞÞ.

5 OBTAINED REDUCTIONS

In Sections 3 and 4 we described our core construction. Here we
describe several reductions that are more or less straightforward
consequences of this construction.

5.1 Reduction from LF and LP

The linear feasibility problem is the problem of solving a system of
linear inequalities. In our formulation, given a matrix A (with ratio-
nal entries) the aim is to decide if the polyhedron P is nonempty
and if so, to find an element x 2 P .

Theorem 2. The linear feasibility problem reduces in linear time to the
LP relaxation of the Potts problem with three labels.

Proof. If P is bounded, the claim holds by composing the reduc-
tions in Sections 3 and 4. If P is unbounded, it has at least one
vertex. The reduction in Section 4 cuts off a part of P because the
pseudomarginals are bounded by 1. But, due to the scaling
in Section 3.3, this part does not contain any vertex. Therefore,
cutting this part off preserves at least some solutions to the input
problem. tu

Fig. 2. Our notation for gadgets. (a) shows a gadget in our notation. (b) is the corre-
sponding reparameterized Potts problem with unary costs written inside nodes and
pairwise costs written next to edges; each þ [�] contributes by 1 [�1] to the pair-
wise cost of the adjacent edge. (c) is the corresponding Potts problem; each þ [�]
contributes by 1 [�1] to the unary cost of the adjacent node, each white node
contributes to its unary cost by additional increment 1.

Fig. 3. Potts problems used as gadgets.

1472 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

The linear programming problem is the problem of minimizing a
linear function subject to linear inequalities.

Lemma 3. The linear programming problem reduces in linear time to the
linear feasibility problem.

Proof. By strong duality, any linear program

minf hc; xi jAx ¼ b; x � 0 g;
can be solved by solving the system

Ax ¼ b; ATyþ z ¼ c; hc; xi ¼ hb;yi; x; z � 0:

Plugging y ¼ yþ � y� where yþ;y� � 0 puts this system into
form 9. The system is feasible if and only if the input LP is feasi-
ble and bounded. The reduction takes linear time because it
essentially copies A;b; c twice to the output. tu
This gives us the central result of our paper.

Theorem 4. The linear programming problem reduces in linear time to
the LP relaxation of the Potts problem with three labels.

Proof. Combine Lemma 3 and Theorem 2. tu

5.2 Polyhedral Interpretation

Composing the reductions done in Sections 3 and 4 (see equal-
ity (20)) yields that the input polytope P is a (scaled) coordinate-
erasing projection of a face of a local marginal polytope L. This
recovers our result [9, Theorem 1] with the constraint that the out-
put problem is a (reparameterized) Potts problem. Here we refor-
mulate this result in terms of the relaxed Potts polytope P.

By moving the numbers ’uvðkÞ to the unary costs, (20) can be
expressed in terms of P rather than L. Defining vector

h 2 RðV�KÞ[E by huðkÞ ¼ guðkÞ �
P

v2Nu
’uvðkÞ and huv ¼ 2, we

indeed have

p
�
argmin

mm2L
hg;mmi

�
¼ p0

�
argmin

n2P
hh; ni

�
; (22)

where p0: RðV�KÞ[E ! Rn is the coordinate-erasing projection
given by p0ðnÞ ¼ ðn1ð1Þ; . . . ; nnð1ÞÞ. Comparing (20) with (22) yields
the following result.

Theorem 5. Every polytope is (up to scale) a coordinate-erasing projec-
tion of a face of a relaxed Potts polytope with three labels, whose
description (by a set of linear inequalities) can be computed from the
description of the input polytope in linear time.

5.3 Relation to the Dual LP Relaxation

Rather than linear program (2) it is often better to solve its
dual. As shown, e.g., in [6], the dual LP relaxation maximizes
the function

LðgÞ ¼
X
u2V

min
k2K

guðkÞ þ
X

fu;vg2E
min
k;‘2K

guvðk; ‘Þ; (23)

over reparameterization of g (i.e., we maximize Lðg0Þ over ’, where
g0 is given by (4). Function (23) is a lower bound on (2),

min
mm2L

hg;mmi � LðgÞ: (24)

By strong duality, inequality (24) holds with equality if and only if
g is dual-optimal, i.e., no reparameterization of g can increase the
lower bound.

For the Potts problem, the dual optimal value does not change if
we add to the dual the constraints

’uvðkÞ þ ’vuðkÞ ¼ 0; fu; vg 2 E; k 2 K (25a)

j’uvðkÞj 	
1

2
huv; u 2 V; v 2 Nu; k 2 K: (25b)

This is proved by writing the dual of the Kleinberg-Tardos
relaxation (7), see Theorem 10 in Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2016.2582165. Note that
the numbers ’uvðkÞ used in our gadgets satisfy (25).

Let us emphasize that the reduction from Section 4 applies only
to the primal LP relaxation. The question whether there is a linear-
time reduction of the general LP to the dual LP relaxation is left
open in this paper. Does our reduction relate in any way to the dual
LP relaxation? The reparameterized Potts problem constructed
in Section 4.2 satisfies (17), hence it hasLðgÞ ¼ 0. Therefore:

� If P ¼ ; thenminmm2Lhg;mmi > LðgÞ ¼ 0.
� If P 6¼ ; thenminmm2Lhg;mmi ¼ LðgÞ ¼ 0.
This shows that the linear feasibility problem in fact reduces to

a simpler problem than the LP relaxation (2), namely, to deciding
whether g is dual optimal.

Theorem 6. The linear feasibility problem reduces in linear time to the
following problem: given a reparameterized Potts problem with three
labels, decide if its cost vector is optimal to the dual LP relaxation.

5.4 Reduction to Multiway Cut Problem

Closely related to the Potts problem is the multiway cut problem. For
its LP relaxation, given in [17], we prove a result analogous to
Theorem 4.

A multiway cut in a graph ðV [K;E0Þ, where K are terminals

and E0 � V [K
2

� �
, is a subset of edges whose removal leaves each ter-

minal in a separate component. Given edge costs h0
uv � 0, the goal

of the multiway cut problem is to find a multicut with minimum
total cost. The LP relaxation of this problem [17] reads

Fig. 4. A reparameterized Potts problem that encodes the polyhedron
P ¼ f ðx1; x2; x3; x4Þ 2 R4 j x1 þ x2 ¼ x4; x2 þ x3 ¼ x1; x1 � 0; x2 � 0; x3 � 0; x4 ¼ 1 g.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017 1473

minimize
X

fu;vg2E0

1

2
h0
uv

X
k2K

jmuðkÞ � mvðkÞj (26a)

subject to
X
k2K

muðkÞ ¼ 1; u 2 V [K (26b)

mkðkÞ ¼ 1; k 2 K (26c)

muðkÞ � 0; u 2 V; k 2 K: (26d)

Theorem 7. The LP relaxation of the Potts problem reduces in linear
time to the LP relaxation of the multiway cut problem.

Proof. As shown, e.g., in [12, Section 7.1], the Potts problem with
graph ðV;EÞ, unary costs guðkÞ, and Potts costs huv reduces to the
multiway cut problem with graph ðV [K;E0Þ where
E0 ¼ E [f fu; kg ju 2 V; k 2 K g, and costs h0

uv ¼ huv for

fu; vg 2 E and h0
uk ¼ cu � guðkÞ for u 2 V , k 2 K, where

cu ¼ maxkguðkÞ. Since jKj is constant in our case, the reduction
takes linear time.

We show that this reduction preserves the LP relaxation. The
objective (26a) reads

X
fu;vg2E

1

2
huv

X
k2K

jmuðkÞ � mvðkÞj

þ
X
u2V

X
k2K

1

2
½cu � guðkÞ�

X
‘2K

jmuð‘Þ � mkð‘Þj:
(27)

Using (26c) we have

X
‘2K

jmuð‘Þ � mkð‘Þj ¼ ½1� muðkÞ� þ
X
‘ 6¼k

muð‘Þ ¼ 2½1� muðkÞ�;

so the second sum in 27 is

X
u2V

X
k2K

½cu � guðkÞ�½1� muðkÞ� ¼ C þ
X
u2V

X
k2K

guðkÞmuðkÞ:

Therefore (27) equals (6) up to a constant C. tu
Theorem 8. The linear programming problem reduces in linear time to

the LP relaxation of the multiway cut problem with three terminals.

Proof. Combine Theorems 4 and 7. tu

5.5 Reduction to Planar Potts Problem

As in [9], reduction to the Potts problem is possible even if this
problem is required to have planar structure, at the expense of
increasing the reduction complexity.

Theorem 9. The linear programming problem reduces in quadratic time
to the LP relaxation of the planar Potts problem with three labels,
whose size is quadratic.

Proof. Consider the reparameterized Potts problem constructed
in Section 4.2, with graph ðV;EÞ. We will replace this problem
with a planar reparameterized Potts problem with the same LP
relaxation.

Let the graph ðV;EÞ be drawn in the plane, such that the ver-
tices are distinct points and the edges are line segments

connecting the vertices. We assume w.l.o.g. that no three edges
intersect at a common point, except at graph vertices. We will
replace every edge crossing with a planar reparameterized Potts
problem.

Let fu; zg; fv; wg 2 E be a pair of crossing edges, as shown in
Fig. 5a. This pair of edges is replaced by a construction outlined
in Fig. 5b. Object u is linked to object u0 and v0 is linked to v0

using COPY. Object z is linked to u00 and w is linked to v00, setting
gu00z ¼ guz and gv00w ¼ gvw. The encircled objects are linked to a
gadget, named CROSS, that enforces unary pseudomarginals in
objects u0; u00 and v0; v00 to be equal. If necessary, labels are again
permuted using PERMUTE. The construction can be drawn arbi-
trarily small so that it is not intersected by any other edges.

The CROSS gadget is shown in Fig. 6. It is composed of four
ADD1 gadgets. It works correctly only if aþ b 	 1. To ensure
this, all pseudomarginals representing input variables in
the output problem are scaled down by the factor of 2. This can

be done by replacing the equation xn ¼ 1 in (9) with xn ¼ 1
2,

where the constant 1
2 is constructed similarly as in Section 3.2,

which can be done using a reparameterized Potts problem with
planar structure.

Since the total number of edge crossings in a graph ðV;EÞ is
OðjEj2Þ, the reduction time and the output size are quadratic. tu
The encoding time and the size of the output can be improved

using [9, Lemma 10].

6 CONCLUDING REMARKS

We have constructed a linear-time reduction from the general lin-
ear program to the LP relaxation of the Potts problem with three
labels. This shows that there is little hope to find a very efficient
algorithm (based, e.g., on simple combinatorial principles) to solve
the LP relaxation of the Potts problem. This negative result applies
also to labeling problems with metric and semimetric pairwise cost
functions (of which Potts is a special case), which often arise in
computer vision [1], [2].

Let us compare this result with our previous work [9] where we
constructed a linear-time reduction from LP to the LP relaxation of
the min-sum problem with costs in Z [f1g [9, Theorem 2] and a
quadratic-time reduction from LP to the LP relaxation of the min-
sum problem with costs in Z [9, Theorem 9].

Theorem 4 is stronger than [9, Theorem 9] because the output
min-sum problem (being the Potts problem) has costs in Z and our
reduction is in linear time.

Theorem 4 is stronger than [9, Theorem 2] because there costs
Z [f1g are needed for linear-time reduction. However, there is a
price for this. The reduction [9, Theorem 2] has the desirable prop-
erty of preserving approximation ratio: if a sub-optimal (i.e., feasi-
ble) solution of the LP relaxation of the output min-sum problem is
found, the ratio of the optimal and suboptimal objective value is
the same as for the input LP. We did not mention this property
in [9] but it is rather obvious. Reductions with finite output costs
do not have this property. It is open whether there exists a linear-
time reduction from the general LP to the LP relaxation of the

Fig. 5. Eliminating an edge crossing.

Fig. 6. Gadget CROSS.

1474 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

min-sum problem with finite costs (or even the Potts problem) that
preserves approximation ratio.

Another difference from [9] is that there we encoded the input
polyhedron directly by a min-sum problem while here we first pre-
process it to the form with coefficients f�1; 0; 1g. In fact, this
preprocessing could be used to simplify the reduction in [9].

On the other hand, our results in this paper could be proved in
an alternative way, shorter but less transparent. In [9, Section 4.2]
we constructed a linear-time reduction from LF to the LP relaxa-
tion (2) of the min-sum problem with costs in f0;1g. This LP relax-
ation has the form 9 with coefficients f�1; 0; 1g and every x 2 P

satisfying Aþx ¼ A�x 	 1, so it can be encoded by a Potts problem
as described in Section 4.

Finally, our work is related to [18], [19] where polyhedral uni-
versality results similar to our Theorem 5 are derived for the three-
way transportation polytope and the traveling salesman polytope.
However, the reduction time in these works is not shown to be
linear.

ACKNOWLEDGMENTS

This work has been supported by the Czech ministry of education,
youth and sports under the ERC-CZ grant LL1303.

REFERENCES

[1] R. Szeliski, et al., “A comparative study of energy minimization methods
for Markov random fields with smoothness-based priors,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068–1080, Jun. 2008.

[2] J. H. Kappes, et al., “A comparative study of modern inference techniques
for structured discrete energy minimization problems,” Int. J. Comput. Vis.,
vol. 115, no. 2, pp. 155–184, 2015.

[3] S. �Zivn�y, The Complexity of Valued Constraint Satisfaction Problems. Berlin,
Germany: Springer, 2012.

[4] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fami-
lies, and variational inference,” Found. Trends Mach. Learn., vol. 1, no. 1–2,
pp. 1–305, 2008.

[5] M. I. Shlezinger, “Syntactic analysis of two-dimensional visual signals in
noisy conditions,” Cybern. Syst. Anal., vol. 12, no. 4, pp. 612–628, 1976.

[6] T. Werner, “A linear programming approach to max-sum problem: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 7, pp. 1165–
1179, Jul. 2007.

[7] A. Koster, S. P. van Hoesel, and A. W. Kolen, “The partial constraint satis-
faction problem: Facets and lifting theorems,” Oper. Res. Lett., vol. 23,
no. 3–5, pp. 89–97, 1998.

[8] V. Kolmogorov, J. Thapper, and S. �Zivn�y, “The power of linear program-
ming for general-valued CSPs,” SIAM J. Comput., vol. 44, no. 1, pp. 1–36,
2015.

[9] D. Pru
��sa and T. Werner, “Universality of the local marginal polytope,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 4, pp. 898–904, Apr. 2015.
[10] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete Appl.

Math., vol. 123, no. 1–3, pp. 155–225, 2002.
[11] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szummer, “Optimizing

binary MRFs via extended roof duality,” in Proc. Conf. Comput. Vis. Pattern
Recognit., 2007, pp. 1–8.

[12] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11,
pp. 1222–1239, Nov. 2001.

[13] J. Kleinberg and E. Tardos, “Approximation algorithms for classification
problems with pairwise relationships: Metric labeling and Markov random
fields,” J. ACM, vol. 49, no. 5, pp. 616–639, 2002.

[14] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “A linear programming for-
mulation and approximation algorithms for the metric labeling problem,”
SIAM J. Discrete Math., vol. 18, no. 3, pp. 608–625, 2005.

[15] J. Chuzhoy and J. Naor, “The hardness of metric labeling,” SIAM J. Com-
put., vol. 36, no. 5, pp. 1376–1386, 2007.

[16] P. Kumar, “Rounding-based moves for metric labeling,” in Proc. Adv. Neu-
ral Inf. Process. Syst., 2014, pp. 109–117.

[17] G. C�alinescu, H. Karloff, and Y. Rabani, “An improved approximation
algorithm for multiway cut,” in Proc. 30th Annu. ACM Symp. Theory Com-
put., 1998, pp. 48–52. [Online]. Available: http://doi.acm.org/10.1145/
276698.276711

[18] J. A. De Loera and S. Onn, “All linear and integer programs are slim 3-way
transportation programs,” SIAM J. Optim., vol. 17, no. 3, pp. 806–821, 2006.

[19] L. J. Billera and A. Sarangarajan, “All 0-1 polytopes are traveling salesman
polytopes,” Combinatorica, vol. 16, no. 2, pp. 175–188, 1996.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017 1475

Graph-based Simplex Method for Pairwise Energy Minimization with Binary
Variables

Daniel Průša
Center for Machine Perception, Faculty of Electrical Engineering, Czech Technical University

Karlovo náměstı́ 13, 121 35 Prague, Czech Republic
prusapa1@fel.cvut.cz

Abstract

We show how the simplex algorithm can be tailored to
the linear programming relaxation of pairwise energy min-
imization with binary variables. A special structure formed
by basic and nonbasic variables in each stage of the algo-
rithm is identified and utilized to perform the whole iterative
process combinatorially over the input energy minimization
graph rather than algebraically over the simplex tableau.
This leads to a new efficient solver. We demonstrate that
for some computer vision instances it performs even better
than methods reducing binary energy minimization to find-
ing maximum flow in a network.

1. Introduction

Energy minimization is a well known NP-hard combina-
torial problem which arises in MAP inference in graphical
models [16]. It is of great importance in low-level computer
vision. A lot of effort has been spent by researchers to in-
vent methods finding exact or approximate solutions.

Pairwise energy minimization with binary variables has a
prominent role. It is easily expressible as quadratic pseudo-
boolean optimization (QPBO) [1, 8]. Max-flow/min-cut al-
gorithms can be applied to find a partial optimal solution,
with some variables undecided. This shrinks the size of the
input problem. The undecided variables can be further re-
solved by applying e.g. the probing technique [13] or, in
general, by branch and bound. A complete optimal solu-
tion is always returned by QPBO for submodular instances.
This is further utilized in some cases of energy minimiza-
tion with general variables. Every multi-label energy mini-
mization reduces to the binary one [6, 14], preserving the
submodularity property. Further, solving submodular bi-
nary instances is a crucial part of approximate minimiza-
tions [3].

Since binary energy minimization is cast as a max-
flow/min-cut problem, the key prerequisite for solving it

efficiently has been so far to come up with a max-flow al-
gorithm working well on vision instances. The popular al-
gorithm by Boykov and Kolmogorov [2] fulfills this role.
An empirical comparison of max-flow algorithms recently
done by Verma and Batra [15] reveals that some other con-
temporary implementations are more suitable for instances
with dense graphs.

In this paper we introduce a different principle to solve
the binary case. We do not perform any translation to max-
flow. Our starting point is the linear programming (LP)
relaxation of the problem [17]. For binary variables, it is
known to be half-integral, i.e., all components of each opti-
mal solution are in {0, 1

2 , 1}. Moreover, the solution coin-
cides with the result of QPBO – value 1

2 indicates undecided
variables [1]. We show that the simplex method solving the
LP relaxation can be turned into a very efficient algorithm,
performed purely over the input energy minimization graph.
Special versions of the simplex method with similar prop-
erties have already been proposed for transportation, as-
signment and minimum cost-flow problems [4]. They are
known as the network simplex algorithms. There is even a
customization for the maximum flow problem [5], though it
does not figure among the leading implementations.

The proposed algorithm has practical benefit. Our ex-
periments demonstrate there are vision instances, where the
algorithm performs better than max-flow based solvers. Be-
sides that, it allows to study the behavior of the simplex
method on large-scale data and gives a hope for a general-
ization to multi-label problems. And finally, its impact may
extend beyond the scope of energy minimization as it can
be applied to min-cut which is expressible as submodular
binary energy minimization. Since the formulation and the
underlying structure is different than in the case of the net-
work simplex algorithm for max-flow, new ideas for solving
min-cut/max-flow may emerge.

We assume the reader is familiar with the simplex
method, as presented e.g. in [4]. Knowledge of notions like
basis, basic variable, basic feasible solution, pivoting rule
or minimum ratio test is essential for understanding the text.

475978-1-4673-6964-0/15/$31.00 ©2015 IEEE

2. Energy minimization and its LP relaxation
The task of pairwise energy minimization is to compute

min
k∈KV

[∑

u∈V

θu(ku) +
∑

{u,v}∈E

θuv(ku, kv)

]
(1)

where V is a finite set of objects, E ⊂
(
V
2

)
is a set of

object pairs (i.e., (V,E) is an undirected graph), K is a
finite set of labels, and the functions θu: K → R and
θuv: K ×K → R are unary and pairwise interactions. We
adopt that θuv(k, ℓ) = θvu(ℓ, k) and refer to the values of θu
and θuv as potentials. We shortly write θu(k) as θu;k and
θuv(k, ℓ) as θuv;kℓ. The potentials together form a vector
θ ∈ RI with

I = { (u; k) | u ∈ V, k ∈ K } ∪
{ (uv; kℓ) | {u, v} ∈ E; k, ℓ ∈ K }. (2)

Throughout the paper, we consider energy minimization
with two labels, so K is fixed as {0, 1}. An instance of
problem (1) is thus fully defined by a tuple (V,E,θ). Its
linear programming relaxation reads as

argmin
x∈Λ

〈θ,x〉. (3)

Here we optimize over polytope Λ which consists of vectors
x ∈ RI that satisfy the constraints

∑

ℓ∈K

xuv;kℓ = xu;k, u ∈ V, v ∈ Nu, k ∈ K (4a)

∑

k∈K

xu;k = 1, u ∈ V (4b)

x ≥ 0, (4c)

where Nu = { v | {u, v} ∈ E } is the set of neighbors of
object u. We again adopt xuv;kℓ = xvu;ℓk.

3. Applying simplex method – preparation
We work with the variant of the simplex method which

assumes the input linear program to be in the standard form:

min{〈θ,x〉 | Ax = b, x ≥ 0} (5)

where A ∈ Rm×n, m ≤ n, rank(A) = m, b ∈ Rm, and
θ ∈ Rn.

The LP relaxation of an energy minimization given by
(V,E,θ) induces overall n = 2|V | + 4|E| variables and
m = |V |+ 3|E| linearly independent equations [9].

For a given basis B ⊂ I , Figure 1 shows how we visual-
ize basic and nonbasic LP relaxation variables. The scheme
includes the input graph (V,E). The variables form an un-
derlying “microstructure”. Nonbasic variables are colored

r0

r1

r′0

r′1

p00

p11p01
p10

v v′

Figure 1. An LP relaxation diagram. The energy minimiza-
tion graph consists of objects v, v′ and object pair {v, v′}.
LP relaxation variables are denoted as rk = xv;k, r′k =
xv′;k, and pkℓ = xvv′;kℓ. Nonbasic variables are red, ba-
sic variables are black or blue. The selected basis is B =
{(v; 0), (vv′; 00), (v′; 0), (vv′; 01), (vv′; 10)}.

in red. They always attain zero value in the induced feasi-
ble solution. Basic variables attaining nonzero or zero value
are black or blue, respectively. Each such scheme is called
the LP relaxation diagram. In accordance with the diagram
appearance, every unary or pairwise LP relaxation variable
is simply called a node (variable) or edge (variable), respec-
tively.

The set of basic variables represented in Figure 1 results
in the following simplex tableau.

r0 r1 r′
0 r′

1 p00 p01 p10 p11
θ0 θ1 θ′

0 θ′
1 θ00 θ01 θ10 θ11 0

r0 1 1 0 0 0 0 0 0 1
r′
0 0 0 1 1 0 0 0 0 1

p00 0 1 0 1 1 0 0 -1 1
p01 0 0 0 -1 0 1 0 1 0
p10 0 -1 0 0 0 0 1 1 0

Constraints (4a), (4b) give 6 linear equations, but only 5
of them are linearly independent. Each row of the tableau
is a linear combination of the constraints expressing a ba-
sic variable. The induced basic solution is feasible since
all elements in the rightmost column are nonnegative. The
simplex algorithm could be launched if the row with poten-
tials (objective costs) is adjusted to contain zeros in all basic
columns.

Performance of the standard, tableau-based simplex al-
gorithm is influenced by two factors.

• The number of performed iterations. It tends to be
steadily O(n) in practical applications [4]. Some
pathological LP instances result in an exponential
amount of iterations. On the other hand, polyno-
mial upper bounds were proved e.g. for the assignment
problem mentioned in the introduction.

• Memory and running time required to represent and
update the simplex tableau. This is what makes the
method computationally infeasible for large-scale in-
stances, quadratic time and space is required. A us-
age of a sparse matrix might be helpful, however, the
number of nonzero elements keeps growing and the

476

θ <0 θ
A b

aij

Figure 2. Having chosen pivot aij , only nonzero elements in the
i-th row and j-th column are needed to update θ, θ and b properly.

update is still a time-consuming operation. The prob-
lems are partially addressed by the so called revised
simplex method [4], but still, the general algorithm is
not fast enough to be able to compete with max-flow
based QPBO solvers.

The key concept leading to an efficient algorithm is ex-
plained in Figure 2. Each iteration of the simplex algo-
rithm updates cost vector θ and the objective function value
θ based on the pivotal row, while the right-hand sides vector
b is updated based on the pivotal column. Moreover, only
nonzero values have an impact. We show that the LP relax-
ation diagram enables a cheap retrieval of all such nonzero
elements. It is thus enough to maintain only θ, θ and b.

4. Structure of basis
It is a well known fact that each basic variable is express-

ible as a linear function of nonbasic variables. Moreover, it
is expressed in a unique way.

Theorem 1. Let B ⊂ I be a basis of (3) and let N = I rB
be the set of nonbasic indices. There are unique coefficients
bi, aij ∈ R (i ∈ B, j ∈ N) such that each feasible vector
x ∈ Λ satisfies

xi = bi −
∑

j∈N
aijxj , ∀i ∈ B. (6)

Proof. Consider a linear program with constraint equations
Cx = c where C ∈ Rm×n, c ∈ Rm and rank(C) = m.
It can be written as BxB + NxN = c where B is an in-
vertible matrix and xB, xN are vectors of basic and non-
basic variables, respectively [4]. This implies that xB =
B−1c−B−1NxN . Assume that also xB = d−DxN for
some D ∈ Rm×(n−m), d ∈ Rm. Setting nonbasic vari-
ables to zeros gives the (only) basic solution corresponding
to basis B, hence d = B−1c. This further implies that
DxN = B−1NxN for all xN ∈ Rn−m, which holds only
if D = B−1N. �

Note that coefficients aij and bi in Theorem 1 correspond
to elements in the simplex tableau composed for basis B. In
what follows, we examine how they relate to the structure
of the LP relaxation diagram.

We say that a basic variable xi depends on a nonbasic
variable xj if aij 6= 0. Two useful corollaries can be ob-
tained from Theorem 1.

Corollary 2. Let B ⊂ I be a basis of (3), N = I r B and
y, z ∈ Λ. If yi = zi for all i ∈ N , then y = z.

Corollary 3. Let B ⊂ I be a basis of (3), N = I r B and
y, z ∈ Λ. Let there be k ∈ N such that yk 6= zk and yi = zi
for all i ∈ N r {k}. For j ∈ B, if xj is a basic variable
in (6) which depends on nonbasic variable xk, then yj 6= zj .

The first corollary states that a feasible vector is fully de-
termined by its nonbasic components. The second corollary
states that if two feasible vectors have the same nonbasic
components except one, then they differ in all basic compo-
nents which depend on the distinctive nonbasic component.

