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Abstract 

 

This interdisciplinary habilitation thesis is focused on the design of the feasible algorithms and 

analytical methods based on digital signal processing and advanced statistical analysis that are 

sensitive to capture pathological speech changes from very early stages of Parkinson’s disease. 

Using objective acoustic analysis, we revealed distinctive speech impairment in patients with 

prodromal Parkinson’s disease, newly diagnosed Parkinson’s disease and atypical parkinsonian 

syndromes. Our findings suggest that automated vocal analysis may contribute to screening and 

diagnostic procedures to identify subjects at high risk of developing Parkinson’s disease and 

related neurodegenerative disorders. 

 

Anotace 

 

Cílem této multidisciplinární habilitační práce je návrh vhodných algoritmů a analytických 

metod pro analýzu řeči založených na digitálním zpracování signálu a pokročilé statistické 

analýze, které budou dostatečně sensitivní a umožní zachycení patologických změn v řeči od 

velmi brzkých stádiích Pakinsonovy nemoci. S využitím objektivních metod akustické analýzy 

byla odhalena specifická forma řečové poruchy u pacientů s prodromální Pakinsonovou 

nemocí, nově diagnostikovanou Pakinsonovou nemocí a atypickými parkinsonskými 

syndromy. Tyto nálezy naznačují možnost využití automatické analýzy hlasu pro screeningové 

a diagnostické testy, které by umožnily identifikovat osoby ohrožené rozvojem Pakinsonovou 

nemocí a dalších extrapyramidových onemocnění.  
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General motivation regarding objective acoustic speech analyses 

 

The ability to speak is very important for our daily life. The population of urban areas requires 

communication for their employment and common social life. Thus communication disorders 

have a strongly negative impact on such affected persons. Concerning people with 

communication disorders, the cost of care, as well as the following degradation of employment 

opportunities, has a major impact on the national economy. These circumstances indicate that 

communication disorders are one of the major medical challenges in the 21st century and that 

there is an urgent need for a reliable and cost-effective tools for quantifying and identification 

of specific speech deviations. 

 Speech is the most complex human motor skill, created by the coordinated actions of 

about 100 muscles. Speech production requires the integrity and integration of numerous 

activities such as speech planning and programming, cognitive-linguistics processes, and 

neuromuscular execution. Therefore, it is not surprising that the complexity of the act such as 

speech can be extremely sensitive to central nervous system diseases. Speech changes can be 

the only pathological manifestation in the early evolution of neurological disorder and 

sometimes represent the only significant neurological impairment. Therefore, identification of 

specific deviant speech characteristics can provide important clues about the underlying 

pathophysiology and localization of neurological diseases. Speech may also serve as a valuable 

marker of treatment efficacy, disease progression or even disease severity. 

 Acoustic analyses can help us conquer these challenges. Vocal, acoustic analyses are 

based on the digital signal processing of acoustic speech signal obtained from the microphone 

and represent a relatively novel assessment approach for speech disorders that holds promise in 

identifying a reliable, cheap, valid, and easy to administer biomarker of neurological disease. 

Indeed, this approach has received support across a rapidly growing number of studies.  

Multidisciplinary research regarding speech disorders in neurodegenerative disorders 

requires the involvement of several scientific fields such as neuroscience, digital signal speech 

processing, and linguistics. Likely in this regard, the fact that recognition of speech changes 

can contribute to disease diagnosis and management is not widely recognized and taken 

advantage by practitioners in medicine or speech-language pathology. Our interdisciplinary 

approach unifies knowledge from several scientific perspectives and provides a fully automated 

solutions to obtain quantitative and transparent markers of neurodegeneration. 
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1. Introduction 

 

Parkinson’s disease (PD) is a neurodegenerative disorder with pathological deposits of α-

synuclein gradually spreading through peripheral and central nervous system. According to 

theory by Braak, α-synuclein aggregates are advancing along uniform predisposed pathways 

from the olfactory bulb and gut nerve plexus, to the brainstem and in the final stage also to the 

cerebral cortex [1]. Aggregated α-synuclein is toxic to affected cells ultimately leading to the 

loss of neuronal populations, notably of dopaminergic neurons in the substantia nigra, which is 

the direct cause of principal motor manifestations including bradykinesia, rigidity, and resting 

tremor [2]. The incidence of PD is estimated to be 1.8% in persons older than 65 years of age 

[3]. Neuroprotective treatment of neurodegenerative diseases such as PD is a strategic priority 

due to the increasing economic burden of prolonged life expectancy [4]. However, there is 

currently no treatment to halt or slow the progression of PD. Pharmacotherapy and 

neurosurgical interventions that are currently available only offer alleviation of certain 

symptoms. At the time of PD diagnosis, up to 50% of the neurons in the substantia nigra may 

be already irrecoverably damaged, and up to 80% of striatal dopamine has been depleted [5]. A 

major reason for the failure to develop disease-modifying therapy may be that the disease 

progresses for many years before the appearance of cardinal motor signs and then it is simply 

too late for intervention. Therefore, the early recognition of PD in prodromal stages has crucial 

implications for the future development of neuroprotective therapy [6,7]. 

Unfortunately, no sufficiently accurate biomarkers of preclinical PD are available that 

would allow early detection of PD to prevent the disease progression with potential 

neuroprotective therapies. In addition, no progression biomarker is available allowing to 

measure the effectiveness of experimental treatments on slowing the progression of PD. There 

are also no reliable means to identify people at high-risk for developing PD in the population. 

Thus, establishing a suitable biomarker would be a game-changing milestone that would impact 

diagnosis and future treatments of PD. Indeed, identification of potential biomarkers of 

prodromal PD, including early non-motor signs and markers of preclinical motor involvement, 

neuroimaging markers, and tissue biomarkers is becoming one of the most important topics in 

current PD-related research [8]. As motor abnormalities represent principal manifestations of 

PD, it is not surprising that impairments related to motor control appear to be a strong predictor 

of clinically manifest parkinsonism [7-9]. 

As the most complex human motor skill, involving more than 100 muscles, speech is a 

sensitive marker of damage to neural structures engaged in motor system control [10]. In fact, 

disorders of speech are among the most common clinical signs associated with PD. The vast 

majority of PD patients develop distinctive speech and voice abnormalities, collectively termed 

hypokinetic dysarthria, characterized mainly by the decreased quality of voice, hypokinetic 

articulation, hypophonia, monopitch, monoloudness and deficits in timing [11]. There is no 

doubt that speech disorder represents one of the earliest motor signs of PD. In the murine model 

of PD, ultrasonic vocalization deficits are among the first prodromal markers of motor 

dysfunction [12]. In humans, longitudinal voice changes in subjects at high risk for developing 

PD were estimated as the first motor signs which develop up to 10 years before the diagnosis, 

well before the appearance of rigidity, gait abnormalities and limb bradykinesia [9].  
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Thus, vocal assessment appears as an intriguing potential biomarker of PD and related 

neurodegenerations as it is inexpensive, non-invasive, simple to administer and can be 

performed remotely from the patients’ home. Furthermore, acoustic analyses of speech in PD 

can be fully automated. Since the recording and processing of human speech is an area with an 

extensive background of knowledge, monitoring speech changes represents an excellent 

candidate as a preclinical diagnostic and progressive biomarker of PD. 

 

2. State-of-the-art  
 

2.1.   Subjects at high risk for developing PD and other synucleinopathies 

 

Rapid eye movement sleep behavior disorder (RBD) is a parasomnia caused by a lesion in the 

locus coeruleus complex located in the pons characterized by dream-enactment behaviors 

associated with REM sleep without muscle atonia [13]. Idiopathic RBD is a prodromal marker 

of neurodegenerative synucleinopathies, particularly PD and dementia with Lewy bodies 

(DLB) and less frequently multiple system atrophy (MSA). Importantly, due to a underlying α-

synuclein pathology, a risk of developing neurodegenerative disease is extremely high (>80%) 

in subjects with RBD [14,15]. On the assumed pathway of α-synuclein spread, locus coeruleus 

is proximal to the substantia nigra, and symptoms of RBD precede parkinsonism. Therefore, 

research focused on RBD is essential for the development of neuroprotective therapy against 

synucleinopathy [7], as no other preclinical marker has comparable predictive value as RBD 

[16]. The high conversion rate of RBD to neurodegenerative disease provides a unique 

opportunity to study preclinical synucleinopathy, identify suitable preclinical biomarkers, and 

test disease-modifying therapies in the RBD group.  

  

2.2.   Atypical parkinsonian syndromes 

 

Atypical parkinsonian syndromes (APS) such as progressive supranuclear palsy (PSP) and 

MSA differ from PD by more widespread neuronal involvement, resulting in additional clinical 

signs, more rapid disease progression and poor response to dopamine replacement therapy [17]. 

PSP and MSA are the most common APS, with an estimated prevalence of 30−40 per 100,000 

among persons older than 65 years [17]. Characteristic clinical features of PSP include 

supranuclear gaze palsy, frequent falls, bradykinesia, axial rigidity, cognitive decline and 

communication disorders, reflecting widespread neurodegeneration involving the midbrain as 

well as the globus pallidus, striatum, hypothalamic nucleus, pons, superior cerebellar peduncle 

and cerebellar dentate nucleus [18]. Conversely, MSA manifests by various combinations of 

autonomic, cerebellar and parkinsonian features, corresponding to degeneration of the 

cerebellum, middle cerebellar peduncle, striatum, substantia nigra, inferior olivary nucleus and 

pons [19]. The underlying pathophysiology differs as PD and MSA are α-synucleinopathies 

while PSP is a tauopathy. However, the differentiation between PD and both PSP and MSA can 

be challenging as the initial signs are frequently nonspecific and overlap those of PD [18]. 

Accurate and early diagnosis is essential not only in assessing prognosis and making decisions 

regarding treatment but also for understanding the underlying pathophysiology and for the 

development of new therapies [20]. In the early stages of the disease, it is thus essential not 
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only to recognize between potential PD and healthy conditions but also between PD and 

different atypical parkinsonisms such as MSA and PSP. 

 

2.3.   Speech disorder in parkinsonism 

 

Speech disorder is a common clinical manifestation occurring in 70–100% of patients with PD, 

PSP and MSA [21-24]. While the majority of PD patients develop a clear form of hypokinetic 

dysarthria [21,22], PSP and MSA patients typically evolve mixed dysarthria with various 

combinations of hypokinetic, spastic and ataxic components [23,24] due to the involvement of 

the basal ganglia, corticobulbar pathways, and the cerebellum. Only a few studies provided 

accurate objective descriptions of dysarthria in APS by acoustic analyses [25-27]. In general, 

these studies shown that the impairment of specific speech dimensions is more pronounced in 

APS than in PD [26-27]. Speech velocity, maximum phonation time, intonation variability and 

articulation precision were reduced, and pauses were prolonged in PSP in comparison to PD 

[26-27], while MSA patients manifested voice perturbations and slow and variable alternating 

motion rates [25]. Evidence regarding the occurrence of speech disorders in prodromal stages 

of PD supported by objective analysis is very rare. Only one previous studies reported cases 

with reduced intonation variability detectable several years before the onset of the first PD 

motor symptoms [28].  

 

2.4.   Available technologies for acoustic assessment of speech disorder in PD 

 

Evaluation of dysarthria in PD is commonly performed by analysis of three types of vocal tasks. 

Those include sustained phonation, fast syllable repetition, and connected speech such as 

reading or monologue that can provide most of the information necessary for the objective 

description and interpretation of motor speech disorders [10]. Sustained phonation allows us to 

assess the regularity of vocal fold vibrations, fast syllable repetition measures the 

motor abilities of the speech articulators, and connected speech reflects a combination of 

speech-motor execution and cognitive-linguistic processing.  

Majority of previous findings were based upon speech recordings obtained using a 

professional condenser microphone. Objective analyses of PD utterances have been 

traditionally performed using computer programs. There are several software packages 

allowing detection of various speech-related features such as pitch, loudness, jitter, shimmer, 

cepstral coefficients, formants, voiced/unvoiced segments, etc. The most popular of them 

include freely-available Praat [29], and commercially-available Multi-Dimensional Voice 

Program (MDVP; KayPENTAX, Lincoln Park, NJ). Unfortunately, these software packages 

frequently require user control of the analysis procedure. Nevertheless, novel approaches 

continuously show that more sophisticated analyses are possible. Indeed, since analysis and 

processing of speech disorders in PD has become an attractive scientific discipline in recent 

years, there is a number of vocal characteristics and advanced linear and non-linear methods 

available with proven efficiency in separating healthy controls from PD (for review, see 

Brabenec et al. [30]). However, the most widely used automated methods currently available 

are focused on the assessment of dysphonia via functional paradigm of sustained phonation 

[30], while methods allowing to yield distinctive PD-related speech patterns from connected 
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speech are rather scarce. Yet, PD speech performance varies across the specific task performed 

and demanding paradigms such as spontaneous speech are more likely to elicit speech deficits 

[31]. In particular, previous studies have investigated PD speech characteristics mostly in more 

advanced stages of disease on dopaminergic medication [30], making it difficult to generalize 

these observations to prodromal or very early PD. Dopaminergic medication may significantly 

affect the speech itself [32], making it hard to distinguish whether the observed symptoms are 

caused by PD symptoms or drug effects. 

 

3. General aims of the thesis 

 

The presented cumulative thesis comprises 10 peer-reviewed journal papers [A1-A10] with the 

following aims: 
 

(i) To design the feasible algorithms and analytical methods that are sensitive and 

sufficiently accurate to capture pathological speech changes from very early stages of PD. 
 

(ii) To determine specific dysarthria patterns and characterize the speech disorder in 

prodromal PD, early untreated PD, PSP, and MSA. 
 

(iii) To estimate the reliability of speech assessment in differentiating between subjects at high 

risk for developing PD, patients with early PD, PSP patients, MSA patients, and heathy 

control speakers. 
 

(iv) To improve the knowledge in the neurobiology of speech production by providing greater 

insights into the pathophysiology of speech disorder in PD and related neurodegenerative 

disorders. 

 

4. General methods  

 
Figure 1 shows the general methods used in the speech neuroscience research via a schematic 

overview. Although the particular methods used for speech evaluation are always dependent on 

the aim of individual study, the general approach might be described in the following four steps: 

(1) selection of available population sample and defining the inclusion/exclusion criteria; (2) 

recording of the larger speech protocol including mainly three types of speaking tasks of 

sustained phonations, syllable repetitions, and connected speech; (3) investigation of different 

patterns of speech disorder using suitable acoustic features based on digital signal processing 

methods; (4) design of suitable statistical approach to achieve estimated goal.  

 

 

 



6 

 

4.1.   Research participants 

 

From 2007 to 2017, a number of patients with idiopathic PD, RBD, probable PSP, probable 

MSA as well as healthy control speakers has been recruited and investigated for the individual 

studies [A1-A10]. All de-novo PD patients were diagnosed based on the Parkinson’s disease 

Society Bank Criteria [33]. All RBD subjects were diagnosed with idiopathic RBD according 

to the International Classification of Sleep Disorders, third edition diagnostic criteria, including 

confirmation of REM sleep without atonia by polysomnography [34]. The diagnosis of PSP 

was established by the NINDS-PSP clinical diagnosis criteria [35], and MSA according to 

consensus diagnostic criteria for MSA [36]. All diagnoses were done by neurologists with 

experience in movement disorders. The healthy controls were without a history of neurological 

or communication disorders. All studies [A1-A10] were approved by the Ethics Committee of 

the General University Hospital, Prague, Czech Republic and all participants provided written, 

informed consent. 

All PD patients were consecutively recruited at their first visit to the clinic and were 

examined before symptomatic treatment was started. No PD or RBD patient had a history of 

therapy with antiparkinsonian medication. None of the RBD participants subjectively 

complained of the motor or cognitive difficulties. In the PSP and MSA groups, medication 

consisted of various doses of levodopa alone or in combination with different dopamine 

agonists and/or amantadine. None of the patients received antipsychotic therapy. All PD and 

RBD patients were scored according to the motor score of the Movement Disorder Society–

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III, ranging from 0 to 132, with 0 for 

no motor manifestation and 132 representing severe motor disturbance) [37] or the previous 

 
 

Figure 1: Schematic overview of general methods applied to evaluate motor speech disorders. 
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version of the UPDRS III (ranging from 0 to 108) [38]. PSP and MSA patients were rated by 

the natural history and neuroprotection in Parkinson plus syndromes–Parkinson plus scale 

(NNIPPS) [39]. Speech item of the respective scale was used for the perceptual description of 

speech severity (ranging from 0 to 4, with 0 representing normal speech and 4 indicating 

unintelligible speech). 

 

4.2.   Speech recording 

 

Speech recordings were performed in a quiet room with a low ambient noise level using a 

professional head-mounted condenser microphone. The signals were sampled at 48 kHz with 

16-bit resolution. Recordings were obtained during one session with a speech specialist who 

conveyed instructions to the subjects. There were no time limits during the recordings. All 

participants were asked to repeat their performance at any time if they or the examiner were not 

fully satisfied with their initial attempt.  

Every participant underwent speech examination including various speaking tasks as a 

part of the larger protocol not exceeding 20 minutes. Investigation protocol consisted of various 

kind of speaking tasks including mainly three types: (a) sustained phonation of the vowel as 

long and stable as possible repeated two times, (b) fast repetition of syllables per one breath 

repeated two times, (c) connected speech including reading of standardized passage composed 

of 80 words and a monologue lasting at least 2 minutes on given topics including family, work, 

childhood or interests. Most of the speaking tasks were recorded twice to provide greater 

stability of speech assessment. 

 

4.3.   Acoustic analysis 

 

The speech characteristics were particularly examined using free-available program Praat [29] 

or original algorithms developed in Matlab© (Mathworks, Massachusetts, USA). We 

quantitatively analyzed key dimensions of hypokinetic, spastic and ataxic dysarthria using most 

common aspects including subtests on phonation, articulation, and prosody. 

As an example, regarding phonation, we focused on the evaluation of harsh voice using 

features like jitter, shimmer, harmonics-to-noise ratios, and others to quantify effect of 

dysarthria on voice quality (Figure 2A). In addition, dysarthria can be associated with excess 

fundamental frequency (F0) variations, strained-strangled voice or pitch breaks (Figure 2B). 

Concerning articulation, the first and second formant frequencies (F1, F2), their centralizations, 

and vowel space area represent the most widely used measurements; reduced vowel space area 

typically occur during imprecise vowel articulation in PD patients (Figure 2C). The most 

common deviations in dysarthrias that appear during prosody include reduced loudness, 

alterations in pitch, mono-loudness, and reduced intonation (Figure 1D). PD speakers also 

widely manifest different abnormalities in speech timing such as slow/variable rate or 

inappropriate silences, or changes in alternating motion rates affecting the length of consonants 

and vowels (Figure 1E). These aspects can be evaluated using features extracted using speech-

pause detectors. 
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4.4.   Statistical analysis 

 

Individual parameters were typically first assessed using the Kolmogorov-Smirnov test for 

testing the normality of data distribution. Based on the character of results, alternative 

parametric or non-parametric tests were selected. For normally distributed data, we used the t-

test or analysis of variance to assess group differences and Pearson analysis to search for 

correlations between variables. In case of non-normally distributed data, the Mann Whitney U 

test or Kruskal-Wallis were used to determine group differences and Spearman correlation to 

search for relationships.  The minimal level of significance was always set as p < 0.05, mostly 

corrected with appropriate Bonferroni’s adjustment. We also applied the sophisticated machine 

learning methods such as logistic regression, support vector machine, Wald task, k-means EM-

algorithm and many others, as necessary. The validity of the obtained results (e.g., 

sensitivity/specificity) through classifiers were always based upon appropriate cross-validation 

scheme. 

 

 

 
 

Figure 2. Example of acoustical signals and methods for evaluation of motor speech 

disorders: (A) harsh voice, (B) pitch break, (C) vowel space area, (D) intonation curves, (E) 

voice onset time and vowel length. 
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5.   Discussion of main findings and potential impact of the thesis 

 

5.1. Automated assessment of speech disorders in PD via acoustic analyses is possible 

 

Until recently, the methods of objective monitoring of speech were limited to perceptual tests, 

with a limited accuracy depending on the examiner’s skill. Most of methods enabling the 

objective evaluation of different patterns of dysarthria in PD are semi-automatic and require 

hand-labelling, or at a minimum, user control of the analysis procedure. Such hand-labelling is 

considerably time-consuming and requires an experienced investigator. Therefore, there is a 

general need for reliable, cost-effective and automatic methods allowing the precise and 

objective assessment of various speech patterns in neurodegenerative disorders. Increasing 

computational power has enabled a higher level of automation in speech assessment. However, 

most effort has been put into the automatic investigation of dysphonic features of dysarthria in 

PD through the sustained phonation task [30]. 

 Therefore, we firstly developed the software package of traditional and non-traditional 

automated methods based on the digital signal processing of audio speech recordings allowing 

us to describe complexly multidimensional speech impairment in PD [A1]. PD speech 

measurement included fundamental frequency, perturbation measures, articulation rate, pause 

characteristics, intensity, diadochokinetic rate and regularity, formant frequencies, rhythm and 

several new methods for assessment of articulatory skills. Subsequently, we designed a novel, 

reliable automatic approach for the precise estimation of articulatory deficits in PD based on 

rapid, steady repetition of syllables [A5]. All phonemes of /pa/-/ta/-/ka/ syllables were first 

manually labelled. Based on these phoneme boundaries, 13 features describing six different 

articulatory aspects of speech including vowel quality, coordination of laryngeal and 

supralaryngeal activity, the precision of consonant articulation, tongue movement, occlusion 

weakening, and speech timing were analysed. Designed algorithm reached approximately 80% 

accuracy for a 5 ms threshold to detect correct phonemes boundaries. Finally, we developed a 

fully automated method that yields significant features related to respiratory deficits, dysphonia, 

imprecise articulation and dysrhythmia from the natural connected speech [A9]. A total of 200 

randomly chosen recordings including both reading passages and monologues across PD, RBD, 

and healthy subjects was labeled blindly without awareness of segmentation output. The 

performance of the segmentation algorithm was evaluated for pause and respiration detection 

independently using these hand labels. The pause detection of our algorithm reached a very 

high accuracy of 86.2% and substantially outperformed conventional methods. Based on this 

segmentation approach, we designed 12 acoustic features allowing the assessment of all basic 

subsystems of connected speech including timing, articulation, phonation, and respiration.  

Recent advances in semi-automated and automated methods of mathematic analysis of 

speech thus represent a significant breakthrough. They have become possible thanks to the 

advances in computer engineering and to a multifold increase in computational power that is 

approaching the target point of online analysis and differentiation of abnormal speech patterns. 

Shortly, when novel therapies appear to address the biological substrates of neurodegeneration, 

the fate of patients with PD and related neurological diseases may substantially change if 
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diagnostic markers are available, allowing to identify respective diseases in their prodromal 

phases. Automated speech analysis can thus become the most readily tool to recognize 

neurodegeneration in its earliest stage allowing for early initiation of effective therapy. Already 

in today’s clinical practice, objective measures of speech can help to precisely evaluate the 

severity of speech impairment and moreover, they may serve as surrogate disease markers, 

helping to estimate the extent of overall patients’ disability as well as to monitor the effects of 

therapy and rate of disease progression.  

 

5.2. Multidimensional speech impairment is already detectable in the majority of PD 

patients at the time of diagnosis 

 

The vast majority of previous evidence regarding speech disorders in PD was based on middle 

to the advanced stage of the disease and with different duration and doses of dopaminergic 

treatment [29]. However, the severity of speech disorder in PD increases with disease 

progression and certain speech deficits develop later in the course of the disease. In addition, 

dopaminergic medication can significantly influence the speech performance. 

Therefore, we extensively explored the nature of speech and voice disorders in de-novo, 

untreated PD [A1-A5]. We showed that hypokinetic dysarthria is a multidimensional 

impairment affecting all different aspects of speech including phonation, articulation, and 

prosody with an unequal proportion and severity of speech patterns across individual PD 

patients [A1]. This research showed that 78% of early untreated PD patients indicated some 

form of speech impairment and highlighted that speech and voice disorders in PD are of a 

complex nature, suggesting importance to study all speech subsystem instead of focusing on a 

single one. Unlike the previous study based on a large sample of PD speakers documenting 

phonatory deficits as the most common sign [22], we revealed reduced melody as the most 

affected aspect of hypokinetic dysarthria. Further research confirmed that acoustic analyses are 

able to differentiate healthy speakers from de-novo PD patients with over 80% accuracy based 

upon three fundamental speaking tasks including sustained phonation, fast syllable repetition 

and running speech [A2]. Another study explored the suitability of imprecise vowel articulation 

as a possible early marker of PD [A3]. We performed a formant analysis of approximately 2800 

vowels across different speech tasks including sustained phonation, short sentences, reading 

passage, and monologue. Imprecise vowel articulation was presented even in early stages of 

PD. Moreover, we found a significant effect of speaking task on vowel articulation performance 

in PD, suggesting that spontaneous speech is more likely to elicit acquired articulatory deficits 

in parkinsonian dysarthria. Since reduced stress is considered as one of the most deviant speech 

dimension in PD and its objective investigation was largely sparse, subsequent study 

investigated the vocal expression of stress in PD [A4]. We performed quantitative acoustic 

analysis of the sentences with unnaturally emphasized words including measurements of pitch, 

intensity, and duration as well as a newly designed measure called stress pattern index. We 

revealed that reduced stress is a distinctive pattern of early hypokinetic dysarthria. Our findings 

highlighted the importance and relevance of the introduction of speech therapy, as PD patients 

were able to consciously improve their speech performance during the investigated task. 

Finally, we designed a new reliable automatic approach for the precise estimation of articulatory 

deficits based on rapid, steady repetition of /pa/-/ta/-/ka/ syllables [A5]. Based on this approach, 
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we achieved the best classification accuracy of 88% in separating between PD and healthy 

subjects. We found prolonged voice onset time as the most powerful indicator of hypokinetic 

dysarthria. 

 These above-mentioned studies provided large evidence for speech and voice disorders 

in early-stage PD speakers prior to dopaminergic treatment. In general, results highlighted that 

specific speech changes due to PD may have the potential to contribute to existing assessment 

batteries for early detection of speech impairment and monitoring the disease progression and 

treatment efficacy.  

 

5.3.  Speech disorder allows discrimination between PD, PSP, and MSA 

 

The previous research on PSP and MSA was mainly limited to estimation of type and severity 

of dysarthria, whereas little effort has been previously put into the investigation of complex 

speech impairment across specific dysarthria patterns [23,24]. A direct, objective comparison 

between individual speech patterns in PSP and MSA patients has not been performed, and 

distinctive speech markers that would be suitable for the differentiation of various forms of 

parkinsonism remained generally unknown. 

Our results showed that the speech disorder reflects the underlying neuropathology of PD 

and APS [A6]. Dysarthria was uniformly present in all patients with PSP and MSA and 

generally consisted of a combination of hypokinetic, spastic and ataxic components, whereas 

PD patients manifested pure hypokinetic elements. In comparing PSP and MSA, in addition to 

hypophonic monotony of parkinsonian speech, dysarthria in our PSP patients was dominated 

by increased dysfluency, decreased slow rate, inappropriate silences, deficits in vowel 

articulation and harsh voice quality, whereas patients with MSA more frequently manifested 

pitch fluctuations, excess intensity variations, prolonged phonemes, vocal tremor and strained-

strangled voice quality. Objective speech measurements were able to discriminate between APS 

and PD with 95% accuracy (93 % sensitivity and 100% specificity) and between PSP and MSA 

with 75% accuracy (74% sensitivity and 81% specificity). Another study attempted to clarify 

potential differences in consonant articulation deficits of both voiced and voiceless plosives 

between PD and APS [A8]. We found prolonged voiceless plosives as a common pattern in 

parkinsonism, confirming the critical role of basal ganglia circuit involvement in articulatory 

undershoot of stop consonants. Furthermore, we revealed that voiced plosives were shorter only 

in MSA, while nearly intact in PD and PSP. Since the extent of disruption of voiced plosives in 

MSA correlated with clinical severity of cerebellar involvement, the alteration in voiced 

consonant duration may represent a novel marker of cerebellar atrophy. 

The relevance of these observations to the neurobiology of language and clinical practice 

is imminent. Careful evaluation of distinct speech characteristics may be diagnostically helpful 

in distinguishing between diseases with similar clinical manifestations but differing underlying 

brain pathophysiology. Moreover, a better understanding of processes underlying speech 

involvement is essential for optimization of treatment strategies as well as speech therapy 

improving the quality of patients' life. 
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5.4. Speech abnormalities indicate prodromal neurodegeneration in patients with high 

risk of developing PD 

 

Our previous research showed that detailed voice analysis could differentiate newly diagnosed, 

untreated PD patients from controls with over 80% accuracy [A2]. Identification of different 

patterns of vocal disorder in the preclinical course of PD neurodegeneration has been severely 

restricted. The only study to track voice and face changes in prodromal parkinsonism did note 

that these appeared to be the first motor signs to develop [16]. However, this research used a 

very simple and crude analysis of voice and face changes using a subjective 4-point rating scale. 

 Based upon a quantitative acoustic assessment of 15 speech dimensions, we were the 

first to describe the presence of speech impairment in RBD [A7]. Speech disorder was already 

observed in 14 from 16 investigated RBD subjects and was detectable with a sensitivity of 96% 

and specificity of 79% when compared to healthy speech. Interestingly, when we applied this 

consolidated methodology to de-novo PD, we were able to achieve prediction of hypokinetic 

dysarthria with 99% sensitivity and 88% specificity. Since RBD is considered as a prodromal 

stage of parkinsonism, we may assume that observed speech abnormalities represent prodromal 

markers of neurodegeneration. In the subsequent study, automated analysis of connected speech 

revealed similar speech timing deficits in independent cohorts of 50 RBD and 30 de-novo PD 

patients [A9]. The main speech abnormalities found in RBD were prolonged duration of pauses, 

longer length of stop consonants and decreased rate of switching between follow-up speech 

segments. The values of these speech timing measures in RBD intermediated between those of 

de-novo PD patients and healthy controls, indicating a certain independence of speech disorder 

on parkinsonian phenotype. In general, speech disorders were more prominent in RBD subjects 

with higher motor scores on the Movement Disorder Society-sponsored revision of the Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) [A7,A9], suggesting that speech impairment 

partially parallels increasing motor disability due to the underlying neurodegenerative process. 

 Very recent subsequent research showed that the detection of speech abnormalities in 

persons at high risk of developing PD and related disorders is possible even via a smartphone 

[A10]. Acoustic measures reflecting the reduced melody, increased duration of pauses, and 

slower rate of speech timing extracted from the spontaneous speech were sufficiently sensitive 

to significantly separate PD, RBD, and healthy control groups (area under curve of 0.85 

between PD and controls and 0.69 between RBD and controls) and showed very strong 

correlation and reliability between the professional microphone and smartphone. Since the 

ability of a smartphone to capture prodromal speech impairment has never been previously 

investigated, these novel findings may provide considerable advantages for clinical practice as 

well as in future research. The smartphone allows easily and inexpensively increase the number 

of longitudinal vocal samples, which is critical not only for researchers performing traditional 

laboratory-based analyses but also for pharmaceutical companies developing drugs to treat 

disorders affecting motor speech performance such as in PD. Quick, inexpensive, and non-

invasive vocal assessment by smartphone may help in the recruitment of appropriate cases into 

large studies of innovative therapies for prodromal PD and in the future may also bolster early 

presymptomatic diagnosis of PD and enable rapid access to neuroprotective therapy once it is 

available. 
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6.   Conclusion 

 

Figure 3 shows the summary of main findings via a schematic overview. 

 
 

Figure 3: Schematic overview of the evolution of habilitation thesis over time and 

interconnection of individual papers [A1-A10] to the unified topic. 
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6.1.  General contribution of the thesis 

 

The main contribution of the research, hereby disclosed as the habilitation thesis, can be 

summarized into four points according to the general aims: 
 

(i) We developed novel automated methods and methodological approaches allowing us to 

assess key aspects of (not only) hypokinetic dysarthria across a wide range of disease 

severities and fundamental speaking tasks such as sustained phonation, fast syllable 

repetition, and connected speech. We also showed that several features seem to be 

sufficiently independent on the quality of the microphone and can be potentially used in 

future monitoring through a smartphone. 
 

(ii) We showed that newly diagnosed PD patient might already manifest multidimensional 

speech impairment affecting all speech subsystems including phonation, articulation, and 

prosody. Specifically, we found that early PD patients manifest reduced intonation, 

imprecise vowel and consonant articulation, harsh voice, monoloudness, inappropriate 

silences, decreased speech rate, and overall reduced stress patterns. While PD speakers 

manifested pure hypokinetic dysarthria, ataxic components such as pitch fluctuations, 

excess intensity variations, prolonged phonemes and vocal tremor were more affected in 

MSA. PSP subjects demonstrated severe hypokinetic and spastic components of 

dysarthria with distinctive patterns such as slow rate and dysfluency. In patients with 

RBD that represent a prodromal stage of parkinsonism, we already found slightly affected 

speech performance that intermediated between those of de-novo PD patients and healthy 

controls. The main speech abnormalities in RBD were similar to those in de-novo PD and 

included mainly reduced intonation, decreased rate of speech timing, and inappropriate 

silences. 
 

(iii) Using our developed speech-based methods, we were able to separate newly diagnosed, 

untreated PD patients from healthy controls with up to 99% sensitivity and 88% 

specificity. Subsequently, speech measurements differentiated between APS and PD with 

93 % sensitivity and 100% specificity and between PSP and MSA with 74% sensitivity 

and 81% specificity. Finally, we achieved 96% sensitivity and 79% specificity in 

discriminating between RBD subjects and healthy controls. 
 

(iv) Based on a large cohort of RBD speakers and objective acoustic analyses, we provided 

strong evidence that speech impairment evolves from prodromal stages of PD and 

partially parallels increasing motor disability due to the underlying neurodegenerative 

process. Based upon investigation of APS, our results confirmed the distinctive critical 

role of basal ganglia and cerebellar control circuit involvement in articulatory undershoot 

of voiced and voiceless plosives. 

 

From a practical point of view, among potential use in early and differential diagnosis, accurate 

evaluation and monitoring of speech abnormalities in PD may be helpful in the assessment of 

treatment efficiency, providing feedback to patients during speech therapy or assist clinicians 

in making different management decisions.  
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From an educational point of view, this research offered successful involvement of 

several doctoral and undergraduate students within their Ph.D. and diploma theses. The data 

collected within the habilitation thesis were used for practical educational purposes during two 

subjects including Biological Signals and Experimental Data Analysis. Also, data were used to 

propose challenging topics for students’ semestral projects and contests related to Biosignal 

Challenge.   

 This interdisciplinary research also strengthened established collaboration between 

experts from various disciplines (signal processing, neuroscience, linguistics) and helped to 

establish new international partnerships.  

 

6.2.  Future work 

 

There are several important goals related to the investigation of speech disorder in early PD that 

remained to be solved in future research: 
 

(i) Fully automated algorithms for a description of several important speech dimensions 

associated with hypokinetic dysarthria such as dysfluency, imprecise vowel articulation 

or reduced stress have yet to be developed. 
  

(ii) Majority of previous algorithms were tested only using speech recordings collected in 

common clinical environment with a low ambient noise level. In future, it is necessary to 

perform a test of the robustness of available speech features against noise and decide 

about the possibility of their inclusion in smartphone-based monitoring. In addition, the 

robustness of already existing methods for analysis of speech disorder could be further 

improved. 
 

(iii) In clinically confirmed PD, it is likely that specific speech abnormalities are markers of 

distinct disease phenotypes. It remains to be proven whether the distinct variants of 

speech disorders in PD are consistent enough and to verify their predictive value for the 

development of individual disease phenotypes, with future potential clinical implications 

for prediction of the disease progression, response to medication, or late-stage 

complications.     
 

(iv) The speech abnormalities seen in idiopathic RBD were not identical with those observed 

in PD, suggesting RBD to be a specific PD phenotype. It is therefore essential to assess 

various speech abnormalities in RBD and compare them to those of PD with and without 

the presence of RBD as well as to explore the relationships between speech aspects and 

other clinical and MRI markers. 
 

(v) The predictive value of speech abnormalities in prodromal PD need to be established in 

further prospective follow-up. It is necessary to answer the question such as “How long 

before the formal diagnosis of PD can speech changes be identified with good 

sensitivity/specificity”. 
 

(vi) The previous findings were based mainly upon investigation of speech in the Czech 

language. Therefore, in collaboration with foreign experts, it is necessary to reproduce 
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these findings in an independent population, preferably with speakers of different 

languages. 
 

(vii) It is necessary to expand the current research team and continuously involve new Ph.D. 

as well as undergraduate students in the solution of ongoing projects within this research 

field.  
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An assessment of vocal impairment is presented for separating healthy people from persons with

early untreated Parkinson’s disease (PD). This study’s main purpose was to (a) determine whether

voice and speech disorder are present from early stages of PD before starting dopaminergic phar-

macotherapy, (b) ascertain the specific characteristics of the PD-related vocal impairment, (c) iden-

tify PD-related acoustic signatures for the major part of traditional clinically used measurement

methods with respect to their automatic assessment, and (d) design new automatic measurement

methods of articulation. The varied speech data were collected from 46 Czech native speakers, 23

with PD. Subsequently, 19 representative measurements were pre-selected, and Wald sequential

analysis was then applied to assess the efficiency of each measure and the extent of vocal impair-

ment of each subject. It was found that measurement of the fundamental frequency variations

applied to two selected tasks was the best method for separating healthy from PD subjects. On the

basis of objective acoustic measures, statistical decision-making theory, and validation from prac-

ticing speech therapists, it has been demonstrated that 78% of early untreated PD subjects indicate

some form of vocal impairment. The speech defects thus uncovered differ individually in various

characteristics including phonation, articulation, and prosody.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3514381]

PACS number(s): 43.70.Dn [MAH] Pages: 350–367

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative

disorder characterized by the progressive loss of dopaminer-

gic neurons in the substantia nigra.1 PD is associated with

dopamine deficiency and other affections of the brain neuro-

mediator systems and accounts for a variety of motor and

non-motor deficits.

PD is the second most common neurodegenerative dis-

order after Alzheimer’s disease,2 affecting over 1 million

people in North America alone.3 Previous studies suggest

that PD usually affects people after the age of 50 yr; only

approximately 10% of patients report symptoms before the

age of 40 yr.4 Moreover, PD is estimated to affect 1.6% of

persons over the age of 65 yr.5 Age is also the single most

important factor for PD,with genetic predisposition second.3

As a result, the statistics for the number of affected persons

are expected to increase in proportion with the overall aging

of the worldwide population as a whole.6

In addition to the most ostensible motor symptoms such

as resting tremor, bradykinesia, muscular rigidity, and pos-

tural instability, many patients with PD develop non-motor

deficits such as disorders of mood, behavior, and cognition

and a distinctive alteration of speech characterized as hypo-

kinetic dysarthria.7,8

Previous studies report that approximately 70%–90% of

patients with PD show some form of vocal impairment,9,10

and this deficiency may also be one of the earliest indicators

of the disease.11,12 Medical treatment, including neuro-phar-

macological and neurosurgical methods, alleviates certain

symptoms, but there is no causal cure now available, and early

diagnosis of the disease has a vital role in improving the

patients’ live.13,14 Research has shown that medical therapies

alone are not as effective for treating speech symptoms as they

are for motor functions,15 and the effect of medical treatment

on speech production tends to be individual.16–18 Furthermore,

only 3%–4% of PD patients receive speech therapy.19 Behav-

ioral speech therapy, including intensive voice treatment,

appears to be the most effective type of speech intervention in

the early and moderate stage of PD at present.15,20 However,

the requisite physical visit to the clinic for treatment is difficult

and burdensome for many PD patients,21 and the reduced abil-

ity to communicate is considered to be one of the most diffi-

cult aspects of the disease.15

Acoustical voice analyses and measurement methods

might provide useful biomarkers for the diagnosis of PD in

the early stage of the disease,22 for possible remote monitor-

ing of patients,23 but above all, for providing important feed-

back in voice treatment for clinicians or patients themselves.

a)Author to whom correspondence should be addressed. Electronic mail:

ruszjan@fel.cvut.cz
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For adult subjects, methods enabling the assessment of the

speech impairment progress and the performance of the

acoustic feedback tests can be essential for stimulating moti-

vation and willingness for speech therapy. Acoustic meas-

urements can also improve the individual treatment16 and

thus partially alleviate the inconvenience and cost of physi-

cal visits.24 Moreover, voice measurement is non-invasive,

cheap, and simple to administer.

The ability to speak can be subdivided into several

dimensions, including respiration, phonation, articulation,

and prosody.25 The most salient features of PD are related to

phonatory impairment, with the articulation being the second

most affected speech subsystem,10,26,27 although patients

with PD can manifest abnormalities related to all of the

dimension of speech, including monopitch, monoloudness,

imprecise articulation, variability of speech rate, reduced

stress, hoarseness, speech disfluencies, inappropriate silence,

and others.25,28 There are many voice and speech tests that

have been devised to assess the extent of these symptoms

including vocal recordings of sustained phonations, rapid syl-

lable repetitions, and variable reading of sentences or freely

spoken monologs. The speech signals are then commonly an-

alyzed using several traditional measurement methods, which

include sound pressure level, fundamental frequency, formant

frequencies, speech rate, rhythm, and others.28 A number of

previous studies have used these methods to separate PD suf-

ferers from a healthy control (HC) group, indicating that

these standards could be useful measures in assessing the

extent of vocal impairment, note, for example, Refs. 29–31.

In reality, however, the reliability and robustness of

sound recording and measurement methods are impeded by

several confounding issues including variables of physical

condition and personal characteristics of the subject, such as,

for example, gender and age. Thus the measurement methods

performed on various vocal recordings should be chosen with

an eye, as much as possible, to these confusing and in many

cases even counteractive effects. Another relevant factor in

determining the extent of PD vocal impairment is the depend-

ence on the stage of the disease.29 Although there are many

studies using traditional measures performed on several vocal

tasks for assessment of PD voice and speech disorders, there

are no studies that can efficiently characterize the extent of

vocal impairment and the suitability of these measures at the

onset of PD, when the progression of symptoms of PD speech

is not affected by medication.

Several speech recording and measurement methods

may be needed to perform a reliable feedback test for the

assessment of vocal impairment. For this reason, we intro-

duce a brief PD-related characterization of voice and speech

disorders, explaining the choice of traditionally used acous-

tic measures, and subsequently design specific measurement

methods with a view toward their automatic assessment.

There are many tests performed on simple sustained vowels

for efficiently characterizing PD-specific dysphonia, includ-

ing the traditional measures of fundamental frequency, var-

iants of jitter and shimmer, and noise-to-harmonics (NHR)

ratios. While articulation is the second most affected speech

subsystem, there is a lack of available measures for its sim-

ple and efficient assessment. Therefore, we supplemented

the traditional measures with new measures of articulation

performed on rapid steady syllable repetition, which is the

standard vocal test used to evaluate the articulatory skills.

Although statistically significant relationships between

the extent of vocal impairment and measurement methods

have been found in most of the traditional measures, statisti-

cal significance alone is not sufficient to determine the suit-

ability of measurement methods for assessment of vocal

impairment. Recently, many further innovative studies have

appeared making use of acoustic measurement methods for

voice disorder detection on the basis of machine learning

tools—see, for example, Refs. 32–34. Consider the practical

limitations of effort and cost-outcome associated with

obtaining and verifying each of the methods, which are often

dependent on a specific and unavailable speech sample, what

is most needed is a reliable classifier that can determine the

optimal set for classification from a varied number of inde-

pendent available methods and speech samples.

The Wald task is a method from non-Bayesian statistical

decision-making theory,35 and it is given preference here

because of its capability to separately assess each measure

confronting the problem of making a decision in classifying

subjects as PD, HC, or “not sure” in case of an indecisive sit-

uation. This latter case occurs when the rated observation

does not provide enough information for a safe decision

about assignment to the correct group. For complete assess-

ment of vocal impairment, it is better to decide only in spe-

cific items where the rated observation clearly matches

speech performance of the PD or HC group. With such a

classification method, it is then possible to combine the user-

selected traditional and novel measures. Nonetheless, there

are still a number of measurements that can measure very

similar aspects of a speech signal.

In order to gain an optimal amount of information for

effective classification, in the present study we will first find

and remove redundant and statistically insignificant measure-

ments. Subsequently, the subset of available measurements

will be used for the classifier based on the Wald task. On the

basis of the classifier, we can not only discover the suitability

of each measure for separating PD patients from HC but also

the extent of vocal impairment in early untreated PD patients.

The organization of this paper is as follows. In the sec-

tion “Methods,” we describe the speech data and participants,

introduce a brief review of classical acoustical PD speech

analyses, detail the methods of speech measurements, and

explain the statistics, pre-selection stage, and classification

used in this study. In the section “Results,” we present the

results obtained. The section “Conclusion” contains a sum-

mary of our findings and provides a conclusion of the results

for future work.

II. METHODS

The methodology of this study is broken down into eight

stages: (a) the recruited participants; (b) the speech data; (c) a

brief characterization of the PD speech; (d) calculation of tradi-

tional used clinical acoustic measures; (e) calculation of new

non-standard acoustic measures; (f) the pre-selection of fea-

tures and statistics; (g) the application of Wald’s classifier to
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pre-selected features; and (h) overall calculation of results and

their validation by a speech therapist.

A. Participants

A grand total of 46 Czech native speakers were studied.

Twenty-three individuals (19 men and 4 women) were diag-

nosed with an early stage of idiopathic PD [mean age, 61.74 yr

[6standard deviation (SD), 12.60 yr]; duration of PD, 30.22

months (6SD, 22.21 months), Hoehn & Yahr stage 1–2, Uni-

fied Parkinson’s Disease Rating Scale (UPDRS) III score

17.52 (6SD, 7.26)]. None of these PD subjects received symp-

tomatic pharmacotherapy or speech treatment; all PD patients

were examined in the drug-naive state, before the symptomatic

treatment was started. In addition, 23 neurologically healthy

speakers matched for age served as a control, including

16 men and 7 women [mean age, 58.08 yr (6SD, 12.91 yr)].

See Table I for subject details.

The Hoehn & Yahr scale is a commonly used system for

describing the progression of symptoms of PD.36 The scale

comprises stages 1 through 5, where 1, unilateral involve-

ment only usually with minimal or no functional disability;

2, bilateral or midline involvement without impairment of

balance; 3, bilateral disease: mild to moderate disability with

impaired postural reflexes, physically independent; 4, severely

disabling disease, still able to walk or stand unassisted; and

5, confinement to bed or wheelchair unless aided.

The UPDRS part III score represents the motor rating

known as UPDRS III, scaled from 0 to 108, with 0 represent-

ing a symptom-free state and 108 severe motor impairment.37

The UPDRS III score encompasses areas such as tremor, ri-

gidity, facial expression, speech, and others. Speech is ranked

from 0 to 4, with 0 representing no signs of speech impair-

ment and 4, complete unintelligibility.

B. Speech data and recording

The speech data were recorded in a sound-treated booth

using an external condenser microphone placed at approxi-

mately 15 cm from the mouth and coupled to a Panasonic

NV-GS 180 video camera. The voice signals were recorded

directly to the computer, sampled at 48 kHz with 16-bit reso-

lution; the purpose behind the use of video camera was the

clinical examination of faciokinesia in PD patients, though

no video material was used in the present study. The use of

sound-treated booth (or at least a quiet room with a low ambi-

ent noise level) is recommended for its influence on assess-

ment of intensity, articulation rate, and pause characteristics

measurements, all of which are based on the energy of the

signal and thus can be greatly influenced by noisy acoustic

environments.