Given a basis B, two special elements in (V,E) are im-
portant for expressing basic node variables in the form (6).

• An object u ∈ V is called a dependency root if each
basic node variable xu;k (k ∈ {0, 1}) depends only
on the other node xu;1−k and/or on edge variables in
object pairs adjacent to u. Two possible configurations
forming a dependency root are depicted in Figure 3.

• An object pair {u, v} ∈ E is called a dependency ob-
ject pair if there are exactly two nonbasic edges xuv;kℓ

which are either “parallel” or “intersecting” as shown
in Figure 4.

Note that Figure 3(b) and Figure 4 show only snippets of
an LP relaxation diagram, not standalone diagrams with a
valid basis.

Define a dependency graph D(V,E,B) = (V,E′) as the
subgraph of (V,E) where E′ consists of all dependency ob-
ject pairs in E. Moreover, for u ∈ V , define Du(V,E,B) as
the connected component of D(V,E,B) containing u. An
example of a LP relaxation diagram and the induced depen-
dency graph is depicted in Figure 6. The following theorem
gives its characterization.

Theorem 4. Let (V,E,θ) be an instance of binary energy
minimization and let B be a basis of its LP relaxation. Then,
D(V,E,B) has the following structure.

• Each component has at most one cycle,

• if a component is a tree, it contains exactly one depen-
dency root, and

• if a component has a cycle, it does not contain any de-
pendency root.

Moreover, each basic node in an object u ∈ V depends only
on nonbasic variables located in the following elements:

477

u
b

a

(a)

v w
d

c

f
e

(b)

Figure 3. Objects u and v are dependency roots since (a) a =
1 − b, (b) d = e+ f and c = 1 − e − f .

u v

a

b

c

d

e

f

(a)

u v

(b)

Figure 4. Two (a) parallel or (b) intersecting nonbasic edges allow
to delegate expressing basic nodes in u to expressing basic nodes
in v (and vice versa). For example, a = e−f+d and b = f−e+c.

u v

(a)

u v

(b)

Figure 5. (a) Objects u and v do not depend on a single non-
basic edge in {u, v}. (b) Three nonbasic edges in {u, v} induce
dependency roots u, v.

(a) (b)

Figure 6. An example of (a) an LP relaxation diagram and (b)
its dependency graph. Dependency object pairs are displayed as
directed edges oriented towards the root or cycle of the component.
Edges in a cycle follow one of the orientations which closes a loop.
Dependency roots as well as objects in cycles are highlighted.

• objects and object pairs forming the path from u to the
dependency root or the cycle of Du(V,E,B),

• objects and object pairs of the cycle of Du(V,E,B),
and

• the object pair containing nonbasic edges establishing
the root of Du(V,E,B) (refers to Figure 3(b)).

Proof. We list all locally admissible configurations of basic
and nonbasic variables (up to permutations). After that, we
derive how a basic node is expressed in the form (6).

As the first step, observe there is at most one nonbasic
node within one object. Since nonbasic nodes attain zero
in feasible solutions, two nonbasic nodes do not fulfill con-
straint (4b). In addition, each object pair {u, v} contains
one, two or three nonbasic edges. This is proved by contra-
diction. Let all four edges xuv;ij , i, j ∈ {0, 1} be nonba-
sic (and thus of zero value). Constraint (4a) forces xu;0 =
xu;1 = 0 which again does not fulfill (4b). On the other
side, let all four xuv;ij be basic. Take a feasible solution y
where yuv;00 = yuv;11 = 1/2 and yuv;01 = yuv;10 = 0.
Create vector z from y as follows: set zuv;00 = zuv;11 =
zuv;01 = zuv;10 = 1/4 and copy values of all other compo-
nents. Since z is again a feasible solution, pair y, z contra-
dicts Corollary 2.

We further inspect, how the configurations participate in
expressing nodes in the form (6). If there is only one non-
basic edge (see Figure 5(a)), we can prove that none of the
basic nodes in the adjacent objects depends on it. Consider
the same vectors y and z as specified before. W.l.o.g., let
xuv;10 be the only nonbasic edge within {u, v} and, w.l.o.g.,
let xu;0 depend on xuv;10. Observe that yuv;10 differs from
zuv;10, but yu;0 equals zu;0. This contradicts Corollary 3.

If there are two nonbasic edges with a shared end-node in
object v (Figure 3(b)), then, by definition, v is a dependency
root. Three nonbasic edges induce one pair of edges with
a shared end-node in each of the objects (Figure 5(b)), two
dependency roots are thus formed.

The only configurations of nonbasic edges allowing de-
pendance of basic nodes on more distant nonbasic variables
are those ones defining dependency object pairs (Figure 4).
In this case, nodes in one object can be locally expressed
using nodes in the opposite object (and vice versa). For a
parallel dependency object pair (Figure 4(a)) we derive

xu;0 = xuv;00 − xuv;11 + xv;1,

xu;1 = xuv;11 − xuv;00 + xv;0.

Analogously, for an intersecting object pair (Figure 4(b))
we get

xu;0 = xuv;01 − xuv;10 + xv;0,

xu;1 = xuv;10 − xuv;01 + xv;1.

Since xuv;00 and xuv;11 are nonbasic variables, to complete
the expression of xu;0 and xu;1 as (6) would require to ex-
press xv;1 and xv;0. This again could delegate the process
to a neighboring object. Such a procedure produces a com-
plete expression of a basic variable when a dependency root
is reached, as demonstrated in Figure 7(a). Following the
path from u to w yields

xu;0 = xuv;00 − xuv;11 + xvw;10 − xvw;01 + xw;1.

478

If a sequence of objects (ui)
k
i=1 forms a path in (V,E),

each {ui, ui+1}, 1 ≤ i ≤ k − 1 is w.l.o.g. an intersect-
ing dependency object pair and xuk;0 is the only nonbasic
node among all nodes in ui’s, then basic nodes in u1 are
expressed by nonbasic variables as follows.

xu1;0 =

k−1∑

i=1

xuiui+1;01 −
k−1∑

i=1

xuiui+1;10 + xuk;0, (7)

xu1;1 =1−
k−1∑

i=1

xuiui+1;01 +

k−1∑

i=1

xuiui+1;10 − xuk;0. (8)

The second possibility how to terminate the described pro-
cess of expressing a basic node is to close a loop. This is
demonstrated in Figure 7(b) where

xu;0 =
1

2
(xuv;00 − xuv;11 + xvs;10 − xvs;01

+ xst;11 − xst;00 + xtu;00 − xtu;11 + 1).

In general, let (ui)
k
i=1 be a sequence of objects forming a

cycle in (V,E). W.l.o.g., let {ui, ui+1} be intersecting for
1 ≤ i ≤ k− 1 and let {u1, uk} be parallel. Assume than all
nodes in ui’s are basic. Node xu1,0 can be again expressed
as (7), but this is not yet the form (6) since xuk;0 is basic
node. However, if we substitute

xuk;0 = xuku1;00 − xuku1;11 + 1− xu1;0,

we obtain an equation which gives

xu1;0 =
1

2

(
1 +

k−1∑

i=1

xuiui+1;01 −
k−1∑

i=1

xuiui+1;10

+ xuku1;00 − xuku1;11

)
. (9)

Node xu1;1 can be now expressed as (6) using the equality
xu1;1 = 1−xu1;0. Note it was essential that {u1, uk} is par-
allel. Changing it to intersecting would result in an equation
where both, xu1;0 and xu1;1 are missing. To express these
variables, it is necessary to have a dependency cycle where
all basic edges and nodes form a connected component in
the underlying microstructure.

Finally, the most general situation when there is a path
starting at object u and leading to object v which is part of a
cycle (and it is the first such an object in the path) is handled
in two steps. First, nodes in u are expressed along to the
path to v as (7), (8), and second, nodes of v are expressed
within the cycle as (9). To finish the proof it suffices to
realize it is not possible to have more choices of following
dependency object pairs to a root or cycle since (6) is unique
for each basic variable. �

u v w

(a)

v u

s t

(b)

Figure 7. Expressing a nonbasic node variable in u along a path
formed of dependency object pairs terminates only if (a) a depen-
dency root is reached or (b) a loop is closed.

Theorem 5. Given a binary energy minimization (V,E,θ)
and a basis B of its LP relaxation, each basic edge of an ob-
ject pair e = {u, v} ∈ E depends only on a subset of non-
basic variables in e, Cu = Du(V,E,B), Cv = Dv(V,E,B)
and on nonbasic edges establishing dependency roots of Cu

and Cv .

Proof. If there are at least two nonbasic edges in e =
{u, v}, then each basic edges in e is adjacent to a nonba-
sic edge in some node (inspect all possible configurations in
Figures 3(b), 4(a), 4(b), 5(b)). It is thus possible to express
every basic edge in e as a linear function of one nonbasic
edge and one (basic or nonbasic) node. For example, we
derive in Figure 4(a)

xuv;01 = xv;1 − xuv;11. (10)

If there is only one nonbasic edge in e (Figure 5(a)), then
the basic edge which is not adjacent to it in any node is
expressed using two nodes. In Figure 5(a), it holds

xuv;01 = xu;0 − xv;0 + xuv;10. (11)

Formula (6) for any basic edge in e is obtained if we substi-
tute the basic nodes with their expressions (6). �

Theorem 6. Given a binary energy minimization (V,E,θ),
a feasible basis B of its LP relaxation, i ∈ B and xi ex-
pressed in the form (6). It holds bi ∈ {0, 1

2 , 1} and, for all
j ∈ I r B, aij ∈ {0,± 1

2 ,±1,±2}.

Proof. Possible values of bi are prescribed by the half-
integrality of basic feasible solutions [1]. As observable in
Figure 6(a), values 1

2 are assigned to basic variables in de-
pendency components with a cycle and to basic edge vari-
ables in object pairs adjacent to such components.

By checking expressions (7), (8) and (9) derived in the
proof of Theorem 5, we find that aij is in {0,± 1

2 ,±1} for
each basic node. The same conclusion holds for basic edges
which can be expressed as (10). Consider a basic edge ex-
pressed as (11). Substitute for xu;0 and xv;0 their expres-
sions (6). If Du(V,E,B) and Dv(V,E,B) differ, then the

479

w u

v

−

+

++

−

−+

−−

−−

a

b

c
+

s

t

e
f

Figure 8. The blue signs show dependency of a on nonbasic vari-
ables (each dependency coefficient is either +1 or −1), while the
black signs show dependency of b. Since f = e + a − b, edge
f does not depend on node c, neither on the nonbasic edges in
{w, u}. If the length of the dependency path from w to v was an
even number, the dependency coefficient of f on c would be 2.

substituted expressions do not share variables with nonzero
coefficients. However, if Du(V,E,B) = Dv(V,E,B) then
a nonbasic variable xq with a nonzero coefficient can be
present in both expressions, with coefficients of the same
absolute value, hence the dependency of xuv;01 on xq either
vanishes or the dependency coefficient is doubled. This is
demonstrated in Figure 8. �

5. Algorithm
Section 4 has established theoretical basis for a special

version of the simplex algorithm executed for the LP relax-
ation of a binary energy minimization (V,E,θ). Here we
put together all needed ingredients and give a description of
the algorithm itself.

The algorithm performs steps over the LP relaxation di-
agram induced by the actual feasible basis B. The diagram
enables an efficient retrieval of dependency coefficients
which corresponds to elements in the simplex tableau. For a
faster traversal of the diagram, the direction of dependency
object pairs towards the dependency root or cycle, as given
in Figure 6(b), is maintained. Each node and edge variable
is assigned by a boolean flag determining its basic/nonbasic
status. Black/blue color of basic variables is recorded only
for nodes. Color of basic edges can be derived from a local
context.

For a nonbasic variable, it is possible to locate all ba-
sic variables that depend on it by traversing the dependency
component in the direction opposite to the orientation of de-
pendency object pairs in Figure 9(a). Similarly, for a basic
variable, it is possible to traverse all nonbasic variables on
which it depends. In this case a directed path to the depen-
dency root or cycle is followed in one or two components,
as can be seen in Figure 9(b). The dependency coefficient
can also be determined by traversing components.

We apply a modified Dantzig’s pivoting rule. The orig-
inal variant chooses a nonbasic variable with the lowest
negative cost (such a variable enters the basis), however,

e

(a)

ℓ

u

v

(b)

Figure 9. (a) The highlighted elements contain all the basic vari-
ables that depend on a nonbasic edge variable in object pair e. (b)
A basic variable in object pair ℓ = {u, v} is expressed along paths
from u and v to the root or cycle.

this is time-consuming. We rather use r doubly linked lists
L1, . . . ,Lr and negative threshold values τ1 < τ2 < . . . <
τr = 0. An objective cost θ is stored in Ls if τs−1 < θ ≤ τs
(where τ0 = −∞). The list can be found by a binary search
in ⌈log2 r⌉ steps. From performance reasons, we also do
not implement any anti-cycling strategy. This is a normal
approach in general LP solvers. No cycling has been ob-
served during our numerous experiments. The experiments
further revealed that it is sufficient to choose r = 8. Setting
r > 8 has not resulted in any considerable improvement for
the tested instances. It has also turned out that the number
of iterations performed by the algorithm is nearly identical
as in the case of the regular Dantzig rule.

The initial feasible basis follows the uniform pattern in
Figure 1. A description of the algorithm follows.

Initialization. Create the initial feasible basis. For every
object u ∈ V , mark xu;1 as a nonbasic node. For every
object pair {u, v} ∈ E, mark xuv;11 as a nonbasic edge.
All the other nodes and edges are basic variables. Ap-
ply a reparametrization (see section 2.1 of [8]) to θ which
changes costs of all basic variables to zero. Insert negative
costs into lists Li.

Entering variable selection. Find the first nonempty list
Li and take its first element. The nonbasic variable xe ref-
erenced by it is the entering variable. Assume it is located
in an object or object pair e.

Leaving variable selection. Mark each object u that
passes through e when traversing from u to the root or cy-
cle, respectively. Search through the dependent variables
and find a leaving variable (xℓ in an object or object pair ℓ)
fulfilling the minimum ratio test. Finish the search prema-
turely if a zero ratio is found. Unmark all the marked ob-
jects.

Iteration. Update costs of all variables on which xℓ de-
pends. Remove positive costs from lists, append costs that
became negative. If a negative cost in Li is changed and

480

belongs now to Lj , remove it form Li and append it to Lj .
Update basic/nonbasic flag of xe and xℓ. Update the rep-
resentation of dependency components. Update colors of
nodes.

Termination. Finish when all lists Li are empty.

Time of one iteration is proportional to size of the in-
volved dependency components. A good performance can
be expected for those energy minimization instances which
induce dependency components whose average size is ei-
ther constant or slowly growing in size of the energy min-
imization graph. The experimental evaluation showed that
such small components usually emerge for nonsubmodular
instances and submodular instances where pairwise poten-
tials are less dominant. On the other hand, submodular in-
stances with more dominant pairwise potentials (e.g. seg-
mentation instances), which result in solutions containing
large regions assigned by the same label, tend to form large
dependency components during the late iterations of the al-
gorithm. In the next section, we report details on the favor-
able type of problems.

6. Experiments
We have implemented the specialized simplex algorithm

(SA) in C++. It supports the creation of general graphs
and computes with double precision floating point num-
bers. The max-flow based QPBO implementation by Kol-
mogorov [18] (BK) is used for comparison. All the sources
were compiled in Microsoft Visual Studio 2012 and run on a
notebook with Intel Core i5-4300M 2.6 GHz, 12 GB RAM
and 64-bit Windows 7. The evaluation is done for vision
problems and random data.

6.1. Vision problems

Test data are taken mainly from the empirical compari-
son of max-flow algorithms [15] which targets a wide range
of max-flow algorithms based on augmenting-path, push-
relabel or pseudoflow principles. Since their performance
relative to BK algorithm is known, it is possible to compare
SA with them. The data are available at [20] in the form of
QPBO graphs. We turned them into an energy minimization
format.

Decision Tree Field (DTF) is a recently introduced
model by Nowozin et al. [11] that combines random forests
and conditional random fields. 99 instances are available,
giving a sufficiently representative sample. The problem
is nonsubmodular and involves dense graphs. We measure
performance of SA relative to BK. Ratios of running times
(SA/BK) sorted in ascending order are plotted in Figure 10.
SA is at least two times faster than BK for 80 instances. It
is slower only for 4 instances. The average time of the best
performing max-flow algorithm over DTFs reported in [15]

0 20 40 60 80 100
0

0.5

1

1.5

2

instance

S
A

/ B
K

 re
l.

tim
e

Figure 10. SA/BK relative time for Decision Tree Fields.

is about 46% of the average time of BK (provided that the
initialization time is counted). SA achieves 31% of BK.

The amount of samples available for the next problems
is considerably lower. We have collected two instances of
Super Resolution (a sparse nonsubmodular problem) and
six instances of Deconvolution with 3x3 or 5x5 blur-kernel
(a dense nonsubmodular problem, graph connectivity is 24
or 80, respectively). These instances were considered by
Rother et al. in [13]. Some of them (#3, #7, #9) are provided
at [20]. Shape Fitting [10] is a representative of a sparse
submodular problem. An instance (LB07-bunny-sml)
has been taken at [19].

Measured absolute running times are in Table 1. Two se-
lected DTFs are included there for comparison. To demon-
strate a huge gain over a general LP solver, running times of
IBM ILOG CPLEX 12.6 for the instances are also included.
We tested the primal as well as the dual simplex method.
Time limit of 10 minutes was applied for each computation.

We can see that BK performs better than SA for instances
#3 – 8. However, the responsiveness of SA is within reason-
able limits. The situation is different for deconvolution with
a 5x5 blur-kernel. BK outperforms SA for #9. Conversely,
SA outperforms BK for #10. Note that there are max-flow
algorithms better than BK for this denser variant of decon-
volution (approx. 1.5 times faster [15]).

6.2. Scalable random data

Here we study how the performance of SA scales in the
size of the input graph. For this purpose we need a dataset of
instances with equally growing number of objects. We gen-
erate a subset of square grids from 10×10 to 500×500 with
8-neighborhood system. Unary potentials are generated as
independent gaussians θu;0, θu;1 ∼ N (0, 1). Pairwise po-
tentials are set to zero for θuv;00 and θuv;11. Values of θuv;01
and θuv;10 are generated as N (0, 2). This setup is an in-
stance of the Ising model with mixed potentials. Overall, we
obtain sparse nonsubmodular inputs containing about 66%
undecided variables in the optimal LP relaxation solution.

The evaluation is also done for the variant of SA which
strictly follows Danzig’s pivoting rule (a binary heap is used
to store negative objective costs in this case). This variant

481

description objects obj. pairs SA [ms] BK [ms] CPLEX primal [ms] CPLEX dual [ms]
1 dtf-78 7776 217414 149 1337 time limit exceeded 96315
2 dtf-94 8384 234237 276 1523 time limit exceeded 129574
3 sup. res. (4-con) 5246 10345 3.7 1.5 218 421
4 sup. res. (8-con) 5246 20545 10.4 3.2 483 1388
5 shape fit. (6-con) 805800 2391242 628 135 out of memory out of memory
6 deconv. 3x3 1024 11346 5.5 2.2 1451 296
7 deconv. 3x3 1000 10968 4.9 3.1 1185 358
8 deconv. 3x3 1000 10968 4.6 2.5 858 405
9 deconv. 5x5 1000 33900 71.7 8.3 17924 1872

10 deconv. 5x5 1024 35400 7.5 23.9 22730 2496
11 deconv. 5x5 880 29820 32.1 46.4 1841 1342

Table 1. Running time of SA, BK and CPLEX 12.6 for vision instances.

0 0.5 1 1.5 2 2.5

x 105

0

500

1000

1500

2000

2500

3000

3500

number of objects

tim
e

[m
s]

SA
SA−D
BK

Figure 11. Running time of SA, SA-D and BK for random grids.

0 0.5 1 1.5 2 2.5

x 105

0

2

4

6

8

10

12

14
x 105

number of objects

ite
ra

tio
ns

SA−D
SA

0 0.5 1 1.5 2 2.5

x 105

5

5.5

6

6.5

7

7.5

8

8.5

9

number of objects

ob
je

ct
s

tra
ve

rs
ed

 p
er

 it
er

at
io

n

SA−D
SA

Figure 12. SA and SA-D: the number of performed iterations and
the average number of objects traversed per iteration.

is denoted as SA-D. The dependency of running time on
the number of objects is plotted in Figure 11. SA performs
better than BK and the measured time is linear. In contrast, a
non-linearity caused by the binary heap usage is observable
for SA-D. It is also interesting that the function for SA is
the smoothest one.

Figure 12 reveals two dependencies. The number of it-
erations performed by the simplex algorithm is linear. It is
almost identical for both, SA and SA-D, the displayed func-
tions coalesce. Moreover, the average number of objects
traversed within one iteration is almost constant. Surpris-
ingly, the constant is greater for SA-D.

In conclusion, SA demonstrated a very good perfor-
mance and stability in this test.

7. Conclusion

We have presented a graph-based version of the simplex
method for pairwise energy minimization with binary vari-
ables. The experiments confirmed that the proposed algo-
rithm is efficient for certain types of vision problems. Out-
performing other solvers on DTF instances represents an
immediate practical benefit.

We believe the method has a very good potential for fur-
ther research. We obtained an algorithm competitive with
best solvers based on finding maximum flow in a network,
which has been intensively studied by many researches for
a long time. Our algorithm has not undergone such evo-
lution. Promising opportunities for improvements are thus
expectable. For example, a different pivoting rule might re-
sult in a smaller size of dependency components, a more
advanced representation of components might reduce the
number of traversed objects when searching for the leav-
ing variable, etc. The algorithm may also be suitable for
parallelization.

An interesting question is whether the approach can be
efficiently generalized to the LP relaxation of multi-label
energy minimization problems. The situation is surely more
difficult. More labels induce richer relations among basic
and nonbasic variables. Except that, the LP relaxation be-
comes as hard as general LP [12] and, as a consequence,
components of optimal solutions are, roughly speaking, ar-
bitrary fractions. On the other hand, known methods for
solving the LP relaxation of multi-label problems like mes-
sage passing [7] are considerably slower than max-flow al-
gorithms. Even a slower retrieval of simplex tableau ele-
ments (e.g. by solving subsystems of linear equations within
dependency components) could still result in a method with
better performance. The presented applicability of the sim-
plex algorithm in the binary setting should encourage such
considerations.

482

Acknowledgment
The author was supported by the Czech Science Founda-

tion project P202/12/2071.

References
[1] E. Boros and P. L. Hammer. Pseudo-Boolean optimization.

Discrete Applied Mathematics, 123(1-3):155–225, 2002. 1,
5

[2] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 26(9):1124–1137, Sept. 2004. 1

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 23(11):1222–1239, Nov.
2001. 1

[4] G. Dantzig and M. Thapa. Linear Programming 1: Introduc-
tion. Springer, 1997. 1, 2, 3

[5] D. Goldfarb and J. Hao. A primal simplex algorithm that
solves the maximum flow problem in at most nm pivots and
O(n2m) time. Mathematical Programming, 47(1-3):353–
365, 1990. 1

[6] H. Ishikawa. Exact optimization for Markov random fields
with convex priors. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(10):1333–1336, Oct. 2003. 1

[7] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 28(10):1568–1583, 2006. 8

[8] V. Kolmogorov and C. Rother. Minimizing nonsubmodular
functions with graph cuts-a review. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 29(7):1274–1279, 2007.
1, 6

[9] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The par-
tial constraint satisfaction problem: Facets and lifting the-
orems. Operations Research Letters, 23(3–5):89–97, 1998.
2

[10] V. Lempitsky and Y. Boykov. Global optimization for shape
fitting. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, June 2007. 7

[11] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and
P. Kohli. Decision tree fields. In D. N. Metaxas, L. Quan,
A. Sanfeliu, and L. J. V. Gool, editors, IEEE International
Conference on Computer Vision, pages 1668–1675. IEEE,
2011. 7

[12] D. Průša and T. Werner. Universality of the local marginal
polytope. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 37(4):898–904, April 2015. 8

[13] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szum-
mer. Optimizing binary MRFs via extended roof duality.
In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2007. 1, 7

[14] D. Schlesinger and B. Flach. Transforming an arbitrary Min-
Sum problem into a binary one. Technical Report TUD-
FI06-01, Dresden University of Technology, Germany, April
2006. 1

[15] T. Verma and D. Batra. Maxflow revisited: An empirical
comparison of maxflow algorithms for dense vision prob-
lems. In Proceedings of the British Machine Vision Con-
ference, pages 61.1–61.12. BMVA Press, 2012. 1, 7

[16] M. J. Wainwright and M. I. Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1-2):1–305, 2008. 1

[17] T. Werner. A linear programming approach to max-sum
problem: A review. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 29(7):1165–1179, July 2007. 1

[18] V. Kolmogorov – web pages.
http://pub.ist.ac.at/˜vnk/. 7

[19] University of Western Ontario – Max-flow problem instances
in vision.
http://vision.csd.uwo.ca/data/maxflow/. 7

[20] T. Verma, D. Batra – MaxFlow Revisited.
http://ttic.uchicago.edu/˜dbatra/
research/mfcomp/. 7

483

IJDAR (2016) 19:253–267
DOI 10.1007/s10032-016-0269-z

ORIGINAL PAPER

Online recognition of sketched arrow-connected diagrams

Martin Bresler1 · Daniel Průša1 · Václav Hlaváč2

Received: 27 May 2015 / Revised: 15 March 2016 / Accepted: 1 May 2016 / Published online: 19 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We introduce a new, online, stroke-based recog-
nition system for hand-drawn diagrams which belong to a
group of documents with an explicit structure obvious to
humans but only loosely defined from the machine point of
view. We propose a model for recognition by selection of
symbol candidates, based on evaluation of relations between
candidates using a set of predicates. It is suitable for sim-
pler structures where the relations are explicitly given by
symbols, arrows in the case of diagrams. Knowledge of a
specific diagram domain is used—the two domains are flow-
charts and finite automata. Although the individual pipeline
steps are tailored for these, the system can readily be adapted
for other domains. Our entire diagram recognition pipeline
is outlined. Its core parts are text/non-text separation, sym-
bol segmentation, their classification and structural analysis.
Individual parts have been published by the authors previ-
ously and so are described briefly and referenced. Thorough
evaluation on benchmark databases shows the accuracy of the
system reaches the state of the art and is ready for practical
use. The paper brings several contributions: (a) the entire sys-
temand its state-of-the-art performance; (b) themethodology
exploring document structure when it is loosely defined; (c)
the thorough experimental evaluation; (d) the new annotated
database for online sketched flowcharts and finite automata
diagrams.

B Martin Bresler
breslmar@fel.cvut.cz

1 Center for Machine Perception, Faculty of Electrical
Engineering, Czech Technical University in Prague,
Technická 2, 166 27 Prague 6, Czech Republic

2 Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University in Prague, Zikova 4,
166 36 Prague 6, Czech Republic

Keywords Diagram recognition · Online document
analysis · Max-sum problem · Segmentation · Text/non-text
separation · Flowcharts · Finite automata

1 Introduction

Research in handwritten document analysis has shifted from
the recognition of plain text to recognition of more struc-
tured inputs such as mathematical and chemical formulas,
music scores or diagrams. Even though recognizers with
good precision have been presented, e.g. of mathematical
formulas [2,21], the availability of diagram recognizers is
still limited. One reason may be that diagram domains differ
significantly and their structure is loose in comparison with,
for example, mathematical formulas. This paper attempts to
fill this gap.We present a general recognition system suitable
for a variety of online sketched diagrams. We introduced the
idea in [9]; since then, the system has evolved into a pipeline
depicted in Fig. 1. We provide its comprehensive descrip-
tion, focusing on core principles proposed for segmentation,
classification and structural analysis. A brief description and
references are also given for those parts, in which existing
solutions were adopted. Our experiments yield a thorough
evaluation of the system accuracy, the discussion of failure
types and the impact of particular steps on the overall per-
formance.

Anonline input is considered to be a sequence of handwrit-
ten strokes, in which a stroke is a sequence of points captured
by an ink input device between pen-down and pen-up events.
The most common device is a tablet, a tablet PC or a smart
board. Every stroke point is defined by its coordinates on the
planar drawing canvas. Additional data like a time stamp or
a pressure value may be provided. The output is a structure
which syntactically describes the sketched diagram. Individ-

123

254 M. Bresler et al.

Fig. 1 Proposed recognition pipeline

ual symbols are identified, and relations between them are
detected. Additionally, text is divided into logical blockswith
knownmeaning. Several formats can be used to represent the
recognition result, as exchange formats for diagrams do not
seem to be unified. We use the DOT graph description lan-
guage, supported by the popular graph visualizer Graphviz.1

An example of finite automata beautified by Graphviz is
shown in Fig. 2

There has also been some research done in offline dia-
gram recognition [31]. In that case, input is an image, and
thus, any temporal information is missing. Offline recogni-
tion faces different challenges (especially in segmentation)
and typically leads to different applications. This paper does
not consider these topics.

We target domains which exhibit the following structure:
the diagram consists of symbols connected by arrows, and
there might be text labelling the symbols (the text is inside
or along the border of a symbol) or arrows (the text is in a
vicinity of an arrow). Although this structure is basic, there
are various domains which fit it perfectly.We focus on two of
them: flowcharts and finite automata. Other domains such as
UML use case diagrams, Simulink diagrams, Concur Task
Trees or business process diagrams fall into this group as

1 http://graphviz.org/.

Fig. 2 An example of a a typical input and b the desired output of the
proposed diagram recognizer

well—we leave adaptation to these domains as future work.
Domains with a different structure (e.g. music scores or
chemical diagrams) or a structure further extending the basic
constructs (e.g. diagramswith structured text inside symbols)
are beyond the scope of this paper.

The paper is organized as follows. Section 2 briefly sur-
veys diagram recognition systems. Section 3 defines the
example domains and introduces datasets used. Section 4
describes our recognition system, following the recogni-
tion pipeline in Fig. 1. Specifically, Sect. 4.1 describes our
text/non-text separation, Sect. 4.2 explains the symbol seg-
mentation through strokes clustering, Sect. 4.3 introduces
our symbol detectors, and Sect. 4.4 presents the structural
analysis. Section 5 contains experimental results. Section 6
analyses the developed system and deals with failure cases,
and Sect. 7 presents conclusions.

2 Related work

2.1 Mathematical formulas

Recognition of mathematical formulas is a useful example
as it has brought seminal methods and successful recogniz-
ers. A practical example is the Math Input Panel delivered
by Microsoft since Windows 7. The Competition on Recog-
nition of Online Handwritten Mathematical Expressions
(CROHME) has further boosted research and provides a

123

Online recognition of sketched arrow-connected diagrams 255

reliable comparison ground. The commercial winner of
CROHME 2014 [26], MyScript,2 achieves 62.7% accuracy
of correctly recognized formulas, while the non-commercial
winner—Álvaro [2]—achieves 37.2%.

Recognition ofmathematical formulas and diagrams faces
some similar problems. Individual symbols have to be seg-
mented, recognized and embedded into the domain structure.
However, the structure of mathematical formulas is strong
and recursive, and grammars are thus suited to their expres-
sion [2,21]. In contrast, diagram structure is simpler and less
formalized and grammars do not seem to be the best model
for their capture.

2.2 Diagrams in general

Feng et al. [15] proposed a recognizer for online sketched
electric circuits. Hypotheses for symbol segmentation and
classifications are generated using hidden Markov models
(HMM), and the selection of the best hypotheses subset relies
on 2D dynamic programming. A drawback is an extensive
search space due to a large number of hypotheses, and this
makes the system slow and prohibits it from practical use.
Sezgin and Davis [32] used similar approach for recogni-
tion of objects in sketches from various domains like stick
figures, UML diagrams or digital circuits. They use specific
stroke orderings to reduce the search space. Although mul-
tiple HMMs are used to model different sketching styles
and thus different natural stroke orderings, so-called delayed
strokes may impose a problem for this approach. ChemInk, a
recognition system for chemical formula sketches [28], rep-
resents elements and bonds between them. A hierarchy of
three levels of details is used: inkpoints, segments and can-
didate symbols. The final recognition is performed by a joint
graphicalmodel classifier based on conditional randomfields
(CRF), which combines features from the levels in the clas-
sification hierarchy. A similar approach was used by Qi et
al. [30] to recognize simple diagrams. The advantage of such
methods is the joint training of the classifier for all levels of
features. It helps to incorporate the context into the classi-
fication; however, it makes the training of the system more
difficult. Our approach differs. Although we train the symbol
classifier independently on the structure, we do not make any
hard decisions at this point. Relations between the symbols
are defined later with the help of context. Using binary pred-
icates of the max-sum labelling problem rather than pairwise
features does not require additional training and yields opti-
mal solutions. The model is thus much simpler and more
open to adaptations.

Finally, there were attempts to develop universal for-
malisms for sketch recognition. LADDER [16] is a sketch
description language that can be used to describe how shapes

2 https://dev.myscript.com/technology/math/.

are drawn as well a the whole syntax specifying a domain. A
multi-domain sketch recognition engine SketchREAD [1] is
based on this language. Authors evaluated the capabilities of
the engine on family trees and electrical circuits. The parsing
is based on dynamically constructed Bayesian networks, and
it combines bottom-up and top-down algorithms. Although
this framework laid the foundations of multi-domain sketch
recognition, it has limitations. Individual shapes must be
composed solely of predefined primitives according to a fixed
graphical grammar. Individual strokes must be thus decom-
posed into primitives. Although the framework is designed
to be recoverable from this low-level errors, it still impose
additional source of error.

2.3 Flowcharts and finite automata

To our knowledge, little work has been published in the
domains of flowcharts and finite automata. Lemaitre et
al. [22] proposed a grammar-based recognition system for
flowcharts which uses the Description and MOdification of
the Segmentation (DMOS) method for structured document
recognition. The applied grammatical language Enhanced
Position Formalism (EPF) provides a syntactic and struc-
tural description of flowcharts, which is used for joint symbol
segmentation and classification. Carton et al. [10] further
improved the system by combining structural and statisti-
cal approaches; they exploited the nature of the symbols
in flowcharts, which are closed loops. Such closed loops
are detected first and classified later using the structural
approach. Although statistics are used, it is hard to find
a suitable threshold determining whether a loop is really
closed. Users often draw carelessly, and the appearance of
symbols can be far from closed loops. Additional difficulties
are caused by the need to divide strokes into line segments.
Experiments demonstrated that the grammar-based approach
still has trouble, with big uncertainty in the input. Exper-
iments were performed on a benchmark database, which
allows comparison. Work by Szwoch and Mucha [34] is
another effort to recognize flowcharts using grammars. The
authors assume that symbols consist of single strokes, and
this simplification forbids experiments on the benchmark
database, and thus, it cannot be compared with other meth-
ods.

Delaye [11] has recently introduced a purely statistical
approach to diagram recognition based on strokes cluster-
ing and CRFs: clusters represent graph nodes. A hierarchical
model is used by applying several values of clustering thresh-
olds. The graphs created are trees, and thus, the task can be
solved efficiently by the belief propagation algorithm, which
makes the system extremely fast. However, the approach is
purely statistical, which does not use information about the
diagram structure. Inconsistent labellings can occur.

123

256 M. Bresler et al.

(a)

connection data decision

process terminator

(b)

Fig. 3 Example of a flowchart (a) with examples of uniform symbol classes (b)

2.4 Alternative approaches

Though there are few systems directly comparable to ours,
interest in diagram design/sketching is evident. Miyao and
Maruyama [25] created a flowchart designer based on the
iterative recognition principle. Input is processed in small
pieces, and immediate user feedback is awaited. If the user
does not indicate any error in the recognition, it is considered
as ground truth. It is further possible to connect symbols by
gestures and to input text for a selected symbol. This works
well for flowcharts since symbols are loopy. However, the
system puts unnatural requirements on the user.

In some cases, it is desired to keep the sketchy appearance
of diagrams; thus, smart sketching tools allowing common
editing operations without any formalization of the input
have been proposed [3,29].

In conclusion, although there exist various systems for
structured handwriting, there is no system for flowchart-like
diagrams allowing practical use. Existing methods are either
purely statistical or they rely on grammars which are too
impractical for the minimalistic structure of diagrams.

3 Diagram structure and supported domains

The diagram recognition system we propose is general and
can be used in several domains. Nevertheless, it requires
adaptation for a chosen domain mostly by retraining clas-
sifiers. We introduce domains, together with benchmark
databases used for training/testing of the system. Supported
diagrams consist of symbols with a relatively stable appear-
ance (called uniform symbols), interconnected by arrows.
Arrows and uniform symbols may consist of arbitrary num-
ber of strokes, and both are possibly assigned a text label:
text inside the uniform symbol or in the vicinity of the arrow.
The domain syntax can bring additional constraints, e.g.
forbid connecting some symbols. We worked in two dia-
gram domains, flowcharts (FC) and finite automata (FA),

for both of which there are freely available benchmark data-
bases. FC and FA share important properties; however, their
specifics should be considered when adapting the recognizer
to achieve best results.

3.1 Flowcharts

Figure 3 shows an example flowchart, together with an enu-
meration of five uniform symbol classes: connection, data,
decision, process and terminator.

Awal et al. [4] released a benchmark database of flow-
charts (referenced as FC_A), on which several state-of-the-
art methods were tested. The database consists of 327 dia-
grams drawn by 35 users: predefined diagram patterns
representing well-known algorithms were used. The sam-
ples are divided into training and test datasets. The biggest
disadvantageof the database is the lackof annotations provid-
ing information about the diagram structure. Only individual
symbols are identified, and no temporal information is avail-
able. The data are of low quality (sampling frequency).

These deficiencies have motivated us to collect our own
flowchart database and make it public:3 we reference this
database as FC_B. We collected 28 diagram patterns drawn
by 24 users, resulting in 672 samples. They were divided into
training, validation and test datasets. Some of the patterns
were taken from the FC_A database, and others represent
procedures for daily tasks. The database contains annotation
of symbols and relations among them. Arrows are provided
with connection points and heads annotated. Text blocks have
their meaning attached.

3.2 Finite automata

The finite automata domain includes three uniform symbol
classes: state (a circle),final state (two concentric circles) and
initial arrow (straight arrow entering the initial state). The

3 http://cmp.felk.cvut.cz/~breslmar/diagram_database.

123

Online recognition of sketched arrow-connected diagrams 257

text is usually simple—often just a single letter naming the
state or indicating an input attached to the arrow. It may also
contain a lower index. Arrows are typically curved, except
the initial arrow which does not act as a connector of two
states. An example is shown in Fig. 2.

No publicly available database of online sketched finite
automata is known. We gathered and annotated our own
database (referenced as the FA database) and make it
public3. Compared to the previous release [9], the annotation
was improved—arrows are provided with their connection
points and heads annotated. The database contains samples
of 12 diagram patterns drawn by 25 users, which results
in 300 diagrams divided into training, validation and test
datasets.

4 Recognition pipeline

4.1 Text detection and recognition

Separating text is motivated by the observation that the text
bears almost no information about the diagram structure. Ide-
ally, all text strokes are removed and the diagram without
text is recognized. This divide and conquer strategy reduces
computational complexity significantly since the number of
strokes is much lower. Text strokes are replaced after recog-
nition. The diagram structure helps forming text blocks and
finding symbols, to which the blocks are assigned.

The text/non-text separation algorithm classifies single
strokes into two classes—text and shapes. Although there
exist quite precise algorithms for such separation [5,14,19,
27,35], they are not able to separate all text strokes. Their
accuracy achieved on the benchmark IAMonDo database4 is
between 97 and 98%.Moreover, these classifiers tend to have
a higher error in class shapes due to using unbalanced training
datasets. Our goal is the opposite. We attempt achieving the
minimal possible error rate for class shapes while a slightly
higher error rate in class text is acceptable. The justification
is that removing a shape stroke can easily cause a symbol
not to be recognized, because it becomes incomplete. Some
remaining text strokes are not a problem as symbol classifiers
are robust enough to deal with noise.

We bias the classifier result, and thus, only strokes where
the classifier is almost certain are marked as text. We imple-
mented two classifiers performing best on the IAMonDo
database [27,35] and tested them on flowcharts and finite
automata. The best performing was the classifier proposed
by Phan and Nakagawa [35], which uses unary features to
classify individual strokes into two classes: text and non-
text. It also considers relationships between adjacent strokes

4 http://www.iam.unibe.ch/fki/databases/iam-online-document-data
base.

in the writing order and uses binary features to classify
transitions between strokes into three classes: text–text, text–
non-text,non-text–non-text. Since it can be seen as a sequence
labelling task, BLSTM RNN classifiers are used to capture
the global context. The probabilistic outputs from the two
BLSTM neural networks are combined together to obtain
the final labelling probability. It achieves precisions 98.62%
(98.75% in the shapes class and 98.53% in the text class)
for FC_A, 99.53% (98.94% in shapes, 99.74% in text) for
FC_B and 98.84% (99.85% in shapes, 97.83% in text) for
FA in the unbiased case. We were able to reach a biased
result in shapes/text class of 99.68/95.20, 99.41/98.75 and
100.00/93.31% for FC_A, FC_B and FA, respectively. The
bias value is simply used to increase the confidence of the
label shapes for individual strokes. Its selection is a trade-off
between the accuracy in both classes. Results for various bias
values are shown in Fig. 4. We chose 0.99 for FC_A, 0.8 for
FC_B and 0.7 for FA. Note that Phan and Nakagawa [35]
suggest to use sum rule when combining the probability out-
puts of individual classifiers. Therefore, the final labelling
confidence is from interval [0, 4), which explains the high
values of the bias.

Text recognition is performed when the diagram structure
is already known. Strokes removed during the text/non-text
separation step together with strokes not identified as a sym-
bol are processed; the diagram structure provides enough
information to group the unused strokes into text blocks. Two
types of text blocks are distinguished, labelling the uniform
symbol and labelling the arrow. The grouping is accom-
plished in two steps. Text blocks inside symbols are found
first; text blocks labelling arrows are found next. Each text
block labelling a uniform symbolU is determined by the area
of the symbol. It includes all unused strokes whose bound-
ing box centroid is located inside the bounding box of U .
Text blocks labelling arrows are found easily by a group-
ing based on the spatiotemporal proximity. These blocks are
salient objects; hence, it is easy to find a suitable grouping
threshold. Afterwards, each text block is attached to the clos-
est arrow. Recognition of text inside a block is beyond the
scope of this paper.

4.2 Symbol segmentation

Segmentation is a process which divides strokes into subsets,
each forming a particular symbol. Ideally, the subsets should
be disjoint and cover all the strokes. However, it cannot rea-
sonably be done without knowledge of the entire structure.
It is unwise to make hard decisions at this early step, and
so over-segmentation is better. It supplies a larger number of
subsets, whichmay share some strokes. The final decision on
which subsets fit the structure of the input diagram best is left
for the structural analysis performed later. Our system needs
to segment uniform symbols only: arrows are detected after

123

258 M. Bresler et al.

0 0.2 0.4 0.6 0.8 1
95

96

97

98

99

100
Accuracy of strokes classification based on bias for FC_A

Bias [−]

A
cc

ur
ac

y
[%

]

Accuracy − all
Accuracy − text
Accuracy − shapes

0 0.2 0.4 0.6 0.8 1
98

98.5

99

99.5

100
Accuracy of strokes classification based on bias for FC_B

Bias [−]

A
cc

ur
ac

y
[%

]

Accuracy − all
Accuracy − text
Accuracy − shapes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
93

94

95

96

97

98

99

100
Accuracy of strokes classification based on bias for FA

Bias [−]

A
cc

ur
ac

y
[%

]

Accuracy − all
Accuracy − text
Accuracy − shapes

(a)

(b)

(c)

Fig. 4 Accuracy of stroke classification in relation to bias. Selection of
the best bias is a trade-off between accuracy in text and shapes classes.
a FC_A, b FC_B and c FA

the initial segmentation using the knowledge of recognized
uniform symbols. The text is recognized even later when the
entire structure is known.

The most common approach to over-segmentation works
under the assumption that symbols are formed of spatially
and temporally close strokes. Strokes grouping is performed
iteratively.Within the first iteration, every single stroke forms
a subset of size 1. Further, subsets of size k are created by
adding a single spatially and temporally close stroke to sub-
sets of size k − 1. The maximal size of the subsets is given
by the domain and user’s drawing conventions, and spatial
proximity is determined simply by Euclidean distance. Tem-
poral proximity is hinted at by stroke indices in the drawing

sequence. The approach has been used in our previous recog-
nizer [9] as well as by others [2,15,28].

Delaye and Lee [13] showed that symbols may be
segmented using single-linkage agglomerative clustering
(SLAC) using a properly trained distance function defined
as a weighted sum of several simple features. In addition to
Euclidean distance, the features express difference between
geometric and temporal characteristics of two strokes. The
distance is defined as:

d(s, t; w) =
k∑

i=1

wi di (s, t), (1)

where s and t are two given strokes and wi is the weight
for the feature di that needs to be learned. It is a hierarchical
bottom-up clustering technique where larger clusters are cre-
ated by iteratively merging the two closest clusters based on
distance. The usage of a single-linkage clustering approach
implies that the distance between two clusters is given by the
distance between their two closest elements. This permits
an efficient real-time implementation O(n2), where n is the
number of strokes. The clustering gives a final segmentation,
which reaches typically lower recall rates. We improved it in
our previous work [8], performing the over-segmentation by
successive clusterings with varying thresholds. In compari-
son with grouping-based over-segmentation, this increased
the precision (i.e. generated significantly fewer subsets),
at the cost of only very slightly decreased recall. In the
current implementation, we achieved 95.1/16.7, 98.4/27.5,
99.8/26.5% recall/precision on FC_A, FC_B, FA databases.
High recall is the main objective directly affecting the pre-
cision of the whole system while segmentation precision is
a secondary objective, affecting mainly the speed of the sys-
tem. The recall achieved allows overall high precision. The
segmentation precision achieved shows that on average we
do not generate more than 4–6 times more segments than
is the true number of symbols, which is important for fast
recognition.

4.3 Symbol recognition

Symbol recognition aims at classifying subsets of strokes
(clusters) produced by segmentation. Each cluster is either
assigned a symbol class or is rejected. We treat arrows in a
special way since their form and shape vary, which is a dif-
ficulty for traditional classifiers. There are two stages. First,
uniform symbols are recognized using a standard classifier.
Second, arrows are detected as connectors between symbol
candidates found earlier. Both recognizers/detectors provide
an ordered list of symbol candidates. The structural analysis
selects actual symbols from these lists.

123

Online recognition of sketched arrow-connected diagrams 259

4.3.1 Uniform symbol classifier

The classifier has to fulfil three requirements: (1) it has to
be fast since many stroke clusters need to be processed; (2)
the rejection ability is mandatory as many stroke clusters
do not represent anything meaningful; (3) each classification
produces a score (e.g. a posterior probability) to compare
candidates’ quality.

We used an off-the-shelf solution and combined the
trajectory-based normalization and direction features pro-
posed by Liu and Zhou [23] as a descriptor, which serves
as the input to the multiclass SVM classifier. The descriptor
is based on hybrid features capturing dynamic informa-
tion as well as the visual appearance of symbols. Besides
the trajectory-based normalization, we do not perform any
particular pre-processing. The descriptor consists of 512 fea-
tures; it was primarily designed for recognition of Japanese
characters and thus works well for high number of visually
similar symbol classes since individual Japanese symbols
often differ in small details only. This property is desirable
to enable rejection of incomplete symbols produced by the
over-segmentation. The analogy with Japanese characters is
illustrated in Fig. 5, and the achieved results confirm suit-
ability of the selected descriptor. Although there are different
descriptors available [12], we did not experiment with them
because we achieved satisfactory results with the chosen
solution. We trained the classifier with negative examples
to obtain the rejection ability. The dataset of symbols for
training was obtained by applying the strokes clustering
introduced in Sect. 4.2. If the cluster of strokes is anno-
tated as a uniform symbol in the database, it is labelled by
that symbol. Otherwise, it is labelled as no_match, which
denotes a negative example. Arrows as well as incomplete
parts of symbols are labelled as negative examples. Because
the FC_A database does not contain a validation set, we used
a fivefold cross-validation. Therefore, we merged the train-
ing and validation datasets in case of FC_B and FA databases
to have the same conditions.

(a) (b)

Fig. 5 Example of small differences between individual symbol
classes in the case of Japanese characters (a) and uniform symbols
in diagrams (b)

The number of negative examples is much higher than
the number of uniform symbols. Moreover, they are very
inhomogeneous. It is thus necessary to cluster them into sub-
classes. We employed k-means based on the descriptor to
createm no_match subclasses, wherem is domain dependent
(m = 30 for flowcharts, m = 20 for finite automata). The
appropriate values of m were estimated from the data while
pursuing clusters with desirable properties such as homo-
geneity and separability. The larger number of symbol classes
in the flowchart domain naturally results in a greater m. This
brings a need for a modified loss function, which gives zero
penalty when a negative example is classified into a dif-
ferent no_match subclass. Additionally, a greater penalty is
required for misclassification of a uniform symbol as a neg-
ative example than in the opposite case. The ratio between
these two penalties depends also on the ratio between the
number of uniform symbols and negative examples. A prop-
erly chosen loss function can overcome the problem with an
unbalanced database [9]. However, our current implemen-
tation uses artificially synthesized samples to balance the
database. The samples were synthesized using the approach
ofMartín-Albo et al. [24]. It is based on kinematic theory and
the distortion of the Sigma–Lognormal parameters in order
to generate human-like synthetic samples. We generated up
to 20 artificial samples from each uniform symbol taken from
the training dataset. From all the synthesized samples of one
class, we randomly chose a subset to get the desired number
of symbols for training. This approach not only helps to bal-
ance the dataset, but also supplies additional information on
handwriting and makes the classifier more robust. Therefore,
we empirically set the smaller penalty to 1 and the bigger
penalty to 2 just to increase recall at the cost of very small
precision decrease. In the finite automata case, non-initial
arrows and stroke subsets of final states have exactly the same
appearance as initial arrows and states, respectively. To ben-
efit from this knowledge of the domain, we excluded these
two from negative examples, which increases the recall of
the symbol classifier. Specifically, the recall increased from
96.23 to 98.98% reported later in this section. Unfortunately,
the FC_A database does not contain any time information,
which is crucial for the synthesis; thus, artificial samples can-
not be obtained for this database.

Without negative examples, the proposed classifier
achieves precision of 98.9, 97.5 and 100.0% for FC_A,FC_B
and FA, respectively. If rejection is incorporated through
negative examples, we keep the two topmost results of classi-
fication for each stroke cluster to make the symbol candidate
detection more robust. It might happen that both results
are no_match. Then, the corresponding cluster is rejected.
This yields recall/precision of 94.13/43.13, 96.63/45.33 and
98.98/37.15% for FC_A, FC_B and FA, respectively. The
average recognition time per sample is 0.7ms.

123

260 M. Bresler et al.

4.3.2 Arrow detector

As stated earlier, it is difficult to perform recognition of an
arrow based on its appearance, even if several arrow sub-
classes are considered. This was our initial approach [7]
which did not lead to satisfactory results. Some generic
recognizers for arrows are also known [17,18,20,33]; how-
ever, they expect a fixed form of arrows—the number of
strokes as well as the range of angles between them is
restricted. This conforms to some domain specific solutions,
but is impractical in general. The requirements on the user’s
drawing style are unnatural; a newmodel for each arrow form
has to be defined, etc.

Our detector exploits the special property of arrows (they
connect two symbols) and detects candidates after uniform
symbol candidates have been recognized. We consider each
pair of detected uniform symbol candidates and try to find
an arrow as an arbitrarily shaped connector linking them.
Each arrow consists of a shaft and a head; hence, the arrow
candidates detector works in two sequential steps:

1. Find the shaft of an arrow connecting two given sym-
bols. The shaft is a sequence of strokes leading from the
vicinity of the first symbol to the vicinity of the second
symbol and is undirected.

2. Find the head located around one of the end points of the
shaft. It defines the arrow orientation.

The shaft detection is done by adding strokes iteratively
to a sequence such that the first stroke starts in the vicinity
of the first symbol and the last stroke ends in the vicinity
of the second symbol. Once the shaft is found, the head
is detected by classification of strokes around both ends of
the shaft into two classes: head and not head. This classifi-
cation is based on relative positioning of strokes. Detected
arrows are assigned a score given by the quality of the shaft
and the head. More details can be found in our original
paper [6].

To test the arrow detector, we took all annotated uniform
symbols and tried to find arrows connecting them. Detected
arrows were compared with the annotated arrows. Note that
text strokes were removed by our text/non-text separator and
all pairs of symbols were considered. The result of the arrow
detector is a list of arrow candidates since it may detect sev-
eral conflicting arrows between each pair of symbols. These
conflicts are intended to be solved by the structural analyser.
We achieved a recall/precision of 92.4/63.1, 94.7/75.0 and
95.1/44.6% for FC_A,FC_BandFA, respectively.Our arrow
detector performs 88 stroke classifications on average per
diagram when searching for arrow heads when there are ten
arrows on average per diagram.

4.4 Structural analysis

The input to the structural analysis comprises symbol candi-
dates assigned by score. Candidates for arrows also identify
which two symbols they connect. The task is to detect a sub-
set of the candidates forming a valid diagram. The score of
the individual candidates itself does not suffice (even a bad
candidate might have a high score); relations between the
candidates have to be examined. Each relation is assigned
its own score. The score of the entire diagram is calculated
as the sum of scores of all selected symbol candidates and
relations among them. The highest score solution is sought in
an optimization task. Having the candidates selected, the dia-
gram structure can be easily reconstructed—all the necessary
information is carried by arrows.