The vocal tasks used in this study ranged from producing

isolated vowels to reading short sentences and producing a

short, spontaneous monolog about a given subject. The dura-

tion of all of the vocal tasks used in this study was approxi-

mately 5 min [mean, 313.04 s (6SD, 36.40 s)]. See Table II

for details of the vocal tasks.

The recording of each participant was obtained during a

single session with a speech therapist. Recording began with

a set of practice items to familiarize the speakers with

instruction for the tasks and the recording procedure. No

time limits were imposed during the recordings. Each partic-

ipant was tested individually and received the production

tasks in a fixed order. All participants were asked to repeat

their production of an attempt that resulted in the erroneous

production of any task, and they could repeat their produc-

tion at any time if they or the speech therapist were not fully

satisfied with their initial performance, though erroneous

TABLE I. List of participants with sex, age, and duration of disease prior to

recording. Entries labeled “n/a” are for HC, for which duration of disease is

not applicable.

Subject code Sex Age (yr)

Duration of

PD prior to recording

(months)

PD02 M 73 36

PD03 M 82 24

PD04 M 60 48

PD05 M 57 12

PD06 M 58 16

PD08 F 62 15

PD09 M 56 33

PD10 M 79 33

PD11 M 71 82

PD12 M 61 58

PD13 F 52 70

PD14 M 68 12

PD15 M 60 17

PD16 M 54 9

PD17 M 34 39

PD18 M 76 22

PD19 M 61 36

PD20 M 56 48

PD21 M 72 35

PD22 F 52 60

PD23 F 37 13

PD25 M 83 6

PD26 M 56 6

HC02 M 74 n/a

HC03 M 61 n/a

HC04 M 40 n/a

HC05 M 64 n/a

HC06 M 67 n/a

HC07 F 42 n/a

HC08 F 61 n/a

HC09 F 53 n/a

HC10 F 43 n/a

HC11 F 48 n/a

HC12 F 45 n/a

HC13 F 55 n/a

HC14 M 69 n/a

HC15 M 71 n/a

HC17 M 77 n/a

HC18 M 60 n/a

HC19 M 68 n/a

HC20 M 50 n/a

HC21 M 80 n/a

HC22 M 73 n/a

HC23 M 52 n/a

HC24 M 36 n/a

HC25 M 47 n/a
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productions occurred rarely. The final vocal task productions

were retained for acoustic analyses.

C. PD speech measurements

As discussed in the Introduction, abnormalities of the PD

speech can be associated with several dimensions. Because it

would far exceed the scope of this paper to discuss all speech

measures, we briefly characterize only the traditional speech

acoustics measures in PD related to this study, including pho-

nation, articulation, and prosody. It is important to note that a

deficit in respiration and quality of phonation may affect,

among other things, the speaker’s ability to produce normal

phrasing and intensity. In addition, a decrease in respiratory

pressure may cause deficits in phonation and articulation, i.e.,

decreased loudness and decreased ability to after loudness.38

Phonation is the vibration of the vocal folds to create

sound.39 In examining phonation in PD speakers, the most

traditional measurements are performed during sustained

vowel phonation and include measurement of F0 (the funda-

mental frequency or pitch of vocal oscillations), jitter (extent

of variation of voice range), shimmer (the extent of variation

of expiratory flow), and NHR ratios (the amplitude of noise

relative to tonal components in the speech).40 The other pho-

natory measure that has commonly been studied in PD is

voice onset time (VOT), defined as the duration of time from

articulatory release of a stop consonant to the onset of voic-

ing for the following vowel.41 VOT can be categorized as a

phonatory measure because its changes in PD are generally

attributed to disruptions of phonation.42 Previous research

has revealed PD-related dysphonia symptoms in all phona-

tory measures, including a higher mean value for F0 and

increased variation of F0 in sustained vowel prolongation,

and deficits in producing normal VOT.29,42 It has been pro-

posed that rigidity of laryngeal musculature causes a reduc-

tion in the opening of the vocal fold for PD patients in

comparison to HC.43

Articulation is the modification of the position and

shape of the speech organs (e.g., tongue) in the creation of

sound.39 In examining articulation in participants with PD,

previous studies have reported that stop consonants were

imprecise and were produced as fricatives.43 This finding

suggests that the articulatory deficits may have been partially

the result of inadequate tongue elevation and constriction for

stops and fricatives.44 The most common method of evaluat-

ing articulatory skills is that of the diadochokinetic (DDK)

task. Typically, the DDK task measures the subject’s ability

to repeat a consonant–vowel (C-V) combination with bila-

bial, alveolar, and velar places of articulation, quickly, at a

constant level and a rhythmic manner. Subjects are asked to

repeat a combination of the three-syllable item, for example,

/pa/-/ta/-/ka/, as fast and long as possible.45 A number of

patients have demonstrated defects in the ability to make

rapid articulator movements for DDK tasks.46 Other meas-

urements found differences in vocal tract resonances (i.e.,

formants), indicating increased variability of the first and

second formant (F1 and F2, respectively) frequency. The

centralization of these vowel formant frequencies is well

captured by the vowel space area, and it can be a metric of

tongue movement.47 A few studies have reported smaller

areas of vowel space for speakers with PD, but these differ-

ences were not significant.47,48 Articulation measures also

include measurement of the F2 slope (or F2 transition) from

syllable repetition, representing the rate of tongue movement

from a consonant into a vowel. The results found that F2

transition rates in PD patients were lower compared to HC.42

Prosody is the variation in loudness, pitch, and timing

accompanying natural speech.39 Prosodic measures are usually

determined from running speech and include measurement of

F0, intensity (relative loudness of speech), articulation rate,

pause characteristics, and rhythm. A decreasing pitch range in

PD has been noted during the reading task,7,49 and various

changes in speech rate and pause characteristics have also

been found in people with PD in comparison to HC.30,42,43

Prosodic intensity changes have also been examined, when PD

patients produced significantly smaller intensity variation com-

pared to normal speakers during the reading of a standard pas-

sage.49 Overall, patients with PD demonstrate production

defects in all of these measurements, including reduced fre-

quency and intensity variations, and differences in speech rate

and pause characteristics in reading tasks.

D. Traditional measurement methods

The present section of our study involves a selection of

the major part of traditional clinically used measurement

methods for PD-related voice disorders assessment.28 These

measurement methods are chosen and designed with attention

paid to automatic feature extraction and to individual subject

TABLE II. List of the vocal tasks.

Task code Speech data

[TASK 1] Sustained phonation of /i/ at a comfortable pitch and loudness

as constant and long as possible, at least 5 s. [mean, 21.56 s

(6SD, 7.98 s)]. This task was performed on one breath.

[TASK 2] Rapid steady /pa/-/ta/-/ka/ syllables repetition as constant and

long as possible, repeated at least 5 times [mean number of

/pa/-/ta/-/ka/ 6.83 (6SD, 1.62)]. This task was performed

on one breath.

[TASK 3] Approximately 5-s sustained vowels of /a/, /i/, /u/ at a com-

fortable pitch and loudness [mean, 5.78 s (6SD, 0.57 s)].

The vowels were performed on one breath.

[TASK 4] Reading the same standard phonetically non-balanced text of

136 word [mean, 57.52 s (6SD, 8.59 s)].

[TASK 5] Monolog, at least approximately 90 s [mean, 109.96 s (6SD,

29.37 s), mean words, 232.50 (6SD, 86.24)]. The partici-

pants were generally instructed to speak about what they

did current day or last week, their interests, their job, or

their family.

[TASK 6] Reading the same text containing 8 variable sentences of 71

words with varied stress patterns on 10 indicated words

[mean, 39.78 s (6SD, 6.09 s].

[TASK 7] Reading 10 sentences according specific emotions in a com-

fortable voice in response to an emotionally neutral sen-

tence including excitement, sadness, confusion, fear,

boredom, anger, bitterness, disappointment, wonder, and

enjoyment [mean, 39.76 s (6SD, 6.11 s)].

[TASK 8] Rhythmically read text containing 8 rhymes of 34 words fol-

lowing the example set by the examinator [mean, 24.22 s

(6SD, 4.21 s)].
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differences—see the first part of Table III for a list of the

measures used as features in this part of the study.

1. The fundamental frequency

Standard methods include measures of the F0 mean, F0

range, and F0 SD. Although significant differences have been

found between absolute and range values of F0 in PD patients

compared to HC,7,29 we do not use these as a measure, since

they are affected by individual differences such as gender. In

particular, the extent of F0 variation is related to the individ-

ual average voice pitch. Subjects with naturally high-pitched

voices (traditionally women) will have much larger vibrato

and microtremor than persons with lower-pitched voices

(usually men),50 thus causing a significant problem when

these variations are measured on an absolute frequency scale

in hertz. Observations suggest that the SD of the F0-distribu-

tion is approximately the same for men and women if it is

expressed in semitones (logarithmic tonal scale). Specifically,

a doubling of frequency, that is, 100–200 Hz or 200–400 Hz

is represented by an equal semitone interval.50 The observa-

tions also suggest that a logarithmic tonal scale will work bet-

ter in capturing pitch variation due to speech impairment.51

The fundamental frequency variation (F0 SD) measure-

ments were determined using several vocal tasks. First, for

demonstrating the defects in phonation, we measured F0 SD

on sustained vowel phonation [TASK 1]. In this measure, a

higher value of F0 SD represents a dysphonic symptom of

impaired control of stationary voice pitch. As we discussed

earlier, people with PD often exhibit symptoms such as

reduced melody variations during speech. Therefore, we

performed F0 SD measurements using traditional voice

TABLE III. Overview of measurement methods used as features applied to acoustic signals recorded from each subject.

Feature Determined from Speech subsystem Description

1. Traditional

F0 SD [TASK 1] Phonation Variations of fundamental frequency, vibration rate of vocal folds.

[TASK 4–7] Prosody

Jitter:local [TASK 1] Phonation Average absolute difference between consecutive periods, divided by the average period.

Jitter:RAP [TASK 1] Phonation Relative average perturbation, the average absolute difference between a period and the average

of it and its two neighbors, divided by the average period.

Jitter:PPQ5 [TASK 1] Phonation Five-point period perturbation quotient, the average absolute difference between a period and the

average of it and its four closest neighbors, divided by the average period.

Jitter:DDP [TASK 1] Phonation Average absolute difference between consecutive differences between consecutive periods,

divided by the average period.

Shimmer:local [TASK 1] Phonation Average absolute difference between the amplitudes of consecutive periods, divided by the

average amplitude.

Shimmer:APQ3 [TASK 1] Phonation Three-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of its neighbors, divided by the

average amplitude.

Shimmer:APQ5 [TASK 1] Phonation Five-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of it and its four closest neighbors, di-

vided by the average amplitude.

Shimmer:APQ11 [TASK 1] Phonation Eleven-point amplitude perturbation quotient, the average absolute difference between the

amplitude of a period and the average of the amplitudes of it and its ten closest neighbors,

divided by the average amplitude.

Shimmer:DDA [TASK 1] Phonation Average absolute difference between consecutive differences between the amplitudes of

consecutive period.

NHR [TASK 1] Phonation Noise-to-harmonics ratio, the amplitude of noise relative to tonal components.

HNR [TASK 1] Phonation Harmonics-to-noise ratio, the amplitude of tonal relative to noise components.

Percent pause time [TASK 4,5] Prosody The percent change from the unedited sample length to the edited sample length.

Articulation rate [TASK 4] Prosody The number of syllables produced per second, after removing silence period exceeding 60 ms.

No. pauses [TASK 4,5] Prosody The number of all pauses compared to total time duration, after removing silence period not last-

ing more than 60 ms.

Intensity SD [TASK 4–6] Prosody Variations of average squared amplitude within a predefined time segment (“energy”) after

removing silence period exceeding 60 ms.

DDK rate [TASK 2] Articulation The number of /pa/-/ta/-/ka/ syllable vocalizations per second.

DDK regularity [TASK 2] Articulation The degree of /pa/-/ta/-/ka/ syllable vocalizations rate variations in the period.

VOT None Phonation Duration of time from articulatory release of a stop consonant to the onset of voicing for the fol-

lowing vowel.

Vowel area [TASK 3] Articulation Quantitative measure which involves plotting the three corner vowels in F1/F2 plane.

Rhythm [TASK 8] Prosody Measurement of ability to reproduce perceived rhythm through DTW.

2. Non-standard

RIRV [TASK 2] Articulation Relative intensity range variation, the variations of energy.

RRIS [TASK 2] Articulation Robust relative intensity slope, the robust linear regression of energy.

SDCV [TASK 2] Articulation Spectral distance change variation, the variations of spectral distance changes in signal spectrum.

RFPC [TASK 2] Articulation Robust formant periodicity correlation, the first autocorrelation coefficient of F2 contour.
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recordings, such as reading a text [TASK 4] and monolog

[TASK 5]. Reduced melody variations in speech can also be

related to the lowered ability of stress pronouncement and

emotional intonation imitation and perception.52 For this rea-

son, we created two modified voice recordings. The vocal

task of stress patterns [TASK 6] was designed to measure the

subject’s ability to produce unnatural increasing stress on la-

beled words. This ability of stress pronouncement can be then

well captured by F0 SD measurements. The other newly set

up vocal task [TASK 7] consists of 10 successive sentences

pronounced with variable emotional context. The goal of this

task is to evaluate how adults with PD express a particular

emotion through prosodic features of their voice, in compari-

son with HC. The participants made the various intonations

on the basis of the specific emotions, which should greatly

improve variations on the final pitch.

For obtaining the F0 sequence, we used the application of

the automatic algorithm of direct-time domain fundamental

frequency estimation (DFE) and voiced/unvoiced (V/UV) clas-

sification of the speech signal.53 The DFE algorithm consists

of spectral shaping, detection of significant extremes based on

adaptive thresholding, and actual frequency estimation under

several truth criteria. These criteria are used to select the

voiced part and eliminate estimation errors such as frequency

halving and doubling. The first criterion is related to the level

of the signal. No frequency estimations are performed for lev-

els of signal lower than the threshold Eth. The actual level of

energy is evaluated by an envelope detector; this criterion was

set to approximately 0.5% level of the signal, and it was used

as a noise gate. The second criterion is the expected frequency

range of F0, with no frequency accepted outside of the specific

range, which was set at 60–400 Hz. The third criterion is the

M-order majority, whereby more than a one-half of M consec-

utive detected frequencies must lie in the same frequency band

of chosen width. If the majority criterion M is satisfied, the

actual signal is evaluated as voiced. Here, the majority crite-

rion was set at five. As the last criterion, five-point median fil-

tering was applied to the obtained F0 sequence to deal with

incorrectly captured pitch periods outliers that may occur as a

consequence of pitch doubling or pitch halving. The obtained

pitch sequence was subsequently converted to the logarithmic

semitone scale and its SD calculated. An optimal sampling fre-

quency for DFE algorithm is 44 100 Hz—see Ref. 53 for more

algorithm details. Among other things, this algorithm was

applied to show that reliable automatic assessment of the F0 is

possible. There is also the possibility of using novel robust

pitch trackers,54,55 that provide better F0 evaluation results.

Almost the same results can be obtained using the soft-

ware PRAAT with the standard autocorrelation based proce-

dure,56 which was also used for validation of the obtained

results. In comparison with DFE algorithm, though, the dis-

advantage of PRAAT lies in its need for checking the correct

set up of the frequency range and other pitch settings as a

consequence of pitch doubling and halving.

2. Variants of jitter and shimmer and NHR ratios

The most popular measurements of voice functions are

the perturbation measures jitter and shimmer and their var-

iants, and NHR ratios.40,57 These measures were obtained

using sustained vowel phonation [TASK 1].

Calculation of these measures is usually based on an

autocorrelation method for determining the frequency and

location of each cycle of vibration of the vocal folds (pitch

marks).58 The jitter and measures of period perturbation rep-

resent the variability of the speech fundamental frequency

(pitch period) from one cycle to the next. The shimmer and

measures of amplitude perturbation are derived from the

sequence of maximum extent of the amplitude of the signal

within each vocal cycle. Jitter and shimmer are used as

measures to assess the micro-instability of vocal fold vibra-

tions. From these perturbation measures, we used only meas-

urements expressed as a percentage, as this method better

reflects differences in gender. The NHR and harmonics-to-
noise (HNR) ratios are derived from the signal-to-noise esti-

mates from the autocorrelation of each cycle and are used

for assessing voice hoarseness.

In this study, the measurements including jitter:local, jitter:

RAP (relative average perturbation), jitter:PPQ5 (period pertur-

bation quotient), jitter:DDP, shimmer:local, shimmer:APQ3

(amplitude perturbation quotient), shimmer:APQ5, shimmer:

APQ11, shimmer:DDA, NHR, and HNR were calculated using

algorithms supplied in the software package PRAAT.56

3. Articulation rate and pause characteristics

PD subjects reveal differences in articulation rate and

pause characteristics during speech in comparison with

HC.30,42,43 In this study, articulation rate, percent pause time,
and number of pauses were calculated for reading the text

[TASK 4], while percent pause time and the number of pauses

were also calculated for the monolog [TASK 5]. In order to

perform an automatic assessment, we used only calculation of

pause features in the monolog. The other speech material used

in this study is not suitable for articulation rate and pause char-

acteristics assessment because it consists of single sentences.

Percentage pause time calculation was based on the for-

mula: 100 � [(total time � articulation time)=total time],

where total time is the duration of the entire speech sample

and articulation time is the length of time remaining after

pause removal. The articulation rate was calculated after re-

moval of pauses from each sample, where pauses were defined

as silent periods lasting more than 60 ms that are not associ-

ated with stop closure. The articulation rate was calculated as

the number of syllables produced per second after removing

the pauses. Similarly, the number of pauses was then meas-

ured as the number of all pauses compared to total time dura-

tion, after removing the pauses not lasting more than 60 ms.

Previous studies found significant differences after the re-

moval of this time duration in PD patients compared to HC.59

In the present experiment, we designed a simple speech-

pause detector based on signal intensity and zero-crossing

rate (ZCR). We obtained the intensity and ZCR sequences of

the entire speech signal and performed three thresholds,

including, intensity mean value (IMV), intensity standard

deviation values (ISDV), and zero-crossing rate mean value

(ZCRMV). First, we compared the intensity of the current

sample with the first threshold (IMV). If the sample has a
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higher value than IMV, it is classified as speech. In the other

case, we compare the actual intensity sample with the second

threshold (|IMV � ISDV|). If it has a lower value, it is classi-

fied as silence. Once the sample is ranked in the <IMV

� ISDV, IMV> interval, we compare the actual ZCR sam-

ple with the third threshold (ZCRMV) and, in case of a

higher value, classified the sample as speech, while less

value is classified as silence. The thresholds of the speech-

pause detector were based on the experimental set up, and

the results were validated by hand-marking. Algorithm eval-

uation using a speech-pause detector can be performed

automatically.

4. Intensity of voice

PD speakers have been found to have an overall lower in-

tensity level, deficits in intensity range, and intensity variations

during speech production.31 Similarly to the F0 measures, we

do not use an absolute value of intensity level or an absolute

range of intensity as measurements, based on a need for precise

calibration for obtaining reliable estimates. As a result, we are

restricted to relative measures of intensity variation with rela-

tive calibration to the reference of 0 dB. A precondition for suc-

cessful measuring is then to maintain a constant distance from

the microphone during the entire course of each recording.

The measurements of intensity variations (intensity SD)

were determined using the reading text [TASK 4] and the

monolog [TASK 5]. Similarly as in the F0 SD measurement,

we also used measurement of stress patterns [TASK 6] with

the aim of improving the intensity loudness variations.

The calculation of intensity variation was determined as a

SD from the intensity sequences after removing all silence

periods exceeding 60 ms to ensure that only clear speech was

acquired. In this study, the window size of 1024 points (21.3

ms) was used to compute all energy contours. The intensity

SD feature extraction can be performed automatically.

5. DDK rate and regularity

The DDK task is the measurement of the subject’s ability

to repeat rapidly and steadily a C-V combination and usually

consists of two measures. The average DDK rate is the num-

ber of syllable vocalizations per second. The coefficient of

DDK regularity measures the degree of rate variations in the

period and assesses the ability to maintain a constant rate of

C-V combinations. These two measurements were determined

from repetition of the three-syllable items of /pa/-/ta/-/ka/

[TASK 2].

In order to devise a reliable algorithm for determining the

DDK task measurements, we have to detect the local maxima

(maximum energy during each syllable). First, we construct

an integral envelope with the constant of integration set to

0.997. Subsequently, we normalize the integral envelop to the

range [–1, 1]. Then we perform zero-phase digital filtering

(averaging filter) by processing the input data in both the for-

ward and reverse direction using a 1024-point size window.

As a result, we arrive at smoothed sinusoidal signal that we

again normalize to the range [–1, 1]. Finally, we estimate the

local maxima which are computed from three continuous

samples. Each sample value is compared to its neighboring

value, and if it is larger than both of its neighbors, it is a local

maximum. The feature extraction using this algorithm can be

obtained automatically. The DDK rate is calculated as the

number of estimate maximums per second and DDK regular-

ity as the variance of the maximums.

6. VOT duration

The VOT is typically measured as the duration of time

from the articulatory release of a stop consonant to the onset of

voicing for the following vowel. VOT commonly refers to the

temporal coordination between the oral articulation of a stop

consonant and the laryngeal mechanism required to produce

periodic vibration of the vocal folds. The measurement of

VOT from the DDK task [TASK 2] may be a suitable mea-

surement for detecting the extent of PD speech impairment,

yet findings exist in the literature indicating that VOT changes

in persons with PD are inconsistent.42,43 Moreover, the PD

speech impairment may be affected by hoarseness in the voice.

Consequently, it is difficult to achieve a precise assessment of

the VOT boundaries. Although the VOT is a traditionally used

measurement method, we do not include it as a measure,

because it is adversely affected by inconsistent results and no

reliable algorithm exists for its reliable measurement.60,61

7. Formant frequencies F1 and F2

The main traditional measurement method using formant

frequencies is the vocal tract vowel area. It is calculated by

obtaining the mean values of the F1 and F2 frequencies dur-

ing production of corner vowels and by subsequently plotting

on an xy coordinate plane with F1 on the x-axis and F2 on the

y-axis. This total area is calculated by measuring the entire

triangle area. The vowel area was determined from phonation

of three corner vowels including /i/, /u/, and /a/ [TASK 3].

We used the robust formant trackers of Mustafa and

Bruce62 for continuous speech with speaker variability for

obtaining the formant sequences. The algorithm targets robust

noise tracking and is based on a different approach than PRAAT,

where the formant extraction relies on linear predictive coding

(LPC) analysis. The algorithm works as follows: After a pre-

emphasis and Hilbert transformation the signal is filtered by

four formant filters. These are adaptive bandpass filters whose

zeros and poles are updated based on the formant frequency

estimates at the previous time stage, by means of which sepa-

ration of formants into different channels can be achieved. A

first-order LPC analysis performed on each of the four filter

channels finally estimates the F1–F4 formants. Each formant

filter consists of an all-zero filter cascaded with a single-pole

dynamic tracking filter. The filter combinations are used to

simplify normalization of the filter frequency response. The

zeros and pole of each formant filter are updated for every

sample; updating is based on the previous formant frequency

estimates, allowing for dynamic suppression of interference

from neighboring formants, while tracking an individual form-

ant frequency as it varies over time. Finally, we obtain F1 and

F2 formant sequences from the tracker and convert them to the

logarithmic semitone scale and calculate their mean values.

The entire total area is then calculated by the Euclidean distan-

ces between the F1 and F2 formant coordinates of the corner
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vowels, and it is expressed in semitone squared. The formant

tracker uses 8 kHz as an optimal sampling frequency.

The algorithm has a low signal delay and provides

smooth and accurate estimates for the first four formant fre-

quencies at moderate and high signal-to-noise ratios. Thor-

ough testing of the algorithm has shown that it is robust over

a wide range of signal-to-noise ratios for various types of

background noises. The main advantage of the robust form-

ant tracker is its full automatic assessment. The obtained

results were also validated using PRAAT software, though its

use can be regarded as optional.

8. Rhythm

A lowered ability to reproduce perceived speech rhythm

may be one of the deficits in PD speech. We performed a

speech measurement in which the participants were asked to

repeat eight rhymes in the same rhythm prolongation as they

heard in the reference speech sample (template) recorded by

a speech therapist [TASK 8]. The purpose of the measure is

thus for efficient comparison of the similarity between the

subject and the template.

As a solution suitable for the measurement of rhythm, we

used a technique known as dynamic time warping (DTW), a

well-known method that has been used in speech recognition

for aligning time series.63 DTW uses the principle of dynamic

programming (principle of optimality) in order to find the dis-

tance along the optimal warp path to determine the similarity

between two speech waveforms.

To implement these insights algorithmically, the speech

recordings were first down-sampled to 16 kHz. As features in

DTW, we used a spectral representation of the speech data by

calculation of the short-time Fourier transformation (STFT).

We apply a Hamming window with a default size of 32 ms

(512 points) and with a default overlap of 24 ms (384 points).

In order to align utterance with the template, we created a

similarity matrix, in which each point gives the Euclidean

distance between short-time spectral analyses of the speech

recordings. Subsequently, we used dynamic programming to

find the lowest-cost path between the starts and ends of the

sequences through the similarity matrix. Finally, this general

cost of path distance normalized by the total sum cost of the

matrix is used as the classifier for the relative rhythm similar-

ity measurements between the individual’s speech recording

and the speech therapist’s template. The measurement of

rhythm can be performed automatically. An implementation

process overview is shown in Fig. 1.

E. New non-standard measurement methods
of articulation

Articulation is one of the most strongly affected PD

speech subsystems. The use of the DDK task allows for the

performance of an efficient and a quick articulatory test.

With such a measurement, we can efficiently assess the

defects in PD articulation. As a consequence of rapid steady

syllable repetition, problems can develop in the syllable rate

and variations, but simultaneously significant defects can be

present in respiratory pressure level, accuracy, and clarity of

articulation. Thus, new measurement methods determined

from the DDK task are introduced [TASK 2], which comple-

ment the standard DDK task measurements. Although the in-

tensity measurements presented here below are more likely

interconnected with problems in respiration, we introduced

them as articulation measurements because the intensity

defects can be developed simply as a consequence of rapid

articulation. The DDK task is performed without pausing for

breath. The feature extraction using these new proposed

methods can be obtained automatically. See the second part

of Table III for a list of the measures used as features in this

part of study.

1. Relative intensity range variation (RIRV)

As we discuss in the Sec. II D 4, one of the observations

related to the intensity deficits in PD dysarthria is reduced

loudness. The other problem that can occur as a consequence

of PD production deficits during fast articulation is occlusive

weakening.64 We notice that these PD-related differences

may be captured when performing relative intensity contour

during DDK task articulation in comparison to the HC. As a

result, we performed RIRV measure calculation as a SD of

the intensity curve with relative calibration to a reference of

0 dB. The first difference between measurements of RIRV

and intensity SD is that the DDK task is performed without

pausing for breath, and thus there is no need for removal of

pauses from speech signal. The second difference is the fact

FIG. 1. The alignment process using DTW for measurement of ability to

reproduce perceived rhythm. The resulting alignment path may be visual-

ized as a low valley of Euclidean distance scores between speech spectrum

segments of patients and speech therapist template recording, meandering

through the hilly landscape of the matrix, beginning at (0, 0) and ending at

the final point (X, Y).
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that here the occlusive weakening causes only lower varia-

tions in the relative intensity contour.

2. Robust relative intensity slope (RRIS)

One other problem occurring as a result of defects in re-

spiratory function caused by PD-related dysarthria may be

the inability to maintain the intensity level. For this reason,

we perform a measure that we dub RRIS, a robust measure-

ment of the intensity decline in performing the DDK task.

To implement it algorithmically, we need to perform a lin-

ear regression to calculate the slope of the relative intensity

contour. Although the use of standard linear regression based

on least squares estimation can be suitable for fitting the slope

of the intensity contour, it can behave badly when the error

distribution is outside of the normal range, particularly when

the errors are heavy-tailed. Our approach is to employ a fitting

criterion that is not as vulnerable to unusual data, such as that

of least squares. Therefore, we perform a robust regression

based on usage of iteratively reweighted least squares (IRLS)

with a bisquare weighting function.65 The IRLS algorithm

uses weighted least squares, the influence of outliers being

reduced by giving that observation a smaller weight. The

weights chosen in a single iteration are related to the magni-

tudes of the residuals in the previous iteration, with a large

residual earning a small weight. The weights are related to M-

estimates, the measures of location that are not as sensitive as

the mean to outlier values. See Ref. 65 for a detailed algorithm

description. The final RRIS value is computed as total intensity

decline divided by the total time duration of the DDK task.

The advantage of the robust fit achieved using the ILRS

approach is that it is less influenced by the outliers than the least

squared fit. Therefore, the robust intensity slope will be more

suitable in practice when performing an automatic assessment.

3. Spectral distance change variation (SDCV)

The PD voice disorder is also affected by impaired

clarity of articulation. The deficiencies of articulation clarity

can be better demonstrated in the signal speech spectrum. In

order to capture these deficits, we used the Bayesian autore-

gressive change-point detector.66

We consider the signal model for the Bayesian detector

to consist of two parts, which are described by two different

autoregressive models: the “left” autoregressive (AR) model

with M1 parameters ak and the different “right” AR model

with M2 parameters bk

dðnÞ ¼

PM1

k¼1

ak � dðn� kÞ þ eðnÞ; n � m

PM2

k¼1

bk � dðn� kÞ þ eðnÞ; n > m

8>>><
>>>:

n ¼ 1;… ;N; (1)

where m is the change-point position, e(n) is the excitation pro-

cess with SD r. The Eq. (1) can be written compactly in matrix

form as d ¼ GA � bA þ e; where, the matrix GA has the Jordan

form and depends on the unknown index of change-point m.

We likewise evaluate the value of the change between

models. Using an analytical solution of the Bayesian theorem

we obtain the formula for posterior probability, which is a

function of the analyzed data, the signal length, and order

autoregressive models only67

~pðmjd;MÞ ¼
D� gAUAgT

A

� ��ðN�M=2Þ

ffiffiffiffiffiffi
DA

p ; (2)

where the matrix UA ¼ GT
AGA

� ��1
is the inverse correlation

matrix, D ¼ dTd is the signal energy, gA ¼ dTGA is the cor-

relation vector, and DA ¼ det GT
AGA

� �
.

The signal sample with the largest change in the signal

(change-point) is determined by the maximum of the poste-

rior probability, which is calculated from the Eq. (2). How-

ever, if there are more changes in the signal then the formula

could not be used directly. The assumption of a single

change is very restrictive in practice, since more abrupt spec-

tral changes are invariably present in human speech. How-

ever, this drawback can be overcome by calculating the

probability in a sliding window with fixed length and nor-

malized using Bayesian evidence66

~pðmjd;MÞ ¼
D� gAUAgT

A

� ��ðN�M=2Þ

ffiffiffiffiffiffi
DA

p

�
ffiffiffiffi
D
p

D� gU gTð Þ�ðN�M=2Þ : (3)

The second term represents data dependent Bayesian

evidence, where U, D, g, and D are defined similarly to the

previously established parameters but with respect to the

entire signal segment without any division into left and right

parts. Posterior probability [Eq. (2)] was derived from the

Bayesian formula under the condition that a given data

segment d is constant. Thus the Bayesian evidence in the

denominator of the Bayesian formula was constant. But if

the posterior probability is repeatedly used for new signal

samples, then the data are not constant, and thus Bayesian

evidence must be evoked to normalize.

The probability of the signal changes is then calculated

from Eq. (3) for the sample signal which is situated in the

middle of the rectangular window. In other words, the output

of the algorithm is the degree of unlikeness between the signal

in the left and right half of the window through which we pass

all signals sample by sample. The normalized recursive autor-

egressive Bayesian change-point detector of sixth order with a

windows length of 512 samples was used for detection.

We introduce a new measure called SDCV, a robust

measure sensitive to observed changes in articulation clarity.

The SDCV is calculated as a SD from the detector output,

where the higher values of the output signal are proportional

to the greater spectral distance of two adjacent segments and

represent a greater clarity of articulation. A possibility like-

wise exists of using alternative detectors—see Ref. 68 for a

comprehensive description.

4. Robust formant periodicity correlation (RFPC)

The F2 slope is a traditional measurement representing

the rate of tongue movement from a consonant into a
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vowel.42 For assessing the accuracy of articulation, it is

measured by comparing the F2 value at the onset of voicing

to the F2 value in fixed time, for example, 50 ms into the

vowel. As in the case of VOT measurement, the robust F2

slope assessment requires precise C-V boundaries detection.

In order to avoid designing a complex algorithm, we

perform a new robust measurement called RFPC, the mea-

sure used to assess the similarity of tongue movement and

thus accuracy of articulation. We use a robust formant

tracker to obtain the F2 sequence from the DDK task.62 The

obtained formant values in low-energy segments are proc-

essed using a moving average filter, which ensures smooth

tracking in unvoiced segments. The final obtained sequence

represents the similarity of F2 slopes during entire vocal

task. Then we simply estimate the first autocorrelation coef-

ficient using the short-time autocorrelation, where a higher

autocorrelation coefficient value means better articulation

accuracy of the tongue.

F. Statistics and pre-selection stage

In practice, we need to find the relevance of individual

measures that can subsequently be used to assess the extent

of voice impairment. To obtain statistically significant differ-

ences between the groups, we compare the individual meas-

ures by using the non-parametric two-sided Wilcoxon rank

sum test against the null hypothesis of equal medians, at a

significance probability of 0.05.

Also, many measurements can be highly correlated with

other measurements for the reason that they measure very

similar aspects of the signal. For example, all types of

shimmer features measure the extent of variation in speech

amplitude cycle to cycle. Therefore, calculation of the Pear-

son product-moment correlation coefficient was used to test

for significant correlations.

To set the best classification performance, we discard all

measures with statistically non-significant relationships

between the PD and HC groups. Subsequently, from all

highly correlated measures with a correlation coefficient of

greater than 0.95 (95% confidence interval), only one mea-

surement will be kept which correlates with the greatest

number of similar measurements and gains the most statisti-

cally significant differences between the PD and HC groups.

G. Classification stage

In this final stage, we apply the classification based on

the Wald task to assess the relevance of the individual meas-

ures, as well as the extent of vocal impairment. The Wald

task presents only a tiny part of scientific area known as

Wald sequential analysis.35,69

This task is classification method based on the Neyman–

Pearson task,70 where the object is characterized by the feature

x which assumes the value from the set X. There are two possi-

ble states including the normal one, k ¼ 1, and the dangerous

(undesirable) one, k ¼ 2. Thus, the set of states K is {1, 2}. The

probability distribution of the feature x depends on the state k to

which the object belongs. The probability distributions are

known and defined by a set of conditional probabilities

pXjK xjkð Þ; x [ X, k [ K. For purpose of recognition, the set X is

divided into two subsets X1 and X2. If the observation is x [ X1,

the object is determined to be the normal state, and the danger-

ous state is thus for an observation x [ X2. In real conditions,

some values of the feature x can occur both in the normal and

dangerous states. The result of the decision is then characterized

by two numbers where the first is the probability of an event

that the normal state will be recognized as a dangerous state

(false positive or false alarm), and the second one is the proba-

bility of the event that the dangerous state will be recognized as

a normal state (false negative or overlooked danger). The condi-

tional probability of the false positive state is given by

x 1ð Þ ¼
X
x2X2

pXjK xj1ð Þ; (4)

and the conditional probability of the false negative state is

then

x 2ð Þ ¼
X
x2X1

pXjK xj2ð Þ: (5)

In the Neyman–Pearson task, the classification strategy

is chosen from all strategies satisfying the above condition

for which, first, the conditional probability of the false nega-

tive is not larger than a predefined value e. Second, the con-

ditional probability of the false positive is the smallest.

However, there is a lack of symmetry with respect to the

states of the recognized object, which is apparent where the

Neyman–Pearson task is recalled. To provide a thorough

elimination of this lack of symmetry, the Wald task is not

formulated as the set X of the two subsets X1 and X2 corre-

sponding to a decision for the benefits of the first and second

state but as a classification in three subsets X0, X1, and X2

with the following meaning:

if x [X1, then k ¼ 1,

if x [X2, then k ¼ 2,

if x [X0, then it is decided that the observation x does not

provide enough information for a safe decision about the

state k.

The classification strategy is characterized by

x(1) is the conditional probability of a wrong decision about

the state k ¼ 1,

x(2) is the conditional probability of a wrong decision about

the state k ¼ 2,

v(1) is the conditional probability of an indecisive situation

under the condition that the object is in the state k ¼ 1,

v 1ð Þ ¼
X
x2X0

pXjK xj1ð Þ; (6)

v(2) is the conditional probability of an indecisive situa-

tion under the condition that the object is in the state k ¼ 2,

v 2ð Þ ¼
X
x2X0

pXjK xj2ð Þ: (7)

For such strategies the requirements xð1Þ � e and

xð2Þ � e are not contradictory for an arbitrary non-negative
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value e because the strategy X0 ¼ X, X1 ¼ 0, X2 ¼ 0 belongs

to the class of allowed strategies too. Each strategy meeting

the requirements xð1Þ � e and xð2Þ � e is, moreover, char-

acterized by how often the strategy is reluctant to decide,

i.e., by the number max v 1ð Þ; v 2ð Þð Þ.
The Wald task seeks among the strategies satisfying the

requirements xð1Þ � e and xð2Þ � e for a strategy which

minimizes the value max v 1ð Þ; v 2ð Þð Þ. The solution of this

task is based on the calculation of the likelihood ratio

c xð Þ ¼
pXjK xj1ð Þ
pXjK xj2ð Þ : (8)

We used the Gaussian kernel density method with auto-

matic data-driven bandwidth to estimate probability distribu-

tions from each measurement for PD and HC groups.71 This

pair of distributions represents the feature for classification.

For gaining the best classification accuracy, both prede-

fined values e were set to a 95% significance level. Finally,

the linear programming technique was used to solve the

Wald task. The comprehensive description of the solution of

the Wald task through linear programming can be found in

Ref. 35. Figure 2 shows the result of the Wald task classifica-

tion applied to an example of a generated distributions pair.

H. Overall calculation and validation

For overall calculation, each of the measures selected by

the pre-selection stage represents one feature for Wald task

classification. In the case that the subject’s speech perform-

ance in the set measure matches the disordered speech per-

formance of the PD group (is classified as PD), the subject is

rated by “1” positive point. In the other case, where the sub-

ject’s speech performance matched the intact speech per-

formance of the HC group (is classified as HC), the subject

is rated by “�1” negative point. In case of an indecisive sit-

uation, where the subject’s speech performance does not

have sufficient predictive quality for secure assignment to

one of the PD or HC groups, i.e., is not fully intact or

impaired but matches the extent of speech performance of

the wider norm, the subject is rated by “0” point. This “�1,

0, 1” three state-scale was designed with respect to physio-

logical background, where we want to determine clearly if

the tested subject reached the PD-specific (or intact) vocal

performance in the selected task instead of giving the various

weight to each classification. We want to be “sure” that any

speech performance which has the possibility of belonging

to the wider norm of healthy people (not obviously PD-spe-

cific or intact) will not be marked. This approach also gives

the same weight to all measurements; we do not consider

that the combinations of certain measurements may be more

useful for overall classification performance as most classi-

fiers do. For obtaining the final results, we calculate the sum

of points for each subject. The higher quantity of positive

points predicts the greater vocal impairment. The number of

negative points corresponds to the performance of healthy

speech production. The overall number of classified points

for each measurement represents the suitability of the mea-

surement in separating patients with PD from HC partici-

pants, and it is calculated as sum of all assigned values.

In order to validate our classification results, compari-

sons with speech therapist evaluations were performed. The

speech therapist performed an independent examination

based on various voice and speech recordings composed

from a number of items including measuring of phonation

and phonetics and then assessed each participant using a

seven-point rating scale. The rating scale values represent

the complete speech performance of each subject; a value

equal to 1 point signifies intact speech performance, and a

value equal to 7 represents progressing vocal impairment.

Finally, the Pearson correlation coefficient was performed to

ascertain the relationships between the score obtained from

the speech therapist and the acoustic evaluation methods.

III. RESULTS

A. Voice and speech characteristics

The means, SDs, correlations between the measurement

methods, statistical significances, and summaries of retained

measures for the Wald classifier are listed for all measures in

this study (see Table IV for more details). The results are

presented below according to speech characteristics (i.e.,

phonation, articulation, and prosody).

Statistical significances between the PD and HC group

were found in all measurements of phonation except pitch

variations (F0 SD). This can be caused by the fact that peo-

ple with early stages of PD need not show impaired control

of stationary voice pitch during sustained phonation. On the

other hand, more signal noise addition captured by NHR

measures can indicate incomplete vocal fold closure and

incorrect vocal fold oscillations. The noise in speech can be

also generated by turbulent airflow through the vocal fold.

Significant findings in measurements, including all types of

shimmers and jitters features, NHR, and HNR, can be mani-

fested clinically as hoarseness, hypophony, and tremolo.

From traditional articulatory measurements including

DDK rate, DDK regularity, and vowel space area, only the

FIG. 2. The top part of the figure shows a selected example of probability

densities. The bottom of the figure shows the result of Wald task classifica-

tion. As a result, the dark-gray shaded bars are the regions in which the fea-

ture x assumes the value from the subset X1 and the light shaded bars are the

areas predicted for the subset X2. The black bars represent the indecisive sit-

uation, for which observation x [ X0 does not provide sufficient information

for a safe decision regarding one of the subsets X1 or X2.
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DDK rate contains significant differences between both

groups. The DDK regularity did not show any significant dif-

ferences. Although the PD total vowel area was found to be

slightly reduced in comparison with HC, there was no statis-

tically significant difference. In Fig. 3, we can see the plot of

the total vowel triangle area of the PD and HC groups. The

patients with PD show abnormalities in each new non-stand-

ard articulation measurement. Figure 4 shows the result of

calculating the RIRV, RRIS, SDCV, and RFPC values for a

selected speech signal. As can be seen, the PD speech signal

show lower similarity in repeated syllable production, which

can indicate reduced movement of orofacial muscles. In

many patients with PD are developed intensity defects in

instances of rapid articulation. The reduced intensity varia-

tions that can be caused by occlusive weakening are demon-

strated by the RIRV measure. As an example, voiceless

occlusives, which are normally associated with a silent gap,

tend to exhibit energy during the silent gab. This energy can

be caused by turbulent noise generated at the site of oral con-

striction because of an incomplete occlusion or voicing

TABLE IV. List of results of all measures with mean values, SD values, correlations between the measurements methods, statistical significances, and sum-

maries of retained measures. See main text for detailed description of the algorithm used to calculate these results.

Measurement

Subjects

Redundant

to

measurement?

Difference

between

groups

Retained

for Wald task

classification?

PD HC

Mean SD Mean SD

Phonation

[TASK 1] Sustained phonation

01. F0 SD (semitones) 0.46 0.49 0.35 0.23 No p ¼ 0.29 No

02. Jitter:local (%) 1.53 1.37 0.65 0.78 Jitter(RAP,PPQ5,DDP) p < 0.01 No

03. Jitter:RAP (%) 0.88 0.81 0.38 0.52 Jitter(local,PPQ5,DDP) p < 0.01 No

04. Jitter:PPQ5 (%) 0.83 0.75 0.32 0.32 Jitter(local,RAP,DDP) p < 0.01 Yes

05. Jitter:DDP (%) 2.65 2.42 1.14 1.56 Jitter(local,RAP,PPQ5) p < 0.01 No

06. Shimmer:local (%) 7.51 4.97 2.72 2.27 Shimmer(APQ[3,5,11],DDA) p < 0.001 Yes

07. Shimmer:APQ3 (%) 3.69 2.57 1.39 1.36 Shimmer(local,APQ5,DDA) p < 0.001 No

08. Shimmer:APQ5 (%) 4.37 3.07 1.45 1.13 Shimmer(local,APQ[3,11],DDA) p < 0.001 No

09. Shimmer:APQ11 (%) 6.32 3.85 2.20 1.64 Shimmer(local,APQ5) p < 0.001 No

10. Shimmer:DDA (%) 11.07 7.71 4.17 4.07 Shimmer(local,APQ[3,5]) p < 0.001 No

11. NHR (-) 0.16 0.27 0.02 0.04 No p < 0.01 Yes

12. HNR (dB) 16.01 7.36 24.02 5.61 No p < 0.001 Yes

Articulation

[TASK 2] DDK task

13. DDK rate (syll/s) 6.22 0.63 7.16 0.73 No p < 0.001 Yes

14. DDK regularity (-) 0.54 0.58 0.67 0.36 No p ¼ 0.49 No

15. RIRV (dB) 7.54 1.52 10.99 1.96 No p < 0.001 Yes

16. RRIS (dB/s) 2.75 1.51 1.16 1.12 No p < 0.001 Yes

17. RFPC (-) 0.46 0.17 0.60 0.09 No p < 0.01 Yes

18. SDCV (-) 0.14 0.03 0.18 0.03 No p < 0.001 Yes

[TASK 3] Sustained vowels

19. Vowel area (semitones2) 94.19 29.24 95.10 25.84 No p ¼ 0.66 No

Prosody

[TASK 4] Reading text

20. F0 SD (semitones) 1.71 0.66 2.48 0.56 No p < 0.001 Yes

21. Intensity SD (dB) 5.93 1.05 7.55 1.62 No p < 0.001 Yes

22. Percent pause time (%) 0.30 0.02 0.29 0.02 No p ¼ 0.30 No

23. Articulation rate (syll/s) 6.09 0.78 6.09 0.84 No p ¼ 0.58 No

24. No. pauses (pauses/s) 3.29 0.67 3.98 0.51 No p < 0.01 Yes

[TASK 5] Monolog

25. F0 SD (semitones) 1.53 0.32 2.44 0.65 No p < 0.001 Yes

26. Intensity SD (dB) 7.05 1.41 8.75 1.51 No p < 0.001 Yes

27. Percent pause time (%) 0.32 0.03 0.31 0.03 No p ¼ 0.14 No

28. No. pauses (pauses/s) 3.04 0.83 3.86 0.69 No p < 0.01 Yes

[TASK 6] Stress patterns

29. F0 SD (semitones) 2.06 0.81 2.78 0.62 No p < 0.01 Yes

30. Intensity SD (dB) 6.40 1.07 7.84 1.97 No p < 0.01 Yes

[TASK 7] Emotional sentences

31. F0 SD (semitones) 2.59 0.74 3.82 0.56 No p < 0.001 Yes

[TASK 8] Rhythmic text

32. Rhythm (-) 2.65 0.55 2.27 0.28 No p < 0.01 Yes
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energy which occurs as a result of poor coordination between

laryngeal and supralaryngeal gestures. The results of RRIS

show that PD patients have a lower ability to maintain the inten-

sity level, which can be caused by weakness in the production

of stable airflow from the lungs. The remaining two measures

involve the spectral speech changes. The higher number peaks

in SDCV represent a greater clarity of articulation. The rate and

similarity of tongue movement are well represented by the

RFPC measure. The higher periodicity in the obtained F2

sequence represents better articulation accuracy of tongue.

Ten of 13 measures of prosody contained significant sta-

tistical results. The patients with PD show lower melody

intonation in all F0 SD measurements and also decreased in-

tensity variations in all intensity SD measurements. This sit-

uation can be caused by changed laryngeal tension,

decreased breath support, and decreased range of motions.

The persons with PD have not shown any significant differ-

ences in the articulation rate compared to HC. From pause

characteristics, only the measurements of number of pauses

show significant differences between groups. This can be

indicated by breathiness and starting time of the tongue

movement. The patients with PD also show a lower ability

to reproduce perceived rhythm perception.

B. Data pre-selection

Statistically significant relationships between the HC and

PD groups have been found in 26 of a total of 32 measures.

The rest of the measures were statistically insignificant and

were discarded. These include the measures of F0 SD in sus-

tained phonation, DDK regularity, vowel area, percent pause

time, and articulation rate.

The perturbation measures, including all kind of jitter

and shimmer features, are highly correlated with correlation

coefficients greater than 95%. The measurements of jitter:

APQ5 and shimmer:local were retained for their optimal

performance in separating HC from PD patients. Correlation

filtering removes the following measures: jitter:local, jitter:

RAP, jitter:DDP, shimmer:APQ3, shimmer:APQ5, shimmer:

APQ11, and shimmer:DDA.

The rightmost column in Table IV represents the

retained measurements for Wald’s classifier after correlation

and removal of statistically insignificant measurements.

C. Feature selection and classification

After pre-processing by removing statistically insignifi-

cant and highly correlated measures, Fig. 5 shows distribu-

tions estimated by using the Gaussian kernel density method

for all of the 19 representative measures that have passed the

significance and pre-selection test. The articulation and pros-

ody measures show more distinction between the modes of

FIG. 3. The vowel triangle space areas for subjects with PD (up) and HC

subjects (down). FIG. 4. Details of new articulation measures performed on rapid steady syl-

lable repetition. (a and b) Speech signals of rapid steady /pa/-/ta/-/ka/ sylla-

bles repetition; (c and d) light gray lines represent obtained intensity

sequences, dashdot lines represent the RRIS. The RIRV is computed as SD

from the obtained intensity; (e and f) SDCV; (g and h) RFPC. The left panel

is for a person with PD, the right panel is for a HC subject.
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the values for both groups, whereas the modes of phonation

measures are not as well separated. The visual inspection of

the layout of each pair of these measures indicates that the

optimal decision separating HC from PD may not be a sim-

ple intersection between two distributions. Thus, the Wald

task provides a greater opportunity for not deciding to clas-

sify the subject as HC or PD, instead of forcing classification

into one of the groups. This strategy essentially increases the

overall effectiveness of classification in finding the signa-

tures of specific voice and speech impairment.

Table V details the results of classification. From a total

sum of 874 points, 234 were classified according to their

group while only 11 were classified to the inverse group

(26.77% vs 1.26%), which signifies that they achieved the

speech performance of the inverses group in the selected

task. The 629 remaining points (71.97%) were classified as

an indecisive situation. Two of the 23 patients with PD

reached performance as healthy people (8.7%), and none of

23 HC was classified as PD. The Wald task classifier was

confirmed reliably to find the signs of vocal impairment or

healthy voices according to the subject’s speech performance.

The F0 SD measurements in monolog and emotional senten-

ces carry the greatest amount of information for separating

HC from PD patients with classification performance of

60.87% (28 decisions). The RIRV in DDK task was the third

best assessment method and gained 50% performance

(23 decisions). The lowest scores in determining both of the

groups were found in the measurement of jitter and F0 SD

determined from stress patterns (10.87%, five decisions). The

accuracy of the remaining representative measures ranged

between 15% and 37% (7–17 decisions), which is why we

have not listed detailed results. The correlation between the

speech therapist and the classification result was 79.32%

(r ¼ 0.7932, p ¼ 0.4948 � 10–11) and thus complemented

the correctness of the acoustic measures and validated classi-

fication performance.

Finally, we need to decide the number of the signs that

could characterize some form of vocal impairment in

patients with PD. Considering all of the 32 performed meas-

ures (including the measures removed in the pre-selection

stage) and demanding the significance probability of 5%

from a correctly classified subject with PD, we find that all

FIG. 5. Selected probability densities of all representative measures (features) in preparation for Wald task classification. The vertical axes are the probability

densities P(“measure”) of the normalized features values of each measure. The dashdot lines are for HC speakers, the solid lines for PD subjects.
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TABLE V. List of Wald task classification values for all pre-selected measures and values of speech therapist evaluation. See main text for detailed descrip-

tion of the algorithm used to calculate these results. The total sum of the overall performance value represents the speech performance of each subject: More

positive points are associated with higher progression of PD vocal impairment; the negative points show healthy speech performance. The total sum of ratings

represents the suitability of the measure in differentiating PD patients from HC. The speech dimension was designated as affected when it reached at least two

points of voice impairment assessment. The speech therapist evaluation represents rating scores of full vocal assessment: 1 point ¼ intact speech performance,

7 points ¼ progressed speech impairment.
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PD02 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 PH1AR1PR 15 5

PD03 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 PH1PR 7 4

PD04 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 PH1AR1PR 9 3

PD05 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 None 1 2

PD06 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 PH1AR1PR 7 4

PD08 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 AR 4 3

PD09 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 PR 3 3

PD10 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 PH1PR 7 6

PD11 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 AR 3 3

PD12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 PR 2 5

PD13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 None 21 2

PD14 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 AR1PR 5 5

PD15 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 PR 6 5

PD16 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 �1 0 ARþPR 4 2

PD17 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 PR 6 4

PD18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 AR 3 3

PD19 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 PH1PR 9 4

PD20 0 0 0 0 0 1 0 0 0 �1 1 0 1 1 1 1 1 0 0 PR 6 4

PD21 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AR 3 5

PD22 0 0 �1 0 0 0 0 �1 0 0 0 0 1 0 0 0 0 0 �1 None 22 3

PD23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 None 1 2

PD25 0 0 0 0 0 0 0 0 1 0 �1 0 0 0 0 0 0 0 0 None 0 3

PD26 0 0 �1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 PR 2 4

HC02 0 �1 �1 �1 0 0 0 0 0 0 �1 0 �1 0 0 0 0 0 �1 None 26 2

HC03 0 0 0 0 0 0 0 0 �1 �1 0 0 0 0 �1 0 0 0 0 None 23 2

HC04 0 0 0 0 0 0 0 �1 �1 0 �1 0 �1 �1 �1 0 �1 0 0 None 27 1

HC05 0 0 0 0 0 0 0 0 1 0 �1 0 �1 0 0 0 0 0 0 None 21 2

HC06 �1 �1 �1 �1 0 �1 0 0 0 0 �1 0 �1 �1 �1 �1 0 0 �1 None 211 1

HC07 �1 0 �1 �1 �1 0 �1 0 0 0 �1 0 �1 0 1 0 0 �1 0 None 27 1

HC08 0 0 0 0 �1 0 0 0 �1 �1 0 0 0 0 �1 0 0 0 0 None 24 1

HC09 0 �1 0 0 0 �1 �1 �1 �1 0 �1 �1 0 0 0 �1 �1 0 �1 None 210 1

HC10 0 0 0 0 0 �1 0 0 0 �1 �1 0 �1 0 0 0 �1 0 0 None 25 2

HC11 0 0 0 0 0 �1 �1 �1 �1 0 0 0 0 0 0 0 0 0 0 None 24 1

HC12 �1 �1 �1 �1 �1 �1 0 0 �1 0 �1 0 0 0 0 0 �1 �1 0 None 210 1

HC13 0 0 0 0 0 �1 0 0 �1 0 �1 0 �1 �1 �1 0 0 0 0 None 26 1

HC14 0 �1 0 0 0 1 0 0 0 0 �1 0 0 0 0 0 0 0 0 None 21 2

HC15 0 0 �1 0 �1 �1 0 0 0 0 �1 0 �1 0 0 0 0 0 0 None 25 2

HC17 0 0 0 0 0 �1 0 0 0 0 0 �1 �1 �1 0 �1 0 0 �1 None 26 3

HC18 0 0 0 0 �1 0 0 0 �1 0 0 0 �1 0 0 0 �1 0 �1 None 25 2

HC19 0 �1 0 0 0 �1 0 0 �1 �1 �1 0 �1 �1 0 0 0 0 0 None 27 2

HC20 0 0 0 0 0 �1 0 0 0 0 �1 0 0 0 0 0 0 0 0 None 22 2

HC21 0 �1 �1 �1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 None 24 2

HC22 0 �1 �1 0 �1 0 0 0 0 0 �1 �1 �1 �1 0 0 0 0 �1 None 28 2

HC23 0 0 0 0 0 0 0 �1 0 0 0 0 �1 0 0 0 0 0 0 None 22 1

HC24 0 �1 0 0 0 �1 0 0 0 �1 0 �1 �1 0 0 0 0 0 0 None 25 2

HC25 0 0 0 0 0 0 0 0 0 �1 0 0 �1 0 0 0 �1 �1 0 None 24 1

+ |Ratings| 5 14 14 11 12 23 7 9 17 11 28 5 28 13 10 7 12 6 13
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PD patients with a final score higher than or equal to 2 ex-

hibit some form of speech impairment.

When each speech characteristic including phonation,

articulation, and prosody is taken separately, we can see that

the patterns of speech performance are spread through all

speech dimensions only in the HC group (see Table IV). As

can be seen in Fig. 6, the vocal impairment in early stage of

the PD in the view of all speech dimensions is rather individ-

ual. From 23 people with PD, 18 are affected (78.26%). Con-

sidering that 2 signs are enough to determine the speech

impairment, we found phonatory deficits in 6 cases (26.09%),

lower ability of articulation in 9 cases (39.13%), and 14 cases

of certain problems with prosody (60.87%) in PD patients.

Deficits in all speech characteristics were found only in three

people with PD (13.04%). Six PD subjects show deficits only

in prosody (26.09%), four PD patients only in articulation

(17.39%), none in phonation, and five in some combination of

two speech characteristics (21.74%). There is also a need to

take into account that the speech measurements can be par-

tially interconnected in all speech dimensions. Hence, the

speech impairment in early stages of PD might be considered

as the total of speech defects in various speech characteristics.

Underscored by statistical decision-making theory, vali-

dated by a speech therapist, we propose that at least 78% of

PD subjects in the early stage of their disease indicate symp-

toms of vocal impairment, prior to intervention through med-

ical or speech therapy treatment.

IV. CONCLUSION

Our main finding is that 78% of early untreated PD sub-

jects show some form of vocal impairment. This study concen-

trates on three speech subsystems including phonation,

articulation, and prosody. It is important to note that the PD dis-

orders of the individual subsystems not only influence each

other but also frequently overlap. Disturbances of respiration

and phonation consequently reflect, in particular, disruptions in

speech prosody and partially articulation. Although a number

of researchers have found that the most salient features of PD

speech were related to phonatory impairment, with articulation

being the second most affected subsystem,10,26,27 in the case of

early untreated PD, prosody of speech appears to be the most

often damaged speech subsystem of the hypokinetic dysarthria.

The specific PD voice and speech defects were found to differ

individually in various characteristics (see Fig. 6). These results

also show that persons with early untreated PD need not to

have such a demonstrably impaired voice as to differ from the

speech production of the wider norm of healthy people.

We also find that from the 19 representative measures,

the variations of fundamental frequency in monolog and

emotional sentences contain very useful information in sepa-

rating HC from PD. The other representative measurements

achieve sufficient accuracy, with the sole exception of jitter.

In addition, the knowledge of incomplete vocal fold closure,

lack of lung pressure, and lower articulation accuracy as a

consequence of difficult articulation of fast syllable repetition

in the DDK task lead to the design of new articulation meas-

ures that are gaining significance for increasing performance.

Taking into account that the number of participants in this

study is 46, half of whom are patients with PD; we can there-

fore consider that the rate of participants is low. Despite this

circumstance, we can expect that the probability distributions

estimated by the Gaussian kernel density method in combina-

tion with the Wald task classification can ensure sufficient ac-

curacy of the results. This is because we do not assume that

there will be essential changes in the shape of distribution

curves in the case of increasing the number of subjects.

We believe the automatic measurement methods and

new measures of articulation will be useful in assessment of

vocal impairment and will have a potential for positive feed-

back in speech treatment. The classifier based on the Wald

task may also gain value in vocal impairment assessment

and could be helpful in additionally enlarging the number of

participants and efficiency measures. We also believe that

the selected measures should be useful in most countries

worldwide because of their independence from language.

It is necessary to stress that our patient sample is unique

and cannot be compared with that of other authors who have

published results from patients undergoing pharmaceutical

treatment.

Future research could further test these findings in prac-

tice, and the speech measurement methods could involve the

improvement of the individual voice in terms of treatment

and motivation for therapy.
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Acoustic Assessment of Voice and
Speech Disorders in Parkinson’s
Disease Through Quick Vocal Test

The disorders of voice and speech in Parkinson’s disease
(PD) result from involvements in several subsystems includ-
ing respiration, phonation, articulation, and prosody.1–3

We investigated the feasibility of acoustic measures for the
identification of voice and speech disorders in PD, using a
quick vocal test consisting of sustained phonation, diadocho-
kinetic task, and running speech. Various traditional and
novel acoustic measurements have been designed in order to
be gender independent, represent all speech subsystems,
reduce the time required for voice investigation, and provide
a reliable automated assessment in practice.4

Patients and Methods
A total of 46 Czech native participants were recruited.

Twenty-four of them fulfilled the diagnostic criteria for PD
and were examined before the symptomatic treatment was
started: 20 men, 4 women; mean age (6 SD), 60.9 6 11.2
years; duration of PD symptoms, 31.3 6 22.3 months (range,
6–84 months); H&Y stage, 2.2 6 0.5 (range, 1–3); and
UPDRS motor score, 17.4 6 7.1 (range, 5–32); with UPDRS
speech item ¼ 0 in 13 patients and speech item ¼ 1 in 11
patients. As a healthy control (HC) group, 22 persons with no
history of neurological or communication disorders were
included: 15 men, 7 women; mean age, 58.76 14.6 years. Age
distribution did not differ significantly between the groups.
Each participant was instructed to perform 3 vocal tasks:

[VT1], sustained phonation at a comfortable pitch and loud-
ness as constant and long as possible, at least 5 seconds on 1
breath; [VT2], diadochokinetic (DDK) task requiring rapid,
steady /pa/-/ta/-/ka/ syllable repetition as constant and long
as possible, repeated at least 5 times on 1 breath; and
[VT3], running speech for approximately 80 seconds. For
reproducibility of data, each task was repeated at least 2
times for every subject.
The extracted speech parameters were assessed using

measures of phonation [VT1] including jitter, shimmer,

noise-to-harmonics ratio (NHR), and harmonics-to-noise
ratio (HNR)5; respiration [VT2] including sound pressure
level decline (SPLD)4; articulation [VT2] including robust
formant periodicity correlation (RFPC), and spectral distance
change variation (SDCV)4; and prosody [VT3] including
voice fundamental frequency variations (F0 SD).6 Supporting
Information Table 1 details the measurements used.

For every subject, average values (speech performances)
for each acoustic measurement were calculated. Two-sided
Wilcoxon rank-sum and Spearman rank tests were per-
formed to find differences between groups and within-group
correlations. Subsequently, an exhaustive search of all possi-
ble measure combinations was performed, and a predictive
model was built using a kernel support vector machine
(SVM) to find the best combination of measurements to dif-
ferentiate PD from HC subjects. Cross-validation with the
leave-one-out method was used to validate reproducibility of
the SVM classifier.7

Results
In total, 116 vocal recordings were collected and used for

classification. Significant differences between the 2 groups

were found in all 8 measurements. In addition, from all per-

formed correlations, statistically significant relationships

were found between several measures of articulation and

phonation and subscores of bradykinesia and rigidity (Sup-

porting Table 2). The best classification performance of

85.0% 6 6.1% was reached in a combination of 4 measures

that represent all PD-related affected speech subsystems,

including the impaired ability to maintain sound pressure

level (SPLD), increased noise components during phonation

(NHR), lowered accuracy of articulation (RFPC), and

reduced melody of speech (F0 SD); see Figure 1. The maxi-

mal classification accuracy using simple task was 81.3% 6
6.9% for running speech, 75.6% 6 8.3% for sustained pho-

nation, and 71.4% 6 8.3% for DDK task; therefore,

reduced melody in running speech appeared essential in

characterizing the vocal impairment in PD.

Discussion
We have designed a quick 2-minute vocal test and investi-

gated the potential of using acoustic analysis in detecting voice
and speech disorders in PD. The method demonstrated that it
can accurately differentiate PD patients from HCs. This could
be of high clinical relevance as subtle abnormalities such as
reduced melody in running speech were detectable from the
early stage of PD. Admittedly, the study has certain limita-
tions. Although the uneven gender representation of patients
and controls could be offset by gender independence of
designed acoustic measurement methods, our sample size
remains rather small. Should our results be confirmed on a
larger population sample, voice and speech disorders might be
considered as early markers of the disease, and acoustic analy-
sis might serve as a simple screening test in view of the
expected advent of neuroprotective treatment. In a more
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modest scope, the use of automated acoustic vocal tests
can ease the clinical monitoring of voice and speech disorders
progression as well as the effects of medication on speech pro-
duction and can serve as feedback in voice treatment.
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Imprecise vowel articulation as a potential early marker
of Parkinson’s disease: Effect of speaking task
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The purpose of this study was to analyze vowel articulation across various speaking tasks in a group

of 20 early Parkinson’s disease (PD) individuals prior to pharmacotherapy. Vowels were extracted

from sustained phonation, sentence repetition, reading passage, and monologue. Acoustic analysis

was based upon measures of the first (F1) and second (F2) formant of the vowels /a/, /i/, and /u/, vowel

space area (VSA), F2i/F2u and vowel articulation index (VAI). Parkinsonian speakers manifested

abnormalities in vowel articulation across F2u, VSA, F2i/F2u, and VAI in all speaking tasks except

sustained phonation, compared to 15 age-matched healthy control participants. Findings suggest that

sustained phonation is an inappropriate task to investigate vowel articulation in early PD. In contrast,

monologue was the most sensitive in differentiating between controls and PD patients, with classifica-

tion accuracy up to 80%. Measurements of vowel articulation were able to capture even minor abnor-

malities in speech of PD patients with no perceptible dysarthria. In conclusion, impaired vowel

articulation may be considered as a possible early marker of PD. A certain type of speaking task can

exert significant influence on vowel articulation. Specifically, complex tasks such as monologue are

more likely to elicit articulatory deficits in parkinsonian speech, compared to other speaking tasks.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816541]

PACS number(s): 43.70.Dn [MAH] Pages: 2171–2181

I. INTRODUCTION

Parkinson’s disease (PD) is a neurological illness char-

acterized by the progressive loss of dopaminergic neurons

and is associated with a variety of motor and non-motor defi-

cits (Hornykiewicz, 1998). Prior research has demonstrated

that approximately 70%–90% of people with PD possess a

distinctive alteration of speech termed hypokinetic dysarth-

ria (Logemann et al., 1978), which is a multidimensional

impairment affecting various aspects of speech such as respi-

ration, phonation, articulation, and prosody (Darley et al.,
1969). Imprecise vowel articulation is a common deficit

associated with dysarthria and contributes to reduced speech

intelligibility (Kim et al., 2011a). Impairment of vowel artic-

ulation, occurring as a consequence of reduced articulatory

range of motion (“undershooting” of articulatory gestures)

(Forrest et al., 1989; Robertson and Hammerstadt, 1996),

has been widely documented in PD (Sapir et al., 2007; Sapir

et al., 2010; Skodda et al., 2011). Previous findings of acous-

tic and kinematic studies support a reduced amplitude and

velocity of articulators (lips, tongue, jaw) in parkinsonian

speakers (Forrest et al., 1989; Robertson and Hammerstadt,

1996), suggesting that articulation deficits reflect hypokine-

sia and rigidity of the vocal tract (Forrest et al., 1989;

Hunker et al., 1982).

Although imprecise vowel articulation has been

observed even in mild PD (Skodda et al., 2011), previous

studies have mainly focused on moderate or more advanced

stages. As dysarthria can exert significant influence on

speech performance in PD (Kim et al., 2011b), one might

expect that the extent of vowel articulation impairment is

likely to reflect the severity of dysarthria. Moreover, the se-

verity of dysarthria in PD is thought to be influenced by the

severity of motor symptoms, disease duration, as well as spe-

cific effects of dopaminergic treatment (Goberman and

Coelho, 2002; Schulz and Grant, 2000). Generally, findings

related to vowel articulation in the course of PD are some-

what ambiguous. With respect to early stages, improvement

of vowel articulation performance under dopaminergic ther-

apy has been noted for several PD speakers (Skodda et al.,
2010; Rusz et al., 2013). In contrast, recent research has

revealed further decline of vowel articulation performance in

PD throughout extended treatment periods (Skodda et al.,
2012). Considering that medical interventions as well as dis-

ease progression may affect speech performance in different

ways, the examination of vowel articulation in early PD,

before the onset of therapy, is essential to gain more insight

into the development of parkinsonian speech disorders.

While deficits of vowel articulation are commonly pres-

ent in PD speakers (Forrest et al., 1989; Sapir et al., 2007;

Skodda et al., 2011), little effort has been given to examine

the severity of vowel articulation impairment under various

speaking tasks. In treated patients with mild to moderate PD,
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J. Acoust. Soc. Am. 134 (3), September 2013 VC 2013 Acoustical Society of America 21710001-4966/2013/134(3)/2171/11/$30.00

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y

mailto:ruszjan@fel.cvut.cz
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4816541&domain=pdf&date_stamp=2013-09-01


imprecise vowel articulation has been found in the speaking

task of sentence repetition (Sapir et al., 2007; Sapir et al.,
2010) as well as reading passage (Skodda et al., 2011). In

addition, impaired vowel articulation has been observed in

patients with severe PD while performing sustained prolon-

gation of single vowels (Eliasova et al., 2013). However, to

the best of our knowledge, investigation of vowel articula-

tion in PD has been primarily based on a single task and lim-

ited to simple utterances, and no evidence has been given

regarding the sensitivity of vowel articulation under sponta-

neous speech. Additionally, there is a growing body of evi-

dence that the signs of dysarthria vary across the specific

type of speech task performed (Caligiuri, 1989; Rosen et al.,
2005). In particular, dysarthric speech performance has been

found to be even more significantly altered acoustically dur-

ing spontaneous speech production when compared to other

non-spontaneous tasks (Kempler and Van Lacker, 2002). A

study by Weismer (1984) has suggested that the degree of

articulatory deviances seem to vary between simple versus

complex utterances produced by speakers with parkinsonian

dysarthria, which may be explained by the fact that simple

speaking tasks do not require the subject’s full attention and

are likely to be more automatic than structured and complex

tasks such as spontaneous speech. Based on these observa-

tions, in the present study we endeavored to determine if a

certain type of speaking task is more sensitive to disturbed

vowel articulation in PD.

The quality and intelligibility of each vowel can be

determined primarily by the distinctive acoustic energy peak

of the first (F1) and second (F2) formant frequencies. The F1

and F2 frequencies particularly reflect tongue position, with

the acoustic-articulatory relationship defined such that the

F1 frequency varies inversely with tongue height and the F2

frequency varies directly with tongue advancement (Kent

et al., 1999). Thus, limited articulatory range of motion due

to PD may result in vowel formant centralization, i.e., for-

mants with naturally higher frequencies tend toward lower

frequencies, and formants with naturally lower frequencies

tend toward higher frequencies (Kent and Kim, 2003; Sapir

et al., 2007). The overall reduction of working space for

vowels in PD can be captured well by a reduced size of the

vowel space area (VSA), which is constructed by the

Euclidean distances between the F1 and F2 coordinates of

the corner vowels /a/, /i/, and /u/ in the triangular F1-F2

vowel space (Kent and Kim, 2003), as compared to normal

speech. Several studies have reported a relationship between

the VSA and the perceptual impression of intelligibility in

speakers with dysarthria (Liu et al., 2005; Weismer et al.,
2001). Conversely, a study by Kim et al. (2011a) demon-

strated that intelligibility in dysarthric speakers was better

represented by the degree of overlap among vowels than by

the vowel space. In fact, a report by Monses (1976) was the

first to show correlation between speech intelligibility in

speakers with severe hearing impairment and distance

among the F2 frequencies of adjacent vowels in the vowel

space. Similarly in PD, both the F2i/F2u ratio representing

the distance between the vowels /i/ and /u/ and vowel articu-

lation index (VAI) reflecting vowel centralization (consider-

ing all F1 and F2 frequencies across corner vowels) have

been shown to be more sensitive in differentiating dysarthric

speech from normal speech than the VSA (Roy et al., 2009;

Sapir et al., 2007; Sapir et al., 2010; Skodda et al., 2011).

Therefore, the current study further addresses the question of

whether certain formant-based measurements are more sen-

sitive than other measurements in capturing deficits of vowel

articulation, and examined early-stage PD speakers as the

main focus.

One potential application of the identification of

changes in vowel articulation may be related to the early di-

agnosis of PD. Tetrud (1991) reported that family members

and close friends of prospective patients with PD may note

changes in speech several years before the diagnosis is estab-

lished. More recently, Postuma et al. (2012) investigated

prodromal Parkinsonism-related motor changes in idiopathic

rapid eye movement (REM) sleep behavior disorder and

revealed that voice and face akinesia were the earliest indi-

cators of Parkinsonism with an estimated prodromal interval

of 9.8 yr before diagnosis. However, speech disorders in the

early stages of PD are often mild and have a limited effect

on speech intelligibility, making them barely perceptible to

others or even to the patients themselves (Stewart et al.,
1995). On the other hand, acoustic speech abnormalities

have been reported even in PD patients with no perceptible

dysarthria (Forrest and Weismer, 2009), and several investi-

gators have found impaired speech parameters in early-stage

PD using objective acoustic measures (Rusz et al., 2011a;

Stewart et al., 1995). In clinical practice, movement disorder

specialists (MDS) are responsible for making the early diag-

nosis of PD, with disability commonly evaluated using the

Unified Parkinson’s Disease Rating Scale (UPDRS)

(Stebbing and Goetz, 1998). A global perceptual description

of patient speech is part of the UPDRS III motor score (item

18) and its evaluation represents a part of daily practice for

the MDS. As speech deterioration may be a prodromal fea-

ture of Parkinsonism and defects of vowel articulation are

common findings in PD, the present study was designed to

investigate whether changes in vowel articulation captured

by objective acoustic analyses are superior to the perceptual

impression of disturbed speech raised by the experienced

MDS.

In summary, this study was designed to address follow-

ing questions:

1. Can imprecise vowel articulation be considered as an early

marker of PD? We hypothesized that early-stage, untreated

PD patients can be differentiated from healthy speakers

using objective measurements of vowel articulation.

2. Which speaking task, including sustained phonation, short

sentence repetition, reading passage, and monologue is

most sensitive to imprecise vowel articulation in PD? We

hypothesized that (a) sustained phonation would not be

sufficiently sensitive to differentiate healthy speakers

from early-stage PD speakers, but (b) spontaneous speak-

ing such as monologue would be more altered in PD

speakers when compared to other speaking tasks.

3. Are some formant-based measurements, including F1 and

F2 frequencies of each corner vowel (/a/, /i/, and /u/),

VSA, F2i/F2u, and VAI more sensitive in capturing
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deficits of vowel articulation in early-stage PD speakers

in comparison to healthy speakers? We hypothesized that

F2i/F2u and/or VAI would be superior to VSA in the

description of mildly impaired parkinsonian speech.

4. Are objective measurements of vowel articulation supe-

rior to the clinical impression of disturbed speech as

determined by the MDS? We hypothesized that changes

of vowel articulation captured by objective acoustic anal-

yses would uncover articulatory disorders in PD with

greater precision than perceptual evaluation by the MDS.

II. METHODS

A. Participants

A total of 35 male, Czech native speakers were recruited

for the study. Twenty subjects were diagnosed with idio-
pathic PD. They fulfilled the diagnostic criteria for PD

(Hughes et al., 1992) and were examined immediately after

the diagnosis was established and before symptomatic treat-

ment was started. Their age ranged from 34 to 83 yr (mean,

61.0; 6 standard deviation (SD) 12.0), the Hoehn and Yahr

(HY, Hoehn and Yahr, 1967, disability scale comprised of

stages 1 through 5, where 5 is most severe) disease stage

ranged from 1 to 3 (2.2 6 0.5), the UPDRS III (Stebbing and

Goetz, 1998, motor rating scaled from 0 to 108, where 108

represents severe motor impairment) ranged from 5 to 32

(17.9 6 7.3), and the estimated duration of PD manifesta-

tions prior to examination ranged from 6 to 82 months

(28.6 6 19.9). None of the participants reported speech, lan-

guage, or hearing disorders unrelated to their parkinsonian

symptoms, nor had a history of speech-language treatment

prior to participation in this study. All PD patients were free

of depression and cognitive deficits that could interfere with

measurements.

The healthy control (HC) group consisted of 15 persons

of comparable age ranging from 36 to 80 yr (62.6 6 13.4).

None of these individuals reported a history of neurological

disorders or other disorders that may affect speech, lan-

guage, or hearing. Age distributions were not significantly

different between the PD and HC groups. All participants

provided their consent to the speaking tasks and recording

procedure.

B. Recording

Recordings were made in a quiet room with a low ambi-

ent noise level using an external condenser microphone

placed approximately 15 cm from the subject’s mouth and

coupled to a Panasonic NV-GS 180 video camera; the video

material was not used in subsequent acoustic analysis. The

external condenser microphone was manufactured as part of

the original video camera set. The gain of the microphone

was set to the same optimal level for all participants to

ensure comparable recording conditions. The audio data

were digitized from the video recording tape to a computer

at a sampling rate of 48 kHz and 16-bit quantization using

original Panasonic software. All participants were recorded

in the same area of the neurological clinic. As the diagnosis

of individual PD patients was made at the time, the specific

date of recordings for each participant was different but the

overall time schedule was the same. Each participant was

recorded in a single session with the speech language pathol-

ogist. No time limits were imposed during the recording. All

of the participants were familiarized with the speaking tasks

and recording procedure. In each recording, the participants

performed various speaking tasks as a part of the larger pro-

tocol. All participants could repeat their performance in case

any errors occurred with respect to the speaking task.

Neither participant fatigue nor any changes in the quality of

voice from the beginning to the end of the session were

observed.

C. Speech samples

Four different speaking tasks were evaluated in the pres-

ent study including sustained phonation, sentence repetition,

reading passage, and monologue. In all speaking tasks, the

vowels /a/, /i/, and /u/ were of interest. In the first speaking

task, subjects were instructed to make a sustained phonation

at a comfortable pitch and loudness with one breath, each

vowel separately. The second speaking task was multiple rep-

etition of the Czech phrase “Kolik mate ted u sebe asi penez,”

([ ]; How much money do you

have in your wallet?) which was read in one breath and

repeated five times.1 The acoustic analysis of the corner vow-

els was performed from the part “u sebe asi”. In the third

speaking task, each participant read a standardized passage

composed of 80 words (see Appendix A). As indicated by the

underlined vowels in the text appearing in Appendix A, 30

vowels per passage were studied, including 10 occurrences of

/a/, 10 occurrences of /i/, and 10 occurrences of /u/. The fourth

speaking task consisted of monologue where the participants

were instructed to speak about what they did during the cur-

rent day or week, their family, their job, or their interests. For

each participant, 10 occurrences of the three vowels /a/, /i/,

and /u/ were extracted from the monologue. As there is no

available methodology for vowel selection from spontaneous

speech such as monologue, the inclusion criteria for the entire

word and the vowel itself was established as follows:

(a) The word from which the vowel was selected, as a

whole, had to be intelligible and perceptually normal.

(b) Only one same corner vowel (/a/, /i/ or /u/) could be

extracted from one specific word.

(c) As there is no reduction in vowel duration due to

occurrence in non-stressed syllables in the Czech lan-

guage, the vowels were elicited from both stressed as

well as non-stressed syllables equally.

(d) The selected vowel must not have been induced by

confounding effects such as coarticulation with sur-

rounding phonemes. To ensure this condition, the vow-

els were used only if they occurred separately or

followed a voiceless consonant.

(e) The minimal length of the vowel had to be 40 ms, with

at least a 30 ms segment that could be considered as a

stable part of the vowel. The stable part of the vowel

refers to the vowel segment where the first two for-

mants were visible and their format contours did not

exhibit marked slopes.
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(f) The vowels were extracted from the entire duration of

the monologue.2

D. Acoustic analyses

Acoustic measures were performed using the widely

used, specialized speech-analysis software PRAAT (Boersma

and Weenink, 2001, available at www.praat.org). Using

PRAAT, both the combined wideband spectrographic dis-

play and the power spectral density were used to determine

F1 and F2 frequencies in Hz. The formant frequencies of

vowels /a/, /i/, and /u/ were extracted from the entire dura-

tion of sustained phonation, and from a 30-ms segment at

the temporal midpoint of the stable part of each vowel (in

order to avoid the influence of vowels preceding or follow-

ing) in speaking tasks of sentence repetition, reading pas-

sage, and monologue.3 The vowel data of F1 and F2 were

separately averaged for all corner vowels of each participant

and each individual speaking task. The measurements of

VSA, F2i/F2u ratio, and VAI were calculated from these

averages. The measurement of VSA is expressed in Hz2, and

can be easily calculated using the following formula (Liu

et al., 2005):

VSA ¼ 0:5� jF1i � ðF2a � F2uÞ þ F1a

� ðF2u � F2iÞ þ F1u � ðF2i � F2aÞj: (1)

The measurement of VAI can be expressed using the follow-

ing formula (Roy et al., 2009):

VAI ¼ F1a þ F2i

F1i þ F1u þ F2a þ F2u
: (2)

E. Measurement reliability

Intra-judge reliability was assessed following the rean-

alysis of 25% of all vowel data by the investigator that per-

formed the original set of measures. Pearson correlation

analysis indicated significant, positive intra-judge correla-

tion for F1 measures (r¼ 0.91; p< 0.001) and for F2 mea-

surement (r¼ 0.99; p< 0.001). The mean intra-judge

standard error of measurement (SEM) was 15 6 11 Hz for

F1 measures and 16 6 12 Hz for F2 measures. Inter-judge
reliability was calculated based on the reanalysis of 25% of

all vowel data by a second investigator blinded to partici-

pant conditions that was well-trained in the analysis method

using the same program. Pearson correlation indicated a

significant, positive inter-judge correlation for F1 measures

(r¼ 0.93; p< 0.001) and for F2 measurement (r¼ 0.99;

p< 0.001). The mean inter-judge SEM was 15 6 11 Hz for

F1 measures and 17 Hz 6 12 Hz for F2 measures. Test-
retest reliability was performed following correlation

between the second and third set of sentence repetitions.

Pearson correlation indicated significant, positive test-retest

reliability for F1 (r¼ 0.93; p< 0.001) and F2 (r¼ 0.97;

p< 0.001) measures. Measurement reliability results in this

study are in agreement with previous studies on vowel

articulation in dysarthric speakers (Tjaden et al., 2005;

Sapir et al., 2007; Sapir et al., 2010).

F. Perceptual assessment of speech performance
in PD

For further investigation, the PD subjects were separated

into two groups according to independent perceptual assess-

ment performed by three equally trained MDS experienced

in the early diagnosis of PD. In accordance with clinical

practice, the speech of PD patients was evaluated by item 18

of the UPDRS III (global perceptual description of patient

speech, ranked from 0 to 4, where 4 represents complete

unintelligibility of speech). As a result, the first group con-

sisted of 10 PD subjects with an absence of perceptible dys-
arthria (hereafter, PDND (PDno dysarthria), 0 points on item 18

representing “unaffected speech”), and the second group

consisted of 10 PD subjects with the presence of mild hypo-
kinetic dysarthria [hereafter, PDMD (PDmild dysarthria), 1 point

on item 18 representing “slightly impaired speech”]. The

patient was designated as PDMD if at least one MDS raised

suspicion about affected speech due to PD.

G. Statistical analysis and classification

As the Kolmogorov-Smirnov test for independent sam-

ples showed that acoustic variables were normally distrib-

uted, analysis of variance (ANOVA) with post hoc
Bonferroni adjustment was used to assess group differences

across the data. The adjusted level of significance was set at

p< 0.01.

Although statistical significance provides useful infor-

mation regarding the difference between group distributions,

there are several classification methods that provide a com-

plete picture of the sensitivity of a given measurement in

determining subject-group status. To gain reliable classifica-

tion results, we first removed the statistically insignificant

measurements. As a result, only statistically significant

measures (hereafter, main indices) were included in the sub-

sequent classification.

The classification experiment was based on the minimax
theorem (Schlesinger and Hlavac, 2002). The solution of the

minimax theorem is established using a strategy which com-

pares the likelihood ratio with the threshold value.

Considering that X can be defined as a set of observations

and K as a set of object states, the probability distribution

pXjK(xjk) using the set X is then in correspondence with each

state k. The strategy is based on the decomposition of X(k), k
� K, which determines for each observation x � X that the

object is in the state k on condition x � X(k). Each strategy

is described by dividing set X into jKj numbers,

xðkÞ ¼
X
x 62Xk

pXjKðxjkÞ; (3)

i.e., by the conditional probabilities of a wrong decision

under the condition that the actual true hidden state of the

object is k. The minimax task can then be formulated to find

a strategy which minimizes maxk2K xðkÞ.
The Gaussian kernel density method with automatic

data-driven bandwidth was applied to model the probability

distribution of the main acoustic indices for the PD and HC

groups, and the minimax task was further solved through a
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linear programming technique (Schlesinger and Hlavac,

2002). To validate the reproducibility of the minimax classi-

fier, cross-validation with a leave-one-subject-out method

was applied, i.e., data from one speaker was used for testing

whereas data from the remaining speakers was used to train

the classification model.

H. Overall evaluation

The individual steps related to overall evaluation, corre-

sponding with the proposed aims of the study can be sum-

marized as follows:

1. Analysis of variance (ANOVA) was used to find statisti-

cally significant differences between the PD and HC

groups across all variables and speaking tasks. The signif-

icant differences between the PD and HC groups would

indicate that imprecise vowel articulation can be consid-

ered a marker of early PD.

2. To investigate the suitability of each speaking task in dif-

ferentiating between the PD and HC groups, we intro-

duced the measure of task index, which is computed as

the average classification performance (minimax task)

across all main acoustic indices. A better task index clas-

sification score would indicate greater potential of the

speaking task to reveal parkinsonian deficits in vowel

articulation.

3. To examine the suitability of the main acoustic indices in

differentiating between groups, we designed a measure

termed the acoustic index, which is calculated as the aver-

age classification performance (minimax task) across all

speaking tasks. A better acoustic index classification

score would imply greater sensitivity of the acoustic vari-

able to capture defects in vowel articulation of mildly

impaired PD speech.

4. The minimax task was used to determine whether objec-

tive acoustic measures were more sensitive in revealing

PD-induced articulation deficits than perceptual evalua-

tion by an experienced MDS, and to predict whether the

speakers with perceptible dysarthria (PDMD) as well as

speakers with no perceptible dysarthria (PDND) are cor-

rectly identified as PD. A high classification score for

PDND would indicate that objective acoustic measures are

able to capture even minor abnormalities in PD vowel

articulation, which may be barely distinguishable from

the speech of healthy individuals. A high classification

performance for PDMD would imply that the severity of

vowel articulation deficits contributes to the overall per-

ceptual impression of dysarthric speech.

III. RESULTS

A. Group differences (Objective 1)

Figure 1 shows the mean and SD (error bars), as well as

statistically significant differences (stars) between the PD

and HC groups, across all formant-based measurements and

speaking tasks. The four main acoustic indices (F2u, VSA,

F2i/F2u, VAI) were sufficiently sensitive to separate early-

stage PD from HC. For single formant measurements, only

F2u differed between PD and HC speakers. The significant

differences between both groups for F2u were found for the

speaking tasks of sentence repetition [F(1,34)¼ 16.6,

p< 0.001], reading passage [F(1,34)¼ 9.8, p< 0.01], and

monologue [F(1,34)¼ 18.8, p< 0.0001]. The direction of

group differences in each case was consistent with the gen-

eral hypothesis of increased F2u in PD. In addition, all three

complex measurements (VSA, F2i/F2u, VAI) were suffi-

ciently sensitive to capture deficits in vowel articulation,

with a consistent direction of group differences indicating

reduced vowel space as well as F2iF2u and VAI ratios due

to PD. Considering reduced vowel space, significant differ-

ences between the PD and HC groups captured by VSA were

revealed for the speaking tasks of sentence repetition

[F(1,34)¼ 11.2, p< 0.01] and monologue [F(1,34)¼ 8.4,

p< 0.01]. In the case of distinction between vowels, altered

PD speech performance was found in the measurements of

F2i/F2u for the speaking tasks of sentence repetition

[F(1,34)¼ 12.7, p< 0.001], reading passage [F(1,34)¼ 7.5,

p< 0.01], and monologue [F(1,34)¼ 19.6, p< 0.0001].

Regarding vowel centralization, significant differences

between both groups were found in the measurement of VAI

for the speaking tasks of sentence repetition [F(1,34)¼ 8.2,

p< 0.01] and monologue [F(1,34)¼ 13.3, p< 0.001].

Therefore, in agreement with our hypothesis, imprecise

vowel articulation can be considered an early marker of PD.

B. Differences across speaking tasks (Objective 2)

Figure 2 details classification results with estimated

probability distributions for each speaking task across all

main acoustic indices. In accordance with the results of sta-

tistical analyses, the task index showed that sustained phona-

tion reached the lowest classification performance of 58.7%.

All the remaining speaking tasks including sentence repeti-

tion, reading passage, and monologue can be considered

suitable for the evaluation of vowel articulation in PD.

Comparing the results of task index for non-spontaneous and

spontaneous speech, sentence repetition and reading passage

had an average performance of 69.5% (73.5% for sentence

repetition and 65.5% for reading text) whereas monologue

reached a score of 76.5%. These findings are consistent with

our hypothesis that the performance of vowel articulation in

PD speakers is altered to a greater extent in spontaneous

rather than non-spontaneous utterances, whereas isolated

sustained phonations cannot be considered a suitable task for

the investigation of vowel articulation in early PD.

C. Differences across formant-based measurements
(Objective 3)

Classification results based on the main acoustic indices

(F2u, VSA, F2i/F2u, VAI) through individual speaking tasks

are presented in Fig. 2. Considering differences between the

PD and HC groups among individual measurements, VSA

and F2i/F2u extracted from the monologue reached the best

classification performances of 80.4% and 80.0%, respec-

tively. The acoustic index showed very similar classification

accuracy across all acoustic indices with a performance of

70.6% for F2u, 70.4% for VSA, 69.1% for F2i/F2u, and
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64.1% for VAI. Contrary to our hypothesis, distinctions

between vowels and vowel centralizations were not revealed

to be superior to reduced vowel space in the detection of

mildly impaired speech in early stage PD, while articulation

of the vowel /u/ captured by F2u seems to be more affected

when compared to changes in other vowel frequencies.

D. Comparison between objective measures
and perceptual evaluation (Objective 4)

Table I details the results of classification for two groups

of PD speakers, with perceptible dysarthria (PDMD) and

without perceptible dysarthria (PDND), across all main

acoustic indices and speaking tasks. Altered vowel articula-

tion in PDMD patients was confirmed using all main acoustic

indices (F2u, VSA, F2i/F2u, VAI) through all investigated

speaking tasks except sustained phonation. This finding,

related to imprecise vowel articulation in PDMD subjects,

was in agreement with the perceptual evaluation of the

MDS. In other words, acoustic metrics generally achieved

better results in predicting the group status of PDMD patients

than PDND patients. Interestingly, the measurement of F2

frequency based on the single vowel /u/ (F2u) was best able

to capture mild dysarthria, with scores ranging from 81.9%

to 88.7%. On the other hand, F2u alone was not sufficiently

sensitive to reveal changes in vowel articulation of PDND

patients. The contrary is true for measurements of VSA and

F2i/F2u, especially when extracted from monologue, which

were able to detect impaired vowel articulation in both PD

groups. In fact, the VSA based on monologue was more suc-

cessful in predicting PDND group status with a classification

score of 80.3% in comparison to 76.3% achieved by F2i/

F2u. In contrast, F2i/F2u extracted from monologue reached

a higher score of 85.6% for the PDMD group in comparison

to 83.7% by VSA. The measurement of VAI was not found

to be superior to complex measurements of F2i/F2u and

VSA. In correspondence with our hypothesis, the perform-

ance of objective acoustic measures of vowel articulation

was superior to the subjective clinical evaluation of dis-

turbed speech.

IV. DISCUSSION

In the present study, we investigated various formant-

based measures in a group of de novo male PD patients in

comparison to healthy subjects. Vowel production was

examined across different types of speech tasks including

sustained phonation, sentence repetition, reading passage,

and monologue. The acoustic parameters for subsequent

analysis consisted of F1 and F2 for each corner vowel, the

FIG. 1. First (F1) and second (F2) formant frequencies for each corner vowel (/a/, /i/, and /u/), vowel space area (VSA), F2i/F2u ratio, and vowel articulation

index (VAI) in PD speakers (gray) and healthy controls (white). Measurements were performed using different types of speech material including sustained

phonation, sentence repetition, reading passage, and monologue. The bars represent mean values and error bars standard deviations. Stars indicate significant

differences between PD patients and controls: *p< 0.01; **p< 0.001; ***p< 0.0001.
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traditional measure of VSA, and the recently introduced

measures of F2i/F2u and VAI. Much of what is known about

vowel articulation in PD has generally been based on phar-

macologically treated patients with various degrees of dys-

arthria, without comparison between different types of

speaking tasks. Thus, the current investigation extends our

knowledge related to the characteristics of vowel articulation

in the early stages of PD prior to pharmacotherapy, and the

usage of more complex speech material.

Our results show that early-stage PD speakers manifest

increased F2u, lowered VSA, reduced distinction between

vowels captured by F2i/F2u, and abnormalities in formant

centralizations measured by VAI across sentence repetition,

reading passage, and monologue. In fact, vowel articulation in

PD was more acoustically altered during spontaneous speech

such as monologue in comparison to the non-spontaneous

tasks of sentence repetition and reading passage. Moreover,

isolated vowel phonation was found to be an inappropriate

task to reveal early changes in parkinsonian articulation.

Considering comparisons between measurements, there were

no essential differences between the results obtained using

various complex formant-based metrics (VSA, F2i/F2u, VAI),

although the production of the vowel /u/ (as captured by F2u)

was found to be altered to a greater extent when compared to

articulation of /a/ and /i/ vowels. Further results of our study

indicate that objective acoustic measures are more sensitive in

revealing PD-induced articulation deficits than perceptual

evaluation by experienced clinicians, and therefore may be

helpful in capturing even subclinical signs of speech impair-

ment in PD. To summarize, these findings provide greater

insight into impaired vowel articulation in the early stages of

PD and may be helpful regarding the advent of neuroprotec-

tive treatment as well as speech rehabilitation in PD (Rusz

et al., 2011b; Sapir et al., 2010).

FIG. 2. Probability densities P(‘measure’) with overall classification accuracy according to the minimax task across all main acoustic indices (F2u, VSA, F2i/

F2u, VAI) and speaking tasks (sustained phonation, sentence repetition, reading passage, monologue). Solid lines are displayed for PD subjects, the dash-dot

lines for HC speakers.
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A. Imprecise vowel articulation as an early marker
of PD

Although imprecise articulation is considered as one of

the most common deficits associated with hypokinetic dys-

arthria (Darley et al., 1969), previous studies have reported

that voice disorders in PD occur more frequently than articu-

lation disorders (Logemann et al., 1978). Moreover, prosodic

patterns and features of dysphonia have been suggested to be

the most salient early signs of vocal impairment in PD (Rusz

et al., 2011a; Stewart et al., 1995). In contrast to previous

reports, our results show that impaired vowel articulation

was present in 80% of our patients and may be one of the

first signs of speech impairment in PD. Individuals with

early-stage PD demonstrated significant differences in meas-

urements of F2u, VSA, F2i/F2u, and VAI relative to HC sub-

jects. Our results are generally consistent with previous

studies where reduced articulatory movements were investi-

gated in treated PD patients with mild to moderate dysarthria

(Sapir et al., 2007; Sapir et al., 2010; Skodda et al., 2011),

however, to the best of our knowledge, no previous studies

have examined vowel articulation in de novo patients with

hypokinetic dysarthria or dysarthria of another type.