We define three types of relations between symbol candi-
dates: (1) conflict—two candidates share one or more strokes
or two arrows are connected to the same connection points of
uniform symbols (this forbids parallel arrows in flowcharts);
(2) overlap—two uniform symbol candidates have overlap-
ping bounding boxes; (3) endpoint—each arrow requires
existence of both uniform symbols it connects. All possible
pairs of candidates are examined to find first two relations.
Potential conflicts are detected first, and if none occurs, rela-
tions of type (2) are evaluated. Relations of type (3) are
explicitly given by the definition of arrows. Relations of type
(1) get score sc = −∞. Each relation of type (2) gets the
score

so = −SA∩B/min(SA, SB), (2)

where A and B are bounding boxes of the first and the second
symbol. SA, SB and SA∩B are areas of A, B and of their
intersection. Finally, relations of type (3) get score se = −∞.
The first two relations are effective if both symbol candidates
are selected in the solution; the third one is effective when the
arrow is selected and one of the connected uniform symbols
is not. Negative scores of the relations express that they are
unwanted.

4.4.1 Max-sum formulation

The pairwise max-sum labelling problem [36] (a.k.a. com-
puting the MAP configuration of a Markov random field)
is defined as maximizing the sum of unary and binary cost
functions (potentials of discrete variables)

max
k∈KV

⎡

⎣
∑

u∈V
gu(ku) +

∑

{u,v}∈E
guv(ku, kv)

⎤

⎦ , (3)

123

Online recognition of sketched arrow-connected diagrams 261

where an undirected graph G = (V, E), a finite set of labels
K and costs gu(ku), guv(ku, kv) ∈ R ∪ {−∞} are given. We
maximize over assignments of labels from K to nodes of G.
Each node u and edge {u, v} are then evaluated by the cost
given by gu and guv .

In our model, each symbol candidate defines a single node
of the graph G. The edge is defined for each pair of inter-
acting nodes (i.e. two symbol candidates in a relation). Two
labels are used, K = {0, 1}, where 0 means the candidate is
not selected as a part of the solution while 1 means it is. Val-
ues gu(ku), guv(ku, kv) are set to express scores of symbol
candidates and relations and to model natural restrictions as
follows: gu(0) = 0 and gu(1) = s for each symbol candidate
u with the score s. Further, for all pairs of objects {u, v} ∈ E

1. guv(1, 1) = sc = −∞ if u and v are in conflict.
2. guv(0, 1) = se = −∞ if u is a symbol candidate and v

is an arrow connected to that symbol.
3. guv(1, 1) = so if u, v are two non-arrow symbol candi-

dates with overlapping boxes (so is given by (2)).
4. guv(k, �) = 0 otherwise.

A good commensurability of various scores in the model
is confirmed by experiments. We also tested a set-up of the
unary and binary potentials based on logarithms of scores,
which did not lead to better results.

4.4.2 Example

We illustrate the structural analysis by a simple example. Fig-
ure 6a contains an input flowchart with labelled strokes. We
assume that the following symbol candidates were detected
in this diagram:

1: process {t1} with score s1,
2: connection {t4} with score s2,
3: connection {t8} with score s3,
4: terminator {t8} with score s4,
5: arrow {t2, t3} [1 → 2] with score s5,
6: arrow {t5, t6, t7} [1 → 3] with score s6,
7: arrow {t5, t6, t7} [1 → 4] with score s7.

The strokes forming each symbol candidate are in curly
brackets. For arrow candidates, the values in the square
brackets say which symbols are connected by the arrow. The
resulting max-sum model is depicted in Fig. 6b.

4.4.3 Solving the optimization task

The max-sum problem is NP hard, although some of its spe-
cial forms, such as the submodular max-sum problem, can
be solved in a polynomial time [36]. Unfortunately, this is
not our case. However, the size of generated graphs is not

t1
t2

t3
t4

t5
t6

t7
t8

(a)

∞-

s5

5: arrow {t2, t3} [1 → 2]

0

s1

1: process {t1}

0

s3

3: connection {t8}

0

s2

2: terminator {t4}

0

s4

4: terminator {t8}

0

s6

0

6: arrow {t5, t6, t7} [1 → 3]

s7

0

5: arrow {t5, t6, t7} [1 → 4]

∞-

∞-

∞-∞- ∞-
∞-

∞-

(b)

Fig. 6 Input flowchart (a) consisting of eight strokes t1, . . . , t8 forming
three uniform symbols and two arrows. Connection points are marked
in blue and red for uniform symbols and arrows, respectively. There
are four uniform symbol candidates since stroke t8 is classified as con-
nection (with score s3) and terminator (with score s4). The structural
analysis is cast as a max-sum problem b where rectangular nodes rep-
resent uniform symbol candidates while elliptic nodes represent arrow
candidates (formally, the nodes are of the same kind). Both possibilities
for labelling a particular node are represented inside the node (white
circle label 1, black circle label 0). Each label k in a node u is assigned
by value gu(k). An edge connecting a label k in a node u and a label
� in a node v is assigned by value guv(k, �). Edges with zero costs are
not shown (colour figure online)

so big (72/50/84 nodes and 673/305/721 edges in average
for FC_A/FC_B/FA). Therefore, general branch and bound
solvers are able to solve them fast (see Sect. 5). We tested the
max-sum solver Toulbar2.5 Its minor disadvantage is that
it supports only non-negative integer costs, and thus, it is
necessary to transform the score values. Another option is to
formulate the max-sum problem as an integer linear program
(ILP) and solve it using a general ILP solver. We tested IBM
ILOG CPLEX library.6 The conversion is based on linear
programming relaxation of the problem [36].

5 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro.
6 http://www.ibm.com/software/integration/optimization/
cplex-optimizer/.

123

262 M. Bresler et al.

We made experiments with both formulations and com-
pared the performance of Toulbar2 andCPLEX. Both solvers
find the exact solution, and the recognition result is the same.
Toulbar2 is approx. 60% faster on average. It appears slower
for the smallest diagrams; this is caused by the data exchange
trough files, which is the only possibility supported by the
binary distribution of Toulbar2. Some minimal time is thus
needed for the solver initialization. This minor technical lim-
itation may be resolved in future. Details on runtimes are
provided in Sect. 5.

5 Experiments

Wepresent anoverall performance evaluationof theproposed
diagram recognition system (abbreviated γ). We made a
comparison with two state-of-the-art methods: the grammar-
based method (α) by Carton et al. [10] and the purely
statistical method (β) by Delaye [11], and compared our per-
formance to their published results. The formerwas evaluated
on the FC_A database only, while the second was evalu-
ated on the FA database as well. FC_B is new (introduced
in this work), and results achieved on this database are thus
reported without a comparison to others. However, it shows
that the higher quality data match well to capabilities of cur-
rent devices. A significantly higher accuracy is achieved.

We use two basic metrics to measure the recognition pre-
cision. The first (SL) assesses the correct stroke labelling.We
assign each stroke a label of the symbol class it is classified
to, and this assignment is checked against the ground truth in
the database. The second metric (SR1) assesses the correct
symbol segmentation and classification. It is more informa-
tive and provides a better insight into the recognition result
quality. The most direct way to decide whether a symbol was
correctly recognized is to check whether it comprises exactly
the same strokes and has the same label as the annotation.We
call this criterion the strict one. The metrics SL and SR1 are
common and were used by authors of both systems α and β,
and thus, they allow fair comparison of individual systems.
However, exact stroke matching is not necessarily required
for the correct diagram structure recognition. Users some-
times draw symbols by multiple strokes when correcting or
when beautifying symbols. Some strokes are redundant in
someway. It might happen that although the symbol is recog-
nized correctly, it is not formed of exactly the same strokes
as its annotated pattern in the database. For more insight,
we define an additional more relaxed criterion (SR2) based
on matching each annotated symbol with one of the recog-
nized symbols. Two symbols match if they are of the same
class and their bounding boxes overlap by 80%. This value
was estimated empirically. It must be high enough to for-
bid matching of different symbols. Contrary, it must be low
enough to allow matching of symbols with shrunk bound-

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of missing symbols

re
la

tiv
e

ra
te

 o
f d

ia
gr

am
s

Diagrams with missing symbols

FC_A
FC_B
FA

Fig. 7 Counts of diagrams by the number of missing symbols in the
result

Table 1 Recognition results for FC_A database

Class SL (%) SR1 (%)

(α) (β) (γ) (α) (β) (γ)

Arrow 83.8 – 87.5 70.2 – 76.6

Connection 80.3 – 94.1 82.4 – 95.1

Data 84.3 – 95.3 80.5 – 90.5

Decision 90.9 – 88.2 80.6 – 72.9

Process 90.4 – 96.3 85.2 – 88.6

Terminator 69.8 – 90.7 72.4 – 89.0

Text 97.2 – 99.2 74.1 – 89.7

Total 92.4 93.2 96.3 75.0 75.5 84.2

Comparison of the proposed recognizer (γ) to the grammar-based
method (α) and to the purely statistical method (β). We list correct
stroke labelling (SL) and symbol segmentation and recognition mea-
sured with the strict (SR1) method

ing boxes due to missing redundant strokes. In the case of
arrows, we also require that they connect the same symbols
and have the same direction. The error rate is expressed as
the number of unmatched annotated symbols. This criterion
is more meaningful. It was used to assemble the histogram
in Fig. 7 showing how many diagrams were recognized with
a particular number of errors. The best results were achieved
for the FA database, where nearly 80% of diagrams were
recognized correctly. The worst results were achieved for the
FC_A database, probably because of its low quality. Inputs
are noisy, and there is no temporal information; thus, it has
not been possible to synthesize additional samples to train
our classifiers. Even so, we have still achieved state-of-the-
art precision, see details in Tables 1, 2 and 3. Differences
in symbol segmentation and recognition results given by the
two criteria SR1 and SR2 are shown in Table 4.

The system has been implemented in C#, and tests were
performed on a standard tablet PC Lenovo X230 (Intel Core
i5 2.6GHz, 8GB RAM) with 64-bit Windows 7. The aver-
age runtime needed for recognition was 0.78, 0.89 and 0.69 s

123

Online recognition of sketched arrow-connected diagrams 263

Table 2 Results for FC_B database

Class SL (%) SR1 (%)

Arrow 93.8 93.2

Connection 88.4 88.4

Data 96.1 93.8

Decision 90.3 92.0

Process 98.4 97.6

Terminator 99.7 98.9

Text 99.6 97.1

Total 98.4 95.3

We list correct stroke labelling (SL) and symbol segmentation and
recognition measured with strict (SR1) method

Table 3 Recognition results for FA database

Class SL (%) SR1 (%)

(β) (γ) (β) (γ)

Arrow – 98.0 – 97.5

Initial arrow – 98.6 – 97.3

Final state – 99.2 – 99.2

State – 98.3 – 98.2

Label – 99.7 – 99.2

Total 98.4 99.0 97.1 98.5

We compared the proposed system (γ)with the purely statisticalmethod
by Delaye (β). We list correct stroke labelling (SL) and symbol seg-
mentation and recognition measured with strict (SR1) method

Table 4 Comparison of the symbol segmentation and recognition rates
using strict (SR1) and structure-based (SR2) method

Class SR1 (%)/SR2 (%)

FC_A FC_B FA

Arrow 76.6/78.3 93.2/94.3 97.5/98.1

Connection 95.1/96.0 88.4/89.3 –

Data 90.5/91.4 93.8/94.7 –

Decision 72.9/76.1 92.0/95.1 –

Process 88.6/89.9 97.6/98.4 –

Terminator 89.0/89.7 98.9/99.6 –

Text/label 89.5/91.6 97.1/98.7 99.2/99.4

Initial arrow – – 97.3/97.3

Final state – – 98.2/98.6

State – – 99.2/99.2

Total 84.2/85.4 95.3/96.6 98.5/98.8

for diagrams from FC_A, FC_B and FA, respectively. This
means that our system is faster than the grammar-based sys-
tem by Carton et al., which has an average recognition time
1.94 s and slower than the purely statistical approach by
Delaye and Lee with an average recognition time 80 and

Table 5 Optimization/total running time

Dtb. Running time (s)

Minimal Maximal Average Median

FC_A 0.11/0.19 0.66/4.61 0.14/0.78 0.12/0.71

FC_B 0.11/0.46 0.22/3.56 0.13/0.89 0.12/0.83

FA 0.12/0.27 0.37/1.43 0.14/0.69 0.13/0.62

Table 6 Running time consumed to solve the optimization by Toul-
bar2/CPLEX

Database Running time (ms)

Minimal Maximal Average Median

FC_A 114/2 655/917 136/230 123/218

FC_B 114/3 216/598 126/129 122/48

FA 116/19 370/720 137/235 129/229

52ms for FC_A and FA, respectively. Table 5 lists the mini-
mal, maximal, average and median time needed to solve the
max-sum problem and to perform the entire recognition. The
values confirm that the optimization is solved relatively fast
as it consumes only a small proportion of the whole process-
ing time. The speed of the solver Toulbar2 is compared with
CPLEX in Table 6.

6 System analysis

Here, we report on additional experiments performed to
analyse the impact of the individual steps of the pipeline
on the overall precision. We investigated which steps of the
recognition pipeline are responsible for misrecognition of
symbols from individual classes. Some of the recognition
failures are illustrated by examples and commented. We also
tested the system having the advanced pipeline steps disabled
one by one.

6.1 Failure analysis

The system fails to recognize some diagrams even when the
best approaches are used in each step of the pipeline. There
are four possible reasons why a symbol may not be recog-
nized properly: (a) some of its strokes were misclassified as
text; (b) the symbol was not properly segmented; (c) the sym-
bol was rejected by the classifier; (d) the structural analyser
did not choose the symbol. The special case is an arrow not
segmented as a uniform symbol. We say that wrong segmen-
tation is the reason for its misrecognition if the symbols it
connects were not segmented correctly. Another exception is
a text block, misrecognition of which is always caused by the
misrecognition of a symbol it labels, and thus, it is not a part

123

264 M. Bresler et al.

Table 7 Numbers of misrecognized symbols from the individual symbol classes with rates of the reasons for their misrecognition (dominant shown
bolded)

Class # of misrecognized symbols (–) Text separation (%) Segmentation (%) Classification (%) Structural analysis (%)

Arrow 220/91/18 0.3/7.7/0.0 58.5/51.7/5.6 35.2/37.4/33.3 6.0/3.3/61.1

Connection 5/13/– 0.0/0.0/– 17.7/0.0/– 82.3/38.5/– 0.0/61.5/–

Data 20/22/– 2.3/4.5/– 79.1/13.6/– 7.0/31.8/– 11.6/50.0/–

Decision 35/18/– 0.0/5.5/– 75.0/77.7/– 4.2/16.7/– 20.8/0.0/–

Process 35/9/– 2.7/11.1/– 67.6/33.3/– 13.5/55.6/– 16.2/0.0/–

Terminator 17/3/– 5.9/0.0/– 76.5/0.0/– 5.9/0.0/– 11.8/100.0/–

Initial arrow –/–/2 –/–/0.0 –/–/0.0 –/–/100.0 –/–/0.0

Final state –/–/1 –/–/0.0 –/–/0.0 –/–/0.0 –/–/100.0

State –/–/5 –/–/0.0 –/–/20.0 –/–/0.0 –/–/80.0

The displayed result correspond to FC_A/FC_B/FA databases

Text separation Segmentation Classification Structural analysis
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Reasons for symbol misrecognition

R
el

at
iv

e
ra

te
 o

f t
he

 re
as

on
s

Rates of reasons for symbol misrecognition in individual domains

FC_A
FC_B
FA

Fig. 8 Rates of reasons for symbol misrecognition

of the analysis. The rate of each reason for symbol misrecog-
nition with respect to the symbol class is shown in Table 7.
The average rates are shown for individual datasets in Fig. 8.
It has turned out that themost frequent reason for failure is the
symbol misclassification in the case of flowcharts and wrong
selection of symbol candidates by the structural analyser in
the case of finite automata. Diagrams with the highest num-
ber of misclassified symbols are analysed in Fig. 9.

6.2 Advanced techniques analysis

We replaced the most advanced techniques for text/non-text
separation, symbol segmentation and symbol classification
by our previous or naive approaches. The results are summa-
rized in Table 8.

Our recognition system is robust enough to handle some
remaining text in a diagram. On the other hand, it can barely
recover when some shape strokes are removed. However, if
there is a lot of remaining text, the system needs significantly
more time for recognition and can eventually get confused.
To demonstrate how the system is susceptible to the result of
text/non-text separation, we evaluated it with three different
text/non-text separation settings: (a) using unbiased text/non-

text classifier, (b) using the perfect text removal based on the
annotation, (c) performing no text/non-text separation.

We used strokes grouping instead of the clustering to per-
form over-segmentation. The iterative strokes grouping is a
naivemethod achieving high recall values at the cost of lower
precision. SLAC is a more sophisticated method with sig-
nificantly increased precision and only slightly worse recall
which guarantees a speed up of the system.

We evaluated the system with uniform symbols classifiers
trained without artificial samples. These classifiers achieve a
lower precision reflected in the lower accuracy of the whole
system. Moreover, it has reduced ability to reject clusters
which represent no symbols, and thus, the recognition time
slightly increases. It is obvious that the importance of classi-
fiers trained with artificial samples increases in the flowchart
domain with a higher number of symbol classes. Unfortu-
nately, the FC_A database does not contain time information
which is necessary for synthesis of the artificial samples;
thus, we could not do this analysis on the database.

6.3 Analysis findings

Based on the performed analysis, we come to the following
conclusions:

The text/non-text separation step is very precise. It
achieved 100% precision in the shapes class on the FA data-
base, and thus, it was not responsible for a single error there.
Even in the case of the flowcharts, it was responsible for
symbol misrecognition only in a few cases. Further analysis
showed the importance of the text/non-text separation step.
Without text being separated, the time complexity increased
and the precision dropped significantly. On the other hand,
it turned out that the results achieved with unbiased clas-
sifiers or ground truth-based separation are comparable to
the baseline. Naturally, the use of ground truth led to faster
recognition, because all text strokes were removed.

123

Online recognition of sketched arrow-connected diagrams 265

Fig. 9 Examples of misrecognized diagrams from the FA and FC_B
databases. The input diagrams are shown in the upper row; recogni-
tion results are in the bottom row. Symbol colouring is explained in
the legends which are parts of the images. Each recognized symbol is

surrounded by its bounding box. a Input diagram writer020_fa_002, b
input diagramwriter018_fc_003b, c input diagramwriter019_fc_006b,
d misrecog. arrows—colliding heads, e misrecog. arrows—a missing
head and f unrecognized data—interstroke gaps (colour figure online)

Table 8 Results of various analyses showing the effect of individual solutions to the steps of the pipeline

Analysis

Baseline Text separation Symbol segmentation Symbol classification

Unbiased Ground truth No separation Grouping No artificial samples

FA

SL (%) 99.0 99.0 99.3 83.7 98.8 98.7

SR1 (%) 98.5 98.5 98.9 82.0 98.2 98.1

SR2 (%) 98.8 98.8 99.2 82.7 98.7 98.5

AT (ms) 690 704 650 962 1220 705

FC_A

SL (%) 96.3 96.2 96.6 94.1 96.5 –

SR1 (%) 84.2 84.1 84.6 79.4 84.4 –

SR2 (%) 86.4 86.2 86.6 82.7 86.7 –

AT (ms) 780 770 762 2273 1060 –

FC_B

SL (%) 98.5 98.5 98.7 96.5 98.6 94.3

SR1 (%) 95.6 95.5 96.0 90.5 95.2 87.7

SR2 (%) 97.1 96.9 97.3 93.2 97.8 89.2

AT (ms) 891 892 815 3429 1205 930

It is compared to the baseline which was used to obtain the results in Sect. 5. Wemeasured correct rate of stroke labelling (SL), symbol segmentation
and recognition measured with strict (SR1) and structure-based (SR2) method, and average recognition time (AT)

123

266 M. Bresler et al.

Symbol segmentation is the main culprit in symbol mis-
recognition for both flowchart databases. This is caused by
the fact that symbols consist of more strokes and users
sometimes retrace them. Moreover, when a symbol is not
segmented correctly, it inherently causes misrecognition of
arrows connected to it. Further analysis showed that the naive
strokes grouping can increase the precision. However, it can-
not compensate the increase of processing time.

Symbol classification is the second most responsible step
for symbol misrecognition. Its failure means that the classi-
fier rejected a symbol candidate. The use of artificial samples
to train the classifiers is more important in the case of the
flowchart domain, due to the higher number of symbol classes
and the fact that some of them might be of a very similar
appearance.

Structural analysis is the last step of the recognition
pipeline, in which the symbols are selected from the symbol
candidates. An error occurs in this step when the classifier
does not reject a symbol, but gives more alternatives for clas-
sification, and the structural analyser picks the wrong one. It
typically happens in the case of two similarly looking sym-
bols like state/final state or connection/terminator.

7 Conclusion

We have designed a recognizer that understands diagrams
such asflowcharts or finite automata.We studiedwhichmeth-
ods are optimal for the implementation of individual pipeline
steps. Some existing algorithms were suitable for this pur-
pose and were thus integrated. Beyond these, several new
approaches were introduced. The system performed well in
comparison with the state of the art. We encourage the reader
to experiment with our demo application available at http://
cmp.felk.cvut.cz/~breslmar/diagram_recognizer/.

The low quality of the benchmark flowchart database
motivated us to gather our own database. The main weak-
nesses of the FC_A database are the lack of temporal
information and incomplete annotation—our database con-
tains temporal information as well as information about
pressure which may be useful for development of new meth-
ods. It provides complex annotations, including meaning of
the text and the annotation of arrowheads. This higher quality
database better reflects current standards in ink input inter-
faces. Experiments proved that high-quality data yield more
accurate results. As another contribution, we make this data-
base available for the community.

In future work, we would like to adapt the proposed
method for other diagrammatic domains, and we are plan-
ning to cooperate with diagram users professionally. We
are interested especially in the usage of diagrams during a
creative process of sharing fresh ideas among cooperating
people. This feedback should identify the most important

domains and use cases. Next, we would like to experiment
with iterative recognition using immediate feedback to the
user of intermediate results. This may well reduce recogni-
tion time, and we believe that the proposed system is capable
of such adaptation. Another possibility is to extend it to sup-
port domains beyond the scope of arrow-connected diagrams.
This extension would require modification of the max-sum
model. It is possible if the fundamental relation between
arrows and symbols can be replaced by another relation
defining the structure of the handwriting. For examples, the
relation between notes and staff lines in the case of music
scores.

Acknowledgments The first author was supported by the Grant
Agency of the CTU under the project SGS16/085/OHK3/1T/13. The
second and the third authorswere supported by theCzech Science Foun-
dation under grant no. 15-04960S. The authors thank Truyen van Phan
for his help with the text/non-text separation, Daniel Martín-Albo for
creating the synthesized samples for the SVM classifiers and Roger
Boyle for proofreading of the paper.

References

1. Alvarado, C., Davis, R.: SketchREAD: a multi-domain sketch
recognition engine. In: UIST ’04: 17th Annual ACM Symposium
on User Interface Software and Technology. UIST ’04, pp. 23–32.
ACM, New York (2004)

2. Álvaro, F., Sánchez, J.A., Benedí, J.M.: Recognition of on-line
handwritten mathematical expressions using 2d stochastic context-
free grammars and hidden Markov models. Pattern Recogn. Lett.
35, 58–67 (2014)

3. Arvo, J.,Novins,K.:Appearance-preservingmanipulation of hand-
drawn graphs. In: 3rd International Conference on Computer
Graphics and Interactive Techniques in Australasia and South East
Asia, GRAPHITE ’05, pp. 61–68. ACM (2005)

4. Awal, A.M., Feng, G., Mouchere, H., Viard-Gaudin, C.: First
experiments on a new online handwritten flowchart database. In:
DRR’11, pp. 1–10 (2011)

5. Blagojevic, R., Plimmer, B., Grundy, J., Wang, Y.: Using data min-
ing for digital ink recognition: dividing text and shapes in sketched
diagrams. Comput. Graph. 35(5), 976–991 (2011)

6. Bresler, M., Průša, D., Hlaváč, V.: Detection of arrows in on-line
sketched diagrams using relative stroke positioning. In:WACV’15:
IEEEWinter Conference on Applications of Computer Vision, pp.
610–617. IEEE Computer Society (2015)

7. Bresler, M., Průša, D., Hlaváč, V.: modeling flowchart structure
recognition as a max-sum problem. In: O’Conner, L. (ed.) ICDAR
’13: 12th International Conference on Document Analysis and
Recognition, pp. 1247–1251. IEEE Computer Society (2013)

8. Bresler, M., Průša, D., Hlaváč, V.: Using agglomerative clustering
of strokes to perform symbols over-segmentation within a diagram
recognition system. In: PaulWohlhart, V.L. (ed.) CVWW ’15: Pro-
ceedings of the 20thComputerVisionWinterWorkshop, pp. 67–74.
Graz University of Technology (2015)

9. Bresler, M., Van Phan, T., Průša, D., Nakagawa, M., Hlaváč, V.:
Recognition system for on-line sketched diagrams. In: Guerrero,
J.E. (ed.) ICFHR ’14: 14th International Conference on Frontiers
inHandwritingRecognition, pp. 563–568. IEEEComputer Society
(2014)

10. Carton, C., Lemaitre, A., Couasnon, B.: Fusion of statistical and
structural information for flowchart recognition. In: ICDAR ’13:

123

Online recognition of sketched arrow-connected diagrams 267

12th International Conference on Document Analysis and Recog-
nition, pp. 1210–1214 (2013)

11. Delaye, A.: Structured prediction models for online sketch recog-
nition (2014). Unpublished manuscript. https://sites.google.com/
site/adriendelaye/home/news/unpublishedmanuscriptavailable

12. Delaye, A., Anquetil, E.: HBF49 feature set: a first unified baseline
for online symbol recognition. Pattern Recogn. 46(1), 117–130
(2013)

13. Delaye, A., Lee, K.: A flexible framework for online document
segmentation by pairwise stroke distance learning. Pattern Recogn.
48(4), 1197–1210 (2015)

14. Delaye, A., Liu, C.L.: Contextual text/non-text stroke classification
in online handwritten notes with conditional random fields. Pattern
Recogn. 47(3), 959–968 (2014)

15. Feng, G., Viard-Gaudin, C., Sun, Z.: On-line hand-drawn electric
circuit diagram recognition using 2D dynamic programming. Pat-
tern Recogn. 42(12), 3215–3223 (2009)

16. Hammond, T., Davis, R.: LADDER, a sketching language for user
interface developers. Comput. Graph. 29, 518–532 (2005)

17. Hammond, T., Davis, R.: Tahuti: A geometrical sketch recogni-
tion system for UML class diagrams. In: ACM SIGGRAPH 2006
Courses, SIGGRAPH ’06. ACM, New York (2006)

18. Hammond, T., Paulson, B.: Recognizing sketched multistroke
primitives. ACMTrans. Interact. Intell. Syst. 1(1), 4:1–4:34 (2011)