B. Effect of speaking task

Our results indicate that both spontaneous and non-

spontaneous speech is suitable for the assessment of early

changes in vowel articulation associated with PD, while iso-

lated vowel phonations were found to be inappropriate. In

fact, vowel articulation performance in PD was found to be

altered to a greater extent in spontaneous speech such as

monologue when compared to the typical non-spontaneous

speaking tasks of sentence repetition or reading passage.

These findings are in agreement with the general assumption

that the efficiency of speech production in PD varies with the

task performed (Caligiuri, 1989; Rosen et al., 2005; Weismer,

1984). Furthermore, in a previous study where both spontane-

ous and non-spontaneous speech were collected from a single

patient with PD diagnosed 18 yr prior to investigation

(Kempler and Van Lacker, 2002), the intelligibility of sponta-

neous speech was found to be severely affected when com-

pared to non-spontaneous speech. As imprecise vowel

articulation commonly contributes to reduced speech intelligi-

bility in dysarthria (Kim et al., 2011a; Liu et al., 2005;

Weismer et al., 2001), the observation by Kempler and Van

Lacker (2002) is in accordance with our results showing

monologue as the most affected speaking task in parkinsonian

patients, even in the early stages of the disease. Thus, it might

be rewarding to take into account the type of speaking task

during the evaluation of dysarthria.

With respect to differences in articulatory impairment

between various types of speaking tasks, one possible expla-

nation is the complexity of the speaking task. Contrary to

more advanced stages of PD (Eliasova et al., 2013) where sus-

tained phonation may be a suitable task, in early-stage parkin-

sonian speakers it is too simple a task to capture subtle

changes in vowel articulation. Indeed, the size and centraliza-

tion of the VSA as well as the ratios of F2i/F2u and VAI

obtained from phonation differ in comparison to the results

elicited from other speaking tasks (see Fig. 1). Although sen-

tence repetition maintains the advantage that each individual

corner vowel is extracted from the same repeated phrase,

usage of these extracted vowels does not appear to reflect the

variety and flexibility of the entire utterance. Furthermore, the

lexical factors of phonological neighborhood density and

word frequency can significantly influence the performance of

vowel articulation (Watson and Munson, 2008). In contrast to

sentence repetition, the variety of utterances is captured well

using reading passage where the vowel performances are

extracted from a variety of words, and lexical factors are then

partially controlled by average measurements. However, in

non-spontaneous speech such as reading passage or sentence

repetition, the speaker is simply pronouncing ready-made text

and thus can provide special attention to articulatory planning

(Levelt, 1989). In contrast to non-spontaneous tasks, sponta-

neous speech represented by monologue requires that the

speaker carry out the complete planning process, and there-

fore the articulatory mechanisms receive relatively less atten-

tion. However, in spontaneous speech, there is a limited

possibility of using the same words in the same phrases for

each participant, and thereby the identification and extraction

of vowels must be carefully conducted. In summary, we can

assume that the final speech performances are related to the

overall articulatory demands and complexity of the individual

speaking tasks.

C. Acoustic changes in vowel articulation due to PD

In the present study, we did not detect any fundamental

differences between various complex formant-based

TABLE I. List of classification results for PD speakers with mild dysarthria

(PDMD) and no perceptible dysarthria (PDND) across all main acoustic indi-

ces (F2u, VSA, F2i/F2u, VAI) and speaking tasks (sustained phonation, sen-

tence repetition, reading passage, monologue).

Classification score (%)

Measurement PDMD PDND

Sustained phonation

F2u 53.5 6 5.6 60.4 6 4.8

VSA 67.0 6 13.3 69.9 6 12.9

F2i/F2u 72.8 6 6.7 58.9 6 4.8

VAI 64.3 6 6.7 50.2 6 7.7

Sentence repetition

F2u 84.0 6 3.0 72.9 6 6.5

VSA 84.7 6 3.5 69.7 6 3.8

F2i/F2u 78.6 6 3.2 64.3 6 3.9

VAI 84.9 6 3.0 67.2 6 4.3

Reading passage

F2u 81.9 6 2.9 66.0 6 3.6

VSA 62.2 6 4.1 68.0 6 4.1

F2i/F2u 72.3 6 6.0 59.1 6 5.9

VAI 69.0 6 7.3 58.7 6 7.7

Monologue

F2u 88.7 6 3.4 61.5 6 3.8

VSA 83.7 6 5.3 80.3 6 5.5

F2i/F2u 85.6 6 5.7 76.3 6 5.2

VAI 71.0 6 4.0 69.1 6 3.9
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measurements. However, this is not unexpected as all of the

complex formant-based measurements are based upon the

same base measures of F1 and F2 frequencies. On the other

hand, subtle differences in findings across formant-based

measurements may provide certain clues about acoustic

changes in vowels due to the development of PD.

Considering the main acoustic indices, F2u is sensitive

only to the vowel /u/, F2i/F2u to both /u/ and /i/ vowels,

and VAI to all three corner vowels /u/, /i/, and /a/. F2u was

the only measurement based on a single vowel that allowed

the differentiation of PD and HC groups, and therefore the

vowel /u/ can be considered the most affected in mild dys-

arthria of PD individuals. F2i/F2u was more sensitive in

capturing deficits of PD vowel articulation than F2u alone,

while VAI, which also takes formant frequencies of the

vowel /a/ into account, achieved the worst classification

performance in separating PD from HC speakers. The

vowel /a/ also contributes to the VSA, but the formants

based on the vowel /a/ do not need to negatively contribute

to its overall performance (as given by the principle of

VSA construction) such as in the case of formant central-

ization measured by VAI. In light of these observations, we

may hypothesize that articulatory deficits are due mainly to

alterations of the vowel /u/, followed by the vowel /i/, with

the vowel /a/ remaining most resistant to change in the ear-

lier stages of PD. This hypothesis is also in agreement with

previous studies reporting the measurement of VAI supe-

rior to VSA in parkinsonian patients several years after the

diagnosis was established (Sapir et al., 2010; Skodda et al.,
2012).

This continuum of articulatory deficits developing

through the vowels /u/, /i/, and /a/, respectively, can be also

discussed in physiological terms. Considering tongue posi-

tion and lip posture for the cardinal vowels /a/, /i/, and /u/,

the tongue is positioned low for the vowel /a/, high and for-

ward for the vowel /i/, and high and backward for the vowel

/u/, whereas lip posture is spread for both the /a/ and /i/ vow-

els and rounded for the vowel /u/ (Hasegawa-Johnson et al.,
2003). Therefore, we may assume that production of the

vowel /a/ is a less demanding task than production of the

vowels /i/ and /u/. In comparison to the vowel /i/, the articu-

lation of the vowel /u/ requires more demanding involve-

ment of the orofacial muscles to create a tightly rounded lip

posture. Admittedly, as the vowel /u/ is characterized by a

posterior rise of the tongue root, we may consider that prob-

lems with tongue articulation develop in reverse, i.e., from

the root to the tip of the tongue, and the resulting tongue

restriction may also be related to swallowing abnormalities

in PD (Sapir et al., 2008; Tjaden, 2008). In general, concern-

ing the pathophysiological mechanism responsible for the

development of speech and other motor deficits in PD,

speech impairment has generally been attributed to dopa-

mine deficiency as well as hypokinesia and rigidity of the

vocal tract (Schulz and Grant, 2000). On the basis of investi-

gation in PD patients tested and re-tested within a few years,

recent innovative studies have found that bradykinesia, rigid-

ity, and axial parkinsonian symptoms are primarily responsi-

ble for restricted vowel articulation in PD (Rusz et al., 2013;

Skodda et al., 2012).

D. Perceptual and acoustic findings in the speech of
early-stage PD individuals

Previous studies have reported a relationship between

measurements of vowel articulation and the perceptual

impression of intelligibility in dysarthric speakers (Kim et al.,
2011a; Liu et al., 2005; Weismer et al., 2001). Although the

perceptual classification of dysarthria is typically based on

intelligibility rating measures using orthographic transcription

(for example, see Kim et al., 2011a; Liu et al., 2005), such

methods are not applicable to the evaluation of speech disor-

ders in early-stage PD, where dysarthria is rather mild or even

imperceptible, and has no or limited effect on speech intelligi-

bility (Stewart et al., 1995). In the present study, parkinsonian

speakers were subjectively separated into two groups (no per-

ceptible dysarthria and mild dysarthria) by experienced clini-

cians, and a very high classification performance was

achieved (up to 90%) when comparing patients with mild dys-

arthria and controls. This finding suggests that measurements

of vowel articulation may be considered suitable for the

assessment of speech intelligibility. Subsequently, we

observed that the objective acoustic measures of vowel articu-

lation were able to predict articulatory impairment in PD

patients with no perceptible dysarthria with relatively high ac-

curacy (up to 80%). Accordingly, it has been proposed that

objective acoustic measures may capture even minor abnor-

malities in PD speech (Forrest and Weismer, 2009; Rusz

et al., 2011a; Stewart et al., 1995). Therefore, objective acous-

tic analyses may be helpful in revealing even subclinical signs

of speech impairment in PD.

E. Limitations of the present study

In the course of this study, we investigated only 20 male

parkinsonian patients due to limited opportunities in recruit-

ing more early-stage PD individuals prior to dopaminergic

treatment. Despite this limitation, we do not believe that

there would be any fundamental changes in the overall pro-

gression of vowel articulation or that the current findings

would differ with a substantial increase in the number of

subjects. Previous research has suggested that gender may

have an impact on the progression of dysarthria due to sexual

dimorphism of laryngeal size (Hertrich and Ackermann,

1995). As our study consisted only of male participants, we

cannot exclude that impairment of vowel articulation is

influenced by gender-specific aspects of speech. One further

limitation of the present study is that we did not investigate

relationships between vowel durations and vowel articula-

tion measurements (Tjaden et al., 2005), and hence possible

effects related to the speaking rate on vowel articulation in

PD cannot be eliminated.

V. CONCLUSION

The present study provides evidence for restricted vowel

articulation in early-stage PD speakers prior to dopaminergic

treatment. Our results demonstrate that spontaneous speech

is more likely to show true deficits in the speech perform-

ance of PD patients. Specific changes in speech due to neu-

rological disorders such as PD may have the potential to
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contribute to existing assessment batteries. Acoustic meas-

urements of vowel articulation may therefore be useful in

the early detection of speech impairment in PD, for monitor-

ing the severity of dysarthria and disease progression, and in

the evaluation of treatment response.
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APPENDIX

Reading passage with labeled corner vowels /a/, /i/, and

/u/ that was used in acoustical analyses.

Kdy�z člov�ek poprv�e vsad�ı do zem�e sazeničku, chod�ı se

na ni d�ıvat t�rikr�at denn�e: tak co, povyrostla u�z nebo ne? I

taj�ı dech, nakl�an�ı se nad n�ı, p�ritlač�ı trochu půdu u jejich

ko�r�ınků, načechr�av�a j�ı l�ıstky a vůbec se obt�e�zuje různ�ym

kon�an�ım, kter�e pova�zuje za u�zitečnou p�eči. A kdy�z se saze-

nička p�resto ujme a roste jako z vody, tu člov�ek �zasne nad

t�ımto divem p�r�ırody, m�a pocit čehosi jako z�azraku a pova�z-

uje to za jeden ze sv�ych nejv�et�s�ıch osobn�ıch �usp�echů.

1The motivation behind the single exhalatory effort required for each sen-

tence was to differentiate the task of sentence repetition from the con-

nected reading of text, since it has been reported that the performance of

PD speakers may differ at the beginning and end of an utterance (Skodda

and Schlegel, 2008).
2As the previous observation has shown that the performance of PD speak-

ers may differ through an utterance (Skodda and Schlegel, 2008), we sug-

gest extracting vowels throughout the entire length of the monologue.

However, in our early-stage PD patients there were no statistically signifi-

cant differences between formants calculated using the first five occur-

rences and second five occurrences of corner vowels.
3In the sustained phonation speech task, only one repetition for each corner

vowel was used to calculate formant frequencies as (a) articulation of iso-

lated vowels is not influenced by the preceding or following phoneme and

(b) certain fluctuations of formants are treated by the choice of multiple

window length of the analyzed segment when compared to 30-ms seg-

ments used in sentence repetition, reading passage, and monologue tasks.
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Acoustic Investigation of Stress Patterns in

Parkinson’s Disease
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Summary: Objectives. Although reduced stress is thought to be one of the most deviant speech dimensions in hy-
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pokinetic dysarthria associated with Parkinson’s disease (PD), the mechanisms of stress production in PD have not been
thoroughly explored by objective methods. The aim of the present study was to quantify the effect of PD on prosodic
characteristics and to describe contrastive stress patterns in parkinsonian speech.
Methods. The ability of 20 male speakers with early PD and 16 age- and gender-matched healthy controls (HCs) to
signal contrastive stress was investigated. Each participant was instructed to unnaturally emphasize five key words
while reading a short block of text. Acoustic analyses were based on the measurement of pitch, intensity, and duration.
In addition, an innovative measurement termed the stress pattern index (SPI) was designed to mirror the effect of all
distinct acoustic cues exploited during stress production.
Results. Although PD patients demonstrated a reduced ability to convey contrastive stress, they could still notably
increase pitch, intensity, and duration to emphasize a word within a sentence. No differences were revealed between
PD and HC stress productions using the measurements of pitch, intensity, duration, and intensity range. However,
restricted SPI and pitch range were evident in the PD group.
Conclusions. A reduced ability to express stress seems to be the distinctive pattern of hypokinetic dysarthria, even in
the early stages of PD. Because PD patients were able to consciously improve their speech performance using multiple
acoustic cues, the introduction of speech therapy may be rewarding.
Key Words: Parkinson’s disease–Speech disorders–Reduced stress–Acoustic analysis–Prosody–Contrastive stress.
INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder char-
acterized by the progressive loss of dopaminergic neurons in the
substantia nigra, affecting 1–2% of persons over the age of
60 years.1,2 In addition to cardinal motor manifestations, such
as bradykinesia, rigidity, postural instability, and resting
tremor, up to 90% of individuals with PD develop an
alteration of speech termed hypokinetic dysarthria.3,4

Moreover, these distinctive speech deficits may be one of the
earliest symptoms and appear even several years before the
diagnosis is established.5 Speech deficits commonly reported
to be experienced by PD individuals include monoloudness,
monopitch, reduced stress, imprecise articulation, variability
of speech rate, a breathy and harsh voice, disfluency, voice
tremor, and other manifestations that can lead to overall re-
duced speech intelligibility.6,7 These changes in speech
production may have a significant, negative impact on social
interactions and overall quality of the patient’s life.8

Speech is a unique, complex, dynamic motor activity through
which individuals express their thoughts and feelings.7 From
an acoustic perspective, speech can be surveyed with respect
to five speech subsystems including respiration, phonation,
ted for publication July 2, 2013.
search was partly supported by the Czech Science Foundation (GACR 102/12/
zech Ministry of Health (NT 12288-5/2011 and NT14181-3/2013), Czech Minis-
ucation (MSM 0021620849), and Charles University in Prague (PRVOUK-P26/

he *Department of Circuit Theory, Czech Technical University in Prague, Fac-
ectrical Engineering, Prague, Czech Republic; and theyDepartment of Neurology
re of Clinical Neuroscience, Charles University in Prague, First Faculty of Med-
gue, Czech Republic
ss correspondence and reprint requests to Jan Rusz, Department of Circuit Theory,
chnical University in Prague, Faculty of Electrical Engineering, Technicka 2,
rague 6, Czech Republic. E-mail: ruszjan@fel.cvut.cz
l of Voice, Vol. 28, No. 1, pp. 129.e1-129.e8
997/$36.00
4 The Voice Foundation
x.doi.org/10.1016/j.jvoice.2013.07.001
resonance, articulation, and prosody. Prosody itself is an impor-
tant aspect of language that is necessary for recovering the in-
tended meanings of an utterance, that is, information that is
unavailable in the orthographic transcription. In particular,
prosody may serve a variety of functions, including signaling
questions or lexical boundaries, conveying contrastive mean-
ings, and expressing emotions and attitudes.9–11 One of the
techniques used by speakers to convey these suprasegmental
features is word and sentence stress, representing the relative
emphasis given to a certain syllable or word.

In acoustics, there are three main prosodic cues commonly
associated with stress: pitch, intensity, and duration.12–14

In the 1960s, studies of healthy speakers established pitch
prominence as the primary marker of stress.12,15–17 For
example, Fry15 measured pitch and duration changes in lexical
stress pairs (eg, HOTdog vs hot DOG) and found pitch to be
superior to duration. Another experiment conducted by Fry13

to determine whether intensity or duration was a better cue to
stress showed that duration, on the whole, was a more distinc-
tive cue. On the other hand, some researchers have argued
that duration and/or intensity also convey stress and might
be at least as important as pitch.9,10,18,19 Moreover, the way
stress manifests itself in the speech stream is partially
language dependent.20,21 From this point of view, the
prosodic characteristics of stress are somewhat ambiguous,
even considering nonimpaired speech.

Although the manifestation of reduced stress has been well
documented in several motor speech disorders,7,22–24 the
mechanisms of stress production in hypokinetic dysarthria of
PD have not been thoroughly explored by objective methods.
Ma et al25 analyzed question-statement contrast in 14 Canton-
ese PD speakers and found that subjects with PD used similar
acoustic cues as healthy adults; however, adequate contrast
was not observed in all speakers. Cheang and Pell26 reported
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that medicated patients in the early stages of PD exhibit various
changes in the speaking tasks of lexical stress, contrastive
stress, and emotional prosody. The acoustic results showed
that the average amplitude measurement was the most robust
parameter, as tokens elicited from PD speakers were lower
in amplitude than tokens spoken by healthy participants in all
three production tasks. Meanwhile, pitch was found to be aber-
rant among PD speakers for contrastive stress and emotional
prosody; duration measures revealed anomalies between
healthy and PD speakers merely in phonemic stress.26 In addi-
tion, there is also some evidence that the ability of PD speakers
to express intended stress or emotions through prosody is often
poorly understood by listeners.11

Reduced stress is thought to be the second most deviant
speech dimension in hypokinetic dysarthria6; therefore, the
effect of PD on prosodic characteristics and the detailed descrip-
tion of stress patterns in parkinsonian speech are of principal
concern in this investigation. To further examine this issue, we
chose a speaking task of contrastive stress because lexical stress
is not inherent in all languages. Contrastive stress refers to a pro-
duction task in which the information conveyed is altered by the
location of syllabic stress. As acoustic analysis has the potential
to provide a cheap, precise, and noninvasive method for the eval-
uation and support of speech therapy, further aims of the present
study were to verify the suitability of commonly used measure-
ments for the evaluation of stress in PD and to design an innova-
tive measurement that would reflect the effect of all main
acoustic cues exploited during stress production. We hypothe-
sized that PD subjects would have a reduced ability to convey
contrastive stress and show abnormal patterns of pitch, ampli-
tude, and duration in both stressed and nonstressed tokens.

PATIENTS AND METHODS

The participants of this study were originally recruited as a part
of an earlier study.27 No study of contrastive stress has been
previously published on the current participants. A total of
36 male Czech native speakers volunteered for the study. The
PD group consisted of 20 individuals with idiopathic PD, whose
age ranged from 34 to 82 years (mean ¼ 60.5; standard devia-
tion [SD] ¼ 11.3). The diagnosis of idiopathic PD was made in
a specialized center and was based on accepted criteria.28 All
patients were recruited immediately after the diagnosis was es-
tablished and before symptomatic treatment was started. Before
the recording procedure, each patient underwent a neurologic
examination including the Unified Parkinson’s Disease Rating
Scale part III (UPDRS III, an objectivemeasure of parkinsonian
motor signs, ranging from 0 to 108, where a higher score indi-
cates more severe disability), and Hoehn and Yahr (HY) staging
(ranging from 1 to 5, where a higher stage indicates more severe
disability). In our patients, the UPDRS III score ranged from
5 to 32 (mean ¼ 17.8; SD ¼ 7.2) and the HY ranged from 1
to 3 (mean¼ 2.2; SD¼ 0.5). In addition, the estimated duration
of PD manifestations before the examination was surveyed and
ranged from 6 to 82 months (mean ¼ 31.9; SD ¼ 21.4). No
patient had a history of speech, language, or hearing disorders
unrelated to parkinsonian symptoms or underwent speech-
language treatment before participation in this study. All
subjects were free of depression and cognitive deficits that
could interfere with the measurements.
The healthy control (HC) group consisted of 16 male partic-

ipants of comparable age, ranging from 36 to 80 years
(mean ¼ 61.8; SD ¼ 13.3). None of these individuals reported
a history of neurologic difficulties or any disorders that may
affect speech, language, or hearing. No significant differences
in age distribution were detected between the PD and HC
groups. The study was approved by the local ethics committee
and all participants provided written, informed consent for the
speaking task and recording procedure.
The recordingswere obtainedduringone sessionwith a speech

therapist who conveyed instructions to the subjects. Each partic-
ipant completed a series of speaking tasks as part of the larger
protocol. There were no time limits during the recordings. All
participants were asked to repeat their performance at any time
if they or the examiner were not fully satisfied with their initial
attempt. The performance of the task including contrastive stress
was selected for further investigation. The task was designed to
evaluate whether speakers could highlight the semantic impor-
tance of information in their utterances using prosody. During
the recording, each patient read a short block of text composed
of five similar sentences and was required to unnaturally empha-
size certain ‘‘key words’’ included in the text (Table 1). The first
part of each sentence was variable and determined the linguistic
context to identify the key word in the second part of the sen-
tence, which was uniform and highlighted one of five key words
(eg,Dnes jsme to ji�z nestihli, mo�zn�a Z�ITRA nav�st�ıv�ıme v�sechny
sv�e zn�am�e./Today we did not have enough time but TOMOR-
ROWwewill visit all our acquaintances; the part that determined
the linguistic context of the sentence is indicated in italics). To
ensure a better understanding of the task, the key words were
underlined and written in capital letters and the entire task was
demonstrated by a speech therapist (H.R.). As a result, for five
different key words (ie, z�ıtra/tomorrow; nav�st�ıv�ıme/visit;
v�sechny/all; sv�e/our; and zn�am�e/acquaintances), we elicited
one emphasized and four normally read tokens that were sub-
jected to further investigation.
The speech samples were recorded in a quiet room with a low

level of ambient noise using an external condenser microphone
placed approximately 15 cm from the subject’s mouth and cou-
pled to a Panasonic NV-GS 180 video camera (Panasonic Cor-
poration, Osaka, Japan). The audio data were digitized from the
videotape to a computer at a sampling rate of 48 kHz and 16-bit
quantization using original Panasonic software (Panasonic
Corporation, Osaka, Japan).
Acoustic analysis was completed using the widely used spe-

cialized speech software PRAAT [available at: www.praat.org
(Phonetic Sciences, University of Amsterdam, The Nether-
lands)].29 To ensure the correctness of the automatic detecting
procedure, the results of automatic analysis were verified by
the examiner (T.T.) and manually adjusted if necessary. For the
entire duration of each token, three standard acoustic parameters
were assigned: fundamental frequency (F0) in hertz; intensity in
decibels; and duration in milliseconds. F0 as well as intensity
were expressed as the mean and range, that is, the difference be-
tween the maximum and minimum values. Duration was

http://www.praat.org


TABLE 1.

Text of the Contrastive Stress Production Task Obtained and Recorded From all Participants

Key word Key word Order Part of Sentence Text of Contrastive Stress Tokens

z�ıtra First Context Dnes jsme to ji�z nestihli
Stress mo�zn�a Z�ITRA nav�st�ıv�ıme v�sechny sv�e zn�am�e,

zbude-li �cas
nav�st�ıv�ıme Second Context I kdy�z jsme s nimi u�z mluvili telefonicky

Stress mo�zn�a z�ıtra NAV�ST�IV�IME v�sechny sv�e
zn�am�e, zbude-li �cas

v�sechny Third Context I kdy�z jsme se s n�ekter�ymi zn�am�ymi ji�z setkali
Stress mo�zn�a z�ıtra nav�st�ıv�ıme V�SECHNY sv�e zn�am�e,

zbude-li �cas
sv�e Fourth Context Jeho zn�am�e jsme ji�z nav�st�ıvili

Stress mo�zn�a z�ıtra nav�st�ıv�ıme v�sechny SV�E zn�am�e,
zbude-li �cas

zn�am�e Fifth Context P�r�ıbuzn�e jsme ji�z nav�st�ıvili
Stress mo�zn�a z�ıtra nav�st�ıv�ıme v�sechny sv�e ZN�AM�E,

zbude-li �cas

Notes: Words written in capital letters denote tokens upon which speakers were predisposed by the examiner to place emphasis. Normally read tokens were

acquired for comparative purposes and are here denoted by italics.
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measured as the total period between the onset and offset of each
word. In addition, we developed an innovative parameter termed
the stress pattern index (SPI), which was designed to reflect the
effect of all three distinct acoustic characteristics exploited dur-
ing stress production. To minimize the effects of individual dif-
ferences such as loudness of voice, the intensity range was
normalized by adjusting the minimal amplitude to the reference
0 dB before SPI calculation. The SPI is defined as the cumulative
sum of signal energy (En) multiplied by the logarithmic expres-
sion of the maximum F0 divided by the minimum F0, that is,
SPI ¼ ð1þ lnðF0max

=F0min
ÞÞPEn. Tominimize the effect of in-

tersubject variability, such as individual pitch range of 70–
120 Hz compared with 120–200 Hz, the logarithmic expression
of the F0 was also arranged.

27,30 Figure 1 shows the mechanism
of stress production leading to the design of the SPI, demon-
strated on a sample of nonstressed and stressed words. It can
be seen that the mutual effect of exaggerated pitch, intensity,
and duration iswell represented by the SPI,where both increased
intensity range and duration contribute to a greater cumulative
sum of intensity and the overall effect is further amplified
when the cumulative sum is multiplied by pitch range.

Statistics

Before statistical analyses, the assigned values of every individ-
ual parameter were divided into two groups for each participant
and key word: the first group, indexed as ‘‘stressed,’’ contained
one emphasized token; the second group, indexed as ‘‘non-
stressed,’’ contained an average value calculated from four
normally read tokens. As acoustic variables were normally dis-
tributed (Kolmogorov-Smirnov test), statistical analyses were
performed using 23 23 5 repeated measures analysis of vari-
ance (RM-ANOVA) involving the factors of SPEAKER
GROUP (HC and PD), STRESS CONDITION (stressed and
nonstressed), and KEY WORD ORDER (first, second, third,
fourth, and fifth). Post hoc Bonferroni adjustment was used to
determine between-group differences. A nominal alpha level
was adjusted at .05.
RESULTS

The results for each individual speech variable as a function of
key word order for each group (HC and PD) and both contras-
tive stress conditions (stressed and nonstressed) are presented in
Figure 2. To examine the acoustic correlates of contrastive
stress in the production experiment, RM-ANOVAwas conduct-
ed for each dependent variable. The main effects and interac-
tions may be interpreted as follows: (a) a main effect of
SPEAKER GROUP would be statistically significant if
PD speakers had already manifested impaired speech perfor-
mance and, therefore, were not able to use the acoustic cues
as effectively as HC subjects; (b) a main effect of STRESS
CONDITION would be statistically significant if the parameter
had been conveying stress; (c) a main effect of KEY WORD
ORDER would be statistically significant if the parameter var-
ied depending on the location of the keyword within a sentence;
(d) an interaction involving SPEAKER GROUP and STRESS
CONDITION would be statistically significant if PD speakers
were not able to express stress as effectively as HC speakers;
(e) an interaction involving SPEAKER GROUP and KEY
WORD ORDER would be statistically significant if some
word was more suitable for differentiation between groups;
and (f) an interaction involving STRESS CONDITION and
KEY WORD ORDER would be statistically significant if
someword was more appropriate for signaling stress. All statis-
tically significant findings and their interpretations are listed
below.
Mean F0
Statistical analyses of mean F0 revealed a significant main ef-
fect of STRESS CONDITION [F(1,34) ¼ 38.79, P < 0.001]



FIGURE 1. Mechanism of stress production leading to the design of the SPI shown on a sample of the nonstressed and stressed word ‘‘zn�am�e.’’
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and KEY WORD ORDER [F(4,136) ¼ 6.58, P < 0.001].
Surprisingly, there was no effect of SPEAKER GROUP. This
finding suggests that the mean F0 is elevated under stress con-
ditions and varies across key word positions but is inappropriate
for differentiation between PD and HC speakers.

Mean intensity

Considering the measurement of mean intensity, RM-ANOVA
showed a significant main effect of STRESS CONDITION
[F(1,34) ¼ 22.81, P < 0.001] and SPEAKER GROUP
[F(1,34) ¼ 11.34, P < 0.001] that was attributable to PD
speakers producing tokens with a significantly lower intensity
than HC speakers.
Duration

A statistically significant main effect of duration was revealed
for SPEAKER GROUP [F(1,34)¼ 35.43, P < 0.001], STRESS
CONDITION [F(1,34)¼ 611.88, P < 0.001], and KEYWORD
ORDER [F(4,136) ¼ 121.69, P < 0.001]. A similar pattern of
signaling contrastive stress was evident in both groups. Within
a sentence, the stressed words were dependent on the original
length approximately 30–45 milliseconds longer than non-
stressed words. In addition, an interaction between STRESS
CONDITION and KEY WORD ORDER [F(4,136) ¼ 5.71,
P < 0.001] was found. It is worthy to mention that one of the
key words was monosyllabic, three were disyllabic, and one
was quadrisyllabic. Therefore, as one might expect, the



FIGURE 2. Comparison of speech measurements between parkinsonian speakers and HCs. Mean values and SDs (error bars) are depicted for both

groups (HC and PD) as well as stress conditions (stressed and nonstressed), presented as a function of key word order.
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multisyllabic words encouraged greater elongation during
stress production than shorter words.

F0 range
For the measurement of F0 range, we revealed a main effect of
SPEAKER GROUP [F(1,34) ¼ 39.20, P < 0.001], STRESS
CONDITION [F(1,34) ¼ 158.65, P < 0.001], and also their
interaction: SPEAKER GROUP 3 STRESS CONDITION
[F(1,34) ¼ 10.35, P ¼ 0.0014]. Both PD and HC speakers
markedly increased the F0 range to indicate contrastive stress;
however, PD speakers were less successful in elevating the
F0 range. In fact, when they were required to emphasize
a key word within a sentence, they produced an F0 range that
was approximately 10–20 Hz narrower compared with that of
HC speakers. We further found a main effect of KEY WORD
ORDER [F(4,136) ¼ 8.12, P < 0.001] that can be explained
by consistent narrowing of the F0 range, corresponding to the
order in which the key words appeared (ie, first key word F0
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range > second key word F0 range > third key word F0

range > fourth key word F0 range). The slight increase in F0

range presented in the last key word may normally occur in
the final word of a Czech declarative sentence and helps lis-
teners to identify the boundaries between individual clauses.

Intensity range

Considering the measurement of intensity range, we proved
a significant main effect of SPEAKER GROUP [F(1,34) ¼
143.79, P < 0.001], STRESS CONDITION [F(1,34) ¼ 37.78,
P < 0.001], and also KEY WORD ORDER [F(4,136) ¼
44.10, P < 0.001] that was due to a significant difference of in-
tensity range between the first and third word, the second and
fourth word, and also the third and fifth word. Taken together,
both PD and HC utterances were characterized by a constantly
narrowing intensity range within a sentence, which is assumed
to be typical for the declarative clauses. Moreover, we found
a significant SPEAKER GROUP 3 KEY WORD ORDER
[F(4,136) ¼ 5.21, P < 0.001] interaction. Regardless of stress
condition, the intensity range of the first and second word pro-
duced by PD speakers was approximately 10 dB narrower,
whereas the last threewords of the sentence were only 5 dB nar-
rower than those of HC speakers.

Stress pattern index

With respect to the measurement of SPI, we revealed a main ef-
fect of SPEAKER GROUP [F(1,34) ¼ 106.67, P < 0.001],
STRESS CONDITION [F(1,34) ¼ 152.38, P < 0.001], and
also their interaction: SPEAKER GROUP3 STRESS CONDI-
TION [F(1,34) ¼ 14.16, P < 0.001]. Both PD and HC speakers
markedly increased SPI values to signal contrastive stress; how-
ever, PD subjects achieved significantly lower values. Further-
more, we found a main effect of KEY WORD ORDER
[F(4,136) ¼ 66.13, P < 0.001] and also its interactions: KEY
WORD ORDER 3 SPEAKER GROUP [F(4,136) ¼ 10.49,
P < 0.001] as well as KEY WORD ORDER 3 STRESS CON-
DITION [F(4,136)¼ 15.49, P < 0.001]. These interactions may
be explained by individual distinctions in length and voiceless-
ness among particular key words. In fact, between-group differ-
ences arose during the first, second, and last key word
performances when compared with the productions of key
words in the middle positions.

DISCUSSION

Reduced stress is thought to be one of the most deviant speech
dimensions in hypokinetic dysarthria associated with PD.6 Us-
ing objective assessment by acoustic analysis, the present study
strives to contribute to a better understanding of prosodic cues
relating to stress production in PD and to determine how these
patterns differ from those of healthy speakers. Contrary to pre-
vious reports,23–26 this study is not only limited to the
evaluation of stress patterns using standard measurements
such as amplitude, pitch, and duration but also introduces an
innovative measurement termed the SPI that is designed to
reflect the effect of all basic acoustic cues exploited during
stress production. Our results indicate that persons in the
early stages of PD maintain the ability to signal contrastive
stress using exaggeration of pitch, intensity, and duration.
However, PD subjects were not able to modulate these
acoustic cues to the same extent as HC. From this point of
view, the measurement of pitch range and SPI proved their
feasibility for the assessment of contrastive stress.
Our general findings relating to parkinsonian speech, regard-

less of stress prominence, are consistent with previous studies
reporting dysprosody as a common part of speech deficits expe-
rienced by PD patients.27,31,32 In comparison with HC, PD
speakers exhibited a significantly lower intensity, narrower
pitch range, reduced intensity range, as well as shorter word
duration. Despite these discrepancies, the within-sentence pat-
terns of PD performances were similar to those of HC speakers
for all measurements, with the exception of F0 range (Figure 2).
For example, as the average pitch contours of HC utterances fell
toward the end of the sentence, PD utterances showed the same
trend. This intonation drop at the end of a sentence is typical for
declarative clauses. These findings maintain the hypothesis that
(a) prosodic cues vary depending on the position of the stressed
word within an utterance because these cues are used to convey
multiple linguistic functions10,12 and (b) PD speakers are able to
naturally alter prosodic cues to express a number of linguistic
meanings. It is also noteworthy to mention the measurement
of F0 range because the pitch contours of PD productions
were notably flatter than those of HC, especially at the
beginning and end of a phrase. These findings support the
general conclusion that monopitch is the primary feature of
dysprosody in PD,27,33 followed by monoloudness and speech
rate abnormalities.
In agreement with previous research,26 our results relating to

stress production in PD indicate that although patients in the
early stages of the disease have a reduced ability to convey con-
trastive stress, they can still notably increase pitch, intensity, and
duration to emphasize a word within a sentence. In fact, we did
not observe any significant differences between PD and HC
stress productions using the measurements of F0, intensity, du-
ration, and intensity range. However, restricted F0 range was ev-
ident in the PD group, particularly due to the significantly lower
values in the first and last words of a phrase. Remarkably, Pell
et al11 investigated how listeners perceive the contrastive stress
utterances produced by PD speakers and observed that listeners
were least accurate at identifying sentence initial- and final-
word emphasis compared with middle-word emphasis.
One further aim of the present study was to verify the feasi-

bility of commonly used measurements for the evaluation of
stress in PD speech. According to our data, only the measure-
ment of F0 range seems to be suitable for the assessment of
stress patterns because none of the other measurements (mean
F0, mean intensity, intensity range, or duration) led to differen-
tiation between PD and HC stress production. These findings
are not in complete agreement with previous research by
Cheang and Pell,26 which reported intensity as the most robust
parameter, followed by F0. However, the authors subjected all
acoustic data to several normalizations, which makes a compar-
ison of their findings with those of the present study hardly pos-
sible. Finally, the innovative parameter SPI achieved the best
result in separating PD and HC groups and proved its suitability
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for the evaluation of stress patterns in hypokinetic dysarthria. It
may be further concluded that, in comparison with HC subjects,
PD speakers have greater difficulties in altering pitch, intensity,
and duration when required to modify them simultaneously,
suggesting somewhat restricted phonatory flexibility.

During stress production, PD subjects in the present study
were able to consciously improve their speech performance using
multiple acoustic cues including increased pitch and loudness as
well as prolonged duration. Similar results were noted by Gober-
man and Elmer,34 who investigated clear versus conversational
speech in PD individuals with varying severity of dysarthria,
based on analysis of five acoustic characteristics. It has been
demonstrated that PD patients are able to consciously achieve
significant improvements in articulation rate, average F0, and
speakingF0 variability with the simple request to produce speech
clearly.34 These findings, altogether, may indicate the important
role of voice and speech therapy in the course of PD. Currently,
the Lee SilvermanVoice Treatment (LSVTLOUD, LSVTGlobal
Inc., Tuscon, AZ) has been established as an efficacious behav-
ioral treatment for voice and speech problems associated with
PD.35–37 Furthermore, several studies have reported that the
effect of an acquired increase in vocal loudness relating to
LSVTLOUD might be generalized to improvements not only
in voice production but also in speech articulation and
intelligibility.38,39 Accordingly, contrastive stress drills might
be used in speech therapy to increase prosodic adequacy,
intelligibility, and communicative efficacy of persons suffering
from motor speech disorders.40

Admittedly, there are some limitations to the present study. Be-
cause previous studies41,42 have proposed that gendermay have an
impact on prosodic characteristics and our study consisted of only
male participants,we cannot exclude that stress productionmay be
influenced by gender-specific aspects of speech. Another point to
consider is that only a contrastive stress taskwasused in thepresent
investigation, and therefore,wecannot provide any information re-
garding possible variable patterns of speech impairment depend-
ing on the type of stress-based speaking task.26

In conclusion, the present study illustrates the potential of
acoustic analyses to document stress patterns in hypokinetic
dysarthria of PD. Although PD speakers used the same acoustic
cues and strategies as HC, they exhibited a reduced ability to
convey contrastive stress. However, well-controlled prosody
may contribute to better speech intelligibility, and therefore,
the effect of medical intervention and speech therapy on stress
patterns should be investigated in future studies. In addition,
a qualitative description of discrepancies in stress production
may be helpful in differential diagnosis, as abnormalities in
stress patterns were observed to vary depending on the subtype
of dysarthria.
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Automatic Evaluation of Articulatory Disorders
in Parkinson’s Disease

Michal Novotný, Jan Rusz, Roman Čmejla, and Evžen Růžička

Abstract—Although articulatory deficits represent an impor-
tant manifestation of dysarthria in Parkinson’s disease (PD), the
most widely used methods currently available for the automatic
evaluation of speech performance are focused on the assessment
of dysphonia. The aim of the present study was to design a reliable
automatic approach for the precise estimation of articulatory
deficits in PD. Twenty-four individuals diagnosed with de novo
PD and twenty-two age-matched healthy controls were recruited.
Each participant performed diadochokinetic tasks based upon the
fast repetition of /pa/-/ta/-/ka/ syllables. All phonemes were man-
ually labeled and an algorithm for their automatic detection was
designed. Subsequently, 13 features describing six different artic-
ulatory aspects of speech including vowel quality, coordination
of laryngeal and supralaryngeal activity, precision of consonant
articulation, tongue movement, occlusion weakening, and speech
timing were analyzed. In addition, a classification experiment
using a support vector machine based on articulatory features was
proposed to differentiate between PD patients and healthy con-
trols. The proposed detection algorithm reached approximately
80% accuracy for a 5 ms threshold of absolute difference between
manually labeled references and automatically detected posi-
tions. When compared to controls, PD patients showed impaired
articulatory performance in all investigated speech dimensions
( ). Moreover, using the six features representing dif-
ferent aspects of articulation, the best overall classification result
attained a success rate of 88% in separating PD from controls. Im-
precise consonant articulation was found to be the most powerful
indicator of PD-related dysarthria. We envisage our approach as
the first step towards development of acoustic methods allowing
the automated assessment of articulatory features in dysarthrias.

Index Terms—Acoustic analysis, automatic segmentation, di-
adochokinetic task, hypokinetic dysarthria, Parkinson’s disease,
speech disorders.
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I. INTRODUCTION

P ARKINSON’s disease (PD) is a progressive, idiopathic
disorder which primarily affects dopaminergic neurons in

the substantia nigra pars compacta and causes dopaminergic
striatal loss [1]. Low levels of dopamine lead to dysfunction of
the basal ganglia and primarily account for motor deficits. The
cardinal features of PD include tremor at rest, rigidity, bradyki-
nesia, and postural instability. In addition to the most common
motor manifestations, other non-motor manifestations such as
autonomic dysfunction, cognitive and neurobehavioral abnor-
malities, sleep alterations, and sensory disruptions may be evi-
dent [2], [3].
The diagnosis of PD is based upon the presence of pri-

mary motor manifestations, which develop after 60–70% of
dopaminergic neurons degenerate and dopamine levels are
reduced by 80% [3], [4]. Due to slow, gradually progressive na-
ture of the disorder, PD has a prodromal interval during which
the main motor manifestations are not clearly evident. The
duration of the PD prodromal period has been documented as
3-15 years [5]. Although some dopamine agonists may have a
neuroprotective effect [6], pharmacotherapy and neurosurgical
interventions that are currently available only offer alleviation
of certain parkinsonian manifestations. Despite the fact that
medication generally prolongs active life expectancy, the effect
of treatment depends upon the stage of the disease during
which it is initiated. Furthermore, there is no treatment that can
cure PD or halt its progression. Therefore, the early diagnosis
of PD plays a vital role in improving the patient’s quality of
life [7], [3].
Several studies have found speech to be one of the earliest

disrupted modalities in PD [5], [8]. In addition, previous re-
search has indicated that up to 90% of PD sufferers display
vocal impairment [9], with the most salient impact on phonatory
and articulatory features of speech [10]. These vocal deficits
can be generally described as hypokinetic dysarthria [11], [12].
Signs of hypokinetic dysarthria involve reduced loudness,
breathiness, roughness, decreased energy in the higher parts of
the harmonic spectrum, exaggerated tremor, imprecise articu-
lation of vowels and consonants, monopitch, monoloudness,
disturbances in speech timing, and dysrhythmia, which together
lead to overall reduced speech intelligibility [13]–[16].
The analysis of speech is therefore an attractive method for

monitoring disease onset and progression, as well as treatment
efficacy [5], [8], [13], [17]. Recent studies have identified
speech analysis as an affordable, objective and widely available
approach, which could significantly reduce demands on PD

2329-9290 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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patient investigation [13], [18]. A wide range of speech tests,
including fast syllable repetition, sustained phonation, various
readings and freely spoken monologue have been designed to
assess the extent of speech manifestations. To precisely analyze
speech performances, recorded utterances are commonly sub-
jected to traditional methods including the assessment of sound
pressure levels, fundamental frequency, formant frequencies,
speech rate and rhythm [19]–[24].
Increasing computational power is currently leading to higher

levels of automation, and therefore, novel methods of automatic
speech analysis have been introduced [13], [18], [25]. How-
ever, due to the confounding effects of articulatory and lin-
guistic components, new approaches for automatic speech anal-
ysis are often limited to the use of sustained phonation, en-
abling the measurement of dysphonic aspects of speech [13],
[18]. Nevertheless, the importance of articulatory knowledge in
dysarthric speech recognition has been noted [15], and hypoki-
netic dysarthria in PD is primarily a disorder of articulation af-
fecting various aspects of speech [16].
According to previous research [26], PD-induced articula-

tory impairment may be clearly apparent when patients per-
form diadochokinetic (DDK) tasks. The most typical DDK ut-
terance includes repetition of the /pa/-/ta/-/ka/ syllable train.
This DDK task is widely preferred because it consists of fast
syllable-train repetitions with bilabial, alveolar and velar places
of articulation [27]. Such an approach requires complex move-
ments of the articulators (lips, jaws, and tongue) during a task
with well-defined structure, which contributes to a reduction in
data processing complexity. Such tasks may allow the automatic
detection of a variety of relevant features that would be difficult
to reliably assess from running speech. For example, one of the
most common signs of dysarthria in PD is imprecise consonant
coordination, which can be evaluated using voice onset time
(VOT), typically determined as the duration between an initial
burst and vowel onset [28]. Although the assessment of conso-
nant articulation contributes significantly to an accurate, subjec-
tive diagnosis of dysarthria, to the best of our knowledge, there
is no algorithm for the automatic detection of VOT in dysarthric
speakers [22], [29].
The main goal of the present study was therefore to develop

an automatic segmentation algorithm allowing the accurate de-
tection of the initial burst, vowel onset, and occlusion. Using
the proposed segmentation algorithm, we further endeavored to
introduce several acoustic features sensitive to possible artic-
ulatory deficits due to dysarthria. To explore the suitability of
the designed acoustic features in capturing parkinsonian articu-
latory disorder, an additional aim was to propose classification
experiment in order to differentiate PD subjects from controls.
The present text is divided into several sections as follows:

The “Methods” section comprises a description of the recruited
subjects, recorded utterances, data processing, statistical evalu-
ation and classification experiment. The “Results” section eval-
uates the performance of the automatic segmentation, presents
the correlation between the obtained results and reference hand
labels, illustrates the statistical significance of each feature and
lists success rates of the classification. The “Discussion and
Conclusion” sections provide a discussion and summary of our
general findings.

II. METHODS

A. Subjects

Data were collected as part of an original study [30]; the
methods of automatic segmentation as well as speech charac-
teristics based on automatic segmentation have not previously
been reported. Recordings were obtained from 46 native Czech
speakers with no history of speech therapy. The PD group con-
sisted of 24 participants (20 men, 4 women), all of whom ful-
filled the diagnostic criteria for PD1 [31]. All PD speakers were
examined immediately after the diagnosis was made and before
symptomatic treatment was initiated. The mean age of PD par-
ticipants was standard deviation 12.6 years, mean dis-
ease duration months, disease stage ac-
cording to the Hoehn & Yahr (H&Y)2 scale [32], mean motor
score according to the Unified Parkinson’s Disease
Rating Scale (UPDRS) III3[33]. In agreement with perceptual
evaluations based on UPDRS III item 184, 13 patients obtained
a score of 0 and 11 patients a score of 1, suggesting no-to-mild
speech impairment. None of the PD patients reported previous
speech disorders unrelated to the present illness.
The healthy control (HC) group was comprised of 22 vol-

unteers (15 men, 7 women; mean age years) with
no history of neurological disease. No differences in age be-
tween the PD and HC groups were observed (two-sample -test;

, confidence interval ,
). All participants (PD and HC) had no history of

speech therapy. The study was approved by the Ethics Com-
mittee of the General University Hospital in Prague and all par-
ticipants provided written, informed consent.

B. Protocol

C. 1) Recording

Recordings were taken in a quiet room with a low ambient
noise level using a condenser microphone at a distance of ap-
proximately 15 cm from the subject’s mouth. Data were trans-
ferred to a personal computer with a sampling frequency of
48 kHz and 16 bit quantization. All participants were recorded
in an examination room within the neurological department. All
PD patients were recorded shortly after the diagnosis was es-
tablished, before starting dopaminergic treatment. Each utter-
ance was recorded during a single session by a speech-language

1UK Parkinson’s Disease Society Brain Bank clinical diagnostic criteria con-
sist of Step 1: presence of bradykinesia (slowness of initiation of voluntary
movement with progressive reduction in speed and amplitude of repetitive ac-
tions) and at least one of the following: muscular rigidity, 4-6 Hz rest tremor,
postural instability not caused by primary visual, vestibular, cerebellar, or pro-
prioceptive dysfunction; Step 2: exclusion criteria for Parkinson’s disease; and
Step 3: supportive prospective positive criteria for Parkinson’s disease including
excellent response to levodopa.
2Hoehn & Yahr scale contains five grades of PD severity and is commonly

used for the description of PD progression. The scale comprehends severity
from a mild unilateral motor disorder as the first grade, to confinement to bed
or wheelchair as the fifth grade.
3The UPDRS III is scaled from 0 to 108, with 0 for no motor manifestations

and 108 representing severe motor manifestations.
4The UPDRS III item 18 is concerned with the assessment of speech, and

is ranked from 0 to 4, where 0 represents normal speech; 1 slight loss of ex-
pression, diction and volume; 2 monotone slurred but understandable speech,
moderately impaired; 3 marked speech impairment, difficult to understand; and
4 unintelligible speech.
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TABLE I
LABELING CRITERIA BASED ON [22]

Fig. 1. Examples of syllable and its wideband spectrogram for Parkinsonian
(a), (b) and healthy (c), (d) speakers, with marked positions of the initial burst,
vowel onset and occlusion. The gray background shows the front part of the
syllable and the white background refers to the rear part of the syllable.

pathologist. All participants were instructed to perform rapid,
steady /pa/-/ta/-/ka/ syllable train repetitions as constantly and
as quickly as possible, where each performance consisted of at
least five syllable train repetitions. No time limits were imposed
during the recording. Each participant, with the exception of
three controls and three patients, repeated this task two times
resulting in the acquisition of 80 utterances in total. As a result,
a total of 1644 tokens (syllables) were collected, 753 for PD and
891 for HC.
2) Reference Labels: As can be seen in Fig. 1, each /pa/, /ta/,

or /ka/ syllable consists of an initial burst, vowel onset, and oc-
clusion. These three basic events generally describe the timing
of articulation, and their positions must be detected in each syl-
lable to analyze articulation deficits. Thus, reference labels must
first be established, and this procedure requires the manual seg-
mentation of each utterance. However, segmentation may be
challenging even for manual labeling and therefore, the criteria
according to which labeling was performed must be stated. Fis-
cher and Goberman [22] summarize three basic rules based on
previous research [34]–[37] which were used as a foundation
for our labeling criteria (see Table I).

D. Algorithm for Automatic Segmentation

Manual labeling is a time consuming process and may be bi-
ased by subjective evaluation. To decrease time demands and
provide objective results, a deterministic detector of the initial
burst, vowel onset, and occlusion was designed. The algorithm
is presented in several subsections describing pre-processing,
rough segmentation, detection of the initial burst, vowel onset,
and occlusion.
1) Pre-Processing: The pre-processing step consists of

re-sampling the signal to 20 kHz, which lowers the computa-
tional complexity and maintains useful speech information [38].
The pre-processing step also includes DC offset removal and
normalization of the signal to the interval .
2) Rough Segmentation: The first problem encountered in au-

tomatic processing was the unknown number of syllables. This
problem was solved by rough segmentation, which divided an
utterance to single syllables (see Fig. 2). These syllables were
then processed separately. To split the signal into single sylla-
bles, the approximate position of each syllabic nucleus had to
be estimated. We may assume that in the DDK task, each syl-
lable consists of one low-energy consonant and one high-energy
vowel. Therefore, positions of syllabic nuclei may be identified
by high-energy vowel peaks. However, the presence of a higher
noise component in PD utterances may bias the nuclei search,
and therefore filtering must be performed. Filtering was accom-
plished by a low-pass FIR filter with a linear phase and order
of 500 with a 300 Hz cut-off frequency. The filtered signal is
squared and smoothed by the moving average filter of order 800
and local energy maxima are detected. We noted that when one
syllable has considerably lower energy than its neighboring syl-
lables, detection based on 300 Hz filtering tends to omit the syl-
lable. Hence, the same detection based on a low-pass filter with
a 1000 Hz cut-off frequency was used. The detector based only
on 1000 Hz filtering was more vulnerable to the higher noise
component included in PD utterances, and therefore it was used
only as a complement to more robust, 300 Hz filter-based de-
tector. The maximal distance between two consecutive nuclei
was estimated and enlarged 1.1 times, providing the length of a
single syllable segment. This length was distributed before and
behind the energy peaks, providing the approximate borders for
each syllable.
To avoid false detections due to the high sensitivity of the de-

tector, the elimination of false positions must be implemented
as the second step of rough segmentation. The elimination was
based on the comparison of high and low energy centroid posi-
tions obtained from the filtered spectrogram around the vowel
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Fig. 2. Detail of an utterance divided by rough segmentation into single syl-
labic segments.

onset. Due to higher computational complexity, the spectrogram
was also utilized during the detection of the initial burst, which
was also spectrogram-based.
The spectrogram window length was defined as the length of

the processed signal divided by 120, and the overlap was equal
to one half of a window. To increase efficiency, the unnecessary
rear part was omitted and the spectrogram was computed only
from the front part of the syllable (gray part of the syllable high-
lighted in Fig. 1).
Spectrogram processing consisted of the elimination of neg-

ligible values and computation of energy envelopes. To deter-
mine which value was negligible, the spectrogram was treated
as a matrix P with rows for frequency bins and columns for
time bins. The threshold matrix was an by matrix, where
the -th row was computed from the -th frequency bin of the
spectrogram according to equation (1).

(1)

This equation sets each row of the threshold matrix as the
weighted mean value of energy contained in the equivalent fre-
quency row of matrix . Filtering was then performed as shown
in equation (2).

(2)

where denotes element contained in the -th
frequency bin and the -th time bin of the filtered matrix. An
example of a filtered spectrogram can be seen in Fig. 3.
The next processing step was the computation of two energy

envelopes. The first was calculated by summing the values
in each column (Fig. 3(c)), while the second was determined
by summing values only in the upper half of each column
(Fig. 3(d)). The first envelope considers the high energy of
vowels contained mostly in low frequencies; the second em-
phasizes high frequencies generated during the initial burst.
Centroids were computed from these envelopes and their abso-
lute and mutual positions were used for the elimination of false
detections. The centroid positions are marked as black arrows
in Fig. 3(c) and Fig. 3(d).
The energy envelope comprising the entire frequency band-

width provides facilities for rough vowel onset estimation. The
position of vowel onset was set as the first peak of the voicing
periodic sequence. This approach was based on the assumption
that, during the voicing, the vocal tract is excited by quasi-pe-

Fig. 3. Signal in the time domain (a), signal spectrogram (b), filtered spectro-
grams with marked energy envelopes and arrows pointing to spectral centroid
positions in the entire frequency range (c), and the upper half of the frequency
range (d).

riodically repeating glottal pulses [39]. In processing the front
part of the syllable (see Fig. 1), peaks may be traced from the
end of the envelope (see Fig. 3(c)). However, this estimation
sometimes marks the accentuated initial burst instead of vowel
onset, and therefore, it is sufficient only for the correction of
syllable position.
3) Detection of the Initial Burst: After the elimination of

false detections and correction of the segment borders, the noise
burst connected with the initial stop release was sought. For the
purposes of burst detection, the previously computed spectro-
gram was processed according to a modification of eq. (2) (see
eq. (3)),

(3)

where the matrix is given by eq. (1). The result of this filtering
can be seen in Fig. 4.
The envelope, given by summing all values in each time

window of the matrix , emphasizes information
about frequency bandwidth at the expense of information about
energy distribution. This method emphasizes the noise burst,
which has lower energy uniformly distributed through the entire
spectrum. Furthermore, due to abrupt onset, the difference of
the envelope highlights and specifies the stop release position
as shown in Fig. 4.
4) Detection of Vowel Onset: The quasi-periodic character

of a vowel with an abrupt onset of energy was detected using
the Bayesian Step Changepoint Detector (BSCD) [40], [41]. In
general, the BSCD assumes that (i) the signal is composed of
two different constant values (e.g., 0.05 and 0.3 marked as lines
in Fig. 5(b)), and (ii) that it is possible to calculate the posteriori
probability of changes in the signal through Bayesian marginal-
ization. Whereas the approach with the matrix
emphasizes the abrupt noise burst, the assumption of signal
being composed of two different constant steps emphasizes a
boundary between two different signals.
The input of the detector represents the first part of the syl-

lable from the initial burst to the end of the front part of the
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Fig. 4. Fig. 4 Front part of a syllable in the time domain (a), filtered spec-
trogram with the gray color denoting 1 and the white color denoting 0 and its
marked energy envelope (b), and the normalized difference of the energy enve-
lope used for the final initial burst detection (c).

Fig. 5. Original signal with marked reference position (a), input of the BSCD
detector represented by the squared original signal and marked BSCD steps (b),
and output of the BSCD detector with marked positions of reference and de-
tected V position (c).

signal (see Fig. 1); this can be seen in Fig. 5(a), where the ref-
erence position of the vowel onset is highlighted. Subsequently,
due to the differing character of consonants and vowels, we may
assume that the position of vowel onset is located in one of sev-
eral local maxima of the BSCD output. This output is depicted
in Fig. 5(c), where the detected position is marked.
To detect the local maximum corresponding to vowel onset,

we may assume that the entire consonant is longer than the dis-
tance between single glottal pulses. This presumption allows
delineation of the local maximum, following the largest gap be-
tween two consecutive maxima, as the position of vowel onset.
5) Detection of Occlusion: The position of occlusion is the

most difficult to detect due to its slow subsidence and fuzzy bor-
ders. Due to decreased voice quality of PD speakers, a low-pass
FIR filter with an order of one quarter of the signal length in-
cluding the 1.5 kHz cut-off frequency was used. Contrary to the
noise component, the fundamental frequency (F0) and first two
formant frequencies (F1 and F2) provide a major contribution
to signal energy in this frequency band.

Signal energy was estimated from the filtered rear-part of the
signal (see Fig. 6(a)) as the squared signal (see Fig. 6(b)). Subse-
quently, the flexible threshold was adjusted for occlusion detec-
tion. The threshold was given as an inverted polynomial energy
approximation, and therefore the threshold was lowered with an
increase in energy and vice versa, as illustrated by Fig. 6(b). The
definition of the threshold may be written as

(4)

where denotes the -th coefficient, gives the mean value
of energy, and is the order of polynomial approximation. The
order was experimentally set at nine, providing a good compro-
mise between threshold elasticity and boundary fuzziness. The
exact occlusion position was then marked as the place of the
last intersection of energy and the threshold, which is no fur-
ther than 20 ms from the preceding intersection. The 20 ms rule
eliminates false detections connected with abrupt noises in dis-
tant parts of the signal.

E. Articulatory Features

To evaluate the impact of PD on speaker performance, we
propose 13 features representing six aspects of speech. The fea-
tures describing Voice Quality, Coordination of Laryngeal and
Supralaryngeal Activity, Precision of Consonant Articulation,
Tongue Movement, Occlusive Weakening, and Speech Timing
are listed in Table II. Due to the differing spectral character-
istics of /p/, /t/, and /k/ consonants and their following vowels,
features describing the precision of consonant articulation and
tongue movement were performed on different types of syl-
lables (bilabial /pa/, alveolar /ta/, and velar /ka/), separately.
Moreover, the measurements connected with the coordination
of laryngeal and supralaryngeal activity were performed for sep-
arate and mixed syllables. Therefore, the final number of mea-
surements performed was 27. All of the measurements ranked
each utterance with an average feature value computed from the
first 5 syllabic trains (15 syllables overall). This approach helps
to separate the involvement a of single speech feature from the
impact of varying speech length.
1) Voice Quality: One of the muscle groups affected by PD

is the group of laryngeal muscles. Distortion of this muscle
group may lead to decreased vocal fold adduction and decreased
ability to keep laryngeal muscles in a fixed position, which may
result in increased jitter, shimmer, noise, distortion of F0 in gen-
eral, and voice tremor [23], [42]. It is beyond the scope of this
article to provide a complex overview of voice quality estima-
tion methods. Nevertheless, to obtain general information about
voice quality, two vowel similarity quotients and one vowel
variability quotient were utilized. The vowel similarity quotient
of the entire voicing (VSQ) and the vowel similarity quotient of
the first 30 ms of voicing ( ) are defined as the first au-
tocorrelation coefficients, and estimate the ability to produce a
steady vocal tone. The motivation behind a 30 ms window in

was based on a previous study on vowel articulation in
PD [43]; in the present study, the 30 ms window represented the
midpoint of the vowel that should manifest the greatest period-
icity through the entire vowel duration. The vowel variability
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TABLE II
DEFINITIONS OF ARTICULATORY FEATURES

Fig. 6. Rear part of a syllable with marked reference position O (a), and energy
of the filtered signal with polynomial threshold and marked position O (b).

quotient (VVQ) is given as the standard deviation of vowel du-
ration, which reflects the stability of the timing of vocal fold
abduction and adduction.
2) Coordination of Laryngeal and Supralaryngeal Activity:

The PD-induced disruption of movement patterns may lead to
disturbances in muscle group coordination. To evaluate the im-
pact of PD on the coordination of laryngeal and supralaryngeal
muscle groups, the voice onset time (VOT) and the VOT ratio
were used. The VOT parameter, defined as the duration between
stop release and the onset of voicing [44], was motivated by the
assumption that acoustic events, including the initial burst and
vowel onset, are associated with articulatory gestures (i.e., the
release of consonant constriction, the onset of vocal fold vibra-
tion) [44]. In addition, the VOT ratio, defined as VOT divided
by the length of entire syllable, was estimated as the parameter
suppressing the effect of speech rate [22].
3) Precision of Consonant Articulation: Effort to achieve a

normal repetition rate may lead to reduced articulatory displace-
ment. This reduced movement may manifest as airflow leaking

around insufficiently closed articulators as well as decreased en-
ergy during the initial burst. To assess the impact of imprecise
articulator setup, spectral characteristics describing a consonant
spectral trend (CST) and a consonant spectral moment (CSM)
were employed. The consonant spectral trend is computed as the
slope of the line obtained using Fourier spectrum regression in
a certain frequency interval. To emphasize the different spectral
characteristics of /p/, /t/, and /k/ consonants, three different fre-
quency bands were selected as: /p/ [2500, 3500] Hz; /t/ [2000,
3000] Hz; /k/ [1500, 2500] Hz [44]. The CSM represents the
first spectral moment describing a centroid of energy contained
in the entire Fourier spectrum of the consonant.
4) Tongue Movement: As one of the major articulators, the

tongue has a crucial influence on the shape of the oral cavity
and formant frequencies, and therefore, change of formant fre-
quency behavior may reveal PD-induced disruption of tongue
movement. In general, the acoustic-articulatory relationship
can be easily understood, as the F1 frequency varies inversely
with tongue height and the F2 frequency varies directly with
tongue advancement [28], [42], [43]. To assess tongue move-
ment during vocalization, the first formant trend (1FT) and the
second formant trend (2FT) were computed as the angle of the
linear regression line of F1 or F2 tracked in the vowel.
5) Occlusion Weakening: Reduced articulatory movements

may also be present during the silent gap between two sylla-
bles. Reduced movements may lead to the leakage of turbu-
lent airflow, which results in increased noise during the silent
gap [37]. To describe the noise contained in the silent gap, the
signal-to-noise ratio (SNR) defined a according to equation (5)

(5)

where represents power contained in voicing and repre-
sents power obtained in the signal during the silent gap.
6) Speech Timing: Disrupted movement patterns do not only

influence two particular muscle groups separately (e.g., coordi-
nation of laryngeal and supralaryngeal activity), but may also
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affect all aspects of speech timing. Therefore, three parame-
ters were proposed to evaluate the impact of PD on speech
timing. The first designed parameter investigates the overall
DDK speech rate (DDK rate). The DDK rate is defined as the
number of syllables per second and is computed as the number
of initial bursts across the entire utterance. The second param-
eter estimates the ratio of silent gaps during the DDK task (DDK
pace), and it is defined as the average value of silent gaps ob-
tained in each utterance. The DDK pace, in connection with the
DDK rate, provides information about the speech-silence dura-
tion ratio. The third parameter reflects the subject’s ability to
maintain a steady rhythm during the DDK speech task (DDK
fluctuation), and is computed as the standard deviation of the
duration of silent gaps in an utterance.

F. Statistics

Statistical analyses were performed in three separate parts: al-
gorithm performance evaluation for automatic segmentation of
an utterance, the evaluation of group differences across articu-
latory features estimated from segmented utterances, evaluation
of the classification experiment based on previously computed
articulatory features. Although these three parts are intercon-
nected, the evaluation of each was performed separately, i.e.,
single syllables were used in the evaluation of algorithm per-
formance, average performances of each participant for group
difference estimation, and single utterances for the classification
task (two per subject).
1) Algorithm Performance: Algorithm performance is illus-

trated by the cumulative distributions of absolute differences be-
tween reference-manual labels and automatically detected posi-
tions. For each syllable’s event (i.e., initial burst, vowel onset,
occlusion), three cumulative distributions were computed. The
first was based on all 1644 tokens (across both PD and HC
groups). Two other distributions were based on PD or HC to-
kens separately (753 tokens for PD and 891 for HC).
Furthermore, to compare the performance of our algorithm

with previous results, a method based on the teager energy op-
erator (TEO) published by Hansen et al.was implemented [44].
This approach uses the amplitude modulation component
(AMC), which is derived from the TEO, to detect the initial
burst and vowel onset in single words. The TEO-based algo-
rithm is not designed for the detection of occlusion. The AMC
was applied on the filtered signal, whereas the parameters of
the filter were set according to the event (i.e., initial burst or
voice onset), and also according to the type of consonant (i.e.,
/p/, /t/, /k/) when considering burst. The TEO-based algorithm
was used to detect the initial burst and voice onset in our data
and the cumulative distributions of absolute differences for all
PD and HC syllables.
2) Group Differences and Relationships Between Metrics:

For assessment of group differences, the average feature values
were calculated for each participant prior to analyses. As the
one-sample Kolmogorov-Smirnov test ( to 0.20,

) showed that articulatory features were normally
distributed, the two-sample -test was used to assess group dif-
ferences. Cohen’s effect size (ES) was additionally calculated
to assess the strength of differences between the PD and HC
groups. Finally, the Pearson correlation coefficient was used to

evaluate the correlation between results obtained by automatic
detection and reference values, as well as the extent to which
single measurements were correlated.
3) Classification Experiment: The experiment based on the

support vector machine (SVM) classifier was performed using
all utterances (two per subject) in order to obtain more robust
classifier estimates, i.e., the utterances provided by the same
participant were not averaged as in the evaluation of group dif-
ferences. The aim of the experiment was to separate two classes
of PD and HC participants, based on automatically extracted
articulatory features, which were pre-selected using Pearson’s
correlation and distance correlation.
Being linearly inseparable, the features had to be mapped to

the space with higher dimensionality, where the linear separa-
bility was achieved. For this purpose a Gaussian radial basis
function (RBF) kernel was used. The RBF is defined as

(6)

where is euclidean distance of the input vectors and
the kernel parameter is used to set width of Gaussians ap-
proximating the decision boundary. The SVM model may be
then written as

(7)

where and are vectors of input features, are labels of
data used for training and are Lagrange multipliers based on
the Lagrange formulation of the optimization task. To prevent
overfitting the penalty coefficient C was used to constrain the
maximal value of Lagrange multipliers.
The determination of the optimal parameter C and

was performed using a grid search over the sets
and [18].

Once the optimal parameters C and were found the classifier
was trained and tested using these values.
To validate the generalization, empirical findings of previous

studies suggest cross-validation or bootstrap methods as the
most reliable [18], [45]. For the purposes of the generalization
estimation the standard cross-validation splitting entire dataset
(80 utterances) to the training set containing only 60% of the
data (48 utterances) and the testing set containing 40% of all
recordings (32 utterances) was employed. For the purposes of
the cross-validation a total number of 20 repetitions were per-
formed, with random permutation of the data prior to splitting
into training and test subsets. Furthermore, leave-one-sub-
ject-out (LOSO) cross-validation, excluding all utterances of
the subject used for testing, was utilized and run throughout the
entire data.
The testing error was estimated during each iteration of both

cross-validations [46]. Subsequently, the errors were averaged
over all repetitions and the overall performance was determined
as the average percentage of correctly classified utterances. Fur-
thermore, the true positive (number of correctly classified PD
participants) and true negative (number of correctly classified
HC participants) classification performances were assessed.
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Fig. 7. Cumulative distributions of algorithm performance based on the abso-
lute difference between automatic detection and reference labels. Performances
are estimated separately for syllables in Parkinson’s disease subjects (PD) and
healthy controls (HC), as well as for all syllables together (All). The first column
shows the performance of the algorithm presented in this study and the second
column illustrates the performance achieved by the TEO-based algorithm.

III. RESULTS

A. Algorithm Performance

Fig. 7 shows the cumulative distribution representing the ab-
solute difference between reference manual labels and automat-
ically detected positions for the initial burst, vowel onset and
occlusion, where the left column represents the performance re-
sults of our algorithm and the right column the performance of
the TEO-based algorithm proposed by Hansen et al. [44]. Con-
sidering a 5 ms threshold of absolute difference, performance
of our algorithm for all syllables was 79.2% for the initial burst,
81.7% for vowel onset and 59.2% for occlusion. The detec-
tion performance for occlusion increased to 77.3% at a 10 ms
threshold.
Considering a 5ms threshold for initial burst of HC group, our

approach achieved 85.4% in comparison to TEO-based algo-
rithm with 65.1% accuracy [44]. In the case of vowel onset, our
approach reached 86.7% compared to 76.2% by the TEO-based
algorithm. In PD group, our approach achieved a score of 71.9%
in comparison to 45.2% by the TEO-based algorithm for the
initial burst and 5 ms threshold. Similarly, we reached a per-
formance of 75.8% in comparison to 45.6% by the TEO-based
algorithm in the detection of vowel onset. Although the TEO-
based approach achieved high, and even comparable perfor-
mances in HC group, its accuracy was relative low in PD group
due to overall decreased speech quality.

B. Group Differences and Relationships Between Metrics

The characteristics of each measurement, including the mean
and standard deviation of values in the PD and HC groups, and
effect sizes are listed in Table III. Significant differences be-
tween PD and HC performances were found in each feature

TABLE III
OVERVIEW OF RESULTS

Measurements Reaching Significance are Denoted by Asterisks:
) , ) , and ) .

group. The correlations between features based on automatic
detection and manual reference labels showed high reliability
( to 0.99, ) for all features except for those
based upon precision of consonant articulation which showed
moderate reliability ( to 0.69, ).
In the voice quality dimension, the VVQ was signif-

icantly increased in PD patients when compared to con-
trols ( , ,

). Similarly, the was decreased in PD
patients ( , ,

). In the dimension considering the coordina-
tion of laryngeal and supralaryngeal articulators, both VOT
(e.g. VOT:all , ,

) and VOT ratio (e.g. VOT ratio:all ,
, ) features reflected

a considerable increase for PD participants, with VOT gen-
erally providing superior results to VOT ratio as demon-
strated by effect sizes. Considering the disrupted precision
of consonant articulation, a significant difference in CST
between the HC and PD groups for /pa/ ( ,
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, ) and /ka/ (
, , ) syllables

was observed, whereas only a trend was detected for /ta/
( , , ).
However, we found no significant group differences for
CSM extracted through various consonants. In the tongue
movement dimension, all the 1FTs for /pa/ ( ,

, ), /ta/
( , , )
and /ka/ ( , ,

) syllables were significantly different between the
PD and HC groups. In contrast, only 2FT for the /ta/ syllable
( , , )
was found to be impaired in PD patients. Lower SNR for
the PD group provided significant distinction ( ,

, ) in the occlusive weakening
dimension. Finally, the speech timing dimension exhibited
a considerable decrease in the DDK rate ( ,

, ), and increase in DDK
fluctuation ( , ,

) in the PD group.

C. Classification Experiment

Considering relations between speech features, the Pearson’s
correlation revealed correlation higher than 0.9 between the
VOT and VOT ratio measurements. Accordingly, distance cor-
relation reached value higher than 0.8 only between VOT and
VOT ratio measurements. Therefore, all 27 features were re-
tained for the classification experiment. The most representative
classification results are presented in Table IV, where the cor-
rect overall, true positive and true negative performance rates
are listed. Interestingly, the best correct overall classification
score of obtained by standard cross-validation and

obtained by LOSO cross-validation was achieved
for the combination of six parameters ( , VOT:/pa/,
CST:/ka/, 2FT:/ta/, SNR, DDK rate), each representing one
different speech dimension. Fig. 8 shows probability distribu-
tions for six representative features with the best classification
accuracy estimated using the Gaussian kernel density method.

IV. DISCUSSION

In the current study we present a fully automatic approach to
assess articulatory disorders in PD. In contrast to previous re-
search that primarily focused on the assessment of dysphonic
patterns, this study is the first to explore the automatic quantifi-
cation of acoustic aspects of articulatory dysfunction in PD. Our
designed speech features proved capable of describing parkin-
sonian dysarthria and even differentiating between speech in
de novo PD patients and controls with a high classification ac-
curacy of 88%. Interestingly, the strongest classification accu-
racy for a single articulatory feature was obtained through the
VOT, suggesting consonant articulation is a very powerful PD
indicator.
Automatic segmentation represented by cumulative distribu-

tions showed rapid growth of the performance in the first 5 ms
of absolute difference between the detected and reference posi-
tions. Considering the 5 ms threshold for initial burst and vowel
onset, our algorithm performance exceeded 85% accuracy for

Fig. 8. Probability densities of six representative features with the best SVM
classification performance. The vertical axes are the probability densities
P(measure) of feature values estimated using the Gaussian kernel density
method. The dashdot lines represent the HC group and solid lines the PD group.

TABLE IV
REPRESENTATIVE CLASSIFICATION RESULTS

HC speakers and 70% accuracy for PD patients, illustrating ad-
equate precision of the designed algorithm in the evaluation of
both healthy and dysarthric speech. Since the occlusion does
not provide such abrupt change in signal energy as the initial
burst or vowel onset, our algorithm reached the lowest perfor-
mance of 59% within 5 ms threshold for occlusion detection
but its accuracy was substantially increased to 77% when con-
sidering 10 ms threshold. Moreover, the results of the majority
of our features exhibit strong or even very strong correlation
to the results obtained using precise manual labels, while none
fell below moderate correlation. This is crucial from the clinical
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point of view, as it is more important to achieve a correct esti-
mation of the patient’s speech performance than to obtain the
precise position of individual boundaries.
Comparing our results with those obtained by the TEO-based

algorithm using a 5 ms threshold [44], both algorithms showed
relatively high performances, exceeding 65% for utterances in
healthy speakers. However, taking into account the performance
of the PD group separately, the performance of the TEO-based
algorithm declined under 50% accuracy, while our algorithm
still maintained sufficient accuracy, exceeding 70%. Thus, the
presented comparison shows that results provided by our algo-
rithm are less vulnerable to PD-induced signal aggravation than
those obtained by the TEO-based approach. Nevertheless, it is
important to note that the TEO-based algorithm was primarily
designed for real-time accent analysis, whereas our algorithm
is focused on reliable dysarthric speech assessment, which does
not require real-time processing.
Due to pathological changes in the basal ganglia, PD dis-

rupts the effective execution of articulatory movements leading
to various phonatory, articulatory, and prosodic disturbances.
Accordingly, the analysis of freely connected speech seems to
be the best way to assess the impact of PD on speech [28],
[47], [48]. However, the fully automatic estimation of relevant
articulatory features such as VOT from free running speech
is a very difficult task and to the best of our knowledge, no
such algorithm has been presented to date. To provide a robust,
fully automatic classifier, previous studies have primarily used
speech tests with a fixed frame such as sustained phonation [13],
[18], which significantly lowers the complexity of analysis and
preserves as much useful information as possible. Moreover,
the advantage of analyzing sustained phonation resides in fact
that the speaker’s native language has no or only a small effect
on dysphonia parameters. Although sustained phonation mea-
surements provide a precise estimation of dysphonic features,
Parkinsonian dysphonia is only a subset of dysarthric aspects
of speech, whereas dysarthria is primarily a distinctive disorder
of articulation [49]. Contrary to sustained phonation measure-
ments, our approach based upon DDK task assessment provides
a wide range of articulatory aspects related to dysarthria that
may be subjected to evaluation, and allows their automatic as-
sessment; however, possible language dependency cannot be
excluded.
Voice quality is represented by decreased , and by in-

creased VVQ. Decreased in PD participants reflects in-
creased noise caused by insufficient vocal fold adduction and
phonatory instability caused by a decreased ability to keep la-
ryngeal muscles in a fixed position [28], [42]. Increased VVQ
illustrates disrupted timing of vowel gestures [23].
VOT as the most powerful PD predictor suggests the impre-

cise coordination of laryngeal and supralaryngeal articulation
as an early, prominent sign of PD. Each VOT measurement
showed considerable prolongation of consonant duration,
which may indicate disrupted coordination between the la-
ryngeal muscle group and supralaryngeal articulators (tongue,
jaws, and lips). However, previous studies focused on VOT in
PD have provided inconsistent results. While some researchers
reported increased or unchanged VOT in PD patients [50],
[51], other studies suggested decrease in VOT due to parkin-

sonian articulatory disorders [52], [53]. A study by Fischer
and Goberman [22] suggested that this inconsistency may be
related to different analysis methods used and the fact that
measurements were not performed rate-independently. As PD
patients may be able to willingly compensate decreased speech
rates, Fischer and Goberman [22] identified the VOT ratio as an
appropriate rate-independent measurement. In our study, VOT
was found to be superior to VOT ratio, probably as a result
of the similar length of each syllable, and partially due to the
effort of repeating sequences as fast and as steady as possible,
which may suppress willing compensation.
The willing compensation of speech rate is at the cost of

reduced range of motion of the supralaryngeal articulators.
The range of motion may also be reduced due to hypokinesia.
Incomplete articulatory movements may be manifested as
increased turbulent airflow leakage around the insufficiently
closed obstacle, causing increased noise and alterations of the
frequency spectrum. The significant difference between PD and
HC groups, as captured by the CST of /pa/ and /ka/ syllables,
illustrates the impact of insufficient articulatory movements
during consonant enunciation.
The effect of hypokinetic dysarthria on vowels may be also

described by increased noise and spectral alterations. The in-
creased noise component in consonants is probably a result of
insufficient closure of the supralaryngeal articulators, whereas
the vowel noise component may be the result of insufficient
vocal fold adduction [28]. On the other hand, the distorted setup
of supralaryngeal articulators may evoke notable changes in for-
mant frequencies. Therefore, the 1FT and 2FT are used to indi-
cate disruptions of articulatory movements during voicing [28],
[42]. The 1FT, which is connected with movement of the tongue
in the vertical direction, illustrates impairment in all /pa/, /ta/,
/ka/ syllables. The 2FT, describing advance of the tongue, shows
disruption only during the /ta/ syllable, which is articulated by
the tip of the tongue.
Disruption of articulatory movements leading to occlusive

weakening during silent gaps between single words can be cap-
tured by decreased SNR in PD. Similar to the case of consonant
articulation, this is likely caused by insufficient articulatory clo-
sure resulting in leakage of turbulent airflow [28], [37].
The general effect of dysarthria is well described by a consid-

erable decrease of the DDK rate in PD speakers. Although the
DDK pace measurement did not prove significant alterations in
silent gap lengths, the DDK fluctuation revealed considerable
instability of silent gaps in PD. The silent gap instability and
non-significant DDK pace may suggest the effect of short rushes
of speech, which can be caused by a combination of akinesia and
speech hastening [16].
The presented classification experiment shows that a com-

plex view on various aspects of Parkinsonian speech impair-
ment using simple the task of fast syllable repetition provides
great potential for fully automatic assessment of the severity of
hypokinetic dysarthria in PD speakers. Using our novel DDK-
based approach, we were able to predict PD group membership
with a very high performance of approximately 87.1% using
standard cross-validation and 88.4% using LOSO cross-vali-
dation. Since our database consists only of 80 speech samples
from 46 participants, the advantage of standard cross-valida-
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tion is that it provides lower variance in results due to possi-
bility to set up larger test group. Yet, training and testing subsets
may contain different utterances from the same individuals. This
problem is treated by using of LOSO cross-validation, however,
the result variance is increased because only 2 utterances were
available per subject.
Notably, the best SVM feature subset comprises six measure-

ments where each one represents a different aspect of speech,
confirming the importance of complex speech assessment in
PD. It has already been shown that the complex assessment of
speech profile in PD may be essential in providing information
about the effect of therapy in the course of disease progression
on a particular speech apparatus [17].
Recent studies focused on the differentiation between PD

and healthy speakers presented very high classification perfor-
mances of 89% [13] and 98% [18] using a single sustained
phonation task for the evaluation of dysphonia. However, con-
sidering that speech severity may be influenced by the severity
of motor manifestations, disease duration, and specific effects
of dopaminergic treatment [17], [54], [55], an exact comparison
with previous results is not possible. Our PD patients were in-
vestigated immediately after the diagnosis was established and
before symptomatic treatment was initiated, whereas previous
datasets consisted of treated Parkinsonian patients with various
disease durations after diagnosis ( years in [13]). In
our preliminary findings [21], we achieved 85% performance in
the differentiation between PD and HC participants. However,
this classification score was obtained using various features es-
timating prosody, phonation and articulation aspects together.
The classification based upon single aspects achieved classifi-
cation score of 81% for prosody using monologues, 76% for
phonation using sustained vowels, and only 71% for articula-
tion using fast syllable repetitions. Therefore, in comparison to
these previous results, the current approach provides a perfor-
mance improvement.
Certain limitations of the present study must be considered.

Due to the problematic recruitment of de novo PD patients, the
current dataset consisted of only 24 Parkinsonian native Czech
speakers. The small sample size of the present study may bias
the performance of the classifier to a certain extent. Although
newly diagnosed, the majority of our patients were already in
the middle H&Y stages 2 or 2.5. However, to consider speech
tests as diagnostic decision support tool for an early diagnosis
of PD, we would need to differentiate between controls and un-
treated PD speakers in their very early disease stages. Further-
more, the language dependency of features extracted from the
DDK task cannot be excluded as such patterns have never been
investigated. Another limitation of the current dataset is gender
imbalance, related to the greater incidence of PD in males [56],
[57]. Previous studies have documented a confounding effect
of sexual dimorphism on particular speech impairments [58],
and we therefore cannot exclude the possibility that articulatory
impairment is influenced by gender-specific aspects of speech.
Finally, our algorithm was primarily designed for parkinsonian
patients with mild to moderate stages of disease and thus does
not need to be sufficiently sensitive to evaluation of articulatory
disorders in PD patients with advanced motor stages and severe
dysarthria.

The present study provides a novel extension to available
technologies, allowing the automatic evaluation of speech
severity in central nervous system disorders. The algorithm
based on the DDK task proved to be reliable in effective sepa-
ration between subjects with PD and HC. Future research could
incorporate current methodology with other robust approaches
such as the automatic evaluation of phonatory patterns in
dysarthric speech [13], [18], which may together increase the
overall performance of speech-based diagnostic support in PD.

V. CONCLUSION

The main purpose of the present study was to introduce a
novel approach for the fully automatic evaluation of acoustic
features related to articulation attributes in PD, based on DDK
utterances. Our results show that the proposed approach pro-
vides excellent conditions for reliable automatic assessment, al-
lowing the examination of a wide range of articulatory deficits
connected with hypokinetic dysarthria. Moreover, the combi-
nation of the presented acoustic features accurately predicted
speech impairment even in de novo PD patients, suggesting that
a precise description of vocal patterns may contribute signif-
icantly to existing assessment methods for monitoring speech
severity.
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Abstract Although speech disorder is frequently an early

and prominent clinical feature of Parkinson’s disease (PD)

as well as atypical parkinsonian syndromes (APS) such as

progressive supranuclear palsy (PSP) and multiple system

atrophy (MSA), there is a lack of objective and quantitative

evidence to verify whether any specific speech character-

istics allow differentiation between PD, PSP and MSA.

Speech samples were acquired from 77 subjects including

15 PD, 12 PSP, 13 MSA and 37 healthy controls. The

accurate differential diagnosis of dysarthria subtypes was

based on the quantitative acoustic analysis of 16 speech

dimensions. Dysarthria was uniformly present in all

parkinsonian patients but was more severe in PSP and

MSA than in PD. Whilst PD speakers manifested pure

hypokinetic dysarthria, ataxic components were more af-

fected in MSA whilst PSP subjects demonstrated severe

deficits in hypokinetic and spastic elements of dysarthria.

Dysarthria in PSP was dominated by increased dysfluency,

decreased slow rate, inappropriate silences, deficits in

vowel articulation and harsh voice quality whereas MSA

by pitch fluctuations, excess intensity variations, prolonged

phonemes, vocal tremor and strained-strangled voice

quality. Objective speech measurements were able to dis-

criminate between APS and PD with 95 % accuracy and

between PSP and MSA with 75 % accuracy. Dysarthria

severity in APS was related to overall disease severity

(r = 0.54, p = 0.006). Dysarthria with various combina-

tions of hypokinetic, spastic and ataxic components reflects

differing pathophysiology in PD, PSP and MSA. Thus,

motor speech examination may provide useful information

in the evaluation of these diseases with similar

manifestations.

Keywords Parkinson’s disease � Atypical parkinsonism �
Dysarthria � Speech disorder � Acoustic analyses
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Paris, France

J. Klempı́ř
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Introduction

Parkinson’s disease (PD) is a neurological disorder caused

by the degeneration of dopaminergic neurons, leading to

clinical features characterized by bradykinesia, rigidity,

tremor and postural instability. Atypical parkinsonian

syndromes (APS) such as progressive supranuclear palsy

(PSP) and multiple system atrophy (MSA) differ from PD

by more widespread neuronal involvement, resulting in

additional clinical signs, more rapid disease progression

and poor response to dopamine replacement therapy [1].

The majority of PSP and MSA patients develop clinical

features that overlap those of PD and thus the correct di-

agnosis can be challenging in early stages of the disease.

However, an accurate, early diagnosis is essential not only

in assessing prognosis and making decisions regarding

treatment, but also for understanding the underlying

pathophysiology and for the development of new therapies

[2]. Currently, a variety of imaging techniques such as

Magnetic Resonance Imaging, Diffusion Tensor Imaging,

Positron Emission Tomography, Single-photon Emission

Computed Tomography and Transcranial Sonography may

be used in the assessment of various parkinsonian syn-

dromes [3]. In particular, automatic image-based classifi-

cation based on metabolic patterns is highly accurate in

distinguishing between PD, PSP and MSA patients at early

stages of the disease, with more than 84 % sensitivity and

94 % specificity [4]. However, metabolic imaging is bur-

dened by the invasive application of radiopharmaceuticals,

whilst technical demands and financial costs may limit the

application of other imaging methods.

Speech assessment is an inexpensive, non-invasive,

quick and simple technique that could potentially be used

in the evaluation of subjects with initial parkinsonism [5].

Speech disorder is a common clinical manifestation oc-

curring in 70–100 % of patients with PD, PSP and MSA

[6–8], and tends to emerge at an early stage [9, 10]. Whilst

the majority of PD patients develop a clear form of hy-

pokinetic dysarthria [6], PSP and MSA patients typically

evolve mixed dysarthria with various combinations of hy-

pokinetic, spastic and ataxic components [7, 8] due to the

involvement of the basal ganglia, corticobulbar pathways

and the cerebellum. Analyses of motor speech disorders

may thus provide important clues to the diagnosis and

pathophysiology of the underlying disease. However, per-

ceptual dysarthria assessment may be difficult in early

disease stages when speech impairment is often imper-

ceptible [11]. To this extent, acoustic analyses have the

unique potential to provide objective, sensitive and quan-

tifiable information for the precise assessment of various

deviant speech dimensions [10, 12].

Previous descriptions of speech in PSP and MSA have

been mainly limited to the perceptual estimation of dys-

arthria type [7, 8], where spastic components appear to be

more dominant in PSP and hypokinetic components in

MSA. Considering individual speech aspects, only the

occurrence of stuttering-like behaviour was reported to be

specific for PSP [7, 8]. Few studies have provided more

accurate objective descriptions of dysarthria in APS [9, 13–

15]. In general, these studies have shown that the impair-

ment of specific speech dimensions is more pronounced in

APS than in PD [13–15]. Speech velocity, maximum

phonation time, intonation variability and articulation

precision were reduced and pauses were prolonged in PSP

in comparison with PD [13–15], whilst MSA patients

manifested voice perturbations and slow and variable al-

ternating motion rates (AMR) [9]. However, little effort

has been put into the investigation of complex speech

impairment in APS. A direct, objective comparison be-

tween individual speech patterns in PSP and MSA patients

has never been performed and distinctive speech markers

that would be suitable for the differentiation of various

forms of parkinsonism remain generally unknown.

Therefore, the specific speech characteristics allowing

discrimination between dysarthria in PD, PSP and MSA

should first be determined in clinically probable patients,

with the future goal of evaluating speech analysis as an in-

strument for early-stage differential diagnosis. In particular,

we quantitatively assessed 16 key speech dimensions using

objective acoustic analyses with the following aims:

1. To characterize the type and severity of dysarthria in

PSP and MSA.

2. To determine specific dysarthric patterns and estimate

their reliability in differentiating between PD, PSP and

MSA.

3. To explore the relationship between speech and

clinical manifestations to provide greater insight into

the pathophysiology of dysarthria in APS.

Methods

Subjects

From 2011 to 2014, 12 consecutive patients with the

clinical diagnosis of probable PSP (10 men, 2 women) and

13 patients with the diagnosis of probable MSA (6 men, 7

women) were recruited for the present study. In this series,

9 PSP patients were diagnosed with the Richardson’s

syndrome (PSP-RS), 2 with PSP-parkinsonism (PSP-P) and

1 with PSP-pure akinesia with gait freezing (PAGF),
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whereas 10 MSA patients were diagnosed as the parkin-

sonian type (MSA-P) and 3 as cerebellar type (MSA-C).

Additionally, 15 patients with idiopathic PD (9 men, 6

women) were investigated. The PD patients were selected

in order to match PSP and MSA groups according to dis-

ease duration, which was estimated based on the self-re-

ported occurrence of first motor symptoms. The diagnosis

of PSP was established by the NINDS-PSP clinical diag-

nosis criteria [16], MSA according to consensus diagnostic

criteria for MSA [17] and PD based on the UK Parkinson’s

Disease Society Bank Criteria [18]. The diagnosis was

further confirmed by two neurologists (CB, JK) with ex-

perience in movement disorders. At the time of examina-

tion, all PD subjects were on stable dopaminergic

medication for at least 4 weeks, consisting of levodopa and

different dopamine agonists. In the PSP and MSA groups,

medication consisted of various doses of levodopa alone or

in combination with different dopamine agonists and/or

amantadine. None of the patients received antipsychotic

therapy. PSP and MSA patients were further rated by the

natural history and neuroprotection in Parkinson plus

syndromes–Parkinson plus scale (NNIPPS) [19] whilst PD

patients were scored according to the Unified Parkinson’s

Disease Rating Scale motor subscore (UPDRS III). Item 18

of the UPDRS III was used for perceptual description of

speech severity. Patient characteristics are summarized in

Table 1.

The healthy control (HC) group consisted of 37 age-

matched subjects (21 men, 16 women; mean age 63.1, SD

7.9, range 50–75 years) with no history of neurological or

communication disorders. All subjects recruited were

Czech native speakers.

Speech recordings

Speech recordings were performed in a quiet room with a

low ambient noise level using a head-mounted condenser

microphone (Bayerdynamic Opus 55, Heilbronn, Ger-

many) situated approximately 5 cm from the mouth of each

subject. Speech signals were sampled at 48 kHz with 16-bit

resolution. Each participant was instructed to perform

sustained phonation of the vowel/a/per one breath as long

and steadily as possible, fast/pa/-/ta/-/ka/syllable repetition

at least seven times per one breath and monologue on a

given topic for approximately 90 s. All participants per-

formed the sustained phonation and syllable repetition

tasks twice with a relatively high test–retest reliability

(r = 0.77–0.93, p\ 0.001).

Dysarthria assessment

Quantitative acoustic vocal assessment was performed to

investigate 16 deviant speech dimensions associated with

hypokinetic, spastic or ataxic dysarthria [20, 21], which

correspond to previous descriptions of speech and neu-

ropathological findings in patients with PSP and MSA [7,

8]. The deviant speech dimensions investigated were se-

lected considering the possibility of their objective

assessment using acoustic analyses. In addition, these

speech dimensions were chosen in order to be gender in-

dependent [10, 12]; there were no significant differences

between male and female healthy participants across all

investigated acoustic variables.

We evaluated eight dimensions widely observed in hy-

pokinetic dysarthria of PD, including airflow insufficiency,

Table 1 Clinical characteristics

of patients

NNIPPS natural history and

neuroprotection on Parkinson

plus syndromes-Parkinson plus

scale, UPDRS unified Parkinson

disease rating scale
a NNIPPS subscore
b UPDRS III subscore

PSP MSA PD

Mean/SD (range) Mean/SD (range) Mean/SD (range)

General

Age (years) 65.8/5.4 (54–72) 60.8/4.9 (55–72) 61.1/6.5 (52–72)

Age of disease onset (years) 62.1/5.5 (50–68) 57.2/5.4 (50–70) 56.5/6.4 (47–67)

Symptom duration (years) 3.8/1.4 (1–6) 3.6/1.3 (2–6) 4.6/1.5 (1–6)

L-dopa equivalent (mg) 800/373 (500–1500) 899/394 (260–1480) 615/317 (300–1045)

Amantadine (mg) 200/107 (100–400) 300/89 (200–400)

NNIPPS 66.3/28.7 (19–116) 78.5/19.9 (46–123)

UPDRS III 15.9/7.4 (6–30)

UPDRS III speech 18 item 2.0/1.0 (0–3) 2.0/0.7 (1–3) 0.6/0.5 (0–1)

Subscores

Tremor 2.5/2.6 (0–6)a 1.7/2.6 (0–9)a 2.1/2.5 (0–9)b

Rigidity 3.0/2.7 (0–7)a 4.7/3.2 (0–11)a 3.1/1.9 (1–7)b

Bradykinesia 20.6/11.3 (4–40)a 27.1/7.4 (16–39)a 6.1/2.7 (2–11)b

Bulbar/pseudobulbar 9.1/4.1 (3–17)a 7.9/2.3 (4–12)a

Pyramidal 0.3/0.5 (0–1)a 0.8/1.2 (0–3)a

Cerebellar 0.1/0.3 (0–1)a 5.6/7.1 (0–22)a
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harsh voice, rapid AMR, inappropriate silences, reduce

loudness, monopitch, imprecise vowels and dysfluency.

Considering elements of spastic dysarthria, we assessed

strained-strangled voice quality, slow AMR and slow rate.

To capture components related to ataxic dysarthria, we

examined excess pitch fluctuations, vocal tremor, irregular

AMR, prolonged phonemes and excess intensity variations.

See Table 2 and Supplementary Material Online for com-

prehensive details on acoustic speech analyses.

Statistical analyses

Final values used for statistical analyses were calculated by

averaging the data for each participant obtained in two

vocal task runs. To assess group differences, each acoustic

metric was compared across all three groups (PSP, MSA,

PD) using a Kruskal–Wallis test with post hoc Bonferroni

adjustment. Effect sizes were measured with Cohen’s d,

with d[ 0.5 indicating a medium effect and d[ 0.8

indicating a large effect. The Spearman coefficient was

calculated to determine correlations between speech vari-

ables in APS and NNIPPS subscales. The level of sig-

nificance was set to p\ 0.05.