19. Indermühle, E., Frinken, V., Bunke, H.: Mode detection in online
handwritten documents using BLSTMneural networks. In: ICFHR
’12: 13th International Conference on Frontiers in Handwriting
Recognition, pp. 302–307 (2012)

20. Kara, L.B., Stahovich, T.F.: Hierarchical parsing and recognition
of hand-sketched diagrams. In: 17th Annual ACM Symposium on
User Interface Software and Technology, UIST ’04, pp. 13–22.
ACM (2004)

21. Le, A.D., Van Phan, T., Nakagawa, M.: A system for recognizing
online handwritten mathematical expressions and improvement of
structure analysis. In: DAS ’14: 11th IAPR InternationalWorkshop
on Document Analysis Systems, pp. 51–55 (2014)

22. Lemaitre,A.,Mouchére,H.,Camillerapp, J., Coüasnon,B.: Interest
of syntactic knowledge for on-line flowchart recognition. In:GREC
’11: 9th IAPR International Workshop on Graphics Recognition,
pp. 85–88 (2011)

23. Liu, C.L., Zhou, X.D.: Online Japanese character recognition using
trajectory-based normalization and direction feature extraction. In:
Lorette, G. (ed.) Tenth International Workshop on Frontiers in
Handwriting Recognition. Université de Rennes 1, Suvisoft (2006)

24. Martín-Albo, D., Plamondon, R., Vidal, E.: Training of on-line
handwriting text recognizers with synthetic text generated using
the kinematic theory of rapid human movements. In: Guerrero,
J.E. (ed.) ICFHR ’14: 14th International Conference on Frontiers
inHandwritingRecognition, pp. 543–548. IEEEComputer Society
(2014)

25. Miyao, H., Maruyama, R.: On-line handwritten flowchart recog-
nition, beautification and editing system. In: ICFHR ’12: 13th
International Conference on Frontiers inHandwritingRecognition,
pp. 83–88 (2012)

26. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR
2014 competition on recognition of on-line handwrittenmathemat-
ical expressions (CROHME 2014). In: J.E. Guerrero (ed.) ICFHR
’14: 14th International Conference on Frontiers in Handwriting
Recognition, pp. 791–796. IEEE Computer Society (2014)

27. Otte, S., Krechel, D., Liwicki, M., Dengel, A.: Local feature based
online mode detection with recurrent neural networks. In: ICFHR
’12: 13th International Conference on Frontiers in Handwriting
Recognition, pp. 531–535 (2012)

28. Ouyang, T.Y., Davis, R.: Chemink: A natural real-time recognition
system for chemical drawings. In: 16th International Conference
on Intelligent User Interfaces, IUI ’11, pp. 267–276. ACM (2011)

29. Plimmer, B., Purchase, H.C., Yang, H.Y.: Sketchnode: intelligent
sketching support and formal diagramming. In: 22nd Conference
of the Computer-Human Interaction Special Interest Group of Aus-
tralia on Computer-Human Interaction, OZCHI ’10, pp. 136–143.
ACM (2010)

30. Qi,Y., Szummer,M.,Minka, T.P.:Diagram structure recognition by
Bayesian conditional random fields. In: Conference on Computer
Vision and Pattern Recognition, pp. 191–196. IEEE Computer
Society (2005)

31. Refaat, K., Helmy, W., Ali, A., AbdelGhany, M., Atiya, A.: A
new approach for context-independent handwritten offline diagram
recognition using support vector machines. In: IJCNN ’08: IEEE
International Joint Conference on Neural Networks, pp. 177–182
(2008)

32. Sezgin, T.M., Davis, R.: HMM-based efficient sketch recognition.
In: IUI ’05: 10th International Conference on Intelligent User Inter-
faces. IUI ’05, pp. 281–283. ACM, New York (2005)

33. Stoffel, A., Tapia, E., Rojas, R.: Recognition of on-line handwritten
commutative diagrams. In: ICDAR ’09: 10th International Con-
ference on Document Analysis and Recognition, pp. 1211–1215
(2009)

34. Szwoch, W., Mucha, M.: Recognition of Hand Drawn Flow-
charts, Advances in Intelligent Systems and Computing, vol. 184.
Springer, Berlin (2013)

35. Van Phan, T., Nakagawa, M.: Text/non-text classification in online
handwritten documents with recurrent neural networks. In: J.E.
Guerrero (ed.) ICFHR ’14: 14th International Conference on Fron-
tiers in Handwriting Recognition, pp. 23–28. IEEE Computer
Society (2014)

36. Werner, T.: A linear programming approach to max-sum problem:
a review. IEEETrans. PatternAnal.Mach. Intell. 29(7), 1165–1179
(2007)

123

Theoretical Computer Science 679 (2017) 118–125

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Undecidability of the emptiness problem for context-free

picture languages ✩

Daniel Průša a,∗, Klaus Reinhardt b

a Czech Technical University, Faculty of Electrical Engineering, Karlovo náměstí 13, 121 35 Prague 2, Czech Republic
b Universität Halle, Institut für Informatik, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2015
Received in revised form 22 March 2016
Accepted 24 March 2016
Available online 6 April 2016

Keywords:
Picture languages
Context-free picture grammars
Emptiness problem
Undecidability

A two-dimensional Kolam grammar as defined by Siromoney et al. in 1972 and indepen-
dently by Matz in 1997 and Schlesinger in 1989 allows context-free productions of the
form A → a, A → B C , A → B

C , and S → λ which concatenate sub-pictures produced by B
and C horizontally respectively vertically if their height respectively width fits. We demon-
strate that this grammar is quite powerful by proving undecidability of the emptiness
problem. We further analyze consequences of this finding and give additional character-
istics related to size of generated pictures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of two-dimensional languages generalizes notions from the theory of formal languages. The basic entity, which
is the string, is replaced by a rectangular array of symbols, called a picture. A motivation for such a generalization comes
from the area of image processing, image recognition and two-dimensional pattern matching.

Several models of two-dimensional automata and grammars have been proposed to recognize/generate pictures. The
early models of context-free picture grammars include matrix and Kolam type grammars of Siromoney et al. [2,3]. Kolam
grammars form a natural extension of the context-free grammars in the Chomsky normal form. This explains why they have
attracted the attention of several researchers and were proposed independently more times [4–6]. Beside that, their exten-
sions have been studied. They include the two-dimensional context-free grammars of Průša [7] and regional tile grammars
of Pradella et al. [8]. There is also a close relation to the grid grammars of Drewes et al. [9]. And finally, a variant of the
regional tile grammars producing hexagonal arrays was introduced by Kamaraj and Thomas [10].

It is a well known phenomenon that the more complex two-dimensional topology changes a lot of properties of ac-
cepted/generated languages. For example, the four-way finite automaton of Blum and Hewitt [11], which is a straightforward
generalization of the two-way finite automaton, is more powerful with nondeterminism than without it. We focus on an-
other property which is the undecidability of the emptiness problem. It is known that the emptiness is not decidable for
four-way automata, even over unary alphabets [12]. Recently, we have studied the emptiness for extensions of the Kolam
grammar. We have shown that it is undecidable for a two-dimensional context-free grammar [13], based on more general

✩ Some of the results of this paper have been announced at CIAA 2015 in Umeå, Sweden, August 2015. As a new contribution, here we solve the main
problem which remained open in [1].

* Corresponding author.
E-mail addresses: prusapa1@cmp.felk.cvut.cz (D. Průša), klaus.reinhardt@informatik.uni-halle.de (K. Reinhardt).

http://dx.doi.org/10.1016/j.tcs.2016.03.025
0304-3975/© 2016 Elsevier B.V. All rights reserved.

D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125 119

context-free productions, and a three-dimensional Kolam grammar [1]. In this paper, we prove the undecidability of the
problem for the two-dimensional Kolam grammar, resolving thus the open problem from [1].

The undecidability result has several consequences. For example, there is no analogy to the pumping lemma known
from the one-dimensional setting [14]. It is possible to construct a sequence of grammars generating one-picture languages
where the picture size grows faster than any recursive function of the grammar size. On the other hand, we show that the
number of rows and columns of such pictures cannot be in an arbitrary relation since a sort of pumping lemma holds for
wide and high pictures. We further inspect functions representable by the Kolam grammar and show results which coincide
with those known for functions representable by tiling systems which define the family of recognizable picture languages
(REC) [15].

The text of the paper is organized as follows. The basic notions and notations on picture languages and a definition of
Kolam context-free grammars are introduced in Section 2. Results on the emptiness problem are presented in Section 3,
results on properties of picture languages generated by Kolam grammars are presented in Section 4. Finally, a concluding
summary and discussion is given in Section 5.

2. Context-free picture grammars

We use the common notation and terms on pictures and picture languages (see, e.g., [15]). If � is a finite alphabet, then
�∗,∗ is used to denote the set of all rectangular pictures over �, that is, if P ∈ �∗,∗ , then P is a two-dimensional array
of symbols from �. If P has m rows and n columns, we say it is of size m × n, and we write P ∈ �m,n , rows(P) = m and
cols(P) = n. If P is a square picture of size n × n, we shortly say P is of size n. We also write am,n to denote the picture
over {a} of size m × n. The empty picture λ is in �m,0 and in �0,n for all m, n ∈ N. Moreover, �+,+ is the set of non-empty
pictures, i.e., �+,+ = �∗,∗ � {λ}. Each a ∈ � is also treated as a picture of size 1 × 1.

Two (partial) binary operations are introduced to concatenate pictures. Let A be a picture of size k × � such that aij
is the symbol in the i-th row and j-th column. Similarly, let B be a picture of size m × n with symbols bij . The column
concatenation A �B is defined iff k = m, and the row concatenation A �B is defined iff � = n. The products are specified by
the following schemes:

A �B =
⎡
⎢⎣

a11 . . . a1� b11 . . . b1n
...

. . .
...

...
. . .

...

ak1 . . . ak� bm1 . . . bmn

⎤
⎥⎦ and A �B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1�

...
. . .

...

ak1 . . . ak�

b11 . . . b1n
...

. . .
...

bm1 . . . bmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Beside that, both operations are always defined when at least one of the operands is λ. In this case, λ is the neutral element,
so λ �P = P �λ = λ �P = P �λ = P for any picture P .

The operations extend to picture languages. For L1, L2 ∈ �∗,∗ , we define

L1
�L2 = {P | P = P1

�P2 ∧ P1 ∈ L1 ∧ P2 ∈ L2},
L1

�L2 = {P | P = P1
�P2 ∧ P1 ∈ L1 ∧ P2 ∈ L2}.

Definition 1. A two-dimensional Kolam grammar (2KG) is a tuple G = (V N , V T , P, S0), where V N is a finite set of nontermi-
nals, V T is a finite set of terminals, S0 ∈ V N is the initial nonterminal and P is a finite set of productions in one of the
following forms:

N → a (1) S0 → λ (2)

N → A B (3) N → A
B

(4)

where N, A, B ∈ V N and a ∈ V T .

Definition 2. Let G = (V N , V T , P, S0) be a 2KG. For each N ∈ V N , L(G, N) is the set of pictures generated by G from N . All
these sets are the smallest sets fulfilling the following rules.

1. If N → a is a production in P then a ∈ L(G, N),
2. if S0 → λ is in P then λ ∈ L(G, S0),
3. if N → A B is in P , P = P1

�P2, P1 ∈ L(G, A) and P2 ∈ L(G, B), then P ∈ L(G, N), and

4. if N → A
B

is in P , P = P1
�P2, P1 ∈ L(G, A) and P2 ∈ L(G, B), then P ∈ L(G, N).

120 D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125

Fig. 1. Schemes showing how pictures (n + 1) × (n + 1) and (n + 1) × 2n+1 in Examples 1 and 2, respectively, are assembled from smaller parts.

The picture language generated by G is defined as L(G) = L(G, S0).

Example 1 (Square pictures). Let G = (V N , V T , P, Q) be a 2KG where V N = {R, C, U , Q }, V T = {a} and P is the set of
productions

R → a, R → R R, C → a, C → C
C

,

Q → a, Q → U
R

, U → Q C .

Then, L(G, R) consists of all one-row pictures of a’s, L(G, C) consists of all one-column pictures of a’s, L(G, U) consists of
pictures of size n × (n + 1), n ∈ N+ , and L(G, Q) = L(G) is the picture language of non-empty square pictures.

Example 2 (Exponentially sized pictures). Let G = (V N , V T , P, E) be a 2KG where V N = {A, R, D, E}, V T = {a} and P is the
set of productions

R → a, R → R R, A → a,

E → A A, E → D
R

, D → E E .

Again, L(G, R) consists of all one-row pictures of a’s. The picture languages L(G, D) and L(G, E) = L(G) consist of all pictures
over {a} of size n × 2n+1 and n × 2n , respectively (n ∈ N+). Recursive patterns utilized in the examples are depicted in Fig. 1.

A matrix grammar, the former model of Siromoney et al. [2], can be seen as a special type of Kolam grammar with
the usage of productions restricted in the following way. Productions of type (3) generate a row of nonterminals from S0,
then productions of type (4) generate columns of terminals of the same length from the nonterminals. A formal definition
follows.

Definition 3. A two-dimensional matrix grammar (2MG) is a tuple G = (V 1, V 2, V T , P, S0) where

• (V 1 ∪ V 2, V T , P, S0) is a 2KG,
• S0 ∈ V 1,
• if N → A B is a production in P then N ∈ V 1,

• if N → A
B

is a production in P then N, A, B ∈ V 2, and

• if N → a is a production in P then N ∈ V 2.

3. Emptiness problem

Kari and Moore proved that the emptiness in undecidable for the four-way automaton working over a unary alpha-
bet [12]. They observed a direct correspondence between this automaton and the 2-counter Minski machine [16]. Indeed,
moving the head horizontally or vertically changes horizontal or vertical head coordinate, respectively, by one. And it is easy
to check whether the head scans the first row/column.

We show that the undecidable halting problem for a 2-counter Minski machine reduces also to the emptiness problem
for a 2KG. The machine is equipped by two counters and a finite-state control unit. Depending on the state, it can either
increment one of the counters and change the state or decrement one of the counters and change the state if possible (not
zero) and change to a different state otherwise. The machine halts if a final state is reached.

Theorem 1. Emptiness for 2KG is undecidable.

Proof. Let M be a 2-counter Minski machine with n states and w.l.o.g. one halting state qn . We will construct a 2KG

G = (V N , {a}, P, An) with

D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125 121

V N = {Ai, Bi, Ci, Di, Ei, Fi, Gi | i ≤ n} ∪ {Q j,k, M j,k, N j,k | j,k ≤ 8} ∪ {Q , C, R}
such that by induction on the steps of M the following holds:

The counter machine M can reach the configuration with state qi and the counter values c, d ∈ N if and only if there is
an e ∈ N with the square picture a2e3c 5d,2e3c 5d ∈ L(G, Ai); furthermore L(G, Ai) consists only of square pictures of this form.
(The extra exponent e allows a growing number even if counter values decrease.) Thus L(G) = L(G, An) is nonempty if and
only if M halts.

The set of productions contains all productions from Example 1, hence the nonterminal Q produces squares, R produces
rows and C produces columns.

Picture languages L(G, Q i, j) = {ain, jn | n ∈ N+} for selected pairs i, j ≤ 8 are generated using the productions

Q 1,2 → Q Q , Q 1,3 → Q 1,2 Q , Q 1,4 → Q 1,3 Q , Q 1,5 → Q 1,4 Q ,

Q 2,1 → Q
Q

, Q 3,1 → Q 2,1

Q
, Q 2,3 → Q 1,3

Q 1,3 , Q 2,5 → Q 2,3 Q ,

Q 3,3 → Q 1,3

Q 2,3 , Q 3,4 → Q 3,1 Q , Q 3,8 → Q 3,4 Q 3,4,

Q 4,5 → Q 2,5

Q 2,5 , Q 5,3 → Q 2,3

Q
, Q 5,5 → Q 1,5

Q 4,5 .

Square pictures in L(G, N3,1) respectively L(G, N3,2) having size congruent 1 respectively 2 modulo 3 are produced by

M3,1 → Q 3,3 C, N3,1 → M3,1

R
,

M3,2 → N3,1 C, N3,2 → M3,2

R
.

Square pictures in L(G, N5,m) being congruent 0 < m < 5 modulo 5 are produced by

M5,1 → Q 5,5 C, N5,1 → M5,1

R
,

M5,2 → N5,1 C, N5,2 → M5,2

R
,

M5,3 → N5,2 C, N5,3 → M5,3

R
,

M5,4 → N5,3 C, N5,4 → M5,4

R
.

Now, we are ready to list productions generating representatives of M ’s configurations. We start the induction by the
production A0 → a ∈ P for the initial state q0 of M placing a = a203050,203050 ∈ L(G, A0) for the initial configuration with
state q0 and both counters empty.

In the following, we consider the induction step for all six possible types of transitions of M and, at the same time,
mention all other productions in P . It does not matter if M is deterministic or nondeterministic.

1. If M increments the first counter going from qi to q j then the production Bi → Ai Q 1,2 allows a2e 3c 5d,2e3c+15d ∈ L(G, Bi)

for a2e3c 5d,2e3c 5d ∈ L(G, Ai). The width is thus multiplied by 3. Then the production A j → Bi

Q 2,3 allows a2e 3c+15d,2e3c+15d ∈
L(G, A j) which completes the induction step to the following configuration in this case.

2. If M increments the second counter going from qi to q j then the production Ci → Ai Q 1,4 allows a2e3c 5d,2e3c 5d+1 ∈
L(G, Ci) for a2e3c 5d,2e3c 5d ∈ L(G, Ai). Here the width is multiplied by 5. Then the production A j → Ci

Q 4,5 allows

a2e3c 5d+1,2e3c 5d+1 ∈ L(G, A j) analogously.

3. If M decrements the first counter going from qi to q j then the production Di → Ai Q 3,1 allows a2e3c 5d,2e+23c−15d ∈
L(G, Di) for a2e3c 5d,2e3c 5d ∈ L(G, Ai). Here the width is multiplied by 4/3 (by adding 1/3 of the height), which is possible
if and only if the first counter is not zero. Then the production A j → Di

Q 1,4 allows a2e+23c−15d,2e+23c−15d ∈ L(G, A j).

4. If M decrements the second counter going from qi to q j then the production Ei → Ai Q 5,3 allows a2e 3c 5d,2e+33c 5d−1 ∈
L(G, Ei) for a2e3c 5d,2e3c 5d ∈ L(G, Ai). Here the width is multiplied by 8/5, which is possible if and only if the second
counter is not zero. Then the production A j → Ei

Q 3,8 allows a2e+33c 5d−1,2e+33c 5d−1 ∈ L(G, A j) analogously.

5. If M zero-tests the first counter going from qi to q j then the productions Fi → Ai N3,1 and Fi → Ai N3,2 allow
a2e305d,2e+1305d ∈ L(G, Fi) for a2e305d,2e305d ∈ L(G, Ai). Here the width is multiplied by 2 and the first counter is zero

122 D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125

which corresponds to width and height of a picture in L(G, N3,1) respectively L(G, N3,2) being congruent 1 respectively
2 modulo 3. Then the production A j → Fi

Q 1,2 allows a2e+1305d,2e+1305d ∈ L(G, A j).

6. If M zero-tests the second counter going from qi to q j then the productions Gi → Ai N5,1 and Gi → Ai N5,2 and Gi →
Ai N5,3 and Gi → Ai N5,4 allow a2e3c 50,2e+13c50 ∈ L(G, Gi) for a2e3c 50,2e3c 50 ∈ L(G, Ai). Here the width is multiplied by
2 and the second counter is zero which corresponds to width and height of a picture in L(G, N5,m) being congruent
0 < m < 5 modulo 5. Then the production A j → Gi

Q 1,2 allows a2e+13c 50,2e+13c 50 ∈ L(G, A j).

In each case, the production from A j takes care to complete again to a square picture thus exactly those pictures
representing an encoding of a reachable configuration with state q j are produced. Since L(G) = L(G, An) is non-empty if
and only if M halts, this concludes the proof. �

Decidability of the emptiness for one-dimensional context-free grammars is guaranteed by the well known pumping
lemma. We give its full formulation here as we will utilize it in the proofs of the two next theorems.

Theorem 2. (See [14].) Let G = (V N , V T , P, S) be a context-free grammar in the Chomsky normal form. Let p = 2|V N |−1 and q = 2|V N | .
If z ∈ L(G) and |z| > p, then z can be written as z = uv wxy, where |v wx| ≤ q and |vx| > 0, such that for each i ∈ N, uvi wxi y ∈ L(G).

Theorem 3. Emptiness for 2MG is decidable.

Proof. Let G = (V 1, V 2, V T , P, S) be a 2MG where, w.l.o.g., V T = {a}. Denote n = |V N |. Assume there is P ∈ L(G). By inspect-
ing how P is generated, we show it is always possible to generate a picture whose dimensions do not exceed O(2n3

). To
obtain P , productions of type (3) generate a string w ∈ V +

1 from S . Then, nonterminals of w are substituted by one-column
pictures of the same length. Define the string language

L =
⋂

N∈V (w)

L(G, N)

where V (w) is the set of all nonterminals appearing in w . It holds L �= ∅.
We can assume |w| ≤ 2n , otherwise Theorem 2 provides w ′ over V (w) of length at most 2n generated from S which

can be considered instead of w . The language L is the intersection of unary context-free languages where each context-free
grammar has at most n nonterminals. Results in [17] show that each such a grammar has an equivalent deterministic finite
automaton (DFA) with O(2n2

) states, where the hidden multiplicative constant does not depend on the grammar because
the lengths of the productions are fixed. Thus, L is accepted by the product automaton of at most n DFAs. This automaton
has O(2n3

) states. If it accepts a nonempty language, it accepts a string of length O(2n3
). Hence, L(G) contains a picture

with O(2n) rows and O(2n3
) columns. �

Corollary 4. 2MG is less powerful than 2KG (even over unary alphabets).

4. Properties of unary context-free picture languages

The result from the previous section indicates there is no general variant of the pumping lemma for picture languages
generated by 2KG. On the other hand, we formulate and prove a pumping lemma for a sort of “wide” and “high” pictures.

Theorem 5. Let L be a picture language over {a} generated by a 2KG with a set of nonterminals V N . Let am,n be a picture in L. It holds
that n ≥ 2m|V N | implies am,n+i·n! ∈ L and m ≥ 2n|V N | implies am+i·m!,n ∈ L for all i ∈ N.

Proof. We prove the theorem w.l.o.g. for wide pictures. To simplify the notation within the proof, we write (m, n) to denote
the picture am,n . Let G = (V N , {a}, P, S0) be a 2KG. Define the one-dimensional context-free grammar G′ = (V N , {a}, P ′, S0)

where P ′ consists of those productions in P which are in the form (1), (2) and (3). For every N ∈ V N and m ∈ N+ , define a
picture language L(N, m) as follows:

L(N,m) =
{

P | P ∈ L(G, N) ∧ rows(P) = m ∧ cols(P) ≥ 2m|V N |} .

Proceed by induction on m. Let P be a picture in L(N, 1). It is a one-row picture of length n = cols(P) ≥ 2|V N | . Theorem 2 is
applicable and it yields (1, n + j · k) ∈ L(N, 1) for every j ∈ N and some 1 ≤ k ≤ n, thus (1, n + i · n!) ∈ L(N, 1) for every i ∈ N
by choosing j = i · (n!/k).

Let m > 1. A picture P ∈ L(N, m) can be written as

1. P = P1
�P2 where P1 ∈ L(G, A1), P2 ∈ L(G, A2), N → A1

A2
∈ P, or

D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125 123

2. P = P1
�P2 where P1 ∈ L(G, A1), P2 ∈ L(G, A2), N → A1 A2 ∈ P .

Assume, w.l.o.g, that the initial nonterminal S0 is not a part of the right-hand side of any production, hence P1, P2 are
nonempty. Denote again n = cols(P). In the first case it holds P1 = (m1, n), P2 = (m2, n) where m1, m2 < m, P1 ∈ L(A1, m1)

and P2 ∈ L(A2, m2). The induction hypotheses yields (m1, n + i · n!) ∈ L(A1, m1) and (m2, n + i · n!) ∈ L(A2, m2) for every
i ∈ N. It is thus possible to generate any (m, n + i · n!) from N .

In the second case, consider a more extensive decomposition of P defined as follows. Take a picture Pi , i ∈ {1, 2} with
the maximal number of columns. There is again a production of type (2) or (3) and a decomposition of Pi into two parts
proving that Pi ∈ L(G, Ai). The process decomposing a picture with the maximal number of columns can be repeated at
most 2|V N | − 1 times until one of two following states is reached:

1. P = U1
�. . . �Us where s = 2|V N | , or

2. P = U1
�. . . �U j−1

�(U j
�U j+1) �U j+2

�. . . �Us where s ≤ 2|V N | .

Let Bi be that nonterminal on the right-hand side of the production used during the decomposition process to produce Ui ,
so it holds Ui ∈ L(G, Bi). In the first case, only one-row productions of P ′ are used, we can thus write N ⇒∗

G′ B1 . . . Bs ,
meaning that a sentential form of length s = 2|V N | is generated from N in G′ . Theorem 2 applies to it. Substituting Ui ’s for
Bi ’s in the pumped sentential forms proves that (m, n + j · k) ∈ L(N, m) for k ≤ n and all j ∈ N. Again, choosing j = i · (n!/k)

shows that (m, n + i · n!) ∈ L(N, m) for all i ∈ N.
In the second case, let U = U j

�U j+1 denote the picture decomposed as the last one. Its number of columns is maximal
when compared to the number of columns of pictures Ui , i ∈ {1, . . . , s} � { j, j + 1}, hence cols(U) ≥ cols(P)/(s − 1) ≥
cols(P)/s ≥ 2m|V N |/2|V N | = 2(m−1)|V N | . Since rows(U j), rows(U j+1) ≤ m − 1, by the induction hypotheses, it is possible to
pump U j and U j+1 so that any (m, n + i · n!) is in L(G, N). �

Giammarresi and Restivo described important classes of functions that can be represented by picture languages in
REC [15]. They also gave an upper bound on the growth of such functions. Here we study functions representability
by picture languages generated by 2KG and come to the same conclusions – all our results coincide with their analogs
from [15].

Definition 4. A function f : N+ → N+ is called representable by 2KG if the picture language L(f) = { an, f (n) | n ∈ N+ } is
generated by a 2KG.

We will utilize the fact that the class of languages generated by 2KG is closed under the concatenation operations.

Lemma 6. Let G1 = (V 1, V T , P1, S1), G2 = (V 2, V T , P2, S2) be 2KG. Then, L(G1) �L(G2) as well as L(G1) �L(G2) can be generated
by a 2KG.

Proof. W.l.o.g, assume V 1 ∩ V 2 = ∅ and S /∈ V 1 ∪ V 2. Then, e.g., L(G1) �L(G2) is generated by G = (V 1 ∪ V 2, V T , P1 ∪ P2 ∪
{S → S1 S2}, S). �
Lemma 7. If f , g are two functions representable by 2KG and c ∈ N+ , then cf and f + g are also representable by 2KG.

Proof. We can write L(f + g) = L(f) �L(g) and L(cf) = L(�c/2� f) �L(�c/2� f), which can be recursively applied to reduce
the multiplier c to 1. By Lemma 6, the concatenation products can be generated by 2KG. �
Lemma 8. For every d ∈ N, function f (n) = nd is representable by 2KG.

Proof. We prove the lemma by induction on d. If d = 0, the constant function f (n) = 1 is represented by a 2KG generating
all one-column pictures. If d = 1, function f (n) = n is represented by the picture language of squares from Example 1. Let
d > 1. For n > 1, an application of the binomial theorem gives

nd = ((n − 1) + 1)d = (n − 1)d +
d∑

i=1

(
d

i

)
(n − 1)d−i = (n − 1)d + h(n − 1)

where h is a polynomial of degree d − 1. By the induction hypothesis and Lemma 7, there is a 2KG G = (V N , {a}, P, H) such
that L(G) = L(h). Extend G to G′ = (V N ∪ {S, U , R}, {a}, P ′, S) where S , U , R are not contained in V N and P ′ is P extended
by productions

R → a, R → R R, S → a, S → U
R

, U → S H .

124 D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125

Then, L(G′) = L(nd). �
Lemma 9. For each integer c ≥ 2, the exponential function f (n) = cn is representable by 2KG.

Proof. The lemma is valid for c = 2 since L(2n) is the picture language from Example 2. The productions in Example 2 can
be generalized to generate L(cn) for a given c ≥ 2 as follows:

R → a, R → R R, A → a,

E →
c︷ ︸︸ ︷

A . . . A, E → D
R

, D →
c︷ ︸︸ ︷

E . . . E . �
Taking into account Theorem 5, we can observe that functions which are of a greater than exponential growth cannot be

represented by a 2KG.

Corollary 10. If f is representable by 2KG then f (n) = 2O(n) .

5. Conclusion

We have shown that the emptiness is undecidable for the two-dimensional Kolam grammar. This gives a final answer to
the problem we have recently stated [1,13].

The obtained result is consistent with the known fact that the two-dimensional topology strengthens properties of lan-
guages accepted/generated by generalizations of one-dimensional automata/grammars. Moreover, two-dimensional context-
free productions in the Chomsky normal form are a minimal setting. The proved emptiness undecidability is thus inher-
ited by all two-dimensional grammars that in some form include productions of the Kolam grammar, such as those in
[7,8,10].

The result has several consequences. By [13], we can now claim that transforming a Kolam grammar to an equivalent
deterministic four-way automaton (provided that such an automaton exists) yields a non-recursive trade-off. This holds even
for grammars generating finite unary picture languages. It complements the analogous result known for the transformation
in the opposite direction.

Another consequence worth to be pointed out is a separation result between the Kolam grammar over a unary alphabet
and less complex models of automata/grammars having the emptiness decidable (e.g. the matrix grammar).

Acknowledgement

The first author was supported by the Czech Science Foundation under grant no. 15-04960S.

References

[1] D. Průša, (Un)decidability of the emptiness problem for multi-dimensional context-free grammars, in: F. Drewes (Ed.), Implementation and Application
of Automata – 20th International Conference, Proceedings, CIAA 2015, Umeå, Sweden, August 18–21, 2015, in: Lecture Notes in Computer Science,
vol. 9223, Springer, 2015, pp. 250–262.

[2] G. Siromoney, R. Siromoney, K. Krithivasan, Abstract families of matrices and picture languages, Comput. Graph. Image Process. 1 (3) (1972) 284–307,
http://dx.doi.org/10.1016/S0146-664X(72)80019-4.

[3] G. Siromoney, R. Siromoney, K. Krithivasan, Picture languages with array rewriting rules, Inf. Control 22 (5) (1973) 447–470, http://dx.doi.org/10.1016/
S0019-9958(73)90573-1.

[4] O. Matz, Regular expressions and context-free grammars for picture languages, in: 14th Annual Symposium on Theoretical Aspects of Computer Science,
Springer-Verlag, 1997, pp. 283–294.

[5] M.I. Schlesinger, Matematiceskie sredstva obrabotki izobrazenij (Mathematic tools for image processing), in Russian, Naukova Dumka, Kiev, 1989.
[6] M.I. Schlesinger, V. Hlaváč, Ten Lectures on Statistical and Structural Pattern Recognition, Computational Imaging and Vision, 1st edition, Springer,

2012.
[7] D. Průša, Two-dimensional languages, Ph.D. thesis, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, 2004.
[8] M. Pradella, A. Cherubini, S.C. Reghizzi, A unifying approach to picture grammars, Inform. and Comput. 209 (9) (2011) 1246–1267, http://dx.doi.org/

10.1016/j.ic.2011.07.001.
[9] F. Drewes, S. Ewert, R. Klempien-Hinrichs, H. Kreowski, Computing raster images from grid picture grammars, J. Autom. Lang. Comb. 8 (3) (2003)

499–519.
[10] T. Kamaraj, D.G. Thomas, Regional hexagonal tile rewriting grammars, in: R. Barneva, V. Brimkov, J. Aggarwal (Eds.), Combinatorial Image Analysis, in:

Lecture Notes in Computer Science, vol. 7655, Springer Berlin Heidelberg, 2012, pp. 181–195.
[11] M. Blum, C. Hewitt, Automata on a 2-dimensional tape, in: Proceedings of the 8th Annual Symposium on Switching and Automata Theory (SWAT

1967), FOCS ’67, IEEE Computer Society, Washington, DC, USA, 1967, pp. 155–160.
[12] J. Kari, C. Moore, Rectangles and squares recognized by two-dimensional automata, in: J. Karhumäki, H.A. Maurer, G. Paun, G. Rozenberg (Eds.), Theory

Is Forever, in: Lecture Notes in Computer Science, vol. 3113, Springer, 2004, pp. 134–144.
[13] D. Průša, Non-recursive trade-offs between two-dimensional automata and grammars, in: H. Jürgensen, J. Karhumäki, A. Okhotin (Eds.), Proceedings

of the 16th International Workshop on Descriptional Complexity of Formal Systems, DCFS 2014, in: Lecture Notes in Computer Science, vol. 8614,
Springer International Publishing, Berlin, Germany, 2014, pp. 352–363.

D. Průša, K. Reinhardt / Theoretical Computer Science 679 (2017) 118–125 125

[14] J. Hopcroft, J. Ullman, Formal Languages and Their Relation to Automata, Addison–Wesley, 1969.
[15] D. Giammarresi, A. Restivo, Two-dimensional languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3, Springer, New

York, 1997, pp. 215–267.
[16] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice–Hall, 1971.
[17] G. Pighizzini, J. Shallit, M. Wang, Unary context-free grammars and pushdown automata, descriptional complexity and auxiliary space lower bounds,

J. Comput. System Sci. 65 (2) (2002) 393–414, http://dx.doi.org/10.1006/jcss.2002.1855.

Theoretical Computer Science 610 (2016) 121–132

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Non-recursive trade-offs between two-dimensional automata

and grammars

Daniel Průša

Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Zikova 1903/4, 166 36 Prague 6, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2014
Received in revised form 15 April 2015
Accepted 22 May 2015
Available online 28 May 2015

Keywords:
Picture languages
Four-way automata
Two-dimensional context-free grammars
Descriptional complexity
Non-recursive trade-offs

We study succinctness of descriptional systems for picture languages. Basic models of two-
dimensional finite automata and generalizations of context-free grammars are considered.
They include the four-way automaton of Blum and Hewitt, the two-dimensional online
tessellation automaton of Inoue and Nakamura and the context-free Kolam grammar of
Siromoney et al. We show that non-recursive trade-offs between the systems are very
common. Basically, each separation result proving that one system describes a picture
language which cannot be described by another system can usually be turned into a non-
recursive trade-off result between the systems. These findings are strongly based on the
ability of the systems to simulate Turing machines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many concepts and techniques from the theory of formal languages have been generalized to two-dimensional (2D)
languages, where the basic entity, the string, has been replaced by a rectangular array of symbols, called a picture. The
four-way finite automaton of Blum and Hewitt [1] was introduced already in 1967. It has a finite-state control unit and a
head that traverses the input picture by performing movements right, left, up, and down.

Another notable device is the two-dimensional online tessellation automaton (2OTA) proposed by Inoue and Nakamura [2].
This is a restricted nondeterministic cellular automaton where a “transition wave” passes once diagonally across the cells.
Its recognition power coincides with the power of tiling systems [3] which are the basis for the well known family of
recognizable picture languages (REC) of Giammaresi and Restivo [4].

The early models of picture grammars include matrix and Kolam grammars of Siromoney et al. [5,6]. Kolam grammars
were independently proposed and studied by Matz [7] and also by Schlesinger [8,9] who designed them as a tool for
structural pattern recognition. The grammars are characterized by the form of productions which resembles the Chomsky
normal form. Two extensions of the grammars are known – the first one described by Průša [10] and the second one, even
more general, studied by Pradella et al. [11].

Since the beginning, it was evident that the two-dimensional topology of pictures changes a lot those properties of
automata and grammars known from the one-dimensional case. For example, Blum and Hewitt proved that the non-
deterministic four-way finite automaton (4NFA) is more powerful than the deterministic four-way finite automaton (4DFA).
Equipping 4DFA by a pebble again results in a more powerful device. Advantages of the four-way alternating automaton
(4AFA) were described by Kari and Moore [12]. The mentioned 2D grammars generate different classes of picture languages.
Many differences have also been revealed for closure properties and decidability problems.

E-mail address: prusapa1@cmp.felk.cvut.cz.

http://dx.doi.org/10.1016/j.tcs.2015.05.033
0304-3975/© 2015 Elsevier B.V. All rights reserved.

122 D. Průša / Theoretical Computer Science 610 (2016) 121–132

Fig. 1. The product of
⊕[Pij]2×3.

Despite these extensive studies, so far, no comparison has been done with respect to the descriptional complexity of
the considered models. This paper aims to fill this gap. We show that there are many non-recursive trade-offs between the
descriptional systems for picture languages.

Examples of such trade-offs are well known in the case of descriptional systems for string languages. The first non-
recursive trade-off was presented by Meyer and Fisher [13]. They showed that the gain in economy of description can be
arbitrary when the size of finite automata and general context-free grammars generating regular languages is compared.
Since their work, other non-recursive trade-offs were reported, such as in [14–18]. Besides these particular results, the
important properties of systems leading to non-recursive trade-offs were identified and generic proof schemes were estab-
lished [19,20].

Our results are based on the ability of two-dimensional systems to simulate Turing machines. Known principles of a Tur-
ing machine simulation by a 4DFA are exploited to prove non-recursive trade-offs between 2D automata. In addition, a new
technique of a Turing machine simulation by the 2D grammar from [10] is presented. It is utilized to prove non-recursive
trade-offs between automata and grammars and also between the grammars themselves. Applicability of this result goes
even beyond the scope of descriptional complexity, as it also answers some decidability questions.

The paper is structured as follows. In Section 2 we give the basic notions and notations on picture languages. In Section 3
we show non-recursive trade-off between 4DFA and 4NFA. It is also explained how this result extends to other automata.
Descriptional complexity of 2D grammars is studied in Section 4. A detailed construction of a 2D grammar simulating a
Turing machine is included here. The paper closes with a summary and some open problems in Section 5.

2. Preliminaries

Here we use the common notation and terms on pictures and picture languages (see, e.g., [21]). If � is a finite alphabet,
then �∗,∗ is used to denote the set of all rectangular pictures over �, that is, if P ∈ �∗,∗ , then P is a two-dimensional array
(matrix) of symbols from �. If P is of size m × n, this is denoted by P ∈ �m,n . We also write rows(P) = m and cols(P) = n.
If P is a square picture n × n, we shortly say P is of size n. �+,+ = {P ∈ �∗,∗ | rows(P) > 0 ∧ cols(P) > 0} is the set of
non-empty pictures. The empty picture � is defined as the only picture of size 0 × 0.

We use [aij]m×n as a notation for a general matrix with m rows and n columns where the element in the i-th row and
j-th column is denoted as aij .

Two (partial) binary operations are introduced to concatenate pictures. Let A = [aij]k×� ∈ �k,� and B = [bij]m×n ∈ �m,n .
The column concatenation A �B is defined iff k = m, and the row concatenation A �B is defined iff � = n. The products are
specified by the following schemes:

A �B =
⎡
⎢⎣

a11 . . . a1� b11 . . . b1n
...

. . .
...

...
. . .

...

ak1 . . . ak� bm1 . . . bmn

⎤
⎥⎦ and A �B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1�

...
. . .

...

ak1 . . . ak�

b11 . . . b1n
...

. . .
...

bm1 . . . bmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We generalize �and � to a grid concatenation which is applied to a matrix of pictures [Pij]m×n where each Pij ∈ �∗,∗ . The
operation

⊕[Pij]m×n is defined iff

rows(Pi1) = rows(Pi2) = . . . = rows(Pin) ∀i = 1, . . . ,m ,

cols(P1 j) = cols(P2 j) = . . . = cols(Pmj) ∀ j = 1, . . . ,n .

Then,
⊕[Pij]m×n = P1

�P2
�. . . �Pm , where Pk = Pk1

�Pk2
�. . . �Pkn for k = 1, . . . , m. An example is given in Fig. 1.

In order to enable all considered finite automata to detect the border of an input picture P , they always work over the
boundary picture P̂ over � ∪ {#} of size (rows(P) + 2) × (cols(P) + 2), defined by the scheme in Fig. 2. We assume that the
background symbol # is not contained in any considered input alphabet �.

D. Průša / Theoretical Computer Science 610 (2016) 121–132 123

Fig. 2. The boundary picture P̂ .

Fig. 3. Two pictures in Lcent . 4NFA recognizes the pictures by guessing the shown trajectories (they end in the top-right corner) and checking the highlighted
central field.

3. Two-dimensional finite automata

We first outline informally the proof pattern applied throughout the paper. Then we demonstrate its usage in detail to
show that transforming 4NFA to 4DFA yields a non-recursive trade-off. For every automaton A considered, we define its size
measure c(A) simply as the number of states of A (i.e., c(A) is state complexity).

Let D1, D2 be two (automata based) descriptional systems fulfilling the following requirements.

• There is A1 ∈ D1 accepting a picture language over � which is not accepted by any A2 ∈ D2.
• The reason why there is no suitable A2 ∈ D2 can be stated as follows. There is a non-decreasing unbounded recursive

function f : N → N such that any automaton in D2 needs �(f (n)) states to correctly recognize all square pictures of
size n, i.e. to accept every picture in L(A1) ∩ �n,n and to reject every picture in �n,n � L(A1).

• Automata in D1 can be extended to compare the size of the input picture with the length of a computation of an
arbitrary (one-dimensional) Turing machine started over a blank tape. The number of states added by the extension is
recursive in the size of the given Turing machine.

These assumptions allow us to construct automata of “small” size from D1 accepting finite subsets of L(A1) that include
“large” pictures. Each such finite language is also accepted by an automaton from D2, however, the automaton is forced to
have a “large” number of states.

Blum and Hewitt [1] proved that 4NFA is more powerful than 4DFA using the picture language of odd length square
pictures over {0, 1} containing 0 in the center. Here we slightly modify the language to include even length square pictures
as well and we follow their proof to derive an estimate on the number of states needed by a 4DFA to recognize all square
pictures of size n in the language.

Let Lcent be a picture language over � = {0, 1} consisting of all square pictures P that contain 0 at (the central) position
(n+1

2
, 	n+1
2
) where n = rows(P). This language is accepted by a 4NFA by checking that the input is a square picture,

followed by guessing the trajectory depicted in Fig. 3 and verifying that the central field stores 0.

Lemma 1. For n ∈ N, let A be a 4DFA such that L(A) ∩ �n,n = Lcent ∩ �n,n. Then, A has �(n/ log n) states.

Proof. Let Q be the set of states of A and let P ∈ Lcent be a picture over {0, 1} of size n × n. Define k = 	n−1
2
 and take a

block (sub-picture) B of size k × k in P which does not contain the top left corner of P . Consider the behavior of A when
working over B . It can enter it at one of 4k − 4 positions of the perimeter, being in one of |Q | states. After performing some
steps, it either leaves the block, again at some position and in one of the states, or it accepts or rejects (rejecting includes
cycling inside the block). Thus the block defines a mapping from {1, . . . , 4k − 4} × Q to ({1, . . . ,4k − 4} × Q) ∪ {acc, rej}
where acc and rej are constants representing accepting and rejecting of A, respectively.

Observe that it is not possible to have two different blocks B1, B2 with the same mapping. Consider that (i, j) is a
position where the blocks differ. Construct the picture P1 of size n × n which includes B1, having its field at (i, j) placed in
the center of P1. The fields of P1 outside B1 are filled by 0. Similarly, construct P2 by extending B2. If the mappings for B1
and B2 are identical, pictures P1 and P2 are either both accepted by A or both rejected, which is a contradiction.

124 D. Průša / Theoretical Computer Science 610 (2016) 121–132

There are (|Q |(4k − 4) + 2)|Q |(4k−4) mappings defined by blocks of size k × k. On the other hand, a two-letter alphabet
forms 2k2

pictures of size k ×k. This results in the inequality (|Q |(4k − 4)) log2 (|Q |(4k − 4) + 2) ≥ k2 which implies a lower
bound of the form

|Q | = �

(
k

log2 k

)
= �

(
n

log n

)
. �

In contrast to finite automata working over strings, two-dimensional finite automata are able in some sense to simulate
(one-dimensional) Turing machines. Two principles of the simulation can be pointed out. The first one is content dependent.
4DFA can check whether rows of the input picture encode consecutive configurations of a Turing machine. This is applicable
to prove undecidability of the emptiness problem for 4DFAs as well as other models [4].

The second, content independent approach better suits our needs. As has been observed by Kari and Moore [22], a
4DFA can operate as a 2-counter machine [23] which consists of a finite-state control unit and two integer registers, called
counters. It is possible to represent the value of the first and second register by the horizontal and vertical distance of
the automaton head from the initial top-left corner position, respectively. Moving the head by one tape field thus incre-
ments/decrements a register. Checking a register value for zero is done by detecting whether the head scans the first row
or column, respectively. Naturally, the simulated registers are not unbounded, the maximal value they can store is limited
by the size of the input.

As showed by Minsky [23], 2-counter machines are equivalent to Turing machines. The conversion of a binary alphabet
Turing machine to a 2-counter machine is done in three steps. The input to the Turing machine is assumed to be encoded
in unary. The steps are as follows. First, a Turing machine T can be simulated by a finite-state automaton equipped by
two stacks. The head of T splits the tape into two halves. Each half of the tape can be treated as a stack, where the
top is the cell nearest the head. Moving the head left or right is equivalent to popping a symbol from one stack and
pushing it onto the other. Second, a stack can be simulated using two counters. The content of a stack is considered as a
binary number, represented in one counter. Operations divide by 2 and multiply by 2 are needed to implement pushing
and popping of symbols. They are realized trough the second counter. And third, four counters can be simulated by two
counters. One counter holds an integer with prime factorization 2a3b5c7d where exponents a, b, c, d are values of the
represented counters. Increments and decrements performed over them can be simulated using the second counter.

In the next text, we work with the busy beaver function defined as follows.

Definition 1. Let Tn be the set of all binary alphabet n-state one-dimensional Turing machines. For T ∈ Tn , let t(T) be the
number of transitions performed by T when started over a blank tape in the case it halts, otherwise let t(T) = 0. The busy
beaver function, bb : N → N, is defined such that

bb(n) = max
T ∈Tn

t(T) ∀n ∈ N.

It is known that the busy beaver function grows faster than any recursive function [24]. Halting Turing machines in Tn

performing the maximal number of transitions are referred as n-state busy beavers.

Proposition 2. For any finite alphabet �, there is an infinite sequence of 4DFAs {Ak}∞k=1 over � and a recursive function f : N → N,
such that c(Ak) ≤ f (k) and Ak accepts a finite picture language which for some n ≥ bb(k) includes all pictures in �n,n.

Proof. Let T1, . . . , Ts be a recursive enumeration of all one-dimensional deterministic binary k-state Turing machines.
Each Ti (started over a blank tape) can be simulated by a 2-counter machine Ci . W.l.o.g, we assume that Ci increases
the length of Ti ’s configuration encoding each time it simulates a step of Ti . This ensures that Ci never goes into a cycle.
Design Ak as it follows.

• Ak checks whether the input P ∈ �∗,∗ is a square picture, if not it rejects.
• Ak follows computations of C1, . . . , Cs to simulate machines T1, . . . , Ts one by one. If there is a simulation which ends

at the moment when the head of Ak scans the last row or column of P , then Ak accepts P . If the simulation exceeds
the area of P or finishes off the last row and column of P , the simulation of the next Ti is launched.

• If all simulations of machines Ti pass without accepting P , Ak rejects.

Ak has to memorize in states instructions for each Ci as well as the index of the currently simulated Ti . However, this is
no problem, since the number of states of automata Ak can grow as fast as any recursive function.

L(Ak) contains square pictures whose area exactly fits to the k-state busy beaver simulation. The runtime of the Turing
machines can only increase when they are turned into counter machines, which is then simulated by a 4DFA, thus the
requirement claimed by the proposition is fulfilled. �
Theorem 3. The trade-off between 4NFAs and 4DFAs is non-recursive.

D. Průša / Theoretical Computer Science 610 (2016) 121–132 125

Proof. Let M be a 4NFA accepting Lcent. For each k, combine Ak from Proposition 2 and M to obtain a 4NFA Mk accepting
the finite language Lcent ∩ L(Ak). By Lemma 1, a 4DFA needs �(bb(k)/ log bb(k)) states to recognize L(Mk). �

The used approach generalizes to other pairs of systems where a picture language separating the classes of accepted
picture languages is known. Here we list the most fundamental ones.

1. One-pebble 4DFA is more powerful than 4DFA since the pebble usage allows to recognize whether a picture over � =
{a, b} contains exactly one connected component of a’s [1]. On the other hand, such a picture language is not accepted
even by any 4NFA [25].

2. 2OTA is more powerful than 4NFA and than deterministic 2OTA [2]. This also applies to REC as tiling systems and 2OTAare
equally powerful.

3. 4AFA is more powerful than 4NFA and its power is incomparable with 2OTA [12]. Kari and Moore showed that 4AFA

accepts a picture language of permutation copies. Accepted pictures are of the form P �C �P where P is a square over
{0, 1}, containing exactly one symbol 1 in each its row and column, and C is a column of 2’s. This language is not in
REC. On the other hand, its complement is in REC, but it is not accepted by any 4AFA.

4. 4DFA is more powerful than two-dimensional three-way alternating automaton (3AFA) [26] which is a 4AFA allowed to
move the head only in three directions.

All the witnessing picture languages can be restricted or modified to contain only square pictures. For example, the picture
language of permutations accepted by 4AFA contains rectangular pictures of size n ×(2n +1). These pictures can be extended
to squares (2n + 1) × (2n + 1) by duplicating each row and inserting one more uniform initial row. Since the listed automata
are at least as powerful as 4DFA (except 3AFA, however, we compare it with 4DFA), Proposition 2 can be generalized to all
the mentioned pairs of models.

4. Two-dimensional context-free grammars

This section gives details on two-dimensional grammars mentioned in the introduction. It focuses mainly on the 2D
context-free grammar from [10]. Its relation to Kolam grammar as well as to the regional tile grammar proposed by Pradella
et al. [11] is explained.

Succinctness of the grammars is compared with that of four-way automata. It is important to emphasize that the result
by Meyer and Fisher regarding the non-recursive trade-off between context-free grammars and finite automata applies to 2D
context-free grammars and four-way automata, since these models working over one-row inputs collapse to 1D context-free
grammars and two-way automata, which accept regular languages, respectively. However, there are still two cases to study.
The trade-off in the one-dimensional setting is recursive if unary [27] or finite [13] languages are considered. We show that
such restrictions do not play any role in the case of 2D systems. Besides that, non-recursive trade-offs are demonstrated in
both directions. Another comparison of succinctness is done between the 2D context-free grammars and Kolam grammars,
again resulting in a non-recursive trade-off.

Definition 2. A two-dimensional context-free grammar (2CFG) is a tuple G = (V N , V T , P, S0), where V N is a finite set of non-
terminals, V T is a finite set of terminals, S0 ∈ V N is the initial nonterminal and P is a finite set of productions. Productions
are of the form N → W where N is a nonterminal in V N and W is a non-empty matrix whose elements are terminals and
nonterminals, i.e., W ∈ (V N ∪ V T)+,+ . P can optionally contain the production S0 → �. If so, S0 cannot be a part of the
right-hand side of any production.

Definition 3. Let G = (V N , V T , P, S0) be a 2CFG. For each N ∈ V N , L(G, N) denotes the set of pictures generated by G
from N . A picture P ∈ {V T }∗,∗ belongs to L(G, N) iff

1. N → P is a production, or
2. There is a production N → [Aij]m×n and P = ⊕[Pij]m×n where

Pij = Aij if Aij ∈ V T ,

Pij ∈ L
(
G, Aij

)
if Aij ∈ V N .

The picture language generated by G is defined as L(G) = L(G, S0).

Example 1. Let G = (V N , V T , P, R) be a 2CFG where V N = {H, V , A, R}, V T = {a} and P consists of the following produc-
tions

H → a, H → a H , V → a, V → a
V

,

A → V , A → V A , R → a, R → R V
H a

.

126 D. Průša / Theoretical Computer Science 610 (2016) 121–132

Fig. 4. An illustration in what ways are bigger pictures composed from smaller ones in the case of (a) Kolam grammar, (b) 2CFG, and (c) regional tile
grammar.

Fig. 5. An example of a picture from (a) Lperim, where the content of inner fields is hidden, and from (b) Lcross .

Then, L(G, H) consists of all one-row pictures of a’s, L(G, V) consists of all one-column pictures of a’s, L(G, A) = {a}+,+ and
L(G, R) = L(G) contains all non-empty square pictures.

Note that 2D context-free grammars do not have any equivalent to Chomsky normal form. Limiting the size of produc-
tion’s right-hand sides affects the power [10]. A size measure taking into account the number of elements in productions is
preferable here over a simple counting of productions.

Definition 4. Let G = (V N , V T , P, S0) be a 2CFG where P = {π1, . . . , πk}. For a production π = N → [Aij]m×n in P , its size
is defined as c(π) = mn. Beside that, c(S0 → �) = 1. The size of G is defined as c(G) = ∑k

i=1 c(πi).

Kolam grammar is a special variant of 2CFG with productions of the form N → [Aij]p×q where p = 1 or q = 1 and both
p, q ≤ 2. The mechanism behind the regional tile grammar allows to combine pictures into bigger ones using a freer con-
catenation, the alignment of subpictures into a grid is not required. It is known that Kolam grammars are less powerful than
2CFGs, while regional tile grammars are more powerful than 2CFGs [11]. Production styles of the grammars are depicted in
Fig. 4.