Estimation of the type and severity of dysarthria across

individual patients was inspired by previous research on

dysarthria in PSP and MSA [7, 8]. First, as the reference

interval, the 5th and 95th percentile was calculated from

the probability distribution of healthy controls across each

acoustic measurement. The speech performance of each

subject was then compared with the reference interval

Table 2 List of speech dimensions for hypokinetic, spastic and ataxic dysarthria

No. Deviant speech dimension

(weighting factor)a
Vocal task Acoustic measure Description

Hypokinetic

1. Airflow insufficiency (10 %) Sustained

phonation

Maximum phonation time (MPT) Insufficient breath support for speech

production;

2. Harsh voice (10 %) Sustained

phonation

Jitter, Shimmer, Harmonics-to-noise

ratio (HNR)

Harsh, rough and raspy voice;

3. Rapid AMR (10 %) Syllable

repetition

Diadochokinetic (DDK) acceleration Pace acceleration, rapid, blurred speech;

4. Inappropriate silences (10 %) Monologue Percent pause time (PPT), Number of

pauses (No. pauses)

Inappropriate silence intervals;

5. Reduced loudness (20 %) Monologue Mean speech intensity (Mean Int) Insufficiently loud, i.e. hypophonic voice;

6. Monopitch (20 %) Monologue Pitch variability (F0 SD) Monotone voice, lacking normal pitch and

inflection changes;

7. Imprecise vowels (10 %) Monologue Vowel articulation index (VAI) Vowel sounds are distorted throughout their

total duration;

8. Dysfluency (10 %) Monologue Percent dysfluent words (PDW) Involuntary repetition of speech movements,

prolongation of sounds and vocal blocks;

Spastic

9. Strained-strangled voice (40 %) Sustained

phonation

Degree of voicelessness (DUV) Voice (phonation) sounds strained or

strangled (effortful squeezing of voice

through glottis);

10. Slow AMR (20 %) Syllable

repetition

DDK rate Abnormally slow motion rate of articulators;

11. Slow rate (40 %) Monologue Articulation rate Abnormally slow rate of actual speech;

Ataxic

12. Excess pitch fluctuations (30 %) Sustained

phonation

Pitch variability (F0 SD) Uncontrolled alterations in voice pitch;

13. Vocal tremor (20 %) Sustained

phonation

Frequency tremor intensity index

(FTRI)

Tremulous phonation;

14. Irregular AMR (10 %) Syllable

repetition

DDK regularity Rate alternates from slow to fast;

15. Prolonged phonemes (10 %) Syllable

repetition

Vowel duration Prolongation of phonemes;

16. Excess intensity variations (30 %) Monologue Intensity variations (Int SD) Sudden, uncontrolled alterations of loudness

including both silence and quiet voice.

a The number in parentheses indicate weighting factors applied in computing severity and type of dysarthria. Higher factors are used for

dimensions considered to be distinctive for each type of dysarthria
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across all speech dimensions. If the subject speech per-

formance did not match the reference interval, it was

considered as affected. Weighting factors in percentages

were then applied to all affected speech performances in

order to enhance the impact of distinctive dimensions ac-

cording to specific dysarthria type (Table 2) [7, 8, 20, 21].

A total score was obtained reflecting the degree of hy-

pokinetic, spastic and ataxic dysarthria components; pos-

sible scores ranged from 0 to 100 % for each type of

dysarthria.

We additionally introduced a classification experiment

to determine the best combination of acoustic features and

estimate their sensitivity and specificity in differentiating

between PD, PSP and MSA groups. A support vector

machine (SVM) with a Gaussian radial basis kernel was

applied to search for all combinations across acoustic

features. Subsequently, a cross-validation scheme was used

to validate reproducibility of the SVM classifier, where the

original data were randomly separated into a training

subset composed of 75 % of the data and a testing subset

containing 25 % of the data; this cross-validation process

was repeated twenty times for each combination. The

overall classification performance of the SVM-based model

was computed as the average percentage of correctly

classified subjects into an appropriate group through all

twenty cycles. Comprehensive details on classification

procedure has been published previously [22].

Results

Table 3 provides numerical data and comparison between

PD, PSP and MSA across all 16 speech dimensions inves-

tigated. In comparing PSP and PD groups, statistical ana-

lyses revealed significant alterations in three hypokinetic

dimensions of harsh voice, inappropriate silences and im-

precise vowels, one spastic dimension of slow rate and two

ataxic dimensions of excess pitch fluctuations and irregular

AMR. Comparison between MSA and PD groups revealed

significant differences in all five ataxic dimensions but only

in one hypokinetic dimension of inappropriate silences and

one spastic dimension of strained-strangled voice. Notably,

only one dimension of speech dysfluency was able to sig-

nificantly separate PSP and MSA groups.

At least one deviant speech dimension was found in all

PD and APS speakers. The severity of dysarthria was

similar in PSP and MSA patients but considerably greater

than in the PD group (Fig. 1a). Eight PSP (68 %) and 12

MSA (92 %) patients exhibited dysarthria with a combi-

nation of all hypokinetic, ataxic and spastic components,

whereas all PD patients (100 %) manifested pure hypoki-

netic dysarthria. Conversely, pure hypokinetic dysarthria

was found only in one PSP patient (8 %) and was more

severe than in any PD patient investigated, whereas the

remaining PSP and MSA patients showed a combination of

at least one affected hypokinetic and one spastic or ataxic

component. Speech in PSP was primarily characterized by

the occurrence of hypokinetic components (51 %) followed

by spastic components (43 %), whereas speech in MSA

was characterized by the occurrence of ataxic components

(56 %) followed by spastic components (45 %) (Fig. 1b).

The majority of PSP patients (83 %) showed predominant

hypokinetic, spastic or hypokinetic-spastic dysarthria.

MSA patients manifested either predominant ataxic dys-

arthria (46 %) or showed ataxic dysarthria with various

combinations and severity of hypokinetic and spastic

components (Fig. 1c). Table 4 summarizes our findings

and details the percentage of affected patients across in-

dividual speech dimensions.

The combination of six acoustic features related to five

deviant speech dimensions including harsh voice (jitter),

inappropriate silences (percent pause time and number of

pauses), slow AMR (diadochokinetic rate), excess intensity

variation (intensity variation) and excess pitch fluctuation

(pitch variation) were able to separate PD from APS with a

very high classification accuracy of 95.3 ± 6.4 %, with a

sensitivity of 93.4 ± 8.7 % and specificity of

99.5 ± 4.1 %. Furthermore, the four deviant speech di-

mensions including harsh voice (harmonics-to-noise ratio),

fluency (percent dysfluent word), slow rate (articulation

rate) and vocal tremor (frequency tremor intensity index)

were able to discriminate PSP from MSA with an accuracy

of 75.2 ± 13.3 (sensitivity of 74.3 ± 15.3 %, specificity

81.2 ± 17.7 %).

Acoustic assessment of the extent of dysarthria severity

in APS showed significant correlation to overall NNIPPS

score (r = 0.54, p = 0.006). In addition, the bulbar/pseu-

dobulbar NNIPPS subscore correlated with the severity of

spastic dysarthria components (r = 0.42, p = 0.04) and the

cerebellar NNIPPS subscore showed a correlation trend

with severity of ataxic dysarthria components (r = 0.36,

p = 0.07). From individual speech patterns, only slow rate

showed negative correlation to the bulbar/pseudobulbar

NNIPPS subscore (r = -0.47, p = 0.02). There were no

other significant correlations between speech parameters

and NNIPPS subscores.

Discussion

The current study is the first quantitative, objective in-

vestigation attempting to broaden our knowledge con-

cerning speech disorder in PSP and MSA. Our results

show that the characteristics of speech disorder may re-

flect the underlying neuropathology of PD and APS.

Dysarthria was uniformly present in all patients with PSP
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and MSA and generally consisted of a combination of

hypokinetic, spastic and ataxic components, whereas PD

patients manifested pure hypokinetic elements. Therefore,

using objective speech measurements, we were able to

discriminate between APS and PD with 95 % accuracy.

Moreover, the speech of PSP patients was characterized

by the predominant occurrence of hypokinetic-spastic

dysarthria whereas MSA patients manifested pre-

dominantly ataxic dysarthria, resulting in a discrimination

accuracy of 75 % in the differentiation between PSP and

MSA groups.

In contrast to previous perceptual examinations sug-

gesting predominant spastic components in PSP and hy-

pokinetic in MSA [7, 8], we objectively detectedT
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predominant hypokinetic components in PSP and ataxic in

MSA. Interestingly, ataxic components were predominant

even though the majority of our patients were MSA-P,

probably reflecting great sensitivity of speech to minor

cerebellar deficits. Furthermore, dysarthria was perceptu-

ally estimated to be less severe in MSA than PSP [23],

whereas dysarthria was more severe in our MSA patients,

probably as a result of greater disease disability. On the

other hand, we may hypothesize that predominant ataxic

dysarthria in MSA is perceptually more intelligible than

hypokinetic dysarthria in PSP. Indeed, listeners who heard

and subsequently transcribed ataxic speech benefited more

from its exposure than did listeners who heard and then

transcribed hypokinetic speech [24].

Recognizing characteristic deviant speech dimensions

may have important implications in improving the accu-

racy of early clinical diagnosis [7, 8]. Dysarthria in PSP

and MSA differed from that in PD due to greater severity

and the presence of spastic and ataxic components. In the

present study, at least one spastic or ataxic deviant speech

dimension was detected in almost every PSP and MSA

patient, including those with short disease duration. In

comparing PSP and MSA, in addition to hypophonic

monotony of parkinsonian speech, dysarthria in our PSP

patients was dominated by increased dysfluency, decreased

slow rate, inappropriate silences, deficits in vowel ar-

ticulation and harsh voice quality, whereas patients with

MSA more frequently manifested pitch fluctuations, excess

intensity variations, prolonged phonemes, vocal tremor and

strained-strangled voice quality.

Dysfluency was the only single speech aspect distinctive

for PSP but was rarely observed in MSA. In particular, only

two of our MSA patients showed increased dysfluencies,

which were rather associated with cluttering in one case

and poor working memory in the second case, as opposed

to the stuttering-like behaviour typically observed in PSP

and later stages of PD [7, 25]. The occurrence of stuttering-

like behaviour may be due to involvement of the globus

pallidus and primary motor cortex, which represent regions

of the brain commonly affected in PSP [26]. In fact, stut-

tering was reported as a consequence of pallidal deep brain

stimulation in patients with dystonia [27] and was widely

present in manganese-induced ephedrone parkinsonism

associated with toxic and neurodegenerative damage to

globus pallidus [12]. In addition, motor planning respon-

sible for control of fluency has recently been suggested to

be coded in the left primary motor cortex whereas this

speech motor-related asymmetry was missing in stuttering

[28]. Yet, it has been shown that increased dopamine levels

in PD may lead to the emergence of stuttering [29, 30],

where the motor cortex may play a similar role as in the

case of levodopa-induced dyskinesia [31].

In addition, MSA patients showed overall poorer voice

control in comparison with PSP. The strained-strangled

voice quality, excess pitch fluctuation and vocal tremor

observed in MSA patients may together give the perceptual

impression of quivery-croaky strained speech with in-

creased pitch, whereas severe harshness in the voice of PSP

subjects may resemble growling dysarthria. These aspects

contributing to decreased quality of voice probably arise

Table 4 Characteristics of

deviant speech dimensions

AMR alternating motion rates
a The parentheses represent

percentage of affected persons

according to specific speech

dimension: 0–10 % subjects

affected are considered rare,

11–25 % occasional, 26–45 %

common, 46–70 % frequent,

and 71–100 % abundant

No. Deviant speech dimensiona PSP MSA PD

Hypokinetic

1. Airflow insufficiency Common (42 %) Common (31 %) Common (27 %)

2. Harsh voice Abundant (75 %) Frequent (69 %) Occasional (13 %)

3. Rapid AMR Occasional (25 %) Common (31 %) Occasional (13 %)

4. Inappropriate silences Abundant (83 %) Frequent (69 %) Common (27 %)

5. Reduced loudness Occasional (25 %) Occasional (23 %) Occasional (13 %)

6. Monopitch Frequent (50 %) Common (31 %) Frequent (53 %)

7. Imprecise vowels Abundant (75 %) Frequent (62 %) Common (33 %)

8. Dysfluency Frequent (58 %) Occasional (15 %) Occasional (13 %)

Spastic

9. Strained-strangled voice Common (42 %) Frequent (62 %) Rare (0 %)

10. Slow AMR Frequent (50 %) Frequent (54 %) Rare (0 %)

11. Slow rate Common (42 %) Occasional (23 %) Rare (0 %)

Ataxic

12. Excess pitch fluctuations Common (33 %) Frequent (69 %) Rare (0 %)

13. Vocal tremor Common (33 %) Frequent (54 %) Rare (0 %)

14. Irregular AMR Common (33 %) Common (31 %) Rare (0 %)

15. Prolonged phonemes Occasional (25 %) Frequent (54 %) Rare (0 %)

16. Excess intensity variations Occasional (25 %) Frequent (54 %) Rare (0 %)
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due to uncontrolled movements of the laryngeal muscles,

fluctuation of vocal fold tension and incomplete vocal fold

closure, representing a rather non-specific marker of neu-

ronal dysfunction. Speech in PSP may be further charac-

terized by a slower rate accompanied by inappropriate

silence intervals, which was also noted in patients with

Huntington’s disease [32] and thus it may be hypothesized

as a result of damage to the striatum and generally more

widespread neuronal atrophy. Furthermore, PSP patients

manifested more affected vowel articulation than MSA,

which may also contribute to a perceived reduction in in-

telligibility in PSP in comparison with MSA [23]. Con-

versely, speech in MSA exhibited more prolonged

phonemes and excess intensity variations that substantially

contributed to the perceptual impression of scanning

dysarthria.

Predominant hypokinetic-spastic dysarthria with fewer

ataxic components in our PSP group is consistent with

observed widespread neurodegeneration involving the

midbrain as well as the globus pallidus, striatum, hy-

pothalamic nucleus, pons, superior cerebellar peduncle and

cerebella dentate nucleus [26]. The clinical features of the

dysarthria in our MSA patients showing predominant

ataxic dysarthria with fewer spastic and hypokinetic com-

ponents conform to the known neuropathological changes

which include degeneration of cerebellum, middle cere-

bellar peduncle, striatum, substantia nigra, inferior olivary

nucleus and pons [33]. However, only one previous neu-

ropathological study identified relationship between the

severity of hypokinetic components in PSP and the degree

of neuronal loss and gliosis in the substantia nigra [34]. Our

current findings support the role of corticobulbar pathways

and the cerebellum in the development of mixed dysarthria

in APS as we observed relationships between the severity

of spastic components and bulbar/pseudobulbar manifes-

tations, as well as between the severity of ataxic compo-

nents and cerebellar signs.

The results of the present study indicate the potential of

speech analyses in the differentiation of PD from APS,

with 93 % sensitivity and 100 % specificity in patients

with an average symptom duration longer than 2 years.

These results are similar to recent neuroimaging studies

reporting comparable sensitivity and specificity in

metabolic pattern analysis or Diffusion Tensor Imaging in

the differential diagnosis of parkinsonism [4, 35]. In ad-

dition, our classification results between PD and APS seem

to be superior to very recently introduced breath analysis,

which showed 88 % sensitivity and 88 % accuracy [36].

However, it is noteworthy to point out that our speech-

based classification between PSP and MSA provided only

74 % sensitivity and 81 % specificity, whilst previous

neuroimaging studies have reported 90 % sensitivity and

100 % specificity [4, 35].

Certain limitations of the present study should be noted.

As our PD patients were investigated in their ON condition,

we cannot exclude that some differences between PD and

APS were more pronounced due to the beneficial effect of

dopaminergic therapy. However, it is assumed that short-

term dopaminergic therapy has no or very little effect on

speech in PD [37]. We did not differentiate between speech

in the various subtypes of PSP and MSA due to the limited

opportunity in recruiting a larger number of participants.

Nevertheless, at least in PSP patients, different subtypes of

disease seem to have no substantial effect on global speech

performance [14].

Objective identification of deviant speech dimensions

can be diagnostically helpful in a number of neurological

disorders and may provide measures of treatment response

and disease progression. Future studies should further

elaborate and extend our findings as well as show the

sensitivity of speech in the differentiation between PD, PSP

and MSA in very early disease stages.
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A B S T R A C T

Objective: Patients with idiopathic rapid eye movement sleep behaviour disorder (RBD) are at substan-
tial risk for developing Parkinson’s disease (PD) or related neurodegenerative disorders. Speech is an
important indicator of motor function and movement coordination, and therefore may be an extremely
sensitive early marker of changes due to prodromal neurodegeneration.
Methods: Speech data were acquired from 16 RBD subjects and 16 age- and sex-matched healthy control
subjects. Objective acoustic assessment of 15 speech dimensions representing various phonatory, ar-
ticulatory, and prosodic deviations was performed. Statistical models were applied to characterise speech
disorders in RBD and to estimate sensitivity and specificity in differentiating between RBD and control
subjects.
Results: Some form of speech impairment was revealed in 88% of RBD subjects. Articulatory deficits were
the most prominent findings in RBD. In comparison to controls, the RBD group showed significant al-
terations in irregular alternating motion rates (p = 0.009) and articulatory decay (p = 0.01). The combination
of four distinctive speech dimensions, including aperiodicity, irregular alternating motion rates, articu-
latory decay, and dysfluency, led to 96% sensitivity and 79% specificity in discriminating between RBD
and control subjects. Speech impairment was significantly more pronounced in RBD subjects with the
motor score of the Unified Parkinson’s Disease Rating Scale greater than 4 points when compared to other
RBD individuals.
Conclusion: Simple quantitative speech motor measures may be suitable for the reliable detection of pro-
dromal neurodegeneration in subjects with RBD, and therefore may provide important outcomes for future
therapy trials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Idiopathic rapid eye movement sleep behaviour disorder (RBD)
is a parasomnia characterised by dream-enactment behaviours as-
sociated with REM sleep without muscle atonia [1]. Recent studies
have shown that patients diagnosed with RBD are at increased risk
for developing α-synucleinopathy, particularly Parkinson’s disease (PD)
or dementia with Lewy bodies (DLB), and less frequently multiple
system atrophy (MSA) [2–4], with risk estimates of 33.1% at five years,
75.7% at 10 years, and 90.9% at 14 years after onset [5]. This high con-
version rate to neurodegenerative disease provides a unique
opportunity to observe the clinical development of parkinsonism or

cognitive impairment [6]. Identifying predictive markers of
neurodegeneration is essential [4,6] as they could provide invalu-
able information for future trials and disease-modifying therapies
before the onset of motor and cognitive symptoms [7].

Motor speech disorder is a common clinical manifestation oc-
curring in 70%–100% of patients with PD, DLB, andMSA, and typically
appears early in the course of disease [8–11]. Hypokinetic dysar-
thria tends to be the dominant subtype in PD and DLB, whereas
ataxic–hypokinetic dysarthria prevails in MSA [8–11]. Hypokinetic
dysarthria affects primarily phonatory, articulatory, and prosodic
speech subsystems, and may be related to numerous deviant di-
mensions such as reduced vocal loudness, poor voice quality,
harshness, articulatory undershoot of vowels and consonants, dys-
rhythmia, articulatory decay, monopitch, monoloudness, variability
of speech rate, and dysfluency [12]. Ataxic dysarthria is characterised
by distorted articulation, reduced speech rate, and deviant pro-
sodic modulations, particularly rhythmical irregularities during fast
repetitive productions of syllables [12].
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Speech disorders may be a prodromal sign of PD, as speech dys-
function is present in up to 90% of de novo PD patients [13–15].
Family members of PD patients have perceptually noted changes
in speech before the diagnosis was established [16], and previous
studies have reported cases in which reduced intonation variabil-
ity was observed several years before the onset of the first motor
symptoms [17]. Furthermore, ultrasonic vocalisation deficits
were among the first prodromal markers of motor dysfunction in
a murine model of PD [18]. Based on the Unified Parkinson’s Disease
Rating Scale, Postuma et al. [6] estimated that vocal and facial aki-
nesia is the earliest indicator of parkinsonism in RBD patients,
followed by rigidity, gait abnormalities, limb bradykinesia, and
tremor.

An objective, quantitative assessment of speech in RBD is cur-
rently lacking. Speech evaluation is inexpensive, noninvasive, and
simple to administer, and acoustic analyses provide objective, sen-
sitive, and quantifiable information for the precise assessment of
various deviant speech dimensions [13]. In addition, current ad-
vances in information and communication technologies have
provided speech assessment the unique opportunity to be consid-
ered a simple screening test for the development of parkinsonism
[13,14]. However, speech abnormalities in RBD should first be well
explored.

Therefore, the aims of the current study were as follows: (1) to
propose an acoustic methodology that would be sensitive to po-
tential motor speech deficits in RBD; (2) to quantitatively characterise
speech disorders in RBD; (3) to determine the most salient fea-
tures of speech dysfunction in RBD, and to estimate their specificity
and sensitivity in differentiating between RBD and healthy control
subjects; and (4) to explore the relationship between speech and
clinical findings to provide deeper insight into the pathophysiol-
ogy of speech dysfunction in RBD.

2. Methods

2.1. Patients

A total of 16 consecutive Czech patients (10 men, 6 women),
mean age 65.6 years [standard deviation (SD) 7.0 years], diag-
nosed with idiopathic RBD according to the International
Classification of Sleep disorders diagnostic criteria, second edition
[19], were included in the study. The examination consisted of

detailed medical and pharmacological history, neurological assess-
ment, and night polysomnography from 10 PM to 6 AM during a
1-day hospitalisation. Polysomnographic features of RBD were
analysed from the chin and tibialis superficialis muscles accord-
ing to the American Association of SleepMedicine scoring rules [20].
Five subjects were treated with antidepressants before the diag-
nosis of RBD was established (Table 1), but only two subjects
were receiving antidepressants at the time of the diagnostic
polysomnography (RBD07, RBD15). Diagnostic investigation re-
vealed that seven subjects fulfilled the criteria of obstructive sleep
apnoea [19]. The mean apnoea/hypopnoea index (AHI) was 9.1 (SD
6.9); the AHI did not exceed the value of 20 in any RBD patient. The
average number of periodic limb movements in sleep (PLMS) per
one hour was 16.1 (SD 34.5); a value greater than 15 was found in
four RBD patients (RBD05, RBD12, RBD14, RBD16).

At the time of speech investigation, nine of 16 patients were
treated by clonazepam at bedtime to alleviate symptoms of RBD.
None of the patients complained of motor or cognitive difficulties
or had a history of treatment with antiparkinsonian medication or
any other therapy influencing sleep, cognition, or motor features.
All patients were examined by amovement disorders specialist (O.U.)
and scored according to the Unified Parkinson’s Disease Rating Scale
motor subscore (UPDRS III). The clinical characteristics of the RBD
subjects are summarised in Table 1.

The healthy control group consisted of 16 sex- and age-matched
subjects (10 men, 6 women), mean age 65.6 years (SD 7.0 years),
with no history of neurological or communication disorders or ab-
normalities of sleep. Each participant provided written informed
consent. The study was approved by the Ethics Committee of the
General University Hospital in Prague, Czech Republic, and has there-
fore been performed in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki.

2.2. Speech examination

Speech recordings were performed in a quiet room with a low
ambient noise level, in the afternoon, using a head-mounted con-
denser microphone (Beyerdynamic Opus 55, Heilbronn, Germany)
placed approximately 5 cm from the subject’s mouth. Speech signals
were sampled at 48 kHz with 16-bit resolution. Recording was per-
formed in each subject during a single session with a speech
specialist (J.R.). All participants were instructed to perform three

Table 1
Clinical characteristics of RBD patients.

Patient no. Sex Age (y) RBD symptoms
duration (y)

Antidepressant therapy
before RBD diagnosis

UPDRS III
motor score

UPDRS III
speech item 18

Clonazepam
(mg/day)

RBD01 F 73 1 None 5 1 0.125
RBD02 M 54 8 None 1 0 0
RBD03 M 66 11 None 7 0 0.5
RBD04 M 59 3 None 2 0 0
RBD05 M 75 16 None 10 0 0.5
RBD06 M 70 10 None 7 1 0.5
RBD07 F 64 3 SSRI, NaSSA 9 1 0.5
RBD08 F 71 5 SNRI 12 0 0.5
RBD09 M 69 5 None 2 0 0
RBD10 F 57 1 None 3 0 0
RBD11 F 68 1 SSRI 7 0 1
RBD12 F 67 5 SSRI 2 0 0.125
RBD13 M 68 11 None 4 0 2
RBD14 M 65 12 None 1 0 0
RBD15 M 51 10 SSRI, SARI 0 0 0
RBD16 M 73 5 None 3 0 0
Mean (SD) 65.6 (7.0) 6.7 (4.6) 4.7 (3.6) 0.19 (0.40) 0.36 (0.53)

Abbreviations: F, female; M, male; NaSSA, noradrenergic and specific serotonergic antidepressant; RBD, rapid eye movement sleep behaviour disorder; SARI, serotonin an-
tagonist reuptake inhibitor; SD, standard deviation; SNRI, serotonin–noradrenaline reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor; UPDRS III, Unified Parkinson’s
Disease Rating Scale motor subscore.
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vocal tasks as follows: (1) sustained phonation of the vowel /a/ per
one breath for as long and as steadily as possible; (2) fast /pa/-/
ta/-/ka/ syllable repetition at least seven times per one breath; and
(3) monologue for approximately 90 seconds on a given topic. These
three speaking tasks were chosen because they can provide most
of the information necessary for the objective description and in-
terpretation of motor speech disorders. The sustained phonation and
syllable repetition tasks were repeated twice for every subject per
session, with a satisfactory test–retest reliability (Pearson: r = 0.69–
0.86, p < 0.001).

2.3. Acoustic analyses

We performed quantitative vocal assessment, investigating 15
deviant speech dimensions connected with phonatory, articula-
tory, and prosodic dimensions [12]. The selected speech dimensions
allowed objective assessment using acoustic analyses, which provide
a noninvasive, precise, inexpensive, and reliable method to de-
scribe speech abnormalities. In addition, all speech dimensions
investigated in the current study were chosen to be gender inde-
pendent [13]. The definitions of all acoustic parameters are
summarised in Table 2.

To assess phonatory characteristics, we examined airflow insuf-
ficiency (maximumphonation time,MPT), irregular pitch fluctuations
(standard deviation of pitch sequence, F0 SD), signal perturba-
tions [frequencymicroinstability (jitter)], increased noise [harmonics-
to-noise ratio (HNR)], and aperiodicity [degree of voicelessness
(DUV)] [13,21].

To explore articulatory characteristics, we evaluated imprecise
vowels [vowel articulation index (VAI)] [22]. We further extracted
imprecise consonants [voice onset time (VOT)], slow alternating
motion rates (AMR) using the diadochokinetic (DDK) task (DDK rate),
and irregular AMR [diadochokinetic regularity (DDK reg)] [15]. In
addition, resonant frequency attenuation (RFA) represents a novel
measurement sensitive to articulatory decay of natural spontane-
ous speech (Appendix S1).

To examine prosodic characteristics, we calculated reduced loud-
ness [average level of speech intensity (Mean Int)], monoloudness
[standard deviation of intensity contour (Int SD)], monopitch [stan-
dard deviation of pitch contour (F0 SD)], and inappropriate silences
[number of pauses (NoP)] [13]. In addition, we investigated
dysfluency [percent dysfluent words (PDW)] [23]. The more de-
tailed descriptions of individual traditional acoustic measures may
be found in a previous study [11].

Table 2
Overview of applied speech measurements.

Deviant speech dimension
(derived from vocal task)

Acoustic
feature

Definition of acoustic feature Feature extraction/method
(studies with detailed description)

Phonation
Airflow insufficiency (sustained
phonation)

MPT Maximum phonation time, aerodynamic efficiency of the
vocal tract measured as the maximum duration of the
prolonged vowel.

Automatic/algorithm (time duration of sustained
phonation)

Irregular pitch fluctuations
(sustained phonation)

F0 SD Standard deviation of fundamental frequency (F0 SD),
variation in frequency of vocal fold vibration. The F0
sequence (pitch) was converted to a semitone scale to
avoid differences in gender.

Automatic/PRAAT (Boersma and Weenink [21],
Rusz et al. [13])

Signal perturbations (sustained
phonation)

Jitter Frequency perturbation, extent of variation of the voice
range. Jitter is defined as the variability of the F0 of speech
from one cycle to the next.

Automatic/PRAAT (Boersma and Weenink [21],
Rusz et al. [13])

Increased noise (sustained
phonation)

HNR Harmonics-to-noise ratio, the amount of noise in the
speech signal, mainly due to incomplete vocal fold closure.
HNR is defined as the amplitude of noise relative to tonal
components in speech.

Automatic/PRAAT (Boersma and Weenink [21],
Rusz et al. [13])

Aperiodicity (sustained phonation) DUV Degree of unvoiced segments, the fraction of pitch frames
marked as unvoiced. A frame was considered unvoiced if it
had voicing strength below the voicing threshold of 0.45.

Automatic/PRAAT (Boersma and Weenink [21])

Articulation
Imprecise vowels (monologue) VAI Vowel articulation index, based on formant centralisation,

defined as VAI = (F1a + F2i)/(F1i + F1u + F2a + F2u). F1 and
F2 for each vowel were averaged by the extraction of ten
defined corner vowels.

User-controlled analyses/PRAAT (Rusz et al. [22])

Imprecise consonants (syllable
repetition)

VOT Voice onset time, defined as the length of the entire
consonant from initial burst to vowel onset.

Automatic/algorithm (Novotny et al. [15])

Slow AMR (syllable repetition) DDK rate Diadochokinetic rate, representing the number of syllable
vocalisations per second.

Automatic/algorithm (Novotny et al. [15])

Irregular AMR (syllable repetition) DDK reg Diadochokinetic regularity, defined as the standard
deviation of distances between following syllables nuclei.

Automatic/algorithm (Novotny et al. [15])

Articulatory decay (monologue) RFA Resonant frequency attenuation, representing decrease of
spectral energy as a result of decayed articulatory
movements.

Automatic/algorithm (Appendix S1)

Prosody
Reduced loudness (monologue) Mean Int Mean speech loudness, representing average squared

amplitude within a predefined time–energy segment.
Automatic/algorithm (Rusz et al. [13])

Monoloudness (monologue) Int SD Speech loudness variation, defined as standard deviation
of intensity contour after removing a period of silence
exceeding 60 ms.

Automatic/algorithm (Rusz et al. [13])

Monopitch (monologue) F0 SD Pitch variation, defined as standard deviation of F0
contour converted to semitone scale.

Automatic/algorithm (Rusz et al. [13])

Inappropriate silences (monologue) NoP Number of pauses relative to total speech time after
removing periods of silence lasting less than 60 ms.

Automatic/algorithm (Rusz et al. [13])

Dysfluency (monologue) PDW Percentage of dysfluent words, defined as number of
dysfluent events normalised by the total number of words.

Auditory-perceptual/PRAAT (Tykalova et al. [23])

Numbers in square brackets are reference numbers.
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2.4. Statistical analyses

Final values of all speech parameter across sustained phona-
tion and syllable repetition tasks were calculated for each participant
by averaging the data obtained in two vocal task runs. The
Kolmogorov–Smirnov test was used to evaluate the normality of the
distribution. To assess group differences, the independent-samples
t test was used for normally distributed data and the Mann–
Whitney U test for non-normally distributed data. Pearson and
Spearman correlations were applied to test for significant relation-
ships between normally and non-normally distributed data,
respectively. With respect to the explorative nature of study and
the fact that each acoustic variable represents a unique speech aspect,
adjustment for multiple comparisons was not performed, and the
level of significance was maintained at p < 0.05. Effect sizes were
determined by Cohen’s d, with d > 0.8 indicating a large effect and
d > 0.5 indicating a medium effect.

Estimation of the severity of affected speech dimensions was per-
formed using Wald decision theory, which was applied to compare
probability distributions between RBD and healthy subjects. As a
result, each subject’s performance was evaluated according to the
specific speech dimension and was considered affected, normal, or
intact. An affected speech dimension was ranked as 1 point, whereas
an intact speech dimension was ranked as −1 point. A total score
was obtained reflecting the overall degree of affected phonatory, ar-
ticulatory, and prosodic speech components. Comprehensive details
on Wald analysis as well as the estimation of severity of affected
speech dimensions have been published previously [13].

Finally, we introduced a classification experiment to deter-
mine the best combination of acoustic features and to estimate their
sensitivity and specificity in differentiating between RBD and HC
groups. A support vector machine (SVM) with a Gaussian radial basis
kernel was applied to search for all combinations across acoustic
features. A cross-validation scheme was used to validate reproduc-
ibility of the SVM classifier, where the original data were randomly
separated into a training subset composed of 75% of the data and
a testing subset containing 25% of the data. This cross-validation
process was repeated 20 times for each combination, and the overall
classification performance of the SVM-based model was com-
puted as the average percentage of correctly classified subjects into
an appropriate group through all 20 cycles. Comprehensive details
on SVM-based classification procedure have recently been pub-
lished [15].

3. Results

A subgroup of seven RBD subjects showed slight motor impair-
ment (hereafter symptomatic subgroup RBD-S with UPDRS III > 4),
based on evidence that the 95% confidence interval of the UPDRS
III score estimated in healthy subjects ranges from approximately
1 to 4 [4], whereas a subgroup of nine RBD participants did not show
substantial motor deficits (hereafter asymptomatic subgroup RBD-
AS with UPDRS III < 5). In particular, three of seven subjects from
the RBD-S subgroup manifested perceptually mild speech impair-
ment (UPDRS III 18 speech = 1), whereas no speech impairment was
observed in the RBD-AS subgroup (UPDRS III 18 speech = 0).

Table 3 provides numerical data and a comparison between the
RBD and control groups across all 15 speech dimensions investi-
gated. In comparison to controls, the RBD group showed significant
alterations in the speech dimensions of irregular AMR (DDK reg,
p = 0.009) and articulatory decay (RFA, p = 0.01).

Fig. 1 displays the results of quantitative speech analysis. Ac-
cording to the individual speech profile related to the number of
deviant phonatory, articulatory, and prosodic dimensions, 14 of 16
RBD subjects (88%) showed abnormalities in two or more speech
dimensions, whereas only one control subject (6%) manifested two

affected speech dimensions (Fig. 1A). Three or more affected speech
dimensions were found in ten RBD subjects (63%) and none of the
control subjects (Fig. 1A). Observed speech abnormalities were pri-
marily related to articulatory decay, irregular pitch fluctuations,
irregular and slow AMR, and signal perturbations, which were af-
fected in more than 40% of RBD subjects (Fig. 1B). The severity of
speech impairment in RBD was most related to articulatory prob-
lems, followed by phonatory deficits (Fig. 1B). Appendix S2 provides
a comparison between speech disorders in RBD subjects and de novo
PD patients using the same methodology designed in the current
study.

Acoustic features related to aperiodicity, irregular AMR, articu-
latory decay, and dysfluency represent the most salient features of
speech dysfunction in RBD. The combination of these four acous-
tics was able to discriminate RBD fromHCwith a sensitivity of 95.6%
and specificity of 78.7%, and with an area under the curve (AUC)
of 0.828. Appendix S3 lists classification results of quantitativemotor
speech measures.

We further observed a significant relationship between the du-
ration of RBD symptoms and dysfluency (r = 0.58, p = 0.02). No
relationships were found between speech metrics and UPDRS III
score. Nevertheless, we observed significant differences or trends
between RBD-S and RBD-AS in aperiodicity, slow AMR, reduced loud-
ness, and overall severity of speech impairment (Fig. 2).

4. Discussion

The current study revealed the presence of speech impairment
in individuals with RBD. Since RBD is currently considered as a pro-
dromal stage of PD and related neurodegenerative disorders, wemay
assume that these observed speech abnormalities also represent

Table 3
Results of acoustic speech analyses.

Acoustic variable Group Statistics

RBD Controls RBD vs controls

Mean (SD) Mean (SD) p Effect sizea

Phonation
MPT (s) 18.8 (8.4) 15.5 (3.9) 0.17 0.5
F0 SD (st) 0.50 (0.24) 0.43 (0.40) 0.52 0.23
Jitter (%) 0.86 (0.53) 0.59 (0.28) 0.09 0.63
HNR (dB) 19.5 (2.6) 19.3 (3.4) 0.81 0.09
DUV (%) 1.71 (4.19) 0.07 (0.18) 0.13 0.55

Articulation
VAI (−) 0.92 (0.06) 0.93 (0.07) 0.51 −0.24
VOT (ms) 21.6 (5.1) 20.4 (3.8) 0.48 0.25
DDK rate (syll/s) 6.56 (0.87) 7.10 (0.65) 0.07 −0.65
DDK reg (ms) 25.4 (11.8) 16.0 (6.6) 0.009 0.98
RFA (dB) 0.98 (0.16) 1.13 (0.15) 0.01 −0.95

Prosody
Mean Int (dB) 63.7 (3.8) 63.8 (3.1) 0.96 −0.01
Int SD (dB) 7.07 (0.81) 7.03 (0.71) 0.89 0.05
F0 SD (st) 2.44 (0.82) 2.33 (0.58) 0.66 0.16
NoP (pauses/s) 3.84 (0.53) 4.02 (0.57) 0.36 −0.32
PDW (%) 3.97 (2.77) 3.67 (1.99) 0.73 0.13

Abbreviations: MPT, maximum phonation time, maximum duration of prolonged
vowel; F0 SD, variability of fundamental frequency (ie, vibration rate of the vocal
folds); Jitter, frequency instability; HNR, harmonics-to-noise ratio, addition of noise
in speech; DUV, degree of unvoiced segments, aperiodicity of voice; VAI, vowel ar-
ticulation index, centralisation of formant frequencies; VOT, voice onset time, duration
of consonant articulation; DDK rate, diadochokinetic rate, rate of syllable vocalisations
per second; DDK regularity, diadochokinetic regularity, ability to maintain a con-
stant rate of consonant–vowel combinations; RFA, resonant frequency attenuation,
decrease of spectral energy during articulation; Mean Int, average level of speech
loudness; Int SD, variability of loudness variation; NoP, number of pauses relative
to total speech time; PDW, percentage of dysfluent words, number of dysfluencies
relative to number of words; SD, standard deviation.

a Cohen’s d: effect size 0.8 is considered large, 0.5 is considered medium, and 0.2
is considered small.
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prodromal markers of neurodegeneration. Based on our analysis,
88% of RBD subjects manifested at least two affected speech di-
mensions, whereas 63% of RBD individuals showed a greater extent
of speech impairment than any of the control speakers. Although
RBD subjects demonstrated various combinations of phonation, ar-
ticulation, and prosodic deficits, articulatory impairment was the
most prominent. The combination of four acoustic measures rep-
resenting aperiodicity, irregular AMR, articulatory decay, and
dysfluency led to 96% sensitivity and 79% specificity in discrimi-
nating between RBD and healthy control subjects. This classification
score was achieved using a newly designed measure of articula-
tory decay, resulting in a significant performance increase.

In general, our subjects with RBD manifested various combina-
tions of phonatory, articulatory, and prosodic speech deficits. Similar
vocal abnormalities have also been observed in newly diagnosed
PD patients before the introduction of pharmacotherapy [13].
However, the predominant patterns of speech deficits in de novo
PD were characterised by prosodic–articulatory abnormalities pri-
marily represented by monopitch and imprecise consonants
(Appendix S2) [13,15]. Conversely, patients with RBD primarilymani-
fested articulatory–phonatory speech involvement and less
frequently prosodic deviations. We may therefore hypothesise that
RBD patients may present a distinct phenotype of PD-related speech
disorder due to a differing underlying pattern of neurodegeneration
in PD with RBD, in comparison to PD without RBD [24,25].

Previous research has suggested that PDwith RBD presents more
akinetic-rigid disease, with more autonomic dysfunction and more
cognitive impairment, and with a higher risk of dementia [26–29].
Indeed, certain relationships between bradykinesia or rigidity and
dysphonia patterns have been previously reported in PD [14], sup-
porting the increased phonatory deviations observed in our RBD
subjects. Another explanation of different speech patterns in RBD
may be a high conversion rate to DLB [5]. Little is known about dys-
arthria in DLB; perceptual investigation has revealed only hypokinetic
and monotonic patterns of dysarthria, which appear to be similar
to PD [10]. Nevertheless, dysarthria typically occurs earlier and tends
to be more severe in atypical parkinsonian syndromes than in PD
[10,11]. Therefore, onemight expect that speech patternswould differ
between initial stages of DLB and PD.

Speech abnormalities observed in at least 25% of our RBD cases
such as tendency towards decay of articulatory movements (mum-
bling), signal perturbations, imprecise vowels and consonants,
reduced loudness, monopitch, and dysfluency represent common
patterns of hypokinetic dysarthria in PD, as confirmed by a number
of previous perceptual and acoustic studies [12,30]. It has been sug-
gested that decreased dopamine levels in the brain may lead to
the development of stuttering-like behaviour in PD [23,31]. This

Fig. 1. Characteristics of speech. (A) Number of affected speech dimensions across
participants. (B) Percentage of affected RBD subjects according to the specific speech
dimension. RBD = rapid eye movement sleep behaviour disorder; AMR = alternat-
ing motion rates.

Fig. 2. Differences between RBD subgroups. RBD = rapid eye movement sleep behaviour disorder; RBD-S = symptomatic RBD subgroup; RBD-AS = asymptomatic RBD
subgroup; DUV = degree of unvoiced segments; DDK rate = diadochokinetic rate; Mean Int = average level of loudness; AMR = alternating motion rates.
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hypothesis may be further supported by the relationship that we
observed between dysfluency severity and RBD symptom dura-
tion, indicating a greater reduction of dopamine levels, possibly due
to a longer duration of prodromal neurodegeneration.

The poor vocal control in our RBD subjects was mirrored by
aperiodicity, irregular pitch fluctuations, and abnormal AMR, which
are not specific patterns of hypokinetic dysarthria in PD, and seem
to be more distinctive for atypical parkinsonian syndromes [11].
However, aperiodicity and pitch fluctuations represent rather non-
specific markers of neuronal dysfunction, probably due to
uncontrolled movement of laryngeal muscles or fluctuation of vocal
fold tension. Increased variability of regular syllable repetitions can
be considered as a specific feature mainly in patients with cerebel-
lar ataxia, including MSA [11,12].

In a previous report, a UPDRSmotor score cut-off value of >4 was
a very good indicator of parkinsonism two years before onset [6].
Our RBD-S subgroup showed substantially more pronounced speech
impairment than the RBD-AS subgroup, indicating that the sever-
ity of speech disorders to a certain extent parallels motor disability
due to an underlying degenerative process. Especially, aperiodicity
and slow AMR reflected increasedmotor disability in the RBD-S sub-
group. Interestingly, slow AMR and aperiodicity were also observed
in untreated PD patients (Appendix S2) [13] but were not present
in PD speakers with short disease duration on stable dopaminer-
gic medication [11].

One potential advantage of the current approach is that acous-
tic measures and computational analyses of the speech abnormalities
are noninvasive, cost-effective, valid, precise, and reliable methods
to detect, characterise, and monitor the progression of the disease
[32]. In particular, increasing computational power has enabled a
higher level of automation in speech assessment. In the present
study, investigation of the majority of vocal patterns was based on
a fully automatic process with a minimum user control of the anal-
ysis procedure. However, analysis of certain deviant speech
dimensions such as imprecise vowel articulation and disfluency in-
volves hand-labeling and auditory perceptual evaluation, which are
time consuming and require an experienced investigator. There-
fore, future research on elaboration and extension of currently
available technologies for assessment of various dysarthria pat-
terns is warranted.

There are some limitations to the present study. The findings of
our pilot analyses are based on a small number of patients. Our
results should therefore be confirmed in a larger population sample,
including follow-up evaluation to verify diagnosis of PD or related
neurodegenerative disorders. We acknowledge that we did not
perform specific testing for neuropsychological and other nonmotor
involvement, as the primary aim was the investigation of motor
speech deviations. Furthermore, nine of our RBD subjects were
treated by clonazepam, which may influence speech, coordina-
tion, and cognition. Nevertheless, speech abnormalities were
observed both in RBD individuals who were and in those who were
not on clonazepam. In fact, all but one RBD subject received low
clonazepam doses, and the testing was done in the afternoon, when
the effect of a dose of clonazepam given the previous evening should
no longer influence performance.

5. Conclusion

Our findings reveal significant patterns of motor speech dys-
function in idiopathic RBD subjects with sensitivity and specificity
that are comparable to results based on olfactory dysfunction [33]
and superior to those found in previous studies investigating pre-
clinical motormarkers [6]. Therefore, we believe that speech disorder
may be a promisingmarker indicating prodromal neurodegeneration
in RBD, and the results of this pilot study are worth following up
in future larger studies. As complex speech assessment represents

a quantitative and easily performedmotor test, vocal analysis appears
to be a promising screening test, particularly in view of the antici-
pated advent of neuroprotective treatment.
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Distinct speech characteristics that may aid in differentiation between Parkinson’s disease (PD), progres-
sive supranuclear palsy (PSP) and multiple system atrophy (MSA) remain tremendously under-explored.
Here, the patterns and degree of consonant articulation deficits across voiced and voiceless stop plosives
in 16 PD, 16 PSP, 16 MSA and 16 healthy control speakers were evaluated using acoustic and perceptual
methods. Imprecise consonant articulation was observed across all Parkinsonian groups. Voice onset time
of voiceless plosives was more prolonged in both PSP and MSA compared to PD, presumably due to
greater severity of dysarthria and slower articulation rate. Voice onset time of voiced plosives was signif-
icantly shorter only in MSA, likely as a consequence of damage to cerebellar structures. In agreement with
the reduction of pre-voicing, MSA manifested increased number of voiced plosives misclassified as voice-
less at perceptual evaluation. Timing of articulatory movements may provide important clues about the
pathophysiology of underlying disease.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Idiopathic Parkinson’s disease (PD) is a common neurological
disorder characterized by the progressive loss of dopaminergic
neurons in the substantia nigra pars compacta, affecting 1.6% of
persons over the age of 65 years (deRijk et al., 1997). Dopamine
concentrations have been shown to be significantly reduced before
distinct motor deficits become apparent (Hornykiewicz, 1998). The
cardinal signs of PD, often referred to as Parkinsonism, include
resting tremor, bradykinesia, muscular rigidity and postural insta-
bility. Other neurodegenerative diseases that go beyond the signs
and symptoms of Parkinsonism are known as atypical Parkinsonian
syndromes (APS). Progressive supranuclear palsy (PSP) and multi-
ple system atrophy (MSA) are the most common APS, with an esti-
mated prevalence of 30–40 per 100,000 among persons older than
65 years (Schrag, Ben-Shlomo, & Quinn, 1999). Characteristic clin-
ical features of PSP include supranuclear gaze palsy, frequent falls,
bradykinesia, axial rigidity, cognitive decline and communication
disorders (Nath, Ben-Shlomo, Thomson, Lees, & Burn, 2003;
Steele, Olszewski, & Richardson, 1964), reflecting widespread neu-
rodegeneration involving the midbrain as well as the globus pal-
lidus, striatum, hypothalamic nucleus, pons, superior cerebellar
peduncle and cerebellar dentate nucleus (Nath et al., 2003). Con-
versely, MSA manifests by various combinations of autonomic,
cerebellar and Parkinsonian features (Wenning, Colosimo, Geser,
& Poewe, 2004), corresponding to degeneration of the cerebellum,
middle cerebellar peduncle, striatum, substantia nigra, inferior oli-
vary nucleus and pons (Gilman et al., 2008). APS differ from PD by
poor levodopa response and more rapid disease progression result-
ing in shorter life expectancy (O’Sullivan et al., 2008; Wenning,
Litvan, & Tolosa, 2011). Furthermore, the underlying pathophysiol-
ogy differs as PD and MSA are a-synucleinopathies while PSP is a
tauopathy. However, the differentiation between PD and both
PSP and MSA can be challenging as the initial signs are frequently
nonspecific and overlap those of PD (Osaki et al., 2004; Schrag
et al., 1999).