To demonstrate limits of the grammars, we define two picture languages that are easily recognizable by 4DFA. Let Lperim
be a picture language over � = {0, 1} where P ∈ Lperim if and only if the first row of P equals the last row, the first column
equals the last column and all inner fields contain 0.

The second picture language Lcross ⊆ {0, 1}∗,∗ comes from [7]. It consists of pictures where 1’s appear exactly in one row
and one column. Examples of pictures from both languages are depicted in Fig. 5.

We can easily design a 2CFG G such that L(G) = Lcross [10]. However, the following lemma indicates that Lcross cannot
be generated by any Kolam grammar.

Lemma 4. (See [7].) For n ∈ N, let G = (V N , {0, 1}, P, S0) be a Kolam grammar such that L(G) ∩ �n,n = Lcross ∩ �n,n. Then, c(G) =
�(n).

In the next paragraphs we will show that Lperim cannot be generated by any 2CFG.

Lemma 5. Every 2CFG G = (V N , V T , P, S0) has an equivalent grammar G′ = (V ′
N , V T , P ′, S0) such that c(G′) ≤ 3c(G) and each

production S0 → [Aij]p×q in P ′ fulfills

• If p = q = 1 then A11 is a terminal.
• If p > 1 or q > 1 then each Aij is a nonterminal.

Proof. First, for each a ∈ V T figuring at a right-hand side of some production, introduce a new nonterminal Na , add pro-
duction Na → a and replace all occurrences of a in production’s right-hand sides containing two or more elements. Second,
replace A ∈ V N in S0 → A by right-hand sides of other productions reachable from A. Each of the two steps increases size
of G by a maximum of c(G). �

D. Průša / Theoretical Computer Science 610 (2016) 121–132 127

Lemma 6. For n ∈ N, let G = (V N , {0, 1}, P, S0) be a 2CFG such that L(G) ∩ �n,n = Lperim ∩ �n,n. Then, c(G) = �(n/ log n).

Proof. W.l.o.g., G is in the form specified in Lemma 5 and n ≥ 2. Let L be the set of all square pictures in Lperim of size n. It
holds |L| = 22n−3. There is a production proving for at least 	 |L|

|P|
 pictures from L that they belong to L(G). Let S0 → [Aij]k×�

be such a production. W.l.o.g., k ≥ � (implying k ≥ 2).
Let P , Q be pictures in L such that P �= Q , P = ⊕[Pij]k×� , Q = ⊕[Q ij]k×� and each Pij and Q ij is in L(G, Aij).

Observe that if all the pairs P1 j, Q 1 j have the same size, then the first row of P and Q have to be necessarily identical.
If not, G would generate a picture which is not in Lperim. Indeed, it would be possible to create P ′ from P by replacing
subpictures P1 j by Q 1 j . However, the first row in P ′ does not match its last row.

Sizes of pictures P1 j , j = 1, . . . , � are determined by one vertical and � − 1 horizontal coordinates in P . The number of
such possibilities is certainly bounded by nk . For a chosen picture sizes, all related pictures from L differ in content. Since
we observed that their first rows must be the same, it is possible to choose symbols only for fields 2, . . . , n − 1 in the first
column. This results in the inequality

22n−3

|P| ≤ nk2n−2 ⇒ |P| ≥ 2n−1

nk
.

If k ≥ n/(2 log2 n), then c(G) ≥ c(S0 → [Aij]k×�) ≥ n/(2 log2 n). If k < n/(2 log2 n), then

c(G) ≥ |P| ≥ 2n−1

n
n

2 log2 n
= 2n−1

2
n

2 log2 n log2 n
= 2

n
2 −1 = �

(
n

log n

)
,

which completes the proof. �
Theorem 7. Transforming 4DFA to 2CFG yields a non-recursive trade-off.

Proof. An analogous approach to that one used in the proof of Theorem 3 is applicable here. It is possible to construct
4DFAs of small description size accepting finite subsets of Lperim containing large pictures. �

Our next goal is to design a sort of a Turing machine simulation performed with a two-dimensional context-free gram-
mar. This is essential for proving that transforming some systems to 2CFGs also induces non-recursive trade-offs.

Proposition 8. Let T be a one-dimensional deterministic Turing machine and w be an input to T . There is a 2D context-free
grammar G over {a}, computable uniformly in T , such that L(G) is empty if T does not halt on w, else if T halts in t(w)

steps, L(G) is a one-element set containing a square picture of size at least t(w). Moreover, size of G is recursive in size of T
and |w|.

Proof. Let Q = {q1, . . . , qs} be the set of states of T and � = {a1, . . . , ar} be the tape alphabet of T , containing the blank
symbol #. W.l.o.g, T is single-tape, the tape is infinite rightwards only and each instruction of T moves the head.

Let C0, C1, . . . be configurations of T when computing over w . We show how to construct a 2CFGG = ({a}, V N , P, S0)

such that

• there is nonterminal C in V N such that L(G, C) consists of square pictures whose sizes encode configurations Ci , and
• L(G, S0) contains at most one picture – that one which encodes the final configuration.

For convenience, we treat integers also as binary strings and vice versa. Define code(qi) = 0i−110|Q |−i and code(ai) =
0i−110|�|−i . For some Ci , let b1b2 . . . be the tape content and let the control unit of T be in a state q. We consider Ci to be
represented by a binary string (integer)

Ci = 1B1 B2 . . . B |w|+i+2

where

B j =
{

1 code(b j) code(q) if T scans the j-th tape field,

1 code(b j)0|Q | otherwise.

Note that the suffix B |w|+i+2 always equals 1 code(#)0|Q | , even if |w| = 0.
Our next step is to compare two subsequent configurations Ck and Ck+1. The aim is to propose productions that generate

the square picture of size Ck+1 − Ck so that we can combine it with the picture Ck × Ck to obtain the picture Ck+1 × Ck+1.

128 D. Průša / Theoretical Computer Science 610 (2016) 121–132

Fig. 6. Substitution of pictures to C J -part of production (2), sizes of components are given along the border.

Let the head of T scan the m1-th and m2-th tape field in Ck and Ck+1, respectively. Since T always moves the head,
m1 �= m2. Denote m = min{m1, m2}. We can write

Ck = 1B1 B2 . . . B |w|+k+1 B |w|+k+2,

Ck+1 = 1B1 . . . Bm−1 B ′
m B ′

m+1 Bm+2 . . . B |w|+k+2 B |w|+k+3.

When comparing Ck+1 to Ck , we see it differs in B ′
m , B ′

m+1 and it is prolonged by the suffix B |w|+k+3 = 1 code(#)0|Q | . De-
note x1 = Bm Bm+1, x2 = B ′

m B ′
m+1 (codes of local changes performed by the applied instruction of T , x2 is being determined

by x1), � = |�| + |Q | + 1 (the length of each block Bi), y = |w| + k + 1 − m (the number of blocks following Bm+1 in Ck),
c# = 1 code(#)0|Q | (the constant suffix of each Ci). Then, Ck+1 is expressed as

Ck+1 = (Ck + (x2 − x1)2y�)2� + c#.

We are ready to list productions that generate encodings of configurations. All nonterminals and productions from Exam-
ple 1 are included in G . Next, the following productions are defined.

C0︷ ︸︸ ︷
C →

a · · · a
...

. . .
...

a · · · a

⎫⎪⎬
⎪⎭C0

(1) C → C J
A R

(2)

2�−1︷ ︸︸ ︷ c#︷ ︸︸ ︷
J → F · · · F A V · · · V

A · · · A X V · · · V

(3)

Production (1) ensures that C generates the square picture of size C0. Recall languages generated by A, V and R (see
Example 1). Assume that X generates exactly all pictures of size x′

12y′� × (x′
22� − x′

1)2y′� where the pair x′
1, x′

2 encodes
a local change allowed by the instruction set of T and y′ ∈ N. Moreover, assume that F generates all square pictures of
size 1B1 . . . B p−10�0�B p+2 . . . Bq , where q ≥ 2, 1 ≤ p < q and each Bi = 1 code(ci)0|Q | for some ci ∈ �. This means L(G, F)

consists of pictures whose sizes encode all configurations Ci with two neighboring blocks erased (filled by zeros) where one
of the erased blocks encodes the head position and the state of the control unit in Ci .

Let us examine which pictures generated by J can be substituted to the right-hand side of production (2) provided that
the square picture Ck × Ck is substituted to C . The situation is illustrated in Fig. 6. The picture substituted for J is decom-
posed by the right-hand side of production (3) there. The number of rows enforces the equality Ck = v + x′

12y′� . Observe
that it determines parameters x′

1, y′ and v uniquely: Comparing to Ck , value v , which is the size of a square picture in
L(G, F), has two blocks erased and misses the representation of the state of T in Ck . This needs to be supplied by adding
x′

12y′� . Since all blocks start by bit 1, there is only one possibility at which position to add x′
1, it holds y′ = y and v has the

same number of bits as Ck . Further, Ck determines if the head position is encoded in the first or second block of x′
1 (T is

deterministic), hence x′
1 has to be equal to x1. Value of parameter x′

2 is determined by x′
1, thus x′

2 = x2. Moreover, it is also
obvious that the non-erased blocks of v have to match the corresponding blocks in Ck . Summing the counts of columns in
Fig. 6 gives

Ck + (2� − 1)(Ck − x12y�) + (x22� − x1)2y� + c# = Ck+1.

The second row of the right-hand side of production (2) takes care for completing a square picture.
To finish the construction of G , we have to list productions generating pictures in L(G, X) and L(G, F). This is mainly a

technical issue. Let us start by productions related to X .

D. Průša / Theoretical Computer Science 610 (2016) 121–132 129

U → a (4)

2�︷ ︸︸ ︷
U →

U · · · U
...

. . .
...

U · · · U

⎫⎪⎬
⎪⎭2�

(5)

x22�−x1︷ ︸︸ ︷
X →

U · · · U
...

. . .
...

U · · · U

⎫⎪⎬
⎪⎭ x1

(6)

Production (6) is added for each possible pair x1, x2. Pictures in L(G, F) are generated in three phases. For q ≥ 2, 1 ≤ p < q

and arbitrary blocks Bi = 1 code(ci)0|Q | , ci ∈ �,

1. D generates square pictures of sizes 1B1 . . . B p−1,
2. E generates square pictures of sizes 1B1 . . . B p−10�0� , and
3. F generates square pictures of sizes 1B1 . . . B p−10�0�B p+2 . . . Bq .

Productions related to D are as follows.

D → a (7)

For each i = 1, . . . , |�|, add productions

D → Di,� (8)

Di,i+1 →
Di,i Di,i V
Di,i Di,i V
H H a

(9) Di,1 →
D D V
D D V
H H a

(10)

Di, j → Di, j−1 Di, j−1
Di, j−1 Di, j−1

for each j ∈ {2, . . . , �} � {i + 1} (11)

Nonterminals H , V come from Example 1. L(G, Di,�) consists of square pictures of size 1B1 . . . B p−2 code(ai)0|Q | . Produc-
tion (9) or (10) can be interpreted as appending bit 1 to size of a square picture in L(G, Di,i) or L(G, D), respectively.
Analogously, production (11) appends bit 0 to size of a square picture in L(G, Di, j−1). Productions related to E and F follow
similar patterns.

E → E� (12)

Ei → Ei−1 Ei−1
Ei−1 Ei−1

for each i = 2,3, . . . , � (13)

E1 → D D
D D

(14) F → E (15)

For each i = 1, . . . , |�|, add productions

F → Fi,� (16)

Fi,i+1 →
Fi,i F i,i V
Fi,i F i,i V
H H a

(17) Fi,1 →
F F V
F F V
H H a

(18)

Fi, j → Fi, j−1 Fi, j−1
Fi, j−1 Fi, j−1

for each j ∈ {2, . . . , �} � {i + 1} (19)

It remains to add productions generating the final configuration provided that T halts. We make clones of productions (2),
(3) and (6). Production (20) will be applicable only to the configuration preceding the final configuration.

130 D. Průša / Theoretical Computer Science 610 (2016) 121–132

S0 → C J0
A R

(20)

2�−1︷ ︸︸ ︷ c#︷ ︸︸ ︷
J0 → F · · · F A V · · · V

A · · · A X0 V · · · V

(21)

x22�−x1︷ ︸︸ ︷
X0 →

U · · · U
...

. . .
...

U · · · U

⎫⎪⎬
⎪⎭ x1

(22)

Pattern (22) applies to those pairs x1, x2, where x2 encodes a final state of T . �
Theorem 9. Transforming 2CFG to Kolam grammar yields a non-recursive trade-off.

Proof. For k ∈ N, construct a 2CFG Gk over {a, 0, 1} as follows. There is the initial nonterminal S0 and two distinguished
nonterminals Ck and D . Productions and other nonterminals are added so that:

• D generates Lcross,
• Ck generates all square pictures encoding a final configuration of some binary k-state Turing machine started over a

blank tape (productions achieving this can be designed thanks to Proposition 8).

Finally, there is production S0 → Ck D .
Each picture language L(Gk) is finite, thus it is generated by a Kolam grammar. However, L(Gk) inherits the complexity

of finite subsets of Lcross (Lemma 4 can be easily generalized to it), thus the size of the considered Kolam grammars is not
bounded from above by any function recursive in k. �

For the purposes of our next theorem we need a suitable unary picture language which can be easily generated by a
2CFG, but cannot be recognized by any 4NFA. Let us consider the language of unary pictures from [12] where the number
of columns is the square of the number of rows. Define Lrect = {P ∈ {a}∗,∗ | cols(P) = rows2(P)}.

Lemma 10. (See [12].) For n ∈ N, let A be a 4NFA such that L(A) ∩ �n,∗ = Lrect ∩ �n,∗ . Then, c(A) = �(n).

Theorem 11. Transforming 2CFG generating finite unary picture languages to 4NFA yields a non-recursive trade-off.

Proof. For k ∈ N, construct a 2CFG grammar Gk over {a}, containing nonterminal Ck that generates all square pictures
encoding a final configuration of some binary k-state Turing machine started over a blank tape (use Proposition 8). Let S0
be the initial nonterminal of Gk . Add additional productions and nonterminals so that Gk translates each square picture
P ∈ L(Gk, Ck) to the rectangle of size rows(P) × rows2(P).

• Include all nonterminals (H , V , A, R) and productions from Example 1.
• Insert nonterminal Y and productions

Y → a a
a a

, Y → Y R R
H H H

, S0 → Ck Y .

It is easy to verify (by induction on n) that Y generates every picture of size n × (n2 − n) where n ≥ 2. Thus, L(Gk, S0) is
formed of rectangular pictures of the desired size.

Finite unary picture languages {L(Gk)}∞k=1 are accepted by some 4NFAs, however, sizes of such 4NFAs are not bounded
from above by any function recursive in k. �
Theorem 12. Transforming 2CFG generating finite picture languages to 2OTA yields a non-recursive trade-off.

Proof. Define Lpal as the picture language over {b, c} consisting of pictures whose all rows are palindromes. Lpal can be
generated by a 2CFG G with an initial nonterminal S (generate a column of nonterminals S , generate a one-row palindrome
from each S). On the other hand, Lpal is not in REC and thus not accepted by any 2OTA. A counting argument based
technique presented in [4] applies here.

Extend Lpal to the picture language L′
pal over {a, b, c} by extending each P of size n to square P ′ of size 2n such that P

is the top-left subpicture of P ′ and the remaining fields of P ′ store symbol a. The technique from [4] still proves that L′
pal

is not in REC.

D. Průša / Theoretical Computer Science 610 (2016) 121–132 131

For k ∈ N, let Gk over {a} be again a 2CFG containing nonterminal Ck that generates all square pictures encoding a final
configuration of some binary k-state Turing machine started over a blank tape.

Combine grammars G and Gk to obtain a 2CFG G′
k that generates finitely many square pictures over {a, b, c} containing

large pictures from L′
pal. Introduce a new initial nonterminal S0, nonterminals S1, S2 and the following productions.

S0 → S1
S2

, S1 → S Ck , S2 → Ck Ck .

Let nk be the size of the largest (square) picture in L(Gk). The picture language L(G′
k) is finite and it contains all square

picture of size 2nk from L′
pal. This means that 2OTA accepting L(G′

k) needs a large number of states. �
5. Conclusion

We have showed that the non-recursive trade-offs are a common phenomenon in the world of picture languages. We
considered the most important models of two-dimensional finite automata as well as context-free grammars and demon-
strated how the separability results on the classes of picture languages described by the systems can be turned into results
on non-recursive trade-offs.

The ability of four-way automata and 2D context-free grammars to simulate Turing machines has been utilized. It allowed
us to come up with constructive witnessing sequences of systems describing finite picture languages.

Besides the proven non-recursive trade-offs, the simulation of a Turing machine by a 2CFG brings additional conse-
quences. It reveals that the emptiness problem is not decidable for the 2D context-free grammars as well as for the tile
regional grammars. Moreover, 2CFG can generate one-element picture languages containing a square picture whose size can
be arbitrarily (non-recursively) large with respect to the size of the grammar. This means that there is no general analogy
to the pumping lemma which is counted as one of the basic properties of one-dimensional context-free grammars.

There remain some interesting open problems. The presented simulation of a Turing machine by a 2CFG benefited from
productions with right-hand sides of size at least 2 ×2. It is not clear whether it can be performed using only productions of
Kolam grammar. This raises the question of how succinct are Kolam grammars generating finite picture languages comparing
to 4DFAs. It is not also known whether 2CFG is stronger than Kolam grammar for a unary alphabet. Showing that Kolam
grammar cannot simulate Turing machine would resolve this problem positively.

Another open problem is whether Theorem 12 is valid for unary picture languages. We did not answer this since it is
not know if there is a unary picture language generated by a 2CFG, but not accepted by any 2OTA.

Acknowledgement

This work was supported by the Czech Science Foundation under the project 15-04960S.

References

[1] M. Blum, C. Hewitt, Automata on a 2-dimensional tape, in: Proceedings of the 8th Annual Symposium on Switching and Automata Theory, SWAT 1967
(FOCS ’67), IEEE Computer Society, Washington, DC, USA, 1967, pp. 155–160.

[2] K. Inoue, A. Nakamura, Some properties of two-dimensional on-line tessellation acceptors, Inform. Sci. 13 (2) (1977) 95–121.
[3] K. Inoue, I. Takanami, A characterization of recognizable picture languages, in: A. Nakamura, M. Nivat, A. Saoudi, P.S. Wang, K. Inoue (Eds.), Parallel

Image Analysis, in: Lecture Notes in Computer Science, vol. 654, Springer, Berlin, Heidelberg, 1992, pp. 133–143.
[4] D. Giammarresi, A. Restivo, Recognizable picture languages, Int. J. Pattern Recognit. Artif. Intell. 6 (2–3) (1992) 32–45.
[5] G. Siromoney, R. Siromoney, K. Krithivasan, Abstract families of matrices and picture languages, Comput. Graph. Image Process. 1 (3) (1972) 284–307,

http://dx.doi.org/10.1016/S0146-664X(72)80019-4.
[6] G. Siromoney, R. Siromoney, K. Krithivasan, Picture languages with array rewriting rules, Inf. Control 22 (5) (1973) 447–470, http://dx.doi.org/

10.1016/S0019-9958(73)90573-1.
[7] O. Matz, Regular expressions and context-free grammars for picture languages, in: 14th Annual Symposium on Theoretical Aspects of Computer Science,

Springer-Verlag, 1997, pp. 283–294.
[8] M.I. Schlesinger, Matematiceskie Sredstva Obrabotki Izobrazenij (Mathematic Tools for Image Processing), Naukova Dumka, Kiev, 1989, in Russian.
[9] M.I. Schlesinger, V. Hlaváč, Ten Lectures on Statistical and Structural Pattern Recognition (Computational Imaging and Vision), 1st edition, Springer,

2012.
[10] D. Průša, Two-dimensional languages, Ph.D. thesis, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, 2004.
[11] M. Pradella, A. Cherubini, S.C. Reghizzi, A unifying approach to picture grammars, Inform. and Comput. 209 (9) (2011) 1246–1267, http://dx.doi.org/

10.1016/j.ic.2011.07.001.
[12] J. Kari, C. Moore, New results on alternating and non-deterministic two-dimensional finite-state automata, in: A. Ferreira, H. Reichel (Eds.), STACS 2001,

in: LNCS, vol. 2010, Springer, Berlin, Heidelberg, 2001, pp. 396–406.
[13] A.R. Meyer, M.J. Fischer, Economy of description by automata, grammars, and formal systems, in: SWAT (FOCS), IEEE Computer Society, 1971,

pp. 188–191.
[14] L.G. Valiant, A note on the succinctness of descriptions of deterministic languages, Inf. Control 32 (2) (1976) 139–145, http://dx.doi.org/10.1016/

S0019-9958(76)90173-X.
[15] C. Herzog, Pushdown automata with bounded nondeterminism and bounded ambiguity, Theoret. Comput. Sci. 181 (1) (1997) 141–157, http://dx.doi.org/

10.1016/S0304-3975(96)00267-8.
[16] C.A. Kapoutsis, From k + 1 to k heads the descriptive trade-off is non-recursive, in: L. Ilie, D. Wotschke (Eds.), 6th International Workshop on Descrip-

tional Complexity of Formal Systems, vol. 619, The University of Western Ontario, Canada, 2004, pp. 213–224.

132 D. Průša / Theoretical Computer Science 610 (2016) 121–132

[17] M. Holzer, M. Kutrib, J. Reimann, Non-recursive trade-offs for deterministic restarting automata, J. Autom. Lang. Comb. 12 (1–2) (2007) 195–213.
[18] M. Kutrib, F. Otto, On the descriptional complexity of the window size for deleting restarting automata, Internat. J. Found. Comput. Sci. 24 (06) (2013)

831–846, http://dx.doi.org/10.1142/S0129054113400212.
[19] M. Kutrib, The phenomenon of non-recursive trade-offs, Internat. J. Found. Comput. Sci. 16 (05) (2005) 957–973.
[20] H. Gruber, M. Holzer, M. Kutrib, On measuring non-recursive trade-offs, J. Autom. Lang. Comb. 15 (1/2) (2010) 107–120.
[21] D. Giammarresi, A. Restivo, Two-dimensional languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer, New York,

1997, pp. 215–267.
[22] J. Kari, C. Moore, Rectangles and squares recognized by two-dimensional automata, in: J. Karhumki, H.A. Maurer, G. Paun, G. Rozenberg (Eds.), Theory

is Forever, in: Lecture Notes in Computer Science, vol. 3113, Springer, 2004, pp. 134–144.
[23] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, Inc., 1967.
[24] T. Radó, On non-computable functions, Bell Syst. Tech. J. 41 (3) (1962) 877–884.
[25] A. Nakamura, Two-dimensional connected pictures are not recognizable by finite-state acceptors, Inform. Sci. 69 (1–2) (1993) 55–64, http://dx.doi.org/

10.1016/0020-0255(93)90039-O.
[26] A. Ito, K. Inoue, A note on three-way two-dimensional alternating Turing machines, Inform. Sci. 45 (1) (1988) 1–22, http://dx.doi.org/10.1016/0020-

0255(88)90005-9.
[27] G. Pighizzini, J. Shallit, M. Wang, Unary context-free grammars and pushdown automata, descriptional complexity and auxiliary space lower bounds, J.

Comput. System Sci. 65 (2) (2002) 393–414, http://dx.doi.org/10.1006/jcss.2002.1855.

Rank-reducing Two-dimensional Grammars for
Document Layout Analysis

Daniel Průša
Faculty of Electrical Engineering, Czech Technical University

Karlovo náměstı́ 13, 121 35 Prague 2, Czech Republic
Email: prusapa1@fel.cvut.cz

Akio Fujiyoshi
Faculty of Engineering, Ibaraki University

4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
Email: akio.fujiyoshi.cs@vc.ibaraki.ac.jp

Abstract—We study the task of document layout analysis based
on two-dimensional context-free grammars. We first identify a
subclass of the grammars sufficient for a document structure
description where productions follow a mechanism inducing
regular languages in the case of one-dimensional productions. We
then show that properties of such grammars can be conveniently
utilized to implement a very fast top-down parser. Experimental
results are reported for PDF documents, which are chosen as a
test domain since we are motivated by a development of digital
document access methods for people with disabilities in which a
retrieval of structural information plays an important role.

I. INTRODUCTION

Two-dimensional (2D) grammars are a powerful tool for
document structure analysis. Variants with context-free pro-
ductions have been studied in this context already from 60’s.
The grammars are still popular nowadays and serve as a base
for recognition of many domains [1], [2], including the logical
layout of documents [3]. The grammars naturally support
nondeterminism and ambiguity whose absence is considered as
a weakness of other methods for document layout analysis [4].

A challenge regarding the usage of 2D grammars is com-
putational complexity. Especially in the case of complex
structures like mathematical formulas, 2D topology and gram-
mar ambiguity might result in parsing time exponential in
the number of terminal elements, hence techniques limiting
the set of hypotheses examined and tested are required for
acceleration [5]. Parsing of document layouts is relatively
easier scenario which can adopt classical bottom-up or top-
down algorithms like CKY [6] or Earley parsing [7]. Their 2D
counterparts have been described for regular grids of terminal
elements [8], [9]. But still, time complexity of these algorithms
is a high degree polynomial and they get further complicated if
the layout of terminal elements is irregular. To deal with this,
some authors proposed to parse linear projections of the input
by 1D grammars [10], [11]. This approach results in a good
performance, but has drawbacks such as a weaker expressive
power caused by the simplified parsing or a complicated
system of 1D productions not easy to be created by the user.

We contribute to the portfolio of 2D grammars by defining
a subclass of the 2D context-free grammars where productions
have a nonterminal rank reducing property. This property
induces grammars generating regular languages in the case
of 1D productions. We show that the grammar is sufficient
for modeling document layouts. Next, we pursue the idea of

Fig. 1. Parsed PDF documents. Selected sections of interest are highlighted.

using 1D grammars to speed up parsing. We apply a simple
top-down, recursive descent parsing algorithm strengthen by
strongly discriminative rules for finding branching points.
These decision rules are based on 1D regular grammars de-
scribing sequences of terminal elements that can form borders
of areas representing nonterminals. These 1D grammars are
extracted fully automatically from the 2D grammar, together
with non-deterministic finite-state automata used to recognize
the sequences of terminals. We show that with this method the
number of backtracks occurring during the parsing is minimal.

We evaluate our proposal on PDF documents (see Fig. 1).
There is a practical motivation for this. Legislation has evolved
in many countries to improve the access to documents for
people with disabilities, hence the accessibility of digital
documents is one of the biggest concerns for publishers in the
world. To guarantee the accessibility for the blind and print
disabled, the structural information of a document needed by
screen readers must be embedded. There are mainly two ways
to guarantee the accessibility of PDF, which is the most widely
used format. One way is to directly embed structural informa-
tion. The international standard for accessible PDF technology
has been introduced as PDF/UA (ISO14289-1) [12]. The other
way is to bundle an equivalent document in an accessible
digital format (DAISY [13], EPUB3 [14]), converted from a
PDF document. The necessity of the structural information of
original PDFs is common to the two ways.