1.1. Speech impairment in PD, PSP and MSA

Dysarthria is a well-recognized clinical manifestation of Parkin-
sonian disorders, developing in 90–100% of patients with PD, PSP
and MSA during the course of the disease (Ho, Iansek, Marigliani,
Bradshaw, & Gates, 1998; Kluin, Foster, Berent, & Gilman, 1993;

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bandl.2016.11.005&domain=pdf
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Kluin, Gilman, Lohman, & Junck, 1996; Muller et al., 2001; Rusz
et al., 2015). Speech impairment is an early and prominent mani-
festation that can contribute primarily to the diagnosis of PSP
(Goetz, Leurgans, Lang, & Litvan, 2003; Kim & McCann, 2015;
Wenning et al., 2011), but has also been largely documented in
the early stages of PD and MSA (Huh et al., 2015; Kim, Kent,
Kent, & Duffy, 2010; Rusz, Cmejla, Ruzickova, & Ruzicka, 2011).

Due to dysfunction of the basal ganglia, the majority of PD
patients manifest hypokinetic dysarthria characterized by mono-
pitch, monoloudness, reduced stress, variable rate, imprecise artic-
ulation, harsh voice quality, speech dysfluencies and inappropriate
silence (Darley, Aronson, & Brown, 1969b; Ho et al., 1998). Con-
versely, PSP and MSA patients typically evolve mixed dysarthria
with a combination of hypokinesia, ataxia and spasticity as a result
of more widespread neuronal atrophy (Kluin et al., 1993, 1996;
Rusz et al., 2015). Indeed, previous studies (Kluin et al., 1993,
1996) investigating 46 MSA and 44 PSP patients using oral motor
and perceptual speech analysis have reported mixed dysarthria
with combinations of all hypokinetic, spastic and ataxic compo-
nents in two-thirds of APS patients. Hypokinetic components fol-
lowed by ataxic components were predominant in MSA patients,
while spastic components were mostly present in PSP patients
(Kluin et al., 1993, 1996).

Considering individual speech aspects, only the occurrence of
stuttering-like behaviour has been reported to be distinctive for
PSP as compared to MSA (Kluin et al., 1993, 1996; Rusz et al.,
2015). A small number of studies have also focused on an objective
description of the dysarthria profile in APS in comparison to PD
(Huh et al., 2015; Kim et al., 2010; Rusz et al., 2015; Sachin et al.,
2008; Skodda, Visser, & Schlegel, 2011). In general, these studies
have shown that the impairment of specific speech dimensions is
more pronounced in APS than in PD (Huh et al., 2015; Rusz et al.,
2015; Skodda et al., 2011). Dysarthria in PSP has been reported
to be characterized by stuttering-like behaviour, reduced speech
rate, decreased intonation variability, prolonged pauses, articula-
tion imprecision and poor quality of voice (Rusz et al., 2015;
Skodda et al., 2011), whereas MSA patients have been said to man-
ifest with excess pitch fluctuations, excess intensity variations,
increased voice pitch, reduced speech rate, prolonged phonemes,
vocal tremor, voice perturbations and slow variable alternating
motion rates (Huh et al., 2015; Kim et al., 2010; Rusz et al.,
2015; Saxena, Behari, Kumaran, Goyal, & Narang, 2014). However,
little effort has been made to investigate consonant articulation in
APS.

1.2. Consonant articulation in PD, PSP and MSA

The description of disturbed consonant articulation in various
diseases has typically been based on perceptual assessment in sub-
groups of patients defined by dysarthria subtype such as spastic,
ataxic or hypokinetic, rather than by disease aetiology (i.e., PD,
PSP or MSA; (Chakraborty, Roy, Hazra, Biswas, & Bhattacharya,
2008; Darley, Aronson, & Brown, 1969a; Hartelius, Gustavsson,
Astrand, & Holmberg, 2006; Logemann & Fisher, 1981; Weismer,
1984). Furthermore, previous studies were limited primarily to
documenting the occurrence of articulation deficits and did not
describe specific features characterizing imprecise consonants
(Chakraborty et al., 2008; Darley et al., 1969a; Hartelius et al.,
2006). In particular, in the classic study by Darley et al. (1969b),
imprecise consonant articulation was perceptually found to be
one of the most deviant speech dimensions in PD. The presence
of imprecise consonant articulation has also been perceptually
revealed in a cohort of MSA and PSP patients (Hartelius et al.,
2006). Interestingly, although in general speech deviation of
greater severity was found in PSP, consonant articulation was more
severely affected in MSA (Hartelius et al., 2006).
With regard to acoustic analyses, several measurements can be
used for description of consonants including various measures of
duration, formant transitions, spectral moments or energy-based
measures (Kent & Read, 1992). Among them, voice onset time
(VOT) determined for stop plosives is perhaps the most frequently
used parameter and a relatively large amount of data has been
published on VOT in PD patients. Unfortunately, previous studies
have provided rather contradictory findings. While some research-
ers have reported increased VOT duration (Forrest, Weismer, &
Turner, 1989; Novotny, Rusz, Cmejla, & Ruzicka, 2014), others have
observed unchanged (Fischer & Goberman, 2010; Ravizza, 2003) or
even decreased VOT (Flint, Black, Campbelltaylor, Gailey, &
Levinton, 1992) in PD subjects. It has been suggested that these
discrepancies may be due to the fact that the measurement of
VOT is dependent on speaking rate (Volaitis & Miller, 1992); how-
ever, VOT ratio, a rate-independent variation of VOT, did not clarify
these ambiguous findings (Fischer & Goberman, 2010; Novotny
et al., 2014).

Only one previous study has focused on the acoustic investiga-
tion of consonant characteristics for five categories of plosives in
PD, PSP, and MSA in comparison to controls (Saxena et al., 2014).
However, this study provided rather inconsistent findings across
various consonant categories and speaker groups (Saxena et al.,
2014). In particular, the authors revealed no significant alterations
of VOT duration in dentals across all groups, but observed
increased VOT duration of velars in PD, palatals in PSP, bilabials
in MSA, PSP and PD, and of retroflexes in PSP and MSA (Saxena
et al., 2014). However, a direct comparison of consonant articula-
tion between PD, PSP and MSA has never been performed.
1.3. Aim of the present study

The aim of the current study was therefore to investigate the
patterns and degree of consonant articulation deficits across differ-
ent voiceless and voiced stop plosives in PD, PSP, MSA and healthy
speakers using objective acoustic measures to help elucidate dis-
tinct speech characteristics that could aid in the differentiation
between various forms of Parkinsonism. In addition, perceptual
examination of phonetic contrast between voiceless and voiced
plosives was performed to determine if consonant imprecision
was a notable feature of dysarthria in PD, PSP and MSA. Addition-
ally, the relationships between speech performances and clinical
manifestations were explored to provide greater insight into the
pathophysiology of speech production in PD, PSP and MSA.
2. Methods

2.1. Participants

From 2011 to 2015, a total of 48 consecutive patients including
16 fulfilling the diagnostic criteria for idiopathic PD (5 men and 11
women), 16 with a diagnosis of probable PSP (11 men and 5
women) and 16 with a diagnosis of probable MSA (5 men and 11
women) were recruited. Among APS, hereafter hypernym for the
MSA and PSP subgroups, 13 PSP patients were diagnosed with
PSP-Richardson syndrome, 2 with PSP-Parkinsonism and 1 with
PSP-pure akinesia with gait freezing, whereas MSA patients were
diagnosed with the MSA-Parkinsonian subtype in 14 cases and
the MSA-cerebellar subtype in 2 cases. The clinical diagnoses of
all patients were established by a specialist in movement disorders
(JK) according to the UK Parkinson’s Disease Society Bank Criteria
for PD (Hughes, Daniel, Kilford, & Lees, 1992), the NINDS-PSP clin-
ical diagnostic criteria for PSP (Litvan et al., 1996) or the consensus
diagnostic criteria for MSA (Gilman et al., 2008). At the time of the
examination, all patients treated pharmacologically were on stable
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medication for at least 4 weeks, consisting of various doses of levo-
dopa alone or in combination with different dopamine agonists
and/or amantadine. None of the patients received antipsychotic
drugs. Disease duration was estimated based on the self-reported
occurrence of first motor symptoms. APS patients were further
scored according to the natural history and neuroprotection in
Parkinson plus syndromes–Parkinson plus scale (NNIPPS; range
from 0 to 346, where a higher score indicates more severe disabil-
ity (Payan et al., 2011), while PD patients were rated according to
the Unified Parkinson’s Disease Rating Scale motor subscore
(UPDRS III; range from 0 to 108, where a higher score indicates
more severe motor disability). Item 18 of the UPDRS III was used
for the perceptual description of overall dysarthria severity. No
patients reported a history of speech, language or hearing disorders
unrelated to their Parkinsonism symptoms. No statistically signif-
icant differences between the PSP and MSA groups were found
for symptom duration, medication dose, motor severity or speech
severity (Mann-Whitney U test: p = 0.14–0.98). Patient demo-
graphic characteristics are summarized in Table 1.

The majority of investigated PD, PSP, and MSA subjects had also
participated in a former study focused on the detailed assessment
of severity and patterns of dysarthria (Rusz et al., 2015). In general,
dysarthria was uniformly present in all Parkinsonian patients and
ranged from mild to severe. The PD group manifested mild hypoki-
netic dysarthria with dominant monopitch, imprecise vowels and
inappropriate silences. The PSP group showed mild to moderate
hypokinetic-spastic dysarthria with dominant dysfluency, slow
speech rate, inappropriate silences, imprecise vowel articulation,
monopitch and harsh voice quality. The MSA group presented mild
to moderate ataxic-hypokinetic dysarthria dominated by excessive
pitch and loudness variations, prolonged phonemes, vocal tremor
and strained-strangled voice quality. However, characteristics
related to imprecise consonant articulation were not previously
reported.

The healthy control (HC) group consisted of 16 subjects (5 men
and 11 women) of comparable age (mean age 62.8, SD 7.3, range
53–74 years). No significant differences in age distribution were
detected between the HC, PD, PSP and MSA groups (analysis of
variance: p = 0.30). Healthy individuals reported no history of neu-
rological disease or any disorder that may affect speech, language
or hearing.

All participants were Czech native speakers and were able to
fully cooperate during the procedure. No subjects had signs of
major depression or cognitive deficits that could interfere with
Table 1
Patient demographics.

PD
(n = 16; 5 men, 11 women)
Mean/SD (range)

Age (years) 63.3/7.3 (49–74)
Symptom duration (years) 6.3/4.1 (2–14)
Levodopa equivalent (mg/day) 781/471 (0–1680)
Amantadine (mg/day) 100/136 (0–300)
NNIPPS total –
UPDRS III total 17.3/9.6 (7–38)
UPDRS III speech item 0.7/0.8 (0–2)
Tremor subscore 2.1/1.4 (0–5)a

Rigidity subscore 3.1/1.9 (1–7)a

Bradykinesia subscore 7.8/5.0 (2–18)a

Bulbar/pseudobulbar subscore –
Cerebellar subscore –

PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA, multiple system a
Parkinson plus syndromes-Parkinson plus scale; UPDRS, unified Parkinson disease ratin

a UPDRS III subscore.
b NNIPPS subscore.
c 7 of 16 MSA patients manifested non-zero cerebellar subscore.
the measurements. The study was approved by the Ethics Commit-
tee of the General University Hospital in Prague, Czech Republic,
and all participants provided written, informed consent for the
neurological examination and recording procedure.

2.2. Speech material

A series of tokens designed as ‘‘CVtka” were used for the assess-
ment of consonant articulation, where C represented a consonant
and V corresponded to a corner vowel. Specifically, six stop plo-
sives were covered including /p/, /t/, /k/, /b/, /d/ and /g/. The vowels
consisted of /a/, /ɪ/ and /u/. These 3 vowels were chosen as they are
a representative sample with respect to vowel height, as vowel
height has been reported to have an effect on some consonant
characteristics such as VOT (Fischer & Goberman, 2010). From a
phonetic point of view, /b/, /d/ and /g/ in the CV context are usually
pronounced as prevoiced in Czech (i.e., voiced during closure),
while /p/, /t/ and /k/ are pronounced as voiceless and unaspirated
(Simackova, Podlipsky, & Chladkova, 2012). Furthermore, the stress
is always on the first syllable in two-syllable words used without
prepositions. The suffix /tka/ was added to evoke more naturally
sounding tokens. Indeed, from 18 created stimuli, 7 were existing
Czech words whereas the remaining 11 were meaningless. No
analyses were performed on the suffix.

2.3. Recording procedure

The audio data were recorded in a quiet room with a low level
of ambient noise using a head-mounted condenser microphone
(Bayerdynamic Opus 55, Heilbronn, Germany) placed approxi-
mately 5 cm from the subject’s lips. The speech signals were sam-
pled at 48 kHz with 16-bit resolution. The recordings were
collected during one session with a speech specialist who con-
veyed instructions to the subjects. Each participant had to com-
plete a series of speaking tasks as part of a larger protocol lasting
approximately 20 min. There were no time limits during the
recordings. All participants were asked to repeat their performance
at any time if they or the examiner were not fully satisfied with
their initial attempt. The performance of the task focused on con-
sonant articulation was selected for further investigation. During
the task, the participants were instructed to read the words pre-
sented by the examiner on paper cards. The subjects were further
warned not to be surprised as some of the words would be mean-
ingless and to simply read what they saw. As Czech is a language
PSP MSA
(n = 16; 11 men, 5 women) (n = 16; 5 men, 11 women)
Mean/SD (range) Mean/SD (range)

66.1/5.1 (54–72) 61.9/5.9 (52–72)
4.3/2.4 (1–11) 3.8/1.3 (2–6)
447/538 (0–1500) 567/573 (0–1700)
169/178 (0–400) 131/145 (0–400)
71.9/28.5 (19–132) 71.8/22.5 (43–123)
– –
2.1/0.7 (0–3) 1.7/0.7 (0–3)
2.2/2.6 (0–7)b 1.4/2.4 (0–9)b

3.6/3.1 (0–11)b 3.9/3.3 (0–11)b

22.1/10.9 (4–45)b 25.1/8.3 (12–39)b

9.2/4.2 (3–18)b 7.5/2.2 (4–12)b

0.0/0.0 (0–0)b 4.1/6.4 (0–22)b,c

trophy; SD, standard deviation; NNIPPS, natural history and neuroprotection on
g scale.
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with fixed unambiguous pronunciation rules, no training of read-
ing was performed. Tokens were printed in a large font on separate
cards to provide optimal breathing patterns during reading and to
minimize the effect of individual speech rate. Each of the 18 cards
included one stimulus. The cards were presented at a stable pace,
approximately one card per two seconds in quasi-randomized
order. The entire task was repeated twice. As a result, a total of
36 tokens were obtained from each participant.

2.4. Acoustic analysis

Audio samples were analyzed using specialized speech software
PRAAT� (Boersma, 2002). As previous research has shown that
altered VOT is among the most powerful indicators of speech dis-
order in PD (Novotny et al., 2014) and subjects with cerebellar
atrophy present with a reduced categorical separation of the VOT
of voiceless and voiced stop consonants (Ackermann, Graber,
Hertrich, & Daum, 1999; Ackermann & Hertrich, 1997), three
acoustic variables including VOT, VOT ratio and vowel duration
were investigated. These acoustic variables were measured from
the first syllable of each token by hand using both wide-band spec-
trogram and oscillographic sound pressure signal displayed on
screen. VOT was determined as the interval between the articula-
tory release of stop and the onset of vocal fold vibration (Kent &
Read, 1992). Both positive and negative values of VOT were
allowed. The negative values of VOT refer to voicing lead or pre-
voicing (voicing begins before the stop release) characteristic for
voiced plosives (Kent & Read, 1992). If multiple bursts occurred,
the initial burst was used to measure VOT (Fischer & Goberman,
2010). The VOT ratio was defined as VOT divided by the duration
of whole syllable (Fischer & Goberman, 2010; Novotny et al., 2014).

All data were analyzed by one investigator (TT) as the selection
of CV boundaries is a simple and well-defined task, as also docu-
mented by previous researchers reporting high intra- and inter-
rater reliability (Fischer & Goberman, 2010; Flint et al., 1992).
The assigned values for each participant obtained from two vocal
task runs were averaged. Subsequently, the values for each stop
plosive were averaged across all three corner vowels. For statistical
comparisons, the acoustic parameters were further assessed for a
subset of voiceless (defined as the average of /p/, /t/ and /k/) and
voiced (defined as the average of /b/, /d/ and /g/) consonants sepa-
rately. No statistically significant differences between the speech
performances of male and female participants across any acoustic
variable or speakers group were found (Mann-Whitney U test:
p = 0.12–0.86).

2.5. Non-measurable data

The acoustic variables were not obtained from a small propor-
tion of data due to methodological constraints. In particular, the
amount of omitted tokens was 6.1% in MSA, 3.3% in PSP and less
than 1% in PD and HC speakers. The main reason for classification
of stimuli as non-measurable was the absence of burst in the PSP
group (52% of omitted tokens) and the absence of voicing, i.e.,
missing vowel or vowel lasting less than 4 pitch periods in the
MSA group (29% of omitted tokens). As the missing data were likely
to be distributed randomly, at least 3 tokens for each stop conso-
nant were always available for further analysis.

2.6. Perceptual assessment

A total of 2240 recorded tokens from all four groups of partici-
pants were used for perceptual analyses of phonetic contrast
between voiceless and voiced plosives. The remaining 64 (2.8%)
tokens were discarded as they were not used in acoustic analyses
due to methodological constraints such as incomplete stop conso-
nant production, devoicing of vowels or the presence of dysfluen-
cies. All tokens were randomized using a computer algorithm
and subsequently separated to sequences containing a maximum
of 100 tokens; each lasting approximately 10 min. An interval of
at least 5 s duration with no speech production was included
between two contiguous tokens to ensure enough time for listen-
ers to note the perceived item. Three speech specialists (TT, JR,
RC) performed the perceptual assessment using the same standard
over-the-ear headphones (ATH-T500, Audio-technica) adjusted to
comfortable volume. The listeners were instructed to replay each
sequence of recordings and note the initial consonant of each
token. At least 10 min break was required between two sequences.
As a measure of perceived voicing contrast the percentage of /p/, /t/
or /k/ misassigned as /b/, /d/ or /g/ (Err/voiceless/) and vice versa
(Err/voiced/) was determined. The final score was calculated by
averaging perceptual ratings obtained across three raters. Re-
analysis of 20% of all data was performed by the same investigator
(TT) that performed the original set of measures. Based upon a
two-way random single measures intra-class correlation, the esti-
mated inter-rater reliability across three raters was 0.95 (p < 0.001)
whereas intra-rater reliability across the same rater was 0.97
(p < 0.001).
2.7. Statistical analysis

All acoustic variables were normally distributed whereas per-
ceptual metrics were not found to be normally distributed
(Kolmogorov-Smirnov test). Group differences were calculated
using analysis of variance for acoustic parameters and the
Kruskal-Wallis test for perceptual measures. Post-hoc significance
was assessed by the Fisher least-squares difference. Pearson and
Spearman correlations were applied to test for significant relation-
ships between normally and non-normally distributed data,
respectively. Due to the exploratory nature of the study, adjust-
ment for multiple comparisons was not performed and the level
of significance was set to p < 0.05.
3. Results

Table 2 provides acoustic data for consonant articulation across
all groups through six plosives including /p/, /b/, /t/, /d/, /k/ and /g/.
Fig. 1 shows a representative example of stop consonant duration
for the voiceless plosive /t/ and voiced plosive /d/ depicted for HC,
PD, PSP and MSA subjects.

Fig. 2A depicts comparison of articulation performances among
PD, PSP, MSA and HC subjects for subsets of voiceless plosives. VOT
was found to be the best parameter for differentiating between
groups [F(3,60) = 16.7, p < 0.001, g2 = 0.45]. Post hoc comparisons
revealed significantly longer VOT in both PSP and MSA compared
to PD or HC individuals (both p < 0.001). VOT ratio significantly dis-
criminated between speaker groups [F(3,60) = 5.8, p = 0.002,
g2 = 0.22], as the HC group manifested significantly smaller VOT
ratio than all patient groups including PD (p < 0.05), PSP
(p < 0.01) and MSA (p < 0.001). The vowel duration slightly varied
among groups [F(3,60) = 2.9, p = 0.04, g2 = 0.13] due to the PSP
group, which showed significantly longer vowel length compared
to both HC (p < 0.05) and PD (p < 0.01).

Fig. 2B illustrates comparison of articulation performances
among PD, PSP, MSA and HC subjects for subsets of voiced plosives.
Group differences were found for both VOT [F(3,60) = 9.3,
p < 0.001, g2 = 0.32] and VOT ratio [F(3,60) = 14.5, p < 0.001,
g2 = 0.42]. Post hoc comparisons revealed significantly shorter neg-
ative VOT in MSA as compared to all groups including HC
(p < 0.001), PD (p < 0.01) and PSP (p < 0.001). Accordingly, a smaller
negative VOT ratio was found in MSA as compared to HC, PD and



Table 2
Results of acoustic speech analyses for six plosives including /p/, /b/, /t/, /d/, /k/ and /g/. Bold numbers indicate patient values that significantly differ from the HC group (p < 0.05).

Bilabial plosives Alveolar plosives Velar plosives

/p/ /b/ /t/ /d/ /k/ /g/
Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD

VOT (ms)
HC 14/4 �100/37 20/5 �102/42 29/10 �109/32
PD 18/6 �69/23 24/10 �71/30 31/10 �76/30
PSP 28/8 �90/54 40/16 �94/53 51/19 �83/49
MSA 28/11 �43/33 39/10 �41/50 43/11 �22/60

VOT ratio (-)
HC 0.17/0.04 �0.54/0.09 0.22/0.05 �0.53/0.09 0.30/0.07 �0.54/0.08
PD 0.22/0.06 �0.46/0.11 0.27/0.09 �0.44/0.11 0.34/0.08 �0.44/0.12
PSP 0.26/0.06 �0.42/0.17 0.31/0.09 �0.43/0.16 0.36/0.07 �0.37/0.14
MSA 0.26/0.08 �0.25/0.22 0.34/0.07 �0.19/0.29 0.35/0.12 �0.10/0.34

Vowel duration (ms)
HC 69/13 78/17 73/15 84/18 67/16 88/22
PD 63/11 73/12 65/12 77/11 60/10 82/13
PSP 84/42 99/47 90/38 104/41 89/36 107/40
MSA 77/25 84/23 78/35 91/33 77/28 90/24

VOT, voice onset time; HC, healthy controls; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA, multiple system atrophy; SD, standard deviation.

Fig. 1. Representative example of stop consonant duration of voiceless plosive /t/ and voiced plosive /d/ depicted for HC, PD, PSP and MSA subjects. HC, healthy controls; PD,
Parkinson’s disease; PSP, progressive supranuclear palsy; MSA, multiple system atrophy.
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Fig. 2. Acoustic measures of VOT, VOT ratio, and vowel duration across HC, PD, PSP and MSA speakers for a subset of (A) voiceless plosives and (B) voiced plosives. Symbols
represent mean values and error bars represent SD values. Statistical comparison between groups: *p < 0.05, **p < 0.01, ***p < 0.001. VOT, voice onset time; HC, healthy
controls; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA, multiple system atrophy.
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PSP (p < 0.001). Additionally, when compared to HC speakers, PD
individuals exhibited shorter negative VOT (p < 0.05) and PSP
patients smaller negative VOT ratio (p < 0.05). The vowel duration
also varied among groups [F(3,60) = 2.8, p < 0.05, g2 = 0.12] due to
the PSP group, which exhibited slightly longer vowel length com-
pared to both HC (p < 0.05) and PD (p < 0.01).

Fig. 3 displays results of perceptual analyses of phonetic con-
trast between voiceless and voiced plosives among PD, PSP, MSA
and HC groups. No statistically significant difference between
groups for Err/voiceless/ was observed [v2(3,60) = 3.9, p = 0.27,
g2 = 0.06]. In contrast, Err/voiced/ varied significantly among
groups [v2(3,60) = 17.1, p < 0.001, g2 = 0.27] due to the MSA group,
which showed more misassignment errors than HC (p < 0.001), PD
(p < 0.01), or PSP (p < 0.05).

The cerebellar motor impairment in APS patients correlated
with a reduction of pre-voicing (cerebellar NNIPPS subscore vs.
voiced VOT: r = 0.59, p < 0.001; cerebellar NNIPPS subscore vs.
voiced VOT ratio: r = 0.56, p = 0.001) as well as with the percentage
of voiced plosives perceptually misassigned as voiceless plosives
(cerebellar NNIPPS subscore vs. Err/voiced/: r = 0.58, p < 0.001).
No other significant correlations were detected between speech
parameters and non-speech motor subscores in Parkinsonian
groups. Additionally, overall dysarthria severity in all patients sub-
groups correlated with a prolonged duration of VOT of voiceless
plosives (UPDRS III speech item vs. voiceless VOT: r = 0.50,
p < 0.001). Significant correlation was also observed between the
reduction of pre-voicing and percentage of voiced plosives percep-
tually misassigned as voiceless plosives (voiced VOT vs. Err/
voiced/: r = 0.65, p < 0.001; voiced VOT ratio vs. Err/voiced/:
r = 0.73, p < 0.001).
4. Discussion

Although disturbed consonant articulation is considered to be
among the most deviant speech dimensions in all dysarthria sub-
types (Chakraborty et al., 2008; Darley et al., 1969b), the present
study represents the first attempt to clarify potential differences
in consonant articulation deficits of both voiced and voiceless plo-
sives in PD, PSP and MSA. We observed divergent patterns of artic-
ulation abnormalities for a subset of voiceless and voiced stop
consonants in PD, PSP and MSA groups. Voice onset time of voice-
less plosives was found to be more prolonged in both PSP and MSA
compared to PD, likely due to the greater severity of dysarthria and
slower articulation rate in APS. Voice onset time of voiced plosives
was revealed to be significantly shorter only in MSA presumably as
a consequence of damage to cerebellar structures. This finding was
further supported by perceptual evaluation where only MSA
patient target words with initial voiced plosive were misassigned
as those with initial voiceless plosive. Acoustic analysis demon-
strated that a slight deterioration of consonant articulation for
both voiced and voiceless plosives was observed in PD as compared
to HC. The observed trends with respect to imprecise articulation
in PD, PSP and MSA were consistent among individual consonants
as well as for averaged groups of voiceless and voiced consonants.
The current method based on reading isolated two-syllabic words
appears to be clinically feasible for assessing consonant articula-
tion in Parkinsonism as the mean rate of measurable tokens was
found to be greater than 93% for APS and 99% for PD or HC, and
in this regard seems to be even better suited than the method
based upon rhythmic syllable repetitions, where the mean rate of
measurable VOT in dysarthrias was 85% (Ozsancak, Auzou, Jan, &
Hannequin, 2001).



Fig. 3. Perceptual evaluation of voicing contrast based on Err/voiceless/ and Err/
voiced/ measures across HC, PD, PSP and MSA speakers depicted using boxplots.
Statistical comparison between groups: *p < 0.05, **p < 0.01, ***p < 0.001. Err/voice-
less/, percentage of voiceless plosives perceptually misassigned as voiced plosives;
Err/voiced/, percentage of voiced plosives perceptually misassigned as voiceless
plosives; HC, healthy controls; PD, Parkinson’s disease; PSP, progressive supranu-
clear palsy; MSA, multiple system atrophy.
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Regarding voiceless plosives, significantly longer VOT was
observed in both PSP and MSA subjects in comparison to PD, likely
as a result of greater speech impairment in APS. Indeed, we
observed significant relationship between overall dysarthria sever-
ity and voiceless VOT. The observed differences between PD and
APS also appear to be at least partially attributed to alterations in
speaking rate as they were not preserved using the measurement
of VOT ratio. Slow speaking rate is well documented in APS (Huh
et al., 2015; Rusz et al., 2015; Skodda et al., 2011) and is primarily
due to the presence of spastic components of dysarthria in APS
patients (Rusz et al., 2015). In line with this observation, prolonged
vowel duration associated, to a certain extent, with decreased
speech rate was observed only in PSP patients, which commonly
manifest spastic elements of dysarthria (Kluin et al., 1993).

On the contrary, the articulation of voiced plosives was mark-
edly impaired only in MSA patients while nearly intact in PD and
PSP subjects. In particular, the voiced plosives in MSA were charac-
terized by the shortening of negative VOT duration until the voic-
ing lead completely vanished and only short burst remained. In
other words, the voiced plosives were occasionally pronounced
as their voiceless cognates. Notably, contrary to voiceless plosives,
these trends in voiced plosives were not suppressed using VOT
ratio and thus cannot be interpreted as a simple effect of decreased
speaking rate. Moreover, voiced VOT was not affected in PSP
despite a similar overall severity of motor and speech impairment
as compared to MSA. Consequently, we hypothesize that the dis-
ruption of voiced plosives in MSA reflects underlying cerebellar
neurodegeneration. This hypothesis is further supported by the
correlation between the severity of cerebellar involvement in APS
and the disruption of voiced plosives as reflected by VOT and
VOT ratio.

In agreement with the reduction of pre-voicing, the present
study revealed a reduced perceptual contrast between voiced and
voiceless plosives in MSA. This observation is in accordance with
previous studies where reduced phonological contrast between /
t/ and /d/ was documented in patients suffering from cerebellar
atrophy (Ackermann & Hertrich, 1997; Ackermann et al., 1999),
and generally confirms that VOT plays a primary role in perceptual
determination between voiceless and voiced plosive cognates
(Auzou et al., 2000). As perceptual judgment appears to be suffi-
cient to reveal effects of cerebellar patterns on production of the
voicing contrast in mild to moderate dysarthria, the current find-
ings may have wider clinical implications in the evaluation of
patients who may have MSA or other cerebellar degenerations.

Our further results indicate disturbed coordination between
laryngeal and supralaryngeal articulators in PD patients that man-
ifested a slightly reduced negative VOT as well as greater positive
VOT ratio compared to HC. These findings are in agreement with
previous research showing affected consonant articulation in PD
(Auzou et al., 2000; Flint et al., 1992; Novotny et al., 2014;
Saxena et al., 2014). However, previous results related to altered
voice onset time in hypokinetic dysarthria secondary to PD are
rather contradictory (Auzou et al., 2000; Fischer & Goberman,
2010; Saxena et al., 2014). Notably, our PD subjects had a tendency
to prolong the duration of VOT in plosives with a naturally short
VOT length, while shorten the duration of VOT in plosives with a
naturally long VOT length. Although these trends may appear
inconsistent, they can be interpreted with respect to knowledge
about VOT categories in normal healthy speakers (Auzou et al.,
2000). In most languages, VOT values for voiced and voiceless stops
are in discrete duration ranges that correspond to one of three
voicing categories including long negative VOT, short VOT and long
positive VOT (Auzou et al., 2000). Thus, it can be assumed that in
PD subjects, the plosives with short VOT duration are likely to be
unchanged or extended beyond normal, while the plosives with
both positive and negative long VOT are biased to be reduced.
Indeed, previous studies in dysarthrias investigating stops with
obviously long VOT duration reported shortening (Flint et al.,
1992; Morris, 1989) while those examining naturally short VOT
found increased or unchanged duration (Fischer & Goberman,
2010; Forrest et al., 1989; Novotny et al., 2014; Ravizza, 2003).
However, other factors such as the effect of different speaking tasks
or speaking rates cannot be excluded.

It thus remains to be elucidated by what mechanism the
impaired programming of movements due to basal ganglia and
cerebellar control circuit involvement contributes to imprecise
articulation of voiced and voiceless stop consonants. Converging
evidence from neuroimaging, limb control and neuropsychological
studies suggests that patients with PD are unable to maintain a
programmed response or to rapidly switch between responses,
whereas patients with cerebellar disease have a reduced ability
to program movement sequences in advance of movement onset
(Spencer & Rogers, 2005). The accurate production of stop conso-
nants requires close coordination between the larynx and the artic-
ulators (i.e., lips, tongue and jaw). Production of word-initial
voiceless plosives involves a period of articulatory closure during
which the vocal folds are maintained in a relatively open position
without glottal pulsing, whereas word-initial voiced plosives are
characterized by voicing lead at the beginning followed by a period
of articulatory closure. To achieve precise coordination of the glot-
tal opening gesture and articulatory closure release, it has been
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suggested that the control of speech movement timing occurs over
aggregates rather than individual articulators (Lofqvist &
Lindblom, 1994; Munhall, Lofqvist, & Kelso, 1994). Difficulty in ini-
tiating articulation due to a reduced ability to maintain the speech
motor program, which is characteristic for speakers with hypoki-
netic dysarthria (Gurd, Bessell, Watson, & Coleman, 1998;
Svensson, Henningson, & Karlsson, 1993), appears to contribute
to prolonged positive VOT in voiceless plosives and slightly short-
ened negative VOT in voiced plosives in PD, PSP as well as MSA
patients, as observed in the present study. In MSA, among deficits
aggravated due to the presence of hypokinetic dysarthria, insuffi-
cient programming in advance of speech onset due to ataxic dysar-
thria may lead to additional disruption of coordination between
the larynx and the articulators, presumably resulting in substan-
tially shortened or completely missing negative VOT in voiced
plosives.

There are certain limitations to the present study. Due to lim-
ited opportunities in recruiting a larger number of participants
we were not able to balance patient groups for gender, particularly
in the PSP group where male participants predominated. We there-
fore cannot exclude the possibility that the observed changes in
consonant articulation are partially affected by gender-specific
aspects of speech. Nevertheless, no evident gender-specific differ-
ences for VOT have been reported in healthy adults in other lan-
guages (Lundeborg, Larsson, Wiman, & McAllister, 2012; Morris,
McCrea, & Herring, 2008). Furthermore, as articulation of voiced
consonants is not characterized by voicing lead in all languages
(Auzou et al., 2000), our findings related to voiced stops are likely
to be language-specific and may not be easily generalized to all
languages. One potential limitation is that the test material was
comprised of two-syllabic single-words only and thus the token-
initial position of the target consonants precluded the evaluation
of the consonantal closing gesture. In addition, our speech material
was designed to minimize the effect of speaking rate and thus cur-
rent findings may differ from those obtained from more complex
speech utterances. Indeed, previous research assumed that the
motor control of sentence utterances differs from that of syllable
repetition (Ackermann & Hertrich, 1993). In particular, while there
is clear evidence that VOT extracted from single syllables is sensi-
tive to changes due to cerebellar atrophy (Ackermann & Hertrich,
1997; Ackermann et al., 1999), no alterations were observed in
VOT obtained from sentence utterances in Friedreich ataxia
(Ackermann & Hertrich, 1993), which can be considered a model
of afferent cerebellar dysfunction. Thus, the cerebellum might
not be a prerequisite for the initiation of articulatory gestures
within the framework of sentence utterances (Ackermann &
Hertrich, 1993), and single-word material may be a more feasible
task than longer sentence utterances to observe distinctive pat-
terns of imprecise articulation among PD and APS.
5. Conclusions

In conclusion, our results confirm the distinctive critical role of
basal ganglia and cerebellar control circuit involvement in articula-
tory undershoot of voiced and voiceless stop consonants. In partic-
ular, duration of VOT in voiced plosives was revealed to be shorter
only in MSA, while nearly intact in PD and PSP subjects. Consider-
ing that the only distinctive speech feature currently known for
APS is the occurrence of stuttering-like behaviour in PSP (Kluin
et al., 1993, 1996; Rusz et al., 2015), the alterations in VOT of
voiced plosives may represent a novel marker of cerebellar dys-
function in MSA. Further studies are needed to elaborate our find-
ings in other languages, through various kind of speech material, in
larger populations of PD and APS, as well as across different types
of neurodegeneration with cerebellar atrophy.
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Automated analysis of connected 
speech reveals early biomarkers 
of Parkinson’s disease in patients 
with rapid eye movement sleep 
behaviour disorder
Jan Hlavnička1, Roman Čmejla1, Tereza Tykalová1, Karel Šonka2, Evžen Růžička2 & Jan Rusz1,2

For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as 
Parkinson’s disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis 
based upon rather small samples of human vocalizations. Our study introduces a fully automated 
method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation 
and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and 
distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid 
eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 
healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even 
in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated 
vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal 
parkinsonian neurodegeneration in natural environments.

As the most complex acquired human motor skill, speech is extremely sensitive to disturbances in the basal 
ganglia, which are involved in the planning, programming and execution of motor tasks1–3. Thus, speech changes 
are among the most robust motor abnormalities in Parkinson’s disease (PD); a common neurological disorder 
associated with basal ganglia dysfunction. Up to 90% of PD patients develop perceptually distinctive speech 
and voice abnormalities, collectively termed hypokinetic dysarthria, characterized by decreased quality of voice, 
hypokinetic articulation, hypophonia, monopitch, monoloudness and deficits in timing4,5. However, previous 
research has mainly focused on the later stages of PD5, while identification of different patterns of vocal disorders 
in the preclinical course of PD neurodegeneration has been severely restricted6. Identifying biomarkers related 
to neurodegeneration is essential as they could provide invaluable information not only related to prognosis 
and treatment, but also in the setting of clinical trials and disease modifying therapies before the onset of motor 
manifestations7,8. In this regard, vocal assessment has a potential advantage as an inexpensive, non-invasive and 
simple-to-administer method, scalable to large populations with the potential to be performed remotely, even by 
smartphone from the patient’s home.

The development of a fully-automated method to detect early, distinctive patterns of neurodegeneration using 
only acoustic data from connected speech such as reading the short passage or monologue would have the poten-
tial to revolutionize the diagnostic process in neurodegenerative diseases manifesting motor speech disorders. 
The investigation of prodromal speech changes in subjects with rapid eye movement sleep behaviour disorder 
(RBD) provides a unique opportunity to evaluate the reliability and utility of such a tool. It is well known that 
people with RBD are at extremely high risk (>80%) for developing PD and related neurodegenerative disorders7,8, 
and no prodromal disease marker has a predictive value near RBD9.
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The value of speech assessment in the differential diagnosis of motor speech disorders was suggested half a 
century ago in the landmark work by Darley et al.10, noting that the constellation of specifically affected speech 
dimensions typically reflects the presumed underlying pathophysiology. Although there has been a substantial 
increase in computational power in recent years, most of the current methods for the evaluation of dysarthria 
patterns still rely either on perceptual tests, hand-labelling speech signal or manual control of the analysis pro-
cedure11,12. Nevertheless, several automated and quantitative approaches based on speech signal processing and 
machine learning have emerged for the evaluation of speech performance in PD13,14. However, these previous 
methods were designed for highly functional vocal paradigms such as sustained phonation or syllable repetition, 
and tested on only small samples of PD speakers13,14. Currently, no automatic, algorithm-based system is available 
that would allow robust and sensitive evaluation of different natural, connected speech patterns across a wide 
range of disease severity, from non-perceptible preclinical speech changes to the dysarthria in PD patients.

We developed a fully automated speech monitoring system that uses a segmentation method for the pre-
cise estimation of voiced and unvoiced segments of speech, respirations and pauses. We further proposed a set 
of acoustic speech features based on the segmentation algorithm applicable to connected speech, allowing the 
description of complex vocal disturbances due to neurodegeneration including respiratory deficits, dysphonia, 
imprecise articulation and dysrhythmia. We show that subliminal speech abnormalities can be reliably captured 
even in RBD patients and thus consider automated analysis suitable for research on vocal development in PD with 
potential clinical implications.

Results
Data collection. Typical vocal deficits associated with PD were examined using sample of 30 patients with 
newly diagnosed, untreated PD as compared to 50 healthy subjects without any history of neurological or com-
munication disorders. Subsequently, we collected sample of 50 subjects with idiopathic RBD in order to reveal 
speech alterations that are typical for prodromal PD (see Table 1 and Methods). All participants were asked 
to perform two speaking tasks that represent natural speech and reflect motor speech disorders comprehen-
sively5. First, speakers read a standardized, phonetically-balanced text of 80 words twice (Supplementary Fig. S1). 
Second, participants were instructed to provide monologue about their interests, job, family or current activi-
ties for approximately 90 seconds. Both PD and RBD subjects were scored according to the Unified Parkinson’s 
Disease Rating Scale motor subscore (UPDRS III15, ranging from 0 to 108, with 0 for no motor manifestations and 
108 representing severe motor distortion). The severity of dysarthria in PD and RBD individuals was perceptually 
described by speech item 18 of the UPDRS III.

Automatic segmentation of connected speech. The main challenge of the proposed algorithm con-
sisted in the class-by-class recognition of four basic physiological sources of connected speech including voiced 
speech, unvoiced speech, pause and respiration (see Methods, Fig. 1, Supplementary Fig. S2, and Supplementary 
Movie S1). To make the segmentation adaptive, the speech signal was processed inside a recognition window, 
where the signal was further parameterized by a sliding window into zero-crossing rate (ZCR), variance of auto-
correlation function (ACR), power (PWR) and linear-frequency cepstral coefficients (LFCC). Voiced speech was 
determined using a cluster analysis in the space of ZCR, ACR and PWR. Subsequently, unvoiced speech was 
recognized using a cluster analysis in the space of the first five LFCC using voiceless intervals shorter than 300 ms 
in order to avoid misclassification with respirations. Consecutively, respirations were determined by a cluster 
analysis in the space of the first five LFCC using speechless intervals longer than 200 ms associated with the 

PD (n = 30) RBD (n = 50)

Mean Age (years) 64.9 (SD 10.9, range 34–79) 64.9 (SD 9.1, range 40–83)

Men 70% (n = 21) 82% (n = 41)

Women 30% (n = 9) 18% (n = 9)

Positive history of Parkinson’s 
disease in family 7% (n = 2) 2% (n = 1)

Mean age of disease onset (years) 63.4 (SD 11.9, range 30–78) 59.2 (SD 9.8, range 33–81)

Age of disease onset <40 years 10% (n = 3) 4% (n = 2)

Mean symptoms duration (years) 1.6 (SD 1.3, range 0.5–6) 5.8 (SD 4.4, range 1–17)

Mean Hoehn & Yahr score 2.1 (SD 0.3, range 1.5–2.5) n/a

Mean UPDRS III total 20.2 (SD 12.4, range 6–54) 5.2 (SD 4.1, range 0–21)

Mean UPDRS III 18 speech item 0.4 (SD 0.5, range 0–1) 0.06 (SD 0.24, range 0–1)

Antidepressant therapy 10% (n = 3) 14% (n = 7)

Antiparkinsonian therapy 0 (n = 0) 0 (n = 0)

Levodopa equivalent (mg/day) 0 0

Clonazepam therapy 10% (n = 3) 12% (n = 6)

Clonazepam (mg/day) 0.07 (SD 0.22, range 0–1) 0.08 (SD 0.30, range 0–2)

Table 1. Clinical characteristics of newly diagnosed, untreated PD patients and RBD subjects. Captions: 
PD = Parkinson’s disease, RBD = rapid eye movement sleep behaviour disorder, SD = standard deviation, 
n/a = not applicable.
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Figure 1. Process diagram illustrating the principle of the automated segmentation algorithm on a speech 
signal sample. (A) Original speech sample depicted using oscillographic sound pressure plot. (B) Red ‘x’ marks 
illustrate recognized voiced speech depicted in dimensions of PWR and ACR in two consecutive recognition 
windows. (C) Speech sample representing voiceless intervals shorter than 300 ms after removal of voiced 
intervals from original speech sample. (D) Green ‘o’ marks illustrate recognized unvoiced speech depicted in 
dimensions of the first linear-frequency cepstral coefficient (LFCC1) and the second linear-frequency cepstral 
coefficient (LFCC2) in two consecutive recognition windows. (E) Speech sample representing respiration 
intervals longer than 200 ms after removal of voiced and unvoiced intervals from original speech sample.  
(F) Blue ‘o’ marks illustrate recognized respirations depicted in dimensions of the first linear-frequency cepstral 
coefficient (LFCC1) and the third linear-frequency cepstral coefficient (LFCC3) in two consecutive recognition 
windows. (G) Resulting intervals of the segmentation plotted in time. PWR = power, ACR = variance of 
autocorrelation function.
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approximate minimal duration required for inspiration. Finally, the resulting intervals were described by time 
labels for voiced speech, unvoiced speech, pause and respiration, where pauses include all respirations.

Tracking method performance. To compare and evaluate the reliability of the proposed segmentation 
method, manual reference labels were introduced for pause and respiration intervals. A total of 200 randomly 
chosen recordings including both speaking tasks across each group of participants was labelled blindly without 
awareness of segmentation output using speech analysis software16. Both pauses and respirations were labelled 
with respect to speech context using predefined criteria based on visual inspection of the spectrogram (see 
Methods).

The performance of the segmentation algorithm was evaluated for pause and respiration detection inde-
pendently using hand labels. In addition, the performance of pause detection was compared with a previously 
designed pause detector for dysarthric speech17 as well as a voice activity detector of ITU-T G.729B18 commonly 
used in telecommunications for the reduction of transmission rate during silent periods of speech (see Methods).

The proposed segmentation method showed superior performance of 86.2 ± 7.5% efficiency across all pause 
lengths, in comparison to 55.4 ± 9.6% obtained using the previously designed pause detector for dysarthric 
speech17, and 33.9 ± 6.2% by the voice activity detector18. As short pauses are less likely to be determined cor-
rectly by hand-labelling and long pauses play an important role in speech production, final performances of all 
detectors are described by the cumulative distribution of the mean detection efficiency depending on the duration 
of pause (Supplementary Fig. S3A). The pauses longer than approximately 100 ms are difficult to detect due to 
occurrence of respiratory signals that share similar characteristics with certain unvoiced fricatives (e.g. velar fric-
atives). Pauses shorter than approximately 100 ms are challenging to detect because non-speech turbulent airflow 
occurring during a pause can excite a spectrum similar to that of the preceding phoneme from articulators. In 
addition, insufficiently articulated unvoiced consonants can be hidden in natural noise background.

The proposed segmentation of respiration achieved 81.6 ± 15.2% efficiency through all respiration durations. 
Efficiency of respiration is expressed as the cumulative distribution of mean detection efficiency as a function of 
the duration of respiration (Supplementary Fig. S3B).

Acoustic speech features. Based on the outcome of adaptive segmentation, we designed a set of 12 acous-
tic features that were utilized with respect to speech disturbances associated with PD5, allowing the assessment of 
all basic subsystems of connected speech including timing, articulation, phonation and respiration (see Methods, 
Fig. 2, and Supplementary Table S1).

Timing features involve information about the rhythmic organization of speech. We evaluated the speech rate 
with respect to quality of speech timing as the rate of speech timing (RST) including voiced, unvoiced and pause 
intervals. Acceleration of speech associated with parkinsonism was computed by acceleration of speech timing 
(AST) including voiced, unvoiced and pause intervals. Duration of pause intervals (DPI) describes the quality 
of speech timing, as pauses can be heavily influenced by the ability to properly initiate speech. Heterogeneity of 
speech in terms of the occurrence of voiced, unvoiced, pause and respiratory intervals was measured by entropy 
of speech timing (EST).

Figure 2. Mind map illustrating basic principles of individual acoustic speech features. MFCC = Mel-frequency 
cepstral coefficients.

http://S3A
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The assessment of articulation was quantified on intervals of unvoiced speech that represent pure involvement 
of the supra-laryngeal muscles. Performance of the most challenging articulatory movements represented by stop 
consonants was directly measured by the duration of unvoiced stops (DUS). In addition, the temporal quality of 
articulation was determined from unvoiced fricatives using the decay of unvoiced fricatives (DUF).