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.185

1120

(a) (b)

Fig. 2. (a) Example of boxes extracted by Apache PDFBox. (b) A recognized
word assembled from adjoining characters.

II. PROPOSED METHOD

The whole method is presented in this section, structured
as follows. The process of terminal elements extraction from
a PDF is described in Subsection II-A. A general 2D context-
free grammar with a specific spatial constraints is defined in
Subsection II-B. The top-down parsing algorithm building a
derivation tree over a set of terminal elements is stated in
Subsection II-C. The special rank-reducing 2D grammar is
defined in Subsection II-D. Finally, it is shown in Subsec-
tion II-E how to utilize this grammar to implement a fast and
highly discriminative procedure to select branching points for
the top-down parsing algorithm.

A. Terminal Elements Extraction

We use Apache PDFBox [15] to extract content from PDF
documents. Fig. 2(a) shows two types of bounding boxes that
can be obtained for characters. The red ones represent the
reserved area to render glyphs, the blue ones represent the
exact area of the rendered glyphs. We choose the blue boxes
to recognize words. We define a word as a group of adjoining
characters of the same font and size (see Fig. 2(b) and Fig. 1).
Neighboring characters are grouped based on the gap between
their boxes and the “drawing order” of elements. If there
are n characters, words are recognized in time O(n log n)
as we need to sort the boxes by their coordinates. For each
recognized word, we create a terminal element consisting of
a bounding box and a terminal symbol derived from the word
content. We distinguish terminal symbols like a number, bullet,
text word, etc. A terminal element is also created for each
detected image. The used length unit equals 1 millimeter. The
origin (0, 0) is associated with the top-left corner of a PDF
page and the coordinates grow rightwards and downwards.

B. Two-dimensional Context-free Grammar

Definition 1. A 2D context-free grammar (2CFG) is a tuple

G = (N , T ,P, S), whereN is a set of nonterminals, T is a set

of terminals, S ∈ N is the initial nonterminal and P is a set of

productions in one of the following forms:

(1) N → A, (2) N → AB, (3) N → A
B

where N ∈ N and A,B ∈ T ∪ N .

The productions follow the Chomsky normal form. We say
that a production of type (2) is horizontal as it generates
a horizontal line composed of A and B. Analogously, a
production of type (3) is vertical.

R1

R2

gs

T1

T2

(a)

R1

R2

s

gT1
T2

(b)

Fig. 3. (a) A horizontal or (b) vertical production assigned by a spatial
constraint (gmin, gmax, smin, smax) is applicable to divide a set of terminal
elements T = T1 ∪ T2 to T1 and T2 if and only if gap g and shift s fulfill
gmin ≤ g ≤ gmax and smin ≤ s ≤ smax, respectively. Rectangle R1 and
R2 is the bounding box of terminal elements in T1 and T2, respectively.

Document -> Tests / PageNumber
PageNumber -> <number>
Tests -> Test / Tests
Tests -> Test
Test -> <image> / Text
Text -> Assignment /(-,-,50,-) Explanation
Assignment -> Question /(-,-,20,-) Answers
Question -> Rows
Answers -> Answer / Answers
Answers -> Answer
Answer -> <number> | Row
Explanation -> <image> | Rows
Rows -> Row /(-,-,-,8) Rows
Rows -> Row
Row -> <word> | Row
Row -> <word>

Fig. 4. A representation of a 2D grammar in a text file. Terminal names are
enclosed in angle brackets, right-hand side variables of horizontal and vertical
productions are separated by ’/’ and ’|’, respectively. These separators are op-
tionally followed by four values in brackets determining the spatial constraint
which overrides the default constraint (0,−,−,−). Each component of this
quadruple is either an integer or − which stands for “no limit”. The initial
nonterminal appears at the left-hand side of the first production.

Let T be a set of terminal elements. The goal of the
structural analysis controlled by G is to build a derivation tree,
also known as X-Y tree [4], over elements of T . Speaking
in words of the top-down parsing, the whole set T is firstly
assigned by the initial nonterminal S. A production S → AB

or S → A
B

is applied to divide the set vertically or

horizontally, respectively, into two parts, assigned by variables
A and B. Alternatively, a production S → A is applied to
rename S to A where renaming to a terminal A ∈ T is
allowed only if S is assigned to a one-element set containing a
terminal element of type A. The process continues recursively.
An application of productions which ends up with one-element
groups assigned by terminals is sought.

To increase the expressive power of the grammar, we restrict
applicability of a vertical or horizontal production by a spatial
constrained defined as a tuple (gmin, gmax, smin, smax). The
constraint is explained in Fig. 3.

We illustrate the described notions by giving a grammar in
Fig. 4 and a derivation tree built by the grammar in Fig. 5.

C. Top-down Parsing Algorithm

An execution of the top-down parsing is captured by
Alg. 1. The first call of PARSE passes to it a grammar

112111211121112111211121

2

1

3

4

55

66

77

88

99

1010

1Document

2Tests

3Test

<image> 5Text

7Assign. 8Expl.

4Test

<image> 6Text

9Assign. 10Expl.

<number>

. . .

Fig. 5. The first 5 levels of a derivation tree built over a PDF page. Each Inner
node is assigned by a nonterminal (black text) and a vertical or horizontal
cut line (blue number, blue line). For simplicity, usages of productions of the
form N → A are omitted. A part of the document represented by the subtree
rooted in node ‘3Test’ is highlighted in red. The leftmost terminal elements
of the top ‘Assignment’ area (node ‘7Assign.’) are highlighted in green.

G = (N , T ,P, S), the initial nonterminal S and the set
of terminal elements ‘Terms’. A global variable ‘backtracks’
is used to count the number of encountered dead branches.
Procedure MATCHES(Terms, V) returns true iff the passed
set of terminal elements ‘Terms’ contains the only terminal
element assigned by V . Procedure FINDSPLITPOINTS(Terms,
P) detects all vertical/horizontal cuts compatible with the
spatial constraint of production P . Given a vertical/horizontal
cut (determined by a point s), SPLIT(Terms, s, P) divides
terminal elements of ‘Terms’ into two resulting subsets. For
the pseudocode simplicity, PARSE returns only a boolean
indicating whether the process succeeded (not a tree).

Algorithm 1 Top-down parsing
Input: G = (N , T ,P, S), V ∈ N ∪ T , Terms

1: procedure PARSE(G, V , Terms)
2: if V ∈ T and MATCHES(Terms, V) then
3: return true
4: for each P ∈ P do
5: if P = V → A and PARSE(G, A, Terms) then
6: return true
7: else if P = V → AB or P = V → A

B
then

8: SplitPoints = FINDSPLITPOINTS(Terms, P)
9: for each s ∈ SplitPoints do

10: [TermsA, TermsB] = SPLIT(Terms, s, P)
11: if PARSE(G, A, TermsA) and PARSE(G, B,

TermsB) then
12: return true
13: backtracks← backtracks + 1
14: return false

D. Rank-reducing 2D Context-free Grammar

Let G = (N , T ,P, S) be a 2CFG. Considering productions
of G without their spatial constraints, we can construct 1D

grammars GT and GL, generating strings over T , that charac-
terize sequences of terminal elements appearing at the top and
left border, respectively, in documents described by G.
GT = (N , T ,PT, S) where PT contains each P ∈ P of

the form N → A and N → AB. In addition, instead of

each production N → A
B

, it contains N → A (B on the

right-hand side is deleted, it cannot generate a part of the top
border). Analogously, GL = (N , T ,PL, S) where PL contains

all productions in P of the form N → A and N → A
B

. In

addition, instead of each N → AB, it contains N → A.
For G′ ∈ {GT,GL}, let L(G′, N) be the 1D language gener-

ated by G′ when N ∈ N is taken as the initial nonterminal.

Example 1. Let G be the grammar in Fig. 4. Then,
L(GL, Assignment) generates columns whose content is
given by the regular expression <word>+<number>+, hence
the sequence of left border terminal elements of each As-
signment area have to match this pattern (see Fig. 5 for an
example). This is utilized in the improved version of procedure
FINDSPLITPOINTS presented in Subsection II-E.

Next, we formulate general conditions under which GT and
GL generate regular languages, which are very easy to parse.

Definition 2. Let G = (N , T ,P, S) be a 2CFG grammar. A

function σ : N ∪ T → N is called a rank function of G if it

fulfills ∀a ∈ T : σ(a) = 0 and ∀N ∈ N : σ(N) > 0. For

V ∈ N ∪ T , σ(V) is called a rank of V .

Definition 3. We say that a 2CFG G = (N , T ,P, S) is rank-
reducing iff there is a rank function σ : N ∪ T → N such that

1) σ(N) ≥ σ(A) for each production N → A ∈ P ,

2) σ(N) ≥ σ(B) > σ(A) for each production N → AB ∈
P or N → A

B
∈ P .

In this case, σ is called a rank-reducing function of G.

The next definition says which productions can be used in
derivations applied recursively to a nonterminal N .

Definition 4. Let G = (N , T ,P, S) be a 2CFG. For each N ∈
N , define pcl(N) ⊆ P as the smallest subset fulfilling

• P = N → A ∈ P ⇒ P ∈ pcl(N) and pcl(A) ⊆ pcl(N),

• P = N → AB or P = N → A
B

is in P ⇒ P ∈
pcl(N), pcl(A) ⊆ pcl(N) and pcl(B) ⊆ pcl(N).

Lemma 1. Let G = (N , T ,P, S) be a rank-reducing 2CFG
and σ be a rank-reducing function of G. Then, for each N ∈ N ,

each production in pcl(N) contains nonterminals whose rank

is not greater than σ(N).

Proof. Follows directly from Definition 3. �
Theorem 2. Let G = (N , T ,P, S) be a rank-reducing 2CFG.

Then, GT and GL generate regular languages.

Proof. Let σ be a rank-reducing function of G. We show
L(GT, N) is a regular language by induction on the rank of

112211221122112211221122

nonterminal N (the proof for GL is analogous). Observe that
σ is a rank-reducing function of GT too. For n ∈ N, let
Rn = {V ∈ N ∪ T | σ(V) = n}. Note that R0 = T . Let n1

be the smallest positive integer such that Rn1

= ∅. Consider

any N ∈ Rn1
. If pcl(N) contains a production M → A

B
or M → AB, then, by Lemma 1, σ(B) ≤ σ(N), and, by
Definition 3, σ(A) < σ(B), hence the production is regular
and L(GT, N) is a regular language.

Next, consider n > n1 for which Rn
= ∅. Denote
Sn =

⋃n−1
i=0 Rn. For each N ∈ Rn, productions of pcl(N)

contain only symbols ofRn and Sn. In analogy to the previous
paragraph, N generates a regular language over Sn. By the
induction hypothesis, each nonterminal in Sn generates a
regular language over T . The language generated by N over
T is obtained by the operation of regular substitution (each
nonterminal M ∈ Sn is substituted by the regular language
L(GT,M)). Since the regular languages are closed under the
regular substitution [16], L(GT, N) is a regular language. �

Theorem 3. There is an algorithm deciding in time O(|N | +
|P|) whether a 2CFG G = (N , T ,P, S) is rank-reducing.

Proof. Given a 2CFG G = (N , T ,P, S), construct a directed
dependency graph G = (V,E) where the set of vertices V
equals N and (A,B) is a directed edge iff A
= B and P
contains a production A → C, A → C D or A → C

D
such that C = B or D = B. Distinguish two types of edges.
An edge (A,B) is strictly reducing if there is a production

A→ BD or A→ B
D

, otherwise it is weakly reducing.

Apply Tarjan’s algorithm [17] to find strongly connected
components of graph G. Grammar G is rank-reducing iff
each strictly reducing edge connects vertices from different
components. Indeed, if both vertices of a strictly reducing edge
are in the same strongly connected component, the edge is a
part of a cycle and we cannot define σ for vertices along the
cycle as the descendants are expected to have smaller rank
than their parents. Otherwise, we can construct a rank-reducing
function σ of G. Let C1, . . . , Cm be the detected components
written topologically ordered (note that Tarjan’s algorithm
produces such ordering). Define σ : N ∪ T → {0, . . . ,m}
as a function assigning to each nonterminal N ∈ Ci value
m− i+ 1. Moreover, define σ(a) = 0 for all a ∈ T .

Time complexity of Tarjan’s algorithm is O(|V | + |E|). It
holds |E| ≤ |P|, hence the proposed algorithm runs in time
O(|N |+ |P|). �

Example 2. Let G = (N , T ,P, S) be a 2CFG where N =
{B,H,L,M,N, P, S}, T = {h,w} and P consists of

S → B, S → B S, S → B
S
,

B → H
P

, P → L, P → L
P
,

H → hM, M → hN, M → h, N → LH,
L→ w, L→ wL.

G generates documents S formed of blocks B. Each block is
composed of a header H and a body P . The header format
is given by the regular expression hh (w+hh)

∗, the body is
filled by w’s. Fig. 6 depicts the dependency graph for G.

S

B

HMN P

L

5

4

3 2

1

Fig. 6. An example of the dependency graph. The solid edges are strictly re-
ducing, while the dashed edges are weakly reducing. The dotted circles/ellipse
denote the strongly connected components. As there are no strongly reducing
edges inside the components, the grammar is rank-reducing. The rank of each
nonterminal can be defined as the number assigned to its component.

Remark 1. The grammar in Fig. 4 is rank-reducing. We
verified for more documents that a usage of rank-reducing
productions is sufficient for modeling their structure. Usually,
a general 2CFG expressing a document layout can be trans-
formed to a rank-reducing grammar by using more nontermi-
nals. For example, production

Document -> Tests / <number>

cannot be included in a rank-reducing grammar, however, this
problem is solved by introducing a nonterminal PageNumber
and replacing the production above by productions

Document -> Tests / PageNumber
PageNumber -> <number>

E. Finding Split Point Candidates

Here we describe an efficient implementation of procedure
FINDSPLITPOINTS in Alg. 1. It is based on spatial constraints
of productions and sequences of leftmost or topmost terminal
elements in ‘Terms’ described by the regular language gener-
ated by GL or GT, respectively.

Let ‘Terms’ consist of terminal elements Ri =
(xi, yi, wi, hi, ti), i = 1, . . . , n, where (xi, yi), wi, hi and
ti is the top-left corner coordinate, width, height and the
assigned terminal symbol of Ri, respectively. Without loss of
generality, consider that FINDSPLITPOINTS has to detect split

point candidates for a vertical production P = N → A
B

. For

each i = 1, . . . , n, define interval Ii = [yi, yi + hi − 1].
As the first step, the procedure calculates the union of pro-

jections of elements Ri to y-axis. The result is a set of intervals
depicted in Fig. 7(a). Moreover, it also detects all leftmost
elements. Formally, an element Ri is leftmost iff for each
j
= i, either Ii and Ij are disjoint or xi < xj . For an example,
see Fig. 7(b). To achieve time complexityO(n log n), elements
Ri are sorted by component xi in ascending order. Assume
that R1, . . . , Rn is a sorted sequence. Taking the elements in
this order, they are inserted to a red-black tree T with key
values Ii. Let Ri be an element that is about to be inserted

112311231123112311231123

into T . If Ii does not intersect any interval (key) in T , Ri

is a leftmost element and it is inserted to T . Otherwise, Ri

is not a leftmost element and the intervals intersecting Ii are
removed from T , united with Ii into a new interval I ′i which
is inserted to T .

4

3

2

1

2

(a)

<number> <word>

<word> <word>
<image>

<word>
<word>

<word>

<bullet> <word> <word>

4

3

22

1

(b)

Fig. 7. (a) A projection of terminal elements (b) to y-axis. The leftmost
elements are highlighted and numbered. Their projections are numbered too.
The leftmost element with number 2 need not be a part of a column generated
by GL as it becomes hidden if the blue dashed cuts are applied to build a
derivation tree. On the other hand, it is a part of a column generated by GL
if the red dashed cuts are applied. As there are these two possibilities, the
leftmost element with number 2 is optional. This is not the case of the leftmost
elements with numbers 1, 3 and 4, which are not optional.

Let L1, . . . , Lm be a sequence of the leftmost terminal
elements, sorted by their y-coordinate. Denote by si the
terminal symbol assigned to Li. In the projection in Fig. 7(a),
projections of two neighboring elements Lj and Lj+1 belong
either to adjacent line segments separated by a gap of size gj ,
or to one line segment (define gj = 0). A leftmost element
Lj is optional iff it can be separated from another leftmost
element by a vertical cut as it is explained in Fig. 7(b).

For a non-terminal M , let A(M) denote a nondeterministic
finite-state automaton (NFA) accepting the regular language
L(G,M). We construct such automaton for each M ∈ N .
The construction is incremental and follows the constructive
proof of Theorem 2. It starts with nonterminals of rank 1
and proceeds to nonterminals of higher ranks. We denote
by AR(M) an NFA which accepts the reversion of language
L(G,M). This automaton is easily derived from A(M).

A position j ∈ {1, . . . ,m − 1} corresponds to a split
point candidate returned by procedure FINDSPLITPOINTS for
production P and set of terminal elements ‘Terms’ iff
• gj > 0 and the subsets ‘TermsA’ and ‘TermsB’ obtained

after cutting ‘Terms’ by a horizontal line separating Lj

and Lj+1 fulfill the spatial constraint of P (to relax
gj > 0 requirement, it is advisable to shrink the border of
Ri’s by a constant size before computing the projections).

• A(A) accepts a string obtained from s1 . . . sj by deleting
an arbitrary number of terminals sk such that Lk is
optional. And similarly, AR(B) accepts a string obtained
from sm . . . sj+1 by deleting some (or none) optional
terminals.

NFAs are simulated by a technique which represents tran-
sitions and sets of active states by bit vectors [18]. It applies
bitwise operations to the vectors to compute the next set
of active states. The nondeterminism is favorably used to

implement a skipping of optional leftmost elements. When the
automaton scans sk where Lk is optional, it simultaneously
performs two actions: (i) ignores (skips) sk, (ii) reads sk
and performs transitions. To find all positions j fulfilling the
second requirement, it suffices to simulate A(A) and AR(B)
over w = s1 . . . sm only once. If J1 and J2 is the set of
positions in w at whichA(A) andAR(B) reaches an accepting
state when reading w from left to right and from right to left,
respectively, then the test is passed by each j such that j ∈ J1
and j + 1 ∈ J2.

III. EXPERIMENTS

The algorithms in Section II were implemented in Java 1.8.
The experiments reported here were carried out on a notebook
with Intel Core i5-4300M 2.6 GHz, 12 GB RAM and 64-bit
Windows 7. Our application can be downloaded at [19].

We have created rank-reducing grammars for four types of
documents: (i) Driving licence test [20], (ii) Whitepaper “PDF
Primer” [21], (iii) Japanese elementary school textbook [22],
(iv) “Answers to problems” in a book on chemistry [23]. We
have excluded pages whose layout differs from the main layout
(e.g. a table of contents) or we selected only pages from one
section (dataset (iv)). PDF pages in Fig. 1 are samples from
(i) and (iii), the page in Fig. 5 is a sample from (ii).

Table I summarizes statistics on grammars and automata
sizes and time of automata creation. Note that four automata
are created for each nonterminal N (A(N) and AR(N) for
GL as well as for GT). We can observe that the average number
of states per automaton is small (not greater than 16 when the
grammar has about 35 productions and 22 nonterminals).

Table II reports performance of terminal elements extraction
and two parsing algorithms. The first algorithm (‘parsing I’)
utilizes spatial constraints and finite automata to select split
point candidates (Subsection II-E), while the second algorithm
(‘parsing II’), applied to the same grammars, utilizes only
spatial constraints of productions. It does not need to spend
time to simulate automata, but the number dead branches it
encounters is higher. Column ‘pages’ gives the number of
pages per each dataset. The other columns give an average
value per a page. The average time of parsing is followed by
the average number of backtracks performed during it. We
can see that the automata-based parsing is 3 to 4 times faster
than the simple parsing. The number of backtracks is kept
small, with the exception of dataset (iv), however, it is still
substantially smaller when compared to the simple parsing.
The difference between the two parsing algorithms is even
more amplified in the case of not successfully parsed pages
(due to an unexpected layout). For example, grammar (ii) does
not support figure captions. A page of this type was rejected by
‘parsing I’ in 31 [ms] and 552 backtracks occurred. In contrast,
‘parsing II’ rejected the page in 917 [ms] as it was forced to
perform 254, 324 backtracks. A similar behavior was observed
in more situations when a page had to be rejected. This
suggests that the automata-based parsing is a suitable choice
for a document layout classification done via a successive
parsing of the document by a collection of grammars.

112411241124112411241124

Document productions automata avg. states max. states build time [ms]
(i) Test 18 52 4.4 16 3
(ii) Whitepaper 35 92 10.5 57 17
(iii) School book 34 88 10.6 53 14
(iv) Chem. book 31 88 15.4 77 15

TABLE I
STATISTICS ON A GRAMMAR AND FINITE AUTOMATA CREATED FOR EACH DATASET.

Document pages term. elements extraction [ms] parsing I [ms] backtracks parsing II [ms] backtracks
(i) Test 12 115.8 3.9 11.5 23.3 49.0 4191.1
(ii) Whitepaper 7 409.1 16.3 20.1 13.7 76.1 7690.7
(iii) School book 10 127.4 3.9 7.6 16.8 19.9 1032.5
(iv) Chem. book 4 698.5 23.5 24.5 235.5 86.5 3669.5

TABLE II
PERFORMANCE OF TERMINAL ELEMENTS EXTRACTION, AUTOMATA-BASED PARSING AND SIMPLE PARSING.

Fig. 8. Time of ‘parsing I’ (in blue) and ‘parsing II’ (in red) in dependence
on the number of terminal elements.

Fig. 8 shows how parsing time depends on the number of
terminal elements. To plot the graph, we created own PDF
pages of type (ii) with varying number of characters. We see
that ‘parsing I’ scales much more better than ‘parsing II’.

IV. CONCLUSION

We have established a subclass of 2D context-free grammars
and verified that the grammar is sufficiently expressive towards
logical layouts of documents. We have proposed a top-down
parsing algorithm over freely-spaced terminal elements. Al-
though we have not presented any polynomial time guarantees
on its time complexity, we have demonstrated that it is very
stable and efficient in practice as it benefits from strongly
discriminative rules for finding branching points, implemented
via nondeterministic finite-state automata. As a future work,
the grammar can be evaluated in a context of other domains or
extended to a stochastic version to suit needs of noisy inputs.

ACKNOWLEDGMENTS

D. Průša was supported by the Czech Science Foundation
under grant number 16-05872S. A. Fujiyoshi was supported
by JSPS KAKENHI Grant Number JP26282044.

REFERENCES

[1] A. Lemaitre, H. Mouchère, J. Camillerapp, and B. Coüasnon, “Interest
of syntactic knowledge for on-line flowchart recognition,” in 9th IAPR
International Workshop on Graphics Recognition, 2011. GREC 2011,
2011, pp. 85–88.

[2] F. Álvaro, J.-A. Sánchez, and J.-M. Benedı́, “Recognition of on-line
handwritten mathematical expressions using 2D stochastic context-free
grammars and hidden Markov models,” Pattern Recognition Letters,
vol. 35, no. 0, pp. 58 – 67, 2014, frontiers in Handwriting Processing.

[3] F. Álvaro, F. Cruz, J.-A. Sánchez, O. Ramos Terrades, and J.-
M. Benedı́, “Structure detection and segmentation of documents
using 2D stochastic context-free grammars,” Neurocomputing, vol.
150, no. PA, pp. 147–154, Feb. 2015. [Online]. Available: http:
//dx.doi.org/10.1016/j.neucom.2014.08.076

[4] S. Mao, A. Rosenfeld, and T. Kanungo, “Document structure analysis
algorithms: a literature survey,” in Proc. SPIE, vol. 5010, 2003, pp.
197–207. [Online]. Available: http://dx.doi.org/10.1117/12.476326

[5] P. Liang, M. Narasimhan, M. Shilman, and P. Viola, “Efficient geometric
algorithms for parsing in two dimensions,” International Conference on
Document Analysis and Recognition, pp. 1172–1177, 2005.

[6] D. Younger, “Recognition of context-free languages in time n3,” Infor-
mation and Control, vol. 10, pp. 189–208, 1967.

[7] J. Earley, “An efficient context-free parsing algorithm,” Commun.
ACM, vol. 13, no. 2, pp. 94–102, Feb. 1970. [Online]. Available:
http://doi.acm.org/10.1145/362007.362035

[8] M. Schlesinger and V. Hlaváč, Ten lectures on statistical and structural
pattern recognition, ser. Computational Imaging and Vision. Dordrecht,
The Netherlands: Kluwer Academic Publishers, 2002, vol. 24.

[9] M. Tomita, Parsing 2-Dimensional Language. Boston, MA: Springer
US, 1991, pp. 277–289. [Online]. Available: https://doi.org/10.1007/
978-1-4615-3986-5 18

[10] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan, “Syntactic
segmentation and labeling of digitized pages from technical journals,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, no. 7, pp. 737–747, Jul 1993.

[11] T. A. Tokuyasu and P. A. Chou, “Turbo recognition: a statistical
approach to layout analysis,” in Proceedings of SPIE Conference on
Document Recognition and Retrieval, San Jose, CA, USA, Jan 2001.

[12] “PDF/UA Competence Center,” https://www.pdfa.org/working-group/
pdfua-competence-center/.

[13] “DAISY consortium,” http://www.daisy.org/.
[14] “EPUB,” http://idpf.org/epub/.
[15] “PDFBox,” https://pdfbox.apache.org/.
[16] A. Meduna, Automata and Languages: Theory and Applications.

Springer Verlag, 2005.
[17] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM

Journal on Computing, vol. 1, no. 2, 1972.
[18] J. Holub and B. Melichar, “Implementation of nondeterministic finite

automata for approximate pattern matching,” in Revised Papers from the
Third International Workshop on Automata Implementation, ser. WIA
’98. London, UK: Springer-Verlag, 1999, pp. 92–99.

[19] “PDF parser web page,” http://cmp.felk.cvut.cz/∼prusapa1/pdf-parser.
html.

[20] “Driving licence test, State of Hawaii, Department of
Transportation,” http://hidot.hawaii.gov/highways/files/2013/01/
mvso-Practice-Test-Q-A-Part-1.pdf.

[21] “PDF Primer - Whitepaper, PDF-tools.com,” https://www.pdf-tools.com/
public/downloads/whitepapers/Whitepaper-PDF-Primer-EN.pdf.

[22] Elementary school textbooks in Japanese language. Mitsumura Tosho
Publishing Co., Ltd., 2015.

[23] “T. Poulsen: Introduction to Chemistry, CK-12 Foundation,” http://
openedgroup.org/books/Chemistry.pdf.

112511251125112511251125

	Introduction
	Background
	Structural analysis
	Min-sum labeling problem
	Two-dimensional grammars

	Contributions
	Universality of min-sum problem LP relaxation
	Binary min-sum problem
	Properties of two-dimensional context-free grammars
	Regular-like two-dimensional grammars

	References
	Included Publications