Phonatory characteristics were evaluated using intervals of voiced speech. The fundamental phonatory meas-
urement was then the mean duration of voiced intervals (DVI). Deficits of phonatory onset and offset control 
were measured by gaping in-between voiced speech (GVI).

The respiratory apparatus was evaluated using data from detected respiratory intervals principally represent-
ing inspirations. The rate of speech respiration (RSR) robustly estimates respiratory rate during speech. Breath 
groups were described using pause intervals per respiration (PIR). The relative loudness of respiration (RLR) 
evaluates audibility of respiration relative to loudness of speech, eliminating dependence on microphone gain. 
The latency of respiratory exchange (LRE) measures the pause between expiration represented by the time speech 
ends and respective inspiration.

Forty-three percent of PD patients and only 6% of RBD subjects perceptually demonstrated mildly affected 
speech (score of 1) according to the UPDRS III speech item; 57% of PD patients and 94% of RBD subjects showed 
normal speech (score of 0). However, significant group differences were found for RST and DPI speech timing 
features, primarily associated with both differences between PD and control groups as well as between RBD and 
control groups (Fig. 3). Articulatory feature of DUS also significantly discriminated investigated groups, mainly 
due to the significant differences between RBD and control groups but also due to observed trend between PD 
and control groups (p = 0.03, uncorrected). All features except EST, DUS, RSR and LRE showed significant differ-
ences between reading passage and monologue (Fig. 3). No significant correlations were observed between any of 
the speech features and UPDRS III.

Index test. A blinded experiment was designed using UPDRS III with removal of action tremor to improve 
its predictive value7 (hereafter UPDRS III*) (Fig. 4A), which is common in non-parkinsonian conditions7. 
UPDRS III* at a cut-off > 3 was previously revealed to be a very good indicator of initial parkinsonism7, and thus 
RBD subjects with UPDRS III* ≤ 3 (hereafter asymptomatic RBD subgroup) were labelled as motor negatives 
and RBD subjects with UPDRS III* > 3 (hereafter symptomatic RBD subgroup) were labelled as motor positives 
(Fig. 4B). The speech performances of all RBD speakers were analysed automatically without any supervision 
(Fig. 4C). As PD patients show dysarthria profiles with unequal severity and different types of predominant 
speech manifestations4,19, the speech pattern associated with PD was determined by sequential selection through 
all extracted speech features (Fig. 4D). This experiment was executed by quadratic discriminant function analysis, 
where each combination of features was evaluated using a leave-one-subject-out cross-validation scheme as fol-
lows: One individual speaker was excluded from the dataset iteratively, and the multivariate normal distribution 
characterized by the mean and covariance matrix was estimated using an Expectation Maximization algorithm 
for PD and controls independently. The excluded speaker was assigned to the distribution of PD or controls using 
Bayes discriminant rule. The best combination of acoustic features representing the most salient speech pattern 
of PD was determined as the one with highest accuracy (Fig. 4E). Finally, all RBD subjects were classified using 
the resulting speech pattern learned from the dataset of PD and control subjects (Fig. 4F). Speech performances 
of all RBD subjects assigned to the distribution of PD were labelled as speech positives, otherwise speech negatives. 
Finally, we obtained the true positive score as the number of motor positives equal to speech positives, the true 
negative score as the number of motor negatives equal to speech negatives, the false positive score as the number 
of motor negatives equal to speech positives, and the false negative score as the number of motor positives equal to 
speech negatives. Discriminative efficiency was then described by accuracy, sensitivity, and specificity.

As a result, a subgroup of 27 asymptomatic RBD subjects was classified using motor negatives labels, whereas 
a subgroup of 23 symptomatic RBD subjects was classified using motor positives labels. The most distinctive dis-
turbed speech patterns between the PD and control groups were found for a combination of RST in reading pas-
sage, DVI in monologue, DPI in reading passage, DPI in monologue, DUS in reading passage, DUS in monologue 
and PIR in monologue with 71.3% accuracy (56.7% sensitivity and 80.0% specificity). Based upon the predictive 
model obtained through comparison between PD and controls, the results of the speech test indicate that motor 
positives and motor negatives from the RBD group were determined with 70.0% accuracy (73.9% sensitivity and 
66.7% specificity) (Fig. 5).

Discussion
The results of our work represent the first step toward the development of a fully automated tool for the large-scale 
evaluation of prodromal vocal impairment due to neurodegeneration. Our findings indicate that the time for 
basic research through automated quantitative vocal analysis of natural speech is already upon us. The newly 
designed algorithm has proven sufficiently transparent to provide suggestions on typical patterns of parkinso-
nian prodromal vocalization deficits in RBD. Thus, the present study demonstrates the potential benefit of add-
ing objective acoustic evaluation to the standard test battery used to identify those at high risk of developing 
neurodegeneration20.

Interestingly, although the vast majority of RBD subjects were without perceptible speech impairment as indi-
cated by the UPDRS III speech item, we objectively captured similar speech timing abnormalities in both de 
novo PD and RBD subjects. Indeed, converging evidence from neuroimaging, limb control and neuropsycho-
logical studies has suggested the presence of timing deficits in PD due to the inability to maintain a programmed 
response or to rapidly switch between responses21,22. Dysrhythmia patterns in our PD and RBD cohort included 
prolongation of pauses and decreased rate of speech intervals. While the prolongation of pauses in PD has been 
well documented23, the decreased rate of speech intervals revealed in the present work provides new insight into 
the production of speech in PD. In particular, decreased rate of speech intervals indicates less diversity between 
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follow-up speech segments, likely as a result of decreased range of motion of the speech apparatus. On closer 
examination there were also trends toward changes in measurement of voiced intervals duration, representing 
voicing leakage through pauses, with mean values for the RBD group intermediate between PD patients and 
controls. Thus, the decreased rate of speech intervals and prolonged pauses appear to also be, at least partially, 
influenced by a decreased ability to stop voicing properly, which may reflect weak adduction of the vocal folds 
due to bradykinesia and rigidity of laryngeal muscles. In addition to the decreased ability to stop voicing properly, 
RBD subjects tend to extensively pronounce unvoiced stop consonants to acoustically resemble fricatives due to 
insufficiently closed articulators, which can be considered a precursor of the phenomenon called spirantization24. 
These observations are in agreement with previous research suggesting that PD with RBD may represent a dis-
tinct phenotype manifesting more as an akinetic-rigid syndrome, in comparison to PD without RBD25,26.

In accordance with the majority of previous studies27, we did not observe direct correlations between speech 
and motor assessment in PD and RBD. Nevertheless, we were able to blindly predict symptomatic motor RBD 
group membership with 70% accuracy based on speech assessment. In general, we may thus assume that speech 
impairment partially parallels increasing limb motor disability due to the underlying neurodegenerative process. 

Figure 3. Results of acoustic speech analyses. Bars represent mean values and error bars represent SD values. 
Repeated measures analysis of variance (RM-ANOVA) was used to test for group differences: GROUP (PD vs. 
RBD vs. controls): corrected *p < 0.05, **p < 0.01, ***p < 0.001 after Bonferroni adjustment; TASK (reading 
passage vs. monologue): corrected #p < 0.05, ##p < 0.01, ###p < 0.001 after Bonferroni adjustment. None of the 
features showed significant GROUP × TASK interaction. RST = rate of speech timing, AST = acceleration of 
speech timing, DPI = duration of pause intervals, EST = entropy of speech timing, DUS = duration of unvoiced 
stops, DUF = decay of unvoiced fricatives, DVI = duration of voiced intervals, GVI = gaping in-between voiced 
intervals, RSR = rate of speech respiration, PIR = pause intervals per respiration, RLR = relative loudness of 
respiration, LRE = latency of respiratory exchange, PD = Parkinson’s disease, RBD = rapid eye movement sleep 
behaviour disorder.
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Considering that motor dysfunction strongly predicts disease onset, regardless of primary diagnosis of parkin-
sonism or dementia7,20, the screening of motor speech changes may improve stratification for future neuroprotec-
tive therapy against PD and other synucleinopathies.

Automated segmentation methods for connected speech in dysarthria such as the speech-pause detector are 
very rare. One might assume that the precise identification of pauses is an easy task as it is used on a daily basis 
for voice activity detection in telecommunication transmission. However, the efficiency of detection was only 
33.9% using a traditional voice activity detector18, as it requires detection in the condition of environmental noise, 
and thus most non-speech sounds including respiration are accepted as voice activity. In particular, efficiency of 
detection was not substantially improved even using a previously designed pause detector for dysarthric speech17, 
which reached an accuracy of only 55.4%. However, this method is based on thresholding the power envelope 
and thus will always struggle with any presence of non-speech sounds and the turbulent airflow of insufficiently 
closed articulators in general17. The pause detection of our algorithm reached a very high accuracy of 86.2% and 
substantially outperformed conventional methods. Additionally, although no respiration detector suitable for 
dysarthria evaluation is currently available, the proposed segmentation method also achieved high efficiency of 
81.6% for the detection of respirations.

Our proposed algorithm is applicable for the assessment of complex parkinsonian vocal deficits and will likely 
be able to track speech progression as we found significant differences between controls and mild to moderate 
PD with more extended treatment periods across all speech subsystems including timing, articulation, phonation 

Figure 4. Flowchart describing the procedure of speech test experiment. (A) The motor score of UPDRS was 
examined in each RBD subject by a well-trained neurologist. (B) RBD subjects were separated into a subgroup 
of motor negatives (asymptomatic, UPDRS III* ≤ 3) and a subgroup of motor positives (symptomatic, UPDRS 
III* > 3). (C,D) Speech performances of all newly diagnosed, untreated PD patients, RBD subjects, and 
controls were analyzed using the set of designed speech features. (E) The most distinctive parkinsonian speech 
patterns were determined as the best resulting combination of speech features for differentiating between 
newly diagnosed, untreated PD patients and controls. (F) All RBD subjects were separated into a subgroup of 
speech positives (subjects with unchanged speech performance) and a subgroup of speech negatives (subjects 
with speech performance closer to PD speakers) based on the most distinctive parkinsonian speech pattern 
obtained through comparison between newly diagnosed, untreated PD and controls. PD = Parkinson’s disease, 
RBD = rapid eye movement sleep behaviour disorder, UPDRS = Unified Parkinson’s Disease Rating Scale; 
UPDRS III* = motor part of the UPDRS III score after removal of action tremor.
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and respiration (Supplementary Fig. S4). In addition, developed algorithm also proved to be suitable for evalu-
ation of both types of common connected speech including reading passage and monologue. While during the 
reading task the speaker is simply pronouncing ready-made text and thus can provide attention to articulatory 
planning, spontaneous speech requires more linguistic planning and the ability to formulate thoughts, allowing 
the speaker to modify the rhythm of his speech to breathe more freely28. Indeed, our findings indicate that most 
speech dimensions were influenced by the type of speaking task and both tasks can provide useful information. 
Although we did not find any interaction between task and group effects across speech dimensions, we still may 
assume that the temporal measurements such as speech acceleration and articulation decay are related to the 
content of speech and thus are better suited for a reading task as was previously shown29. It is also prudent to 
consider the effect of language and gender on speech characteristics. As the natural rhythm of the speech differs 
across languages30, the specific speech dimensions designed in the present study cannot be simply transcribed to 
other languages, but need to be slightly rescaled with respect to common speech performances of healthy speak-
ers of the given language. Interestingly, previous research has also suggested that gender may have a confounding 
impact on the progression of specific speech impairment in PD due to sexual dimorphism of laryngeal size31. 
In agreement with previous studies reporting a clearly increased incidence of PD in men32 and a strong male 
predominance for RBD of up to 90%33, our PD and RBD groups also consisted mainly of male participants and 
thus we cannot exclude the possibility that certain speech patterns may be influenced by gender-specific aspects. 
We should also point out that we did not stratify our PD patients according to the presence of RBD symptoms23, 
as we wanted to test our algorithm using a representative sample of PD-related dysarthric speech that could be 
influenced by various factors such as disease phenotype. Finally, as the primary aim of the current study was to 
develop an automated monitoring system allowing the assessment of connected speech, we validated our find-
ings based upon the reference to neurological evaluation using UPDRS III and did not evaluate any neuroimag-
ing biomarkers that could support our findings. Recently, it has been shown that methods such as resting state 
functional magnetic resonance imaging or single-photon emission computed tomography scanning may provide 
sensitive indicators of early basal ganglia dysfunction34,35. Future studies are needed to evaluate our findings in 
other languages and in relation to other suitable biomarkers sensitive to prodromal neurodegeneration due to PD 
and other synucleinopathies.

In conclusion, our results indicate that the automated analysis of thoughtfully-selected acoustic features 
with well-defined pathophysiology from recordings of connected speech can be a reliable tool for monitoring 
vocalization deficits associated with neurodegeneration based on pathological alpha-synuclein storage, from 
non-perceptible preclinical to more advanced dysarthria stages. We believe that the procedure can be further 
elaborated and translated into other languages as well as to the entire spectrum of neurodegenerative disorders 
manifesting motor speech disorders. The current pilot findings provide novel opportunities for future research on 
motor speech disorders ranging from traditional laboratory-based analyses, monitoring the effect of therapy and 
disease progression, to the possibility of high-throughput screening for prodromal neurodegeneration, followed 
by more detailed analysis if the screen is abnormal.

Methods
Data collection. From 2014 to 2016, a total of 130 Czech native speakers were recruited for the study. For a 
given large effect size (Cohen’s f of 0.4), we determined a minimum sample size of 84 with at least 30 per group 
by power analysis36, with the error probability (α) set at 0.05 and a false negative rate (β) set at 0.1 (i.e. power of 

Figure 5. Selected pairs of representative acoustic features depicting the most distinctive speech pattern 
allowing differentiation between PD and controls. Individual speakers plotted in speech dimensions represented 
by (A) DPI in the monologue and RST in reading task, and (B) DPI in the reading task and DUS in monologue. 
The solid gray line represents the border of discrimination between speech negatives (subjects with unchanged 
speech performance) and speech positives (subjects with speech performance closer to PD speakers). The ‘.’ 
marks represent PD, ‘o’ for RBD and ‘x’ for controls. PD = Parkinson’s disease, RBD = rapid eye movement 
sleep behaviour disorder, DPI = duration of pause intervals, RST = rate of speech intervals, DUS = duration of 
unvoiced stops.
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0.9), based on a 3-group RM-ANOVA with one covariate (GROUP). Each participant provided written, informed 
consent and the study was approved by the Ethics Committee of the General University Hospital in Prague, Czech 
Republic (approval number 67/14 Grant VES AZV 1. LFUK). The study was carried out in accordance with the 
approved guidelines. Thirty patients (21 men, 9 women) with de novo, untreated PD, mean age 64.9 (standard 
deviation [SD] 10.9), were diagnosed upon the Parkinson’s Disease Society Bank Criteria37 (Table 1). In addition, 
50 subjects (41 men, 9 women), mean age 64.9 (SD 9.1), were diagnosed with idiopathic RBD according to the 
International Classification of Sleep disorders diagnostic criteria, third edition38 (Table 1). As a control group, 50 
healthy subjects (41 men, 9 women), mean age 63.4 (SD 10.8) years, without a history of neurological or commu-
nication disorders, were included in the study.

The study was carried out at a single center. All PD patients were consecutively recruited at their first visit to 
the clinic and were examined in the drug-naive state, before symptomatic treatment was started. RBD subjects 
were screened through a web-based online survey39. No RBD patient complained of motor or cognitive difficulties 
or had a history of treatment with antiparkinsonian medication or any other therapy influencing sleep, cognition 
or motor features. Both diagnosis and evaluation of clinical scales were performed by a well-trained professional 
neurologist with experience in movement disorders. As the diagnosis of individual PD or RBD subjects was made 
at evaluation, the specific date recorded for each participant was different, but overall time schedule was the 
same. Each participant was first scored clinically by the neurologist and subsequently examined during a single 
session with a speech specialist. Speech data were recorded in a quiet room with a low ambient noise level using 
a head-mounted condenser microphone (Bayerdynamic Opus 55, Heilbronn, Germany) situated approximately 
5 cm from the mouth. Recordings were sampled at 48 kHz with 16-bit resolution. None of the participants under-
went speech therapy before the investigation.

Automatic segmentation of connected speech. All samples were preprocessed, and parameterization 
was established. Subsequently, each speech signal was modelled using a Gaussian mixture model (GMM), repre-
senting the most common method used in speech signal processing applications. Estimating all groups at once 
is not effective because all mixtures are separated imperfectly in single parametric space and false-positive errors 
as well as false-negative errors might occur. However, precise and robust classification is ensured if individual 
speech classes are estimated sequentially with respect to the corresponding traits in most differenced parameters. 
Sequential separation was executed via unique recognition steps where each recognition step separated previous 
distributions into two fractions (Supplementary Fig. S2).

Preprocessing. The signal was decimated to a sampling rate of 8 kHz, which is sufficient for speech recognition. 
Signal filtering using a 4th-order high-pass Chebyshev filter was performed to remove frequencies lower than 
130 Hz, which include main hum, popping, and other subsonic sounds. Such a high cut-off frequency did not 
affect recognition but highlights the voiced speech.

Parameterization. The signal was parameterized inside a sliding window of 15 ms, in steps of 5 ms. The PWR, 
ACR and ZCR were calculated using the following equations:
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where x is a signal in window of length N, h is hamming window, Rx represents the autocorrelation function, σx is 
the standard deviation of the signal, and µx is the mean of the signal. Because all parameters can by described by 
a lognormal distribution, we expressed them on a logarithmical scale. ZCR was computed using the normalized 
autocorrelation function. This approach emphasizes harmonic frequency and suppresses the noise component 
of voiced consonants. Thus, all voiced phonemes (vowels and voiced consonants) can be described simply by a 
unimodal normal distribution of voiced speech, which boosts the sensitivity of detection of voiced speech. ACR 
was calculated as the variance of the normalized autocorrelation function of the unweighted signal. Signal was 
also parameterized in the spectrum using the first five of 24 LFCC, representing the low-frequency envelope of 
the power spectral density.
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Sequential separation. The principle of sequential separation consisted in step-by-step recognition of the most 
differentiated components of speech (Supplementary Fig. S2). Speech was separated in the following order: voiced 
speech (Supplementary Fig. S2A), unvoiced speech (Supplementary Fig. S2B), and respiration (Supplementary 
Fig. S2C). The recognition step was executed inside a sliding recognition window. As a result, adaptability to the 
speech apparatus and environmental noise was achieved over time during speech recording. The GMM of param-
eters were presupposed in each position of the recognition window. GMM actually involve an unpredictable 
differentiation of mixtures. Therefore, the number of mixtures was evaluated using the Calinski-Harabasz index 
over the range <2; 3>. The optimal number of mixtures corresponded to a higher index of evaluation. GMM 
parameters were estimated using the EM-algorithm. Observations were classified via Bayes discriminant rule. 
Decisions were additionally smoothed by presupposing an Indo-European language family, in which unvoiced 
speech is accompanied by voiced speech. The values of thresholds of decision smoothing were not settled to exact 
value but only to approximate the natural timing of the speech apparatus.

Voiced speech. Voiced speech was separated from the whole signal using the parametric space of PWR, ACR, 
and ZCR within a recognition window of 20 seconds in 6 seconds steps. Voiced speech was identified as the 
component with the highest mean PWR. Decisions were smoothed using a median filter of the 5th order and the 
following decision rules: voiced segments shorter than 30 ms were classified as voiceless but voiceless segments 
shorter than 20 ms were classified back as voiced, as such a short-term control over vocal fold function is hardly 
possible.

Unvoiced speech. Unvoiced speech represented by unvoiced consonants was separated from unvoiced seg-
ments shorter than 300 ms, which included most consonants and excluded most respiration signals. The first 
five LFCC were used for recognizing unvoiced consonants. The recognition window was 60 seconds long and 
featured 20 seconds steps. The prolongation of the recognition window compensated for the low occurrence of 
consonants. Unvoiced speech was identified as the component with the highest mean of the first LFCC, which is 
related to loudness. Unvoiced speech shorter than 5 ms and unvoiced speech in distance to voiced speech longer 
than 30 ms were rejected.

Pause. Pauses were defined as unvoiced and non-consonant signals, including the time required for respiration. 
The minimum duration of pauses was considered to be 30 ms.

Respiration. Respirations were separated from residual segments (excluding voiced speech and consonant seg-
ments already classified in the first two steps) longer than 200 ms using the first five LFCC. Respirations were 
identified as the component with the highest mean of the first LFCC. Respirations shorter than 40 ms were 
rejected. Inspirations were bounded by silence as the lungs reversed the direction of airflow. Therefore, respira-
tions in distance to voiced speech shorter than 30 ms were classified as unvoiced speech. Gaps between respira-
tions shorter than 400 ms were classified as respirations.

Labels. Each segment was described using labels pertaining to start time, end time, and class. All signal process-
ing and data analysis steps were done in © Matlab (MathWorks).

Reference hand labels. The following criteria for pause annotations were derived from Fisher and 
Goberman40:

 1. A signal interval can be annotated as a pause only if it contains no harmonic spectrum or noise exceeding 
the noise floor and exhibiting no formant structure similar to that of speech. Pauses can contain respira-
tions isolated from speech or speech artefacts unrelated to the content of speech.

 2. Pause preceding speech ends at time of the origin of formant structure accompanied by a harmonic spec-
trum or noise signal. If speech is initiated by an explosive consonant, then a pause ends at the time of an 
initial burst of energy.

 3. Pause following speech begins at the time of the breaking of the formant structure associated with the 
previous phoneme.

The following criteria for respiration annotations were established:

 1. Respirations were identified as noise substantially exceeding the noise floor with characteristic resonance 
within the 500–2000 Hz frequency band in pauses longer than 100 ms.

 2. Borders of respiration were identified as the time of highest spectral change between pause and respiratory 
signals.

 3. Non-continuous signals of respiration were labelled as homogenous respiration.

All labels were perceptually verified. Labels were described using time of interval start and end, as well as flag 
of segment origin including pause or respiration.

Algorithm performance evaluation. The gold standard for testing was based on reference hand labels, 
whereas a tolerance field was assigned to each label. Detected labels lying within the tolerance field were inter-
preted as true positives (TP). Each hand label was paired with only one detection. Unpaired reference hand labels 
were interpreted as false negatives (FN). Unpaired detections were interpreted as false positives (FP). The effi-
ciency of detection F was evaluated by the F-score:
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The tolerance field of pause was obtained around each label, with bounds corresponding to a quarter of the dura-
tion of the corresponding pause. The most interesting information pertaining to the segmentation efficiency was 
the dependence on pause length. Therefore, efficiency was iteratively computed across pauses longer than the 
progressive threshold from 50 ms to 300 ms in 50 ms steps. Respirations were evaluated within the tolerance field 
of duration of the corresponding respiration around each label.

The pause detector for dysarthric speech17 was set to obtain the best performance result using a 200 bin histo-
gram, a sampling rate of 8 kHz, and same preprocessing procedure used in the currently proposed segmentation 
method. The voice activity detection18 was performed using a 8 kHz sampling rate and standard settings.

Acoustic speech features processing. To prevent distortion caused by pauses lasting more than several 
seconds, all pauses longer than 2 seconds were saturated to a maximal duration of 2 seconds.

RST provides a more robust estimate of speech rate impairment than a simple pause rate measurement as 
it considers not only pause but both voiced and unvoiced intervals. Voiced intervals provide additional infor-
mation about impairment of phonatory control, whereas unvoiced intervals about imprecise articulation. The 
rate, including voiced, unvoiced, and pause intervals, approximates the speech rate complexly, as the speech 
rate impairment is related to deficits in all dimensions of speech. Each voiced, unvoiced, and pause interval was 
described by the time of occurrence, determined as the mean time between speech interval start and interval end. 
The total number of intervals was counted for each moment over the course of measurement. RST was computed 
as the gradient of the regression line of the time course.

AST determines the extent of timing acceleration. Speech run was split into two halftimes with 25% overlap, 
which provided a smooth transition between parts. AST was computed as the difference between RSTs of both 
parts divided by the total duration of the sentence.

DPI evaluates a speaker’s ability to initiate speech. Complex speech impairment can cause difficulties in initiat-
ing speech, which cause prolongation of pauses. DPI was computed as the median duration of all pause intervals.

EST describes the orderliness or predictability of speech including voiced, unvoiced, pause, and respiratory 
intervals. Impaired speech associated with hypokinetic dysarthria tends to be more ordered and predictable, as 
voiced intervals dominate speech at the expense of other types of intervals. Accordingly, decreased entropy is 
tantamount to impaired speech. Each interval of speech was taken as one observation. Number of all intervals 
of speech were computed, including number of voiced speech intervals nv, number of unvoiced speech intervals 
nu, number of pause intervals np, number of respiration intervals nr, and total number of intervals nt. EST was 
determined as follows:
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DUS assesses imprecise articulation manifested by increased noise accompanying stop consonants or even by 
continuant articulation perceived as fricative. Thus, the duration of detected stop consonants tends to increase. 
The length of unvoiced consonants forms a bimodal GMM of unvoiced fricative consonants and unvoiced stop 
consonants. This distinctly varied mixture was recognized using the EM-algorithm. DUS was computed as the 
median duration of recognized intervals of stop consonants.

DUF measures the temporal quality of articulation. Unvoiced fricatives are characterized by energy concen-
trated at high frequencies (>2.5 kHz). Information about temporal quality of articulation was measured as tem-
poral damping of the high-frequency bulk. Speech run was split into two halftimes with 25% overlap, which 
provided a smooth transition between parts. Fricative consonants were recognized in each halftime from bimodal 
GMM of unvoiced fricative consonants and unvoiced stop consonants using the EM-algorithm. Unvoiced fric-
atives of each halftime were parameterized using 24 Mel-frequency cepstral coefficients (MFCC). The second 
MFCC is related to the ratio between energies of the high and low Mel-frequency bands. DUF was computed as 
the mean of differences between the second MFCC of both halftimes weighted on total duration of speech. DUF 
was expressed in parts per thousand with the respect to the presumed small range of values.

DVI evaluates the phonatory apparatus with respect to neglecting unvoiced consonants and pauses, voicing 
during voiceless consonants and simple fusing of multiple roots in word or fusing of independent words. DVI was 
computed as the mean duration of voiced intervals.

GVI represents the measurement of speaker ability to split voiced segments by pauses. Pauses between 
voiced intervals refer to the separation of different roots of words, independent words, and sentences in general. 
Impairment of the phonatory apparatus causes fusing of different roots of words or independent words. Pauses 
associated with unvoiced speech or respiration were rejected. The length of those clear pauses between voiced 
segments were described by a bimodal normal distribution. Formal pauses and clear gaps were recognized using 
the EM-algorithm. GVI was computed as the number of clear gaps per total time of speech.
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RSR estimates the breathing rate from detected intervals of respiration. The computation of RSR was designed 
to be robust against misdetections of respiratory intervals. Each respiration was described by the mean time 
between respiration start and respiration end. The speed of respiration was determined as the inverted median 
value of this interval expressed in minutes.

PIR aims to examine respiratory and prosodic function in a context characterized by pause production during 
a breath group. Commonly, a decrease in breath group together with a decrease in pause rate anticipate decreased 
PIR due to dysarthria. The number of pauses framed between two respirations was taken into account. PIR was 
computed as the median number of pauses per respiration.

RLR represents a simple loudness measurement for estimating inspiratory effort. Every obstruction in the res-
piratory path produces noise. The loudness of inspiratory noise is proportional to inspiratory flow and the resist-
ance of obstruction in the respiratory pathway. Limited chest wall kinematics associated with dysarthria reduce 
inspiratory flow and noise. The loudness of respiratory noise was referenced to the loudness of speech to make the 
value of RLR independent of microphone gain. The signal was squared and filtered by a moving average of 120 
order and rescaled into loudness using a logarithmical scale. RLR was determined as the difference between the 
median loudness of respirations and the median loudness of speech.

LRE indicates the ability to convert expiration during speech into inspiration. The impaired ability of res-
piratory exchange manifests in the prolongation of the interval between expiration and inspiration, which must 
be minimized in speech breathing. Each respiration was evaluated by the latency time, which was computed as 
the difference between the time of inspiration and the time of expiration. The time of expiration end was deter-
mined from the end of the nearest preceding speech interval. The time of inspiration start was determined from 
the start of the interval of respective respiration. LRE was computed as the mean of latency times of all detected 
respirations.

Statistical analysis. For every subject, the final values of 12 acoustic features related to reading passage 
were computed by averaging the data obtained in two vocal task runs. As all acoustic features were found to be 
normally distributed by the one-sample Kolmogorov-Smirnov test, statistical analyses were performed using 
repeated measures analysis of variance with GROUP (PD vs. RBD vs. controls) treated as a between-group factor 
and TASK (reading passage vs. monologue) treated as a within-group factor. Post-hoc GROUP significance was 
assessed with the Fisher least-squares difference. Pearson correlations were applied to test for significant rela-
tionships. Bonferroni correction for multiple comparisons was applied according to the 12 tests performed with 
corrected p threshold = 0.0042 (i.e., 0.05/12) for p < 0.05.
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Smartphone Allows Capture of Speech
Abnormalities Associated With High Risk

of Developing Parkinson’s Disease
Jan Rusz , Jan Hlavnička, Tereza Tykalová, Michal Novotný, Petr Dušek, Karel Šonka, and Evžen Růžička

Abstract— Although smartphone technology provides
new opportunities for the recording of speech samples in
everyday life, its ability to capture prodromal speech impair-
ment in persons with a high risk of developing Parkinson’s
disease (PD) has never been investigated. Speech data
were acquired through a smartphone as well as a profes-
sional microphone with a linear frequency response from
50 participants with a rapid eye movement sleep behav-
ior disorder that are at a high risk of developing PD and
related neurodegenerative disorders. Additionally, record-
ings of 30 newly diagnosed, untreated PD patients and
30 healthy participants were evaluated. Acoustic assess-
ment of 11 speech dimensions representing the key aspects
of hypokinetic dysarthria in the early stages of PD was
performed. Smartphone allowed the detection of speech
abnormalities in participants with a high risk of developing
PD. Acoustic measurements related to fundamental fre-
quency variability, duration of pause intervals, and rate of
speech timing extracted from spontaneous speech were
sufficiently sensitive to significantly separate groups (area
under curve of 0.85 between PD and controls) and showed
very strong correlation and reliability between the pro-
fessional microphone and the smartphone. Speech-based
biomarkers collected through smartphones may have the
potential to revolutionize the diagnostic process in neurode-
generative diseases and improve stratification for future
neuroprotective therapy in PD.
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Index Terms— Acoustic analyses, cellular phone,
Parkinson’s disease, REM sleep behavior disorder, speech
disorder.

I. INTRODUCTION

PPARKINSON’S disease (PD) is a neurodegenerative dis-
order characterized by the pathological accumulation of

abnormal α-synuclein in the brain leading to the loss of vul-
nerable neuronal populations including dopaminergic neurons
in the substantia nigra. As a consequence, individuals with
PD present with bradykinesia, in addition to other principal
motor features such as rigidity and/or resting tremor [1]. The
incidence of PD in the overall population is estimated to
be 1.8 % in persons 65 years of age and older [2]. More
effective therapies for neurodegenerative diseases such as PD
will become a strategic priority due to the increasing eco-
nomic burden connected with prolonged life expectancy [3].
However, there currently is no treatment to halt or slow the
progression of PD. Available pharmacotherapy and neuro-
surgical interventions only offer symptomatic alleviation of
PD motor symptoms that clinically manifest relatively late
in the course of neurodegeneration, at the moment when up
to 50 % of the neurons in the substantia nigra is already
irrecoverably damaged and up to 80 % of striatal dopamine
has been depleted [4], [5]. Therefore, the major reason for
the failure to develop neuroprotective therapy may be that the
disease progresses for many years before the appearance of
clinical signs and then it is simply too late for intervention. The
early recognition of PD in prodromal stages has thus crucial
implications for the future development of neuroprotective
therapy [7], [8].

Idiopathic rapid eye movement sleep (REM) behavior dis-
order (RBD) is a sleep disorder characterized by the loss of
physiologic skeletal muscle atonia during REM sleep, resulting
in motor responses related to dream content [8]. During sleep,
persons with RBD make rapid movements, kick, scream, talk
aloud and commonly cause injury to themselves or their bed
partners [9]. Idiopathic RBD is a prodromal marker of synu-
cleinopathies, which are neurodegenerative disorders charac-
terized by pathological α-synuclein deposits in the brain. This
group includes PD and two related disorders also manifesting
with parkinsonism: dementia with Lewy bodies and multiple
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system atrophy. Risk of conversion of idiopathic RBD into
PD, dementia with Lewy bodies and less frequently into
multiple system atrophy is extremely high (> 80%) [10]–[12].
Conversely, only a small minority of subjects with RBD
do not develop a neurodegenerative disorder [6]. The high
conversion rate of RBD to neurodegenerative disease provides
a unique opportunity to observe the clinical development
of PD and related disorders [13], [14]. No other preclinical
marker has comparable predictive value to RBD with regard
to synucleinopathy development [15].

As the most complex motor skill acquired involving more
than 100 muscles, speech is highly susceptible to degeneration
of neural structures engaged in motor system control [16].
Indeed, up to 90 % of PD patients develop distinctive
speech and voice abnormalities, collectively termed hypoki-
netic dysarthria, characterized by decreased quality of voice,
hypokinetic articulation, hypophonia, monopitch, monoloud-
ness or deficits in timing [17]. In clinical practice, experienced
clinicians frequently develop an intuitive sense that PD is
present due to characteristic changes in voice. This resonates
with the reports of family members, who perceptually note
changes in speech long before the occurrence of cardinal PD
manifestations and before the diagnosis is established [18].
However, evidence for prodromal motor speech changes in
presymptomatic PD is extremely limited [19], [20].

Acoustic analyses allow for the objective quantification of
these perceptual impressions of characteristic changes in voice
due to PD. That, together with the fact that the recording
and processing of human speech is an area with an extensive
background of knowledge, makes speech changes an excellent
candidate as a diagnostic biomarker of PD. At the time of
diagnosis, multidimensional speech impairments represented
by abnormal phonation, articulation, and prosody are already
detectable in PD patients [21]. The comprehensive screening
for these abnormalities typically requires the processing of
three basic speaking tasks including prolonged vowel phona-
tion, fast syllables repetition and connected speech. Based
upon these paradigms, several representative acoustic mea-
sures with well-defined pathophysiological interpretation have
been shown to possess an accuracy of more than 80 %
in the differentiation between newly diagnosed, untreated
PD and healthy controls [21]–[23]. These measures may be
considered as speech-related diagnostic biomarkers of PD.
In particular, decreased quality of vocal fold function has
been evaluated via a paradigm of sustained phonation by
measures related to perturbations of acoustic signal [21].
Problems with articulators have been captured through a
paradigm of fast syllable repetition and abnormalities related
to slower or irregular sequential motion rates (SMR) and
imprecise consonant articulation [22]. Finally, several prosodic
deviations including monopitch, monoloudness, articulatory
decay, inappropriate duration of pauses, and decreased rate
of follow-up speech segments have been elicited via natural
spontaneous speech [19]–[21].

Unfortunately, all previous findings were based upon speech
recordings obtained using a professional condenser micro-
phone, which considerably limits their broader applicability.
In this regard, vocal assessment by smartphone provides

intriguing potential advances as it is inexpensive, non-invasive,
scalable to a large population, simple to administer and
can be performed remotely from the patients’ home. Fur-
thermore, recordings can be sent to a remote specialized
server for processing or even can be processed directly
via smartphone by acoustic analyses of speech that can
be fully automated [20], [22]. Therefore, acoustic analyses
allow the possibility of high-throughput screening, which
can be followed by more detailed medical examination
if the screen is abnormal. Given the advancement in the
development of mobile technologies, collecting data through
smartphones continues to be a growing focus, not only in
speech-related research. Thanks to their ubiquity, smartphones
allow much more frequent collection of data with much lower
costs. Indeed, pilot research has demonstrated that embedded
accelerometers in smartphones can be successfully used for
measuring the extent of PD hand tremor [24]. Very recently,
the utility of mobile phones to quantify PD severity and treat-
ment response has been demonstrated by assessing posture,
gait, finger tapping, phonation and response time [25]–[27].
However, previous surveys on smartphone measurements did
not consider speech assessment in their battery of tests.
Moreover, to the best of our knowledge, the sensitivity of any
smartphone-based measures for detecting prodromal stages of
PD has never been investigated.

Nevertheless, several important issues have to be
resolved before considering detailed research in the field
of smartphone-based speech biomarkers for prodromal
PD. Although several acoustic measures reliable in
capturing speech impairment in early, untreated PD are
available [19]–[22], their sensitivity for prodromal stages of
neurodegeneration has never been thoroughly investigated.
Furthermore, the most widely used methods currently
available for the evaluation of speech performance are
focused on the assessment of dysphonia via paradigm of
sustained phonation [28]. It is unclear whether there is
a need to use functional PD-related vocal tasks such as
sustained phonation or syllable repetition instead of common
spontaneous speech, which would provide a more naturalistic
setting concerning speech assessment through a smartphone.
There is only a single study showing that detection of timing
deficits in spontaneous speech is possible in patients at high
risk for developing PD [20]. Finally, it is well known that
resulting performance of acoustic features may differ across
various recording devices and microphones [29]. However,
it has not been thoroughly tested whether available acoustic
methods for the evaluation of early PD are independent
of high-quality microphone and thus whether they can
be applied to smartphone recordings acquired in common
environments with a low ambient noise level. Specifically,
acoustic features related to timing are expected to be
preserved even on recordings collected through a low-quality
microphone, while amplitude-based measures are expected to
be biased by microphone characteristics, hardware filtering,
and compression [30].

Therefore, the aim of this study was to determine the
feasibility of detecting speech impairment in participants with
RBD and early untreated PD by smartphone. We endeavored
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to provide recommendations on the possible use of
smartphone-based vocal diagnostic biomarkers of PD by com-
paring representative acoustic features obtained collaterally
through a smartphone and a professional head-mounted con-
denser microphone with linear frequency response.

II. METHODS

A. Participants

A total of 110 consecutive Czech participants were recruited
from 2015 to 2017. The study was approved by the Ethics
Committee of the General University Hospital, Prague, Czech
Republic and all participants provided written, informed con-
sent. Fifty participants (46 men, 4 women), mean age 66
(SD 8) years, were diagnosed with idiopathic RBD according
to the International Classification of Sleep Disorders, third
edition diagnostic criteria, including confirmation of REM
sleep without atonia by polysomnography [31]. In addition,
30 patients (26 men, 4 women), mean age 62 (SD 11) years,
with de-novo PD were diagnosed based on the Parkinson’s dis-
ease Society Bank Criteria [32]. As a control group, 30 healthy
participants (26 men, 4 women), mean age 65 (SD 10) years,
without a history of neurological or communication disorders
were included in the study. Approximately 50 % of included
PD, RBD, and healthy control volunteers also participated in
a previous study focused on automated analysis of connected
speech in patients with RBD [20], however, characteristics
of complex speech impairment obtained through smartphones
were not previously investigated.

All PD and RBD patients were scored according to
the motor score of the Movement Disorder Society–Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS III, rang-
ing from 0 to 132, with 0 for no motor manifestation and
132 representing severe motor disturbance) [33]. In partic-
ular, the MDS-UPDRS III cut-off score of 32/33 points
can be considered for mild/moderate levels and cut-off
score of 58/59 points for moderate/severe levels [34]. The
MDS-UPDRS III scale includes a speech item for the clinical
description of speech severity (ranging from 0 to 4, with
0 representing normal speech and 4 indicating unintelligible
speech; Table I). Both diagnosis and evaluation of clini-
cal scales were performed by a well-trained professional
neurologist with experience in movement disorders. All PD
patients were consecutively recruited at their first visit to
the clinic and were examined before symptomatic treatment
was started. No PD or RBD patient had a history of therapy
with antiparkinsonian medication. None of the RBD partic-
ipants subjectively complained of motor or cognitive diffi-
culties. Clinical evaluation showed slight motor impairment
in 10 RBD participants (20 %) with MDS-UPDRS III > 6
after removal of postural and action tremor. This cut-off
score > 6 is considered to be a sensitive indicator of initial
parkinsonism [35]. Nine RBD participants (18 %) manifested
mild cognitive impairment.

B. Speech Examination

Speech recordings were performed in a quiet room
with a low ambient noise level (< 50 dB). Data were

TABLE I
CLINICAL CHARACTERISTICS OF NEWLY DIAGNOSED,

UNTREATED PD AND RBD PARTICIPANTS

recorded using professional head-mounted condenser micro-
phone (Beyerdynamic Opus 55, Heilbronn, Germany) placed
approximately 5 cm from participant’s mouth and attached to a
recorder (Edirol R-09HR, Roland, Shizuoka, Japan; hereafter
“microphone”). Simultaneously, data were recorded using a
smartphone (Xperia Z1 Compact, Sony, Japan; Figure 1) held
by the test participant (hereafter “smartphone”). Participants
were instructed to position the smartphone close to their ear in
the same way as during a regular telephone call. Speech signals
were sampled at 48 kHz with 16-bit resolution using both
devices. These settings were chosen as they represent the high-
est values enabled by the smartphone system. We developed
the basic recording application for Android 5.1 system that
allowed recordings to be sent to a remote server. No unique
settings were adjusted and the application thus worked as a
default audio recorder.

Each participant was recorded during single session with a
speech specialist who guided the respondent through the stan-
dardized recording protocol. All participants were instructed
to perform three vocal tasks as follows: (i) sustained phona-
tion of the vowel /a/ per one breath for as long and as
steadily as possible; (ii) /pa/-/ta/-/ka/ syllable repetition per one
breath performed as fast, steadily and accurately as possible;
and (iii) monologue for approximately 90 seconds as narration
of a freely-chosen fictional story. The vocal tasks of sustained
phonation and syllable repetition were repeated twice for every
participant per session.

C. Acoustic Features

Based upon three paradigms of sustained phonation, fast
syllable repetition and monologue, we tested 11 representa-
tive acoustic measures with a well-defined pathophysiological
interpretation that have proven be sufficient in the differen-
tiation between newly diagnosed PD and healthy controls
(Table II, Figure 2) [19]–[22].

1) Sustained Phonation: Vowel prolongation has become
standard task in PD voice research to elicit the presence
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Fig. 1. Amplitude (left) and polar (right) response of Xperia Z1 Compact smartphone measured in anechoic chamber at the distance of 1 m.
The recording system showed no proximity effect for the distance of 5 cm. Mean standard error of plotted regression curves is less than 2 dB.
Measured self-noise level of the smartphone was 38.8 dB A-weighted.

of dysphonia (i.e. inappropriate vocal fold function), which
in hypokinetic dysarthria frequently manifests as a harsh
voice [21], [36], [37]. Voice harshness particularly reflects
impaired control of stationary pitch during phonation, termed
micro-instability of vocal fold vibrations. Moreover, the addi-
tion of noise in the speech signal is also typical, indicating
incomplete vocal fold closure and turbulent air flow through
the vocal folds. The most popular measurements associated
with harshness of voice are perturbation measures of jitter,
shimmer and harmonics-to-noise ratio (HNR). Jitter represents
frequency perturbation, the extent of variation of the voice
range. It is defined as the variability of the fundamental
frequency from one cycle to the next. Shimmer describes
amplitude perturbation, representing roughness of speech. It is
defined as the sequence of maximum extent of the signal
amplitude within each vocal cycle. HNR is defined as the
amount of noise in the speech signal, and represents voice
hoarseness. Calculation of these measures was based on an
autocorrelation method allowing determination of the fre-
quency and location of each cycle of vibration of the vocal
folds, the so-called pitch marks [38]. All measurements of
jitter, shimmer, and HNR were calculated using algorithms
supplied in the software package Praat [39]. We expected
that patients with dysarthria will manifest increased jitter and
shimmer values and reduced HNR values.

2) Fast Syllable Repetition: Diadochokinetic (DDK) syllable
rates, also known as SMR, are used to evaluate ability to
articulate quickly and regularly. While DDK rates capture
the inability to perform quick movements, the measurement
of DDK regularity allows us to measure the degree of rate
variations in a period and assesses the ability of the person
to maintain a constant rate of consonant-vowel combinations.
Although reduced SMR is more common for spastic dysarthria
and irregular SMR for ataxic dysarthria [16], both of these
features have been found to be affected in patients with early

PD as well as persons at high risk for PD [19]. The DDK rate
was measured as the number of syllable vocalizations per sec-
ond and DDK regularity was defined as the standard deviation
of distances between the onsets of following syllables. DDK
rate and regularity were detected using a robust algorithm
presented by Novotný et al. [22]. We expected reduced DDK
rates and increased DDK regularity in speakers with PD.

In addition to deficits in SMR, PD patients manifest impre-
cise coordination between articulatory and phonatory muscles
during the DDK task [22]. One widely used method for
investigating this imprecision is voice onset time (VOT),
which is defined as the interval between the initial articulatory
release of a stop consonant and the onset of voicing for the
subsequent vowel [22]. Slowing of lip and tongue movements
together with difficulties in initiating vocalization in PD leads
to prolongation of the VOT interval. VOT was determined as
the average length across /p/, /t/, and /k/ consonants extracted
from all three /pa/-/ta/-/ka/ syllable repetitions. The individual
positions of burst and voicing were detected using a robust
algorithm presented by Novotný et al. [22].

3) Monologue: Monopitch reflects the reduced ability to per-
form intonation during speech and can be perceived as reduced
melody of speech. Monopitch represents a prominent feature
of hypokinetic dysarthria in PD [16], [21]. Monopitch was cal-
culated as the standard deviation of the fundamental frequency
(F0 SD), representing the speaker’s capability to produce
various fundamental frequencies. The pitch sequences were
obtained using the software package Praat with the standard
autocorrelation-based procedure [39]. The frequency range
(minimum and maximum pitch value) was manually adjusted
for each recording to avoid pitch doubling and halving; no
other intervention was required. To minimize the effect of
individual differences between speakers in pitch, the obtained
F0 sequences were converted into logarithmic tonal scale
(semitones). For example, different pitch ranges such as
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TABLE II
OVERVIEW OF APPLIED SPEECH MEASUREMENTS

100-200 Hz or 200-400 Hz were then represented by equal
semitone intervals [21]. We expected the values of F0 SD to
be reduced as a consequence of hypokinetic dysarthria.

Subsequently, four features were extracted based upon
automated robust segmentation, which provides detection
of voiced, unvoiced, pause and respiratory intervals [20].
Monoloudness reflects the reduced ability to alternate loudness
during connected speech and is a prominent feature of the ver-
bal output of speakers with hypokinetic dysarthria [16], [21].
Monoloudness was computed only on voiced intervals to
ensure that the results reflected only respiratory and phonatory
control and were not distorted by articulatory deficits. Voiced
intervals were extracted from the signal, squared and filtered
using a moving average with a widow size of 21.3 ms to obtain
a power envelope. The window size of 1024 samples was pre-
ferred for convenience in computation; however, any window
size from 15 ms to 50 ms can be applied. Monoloudness was
computed as the standard deviation of the intensity (Int SD)

calculated as power envelope in the logarithmic scale, which
provides relative calibration of the signal to a 0 dB intensity
level (i.e., the mean value of the power envelope represents
0 dB). We expected reduced Int SD values as a consequence
of hypokinetic dysarthria.

Articulatory decay was examined using an acoustic feature
of resonant frequency attenuation (RFA) that measures
differences between the maxima of the second formant
region and minima of the local valley region (so-called
antiformant) [19]. Prior to evaluation, only voiced intervals
were selected. Subsequently, cepstral liftering was applied on
the power spectral density extracted from these voiced speech
segments, resulting in the robust detection of local extrema.
RFA represents the expressiveness of articulation avoiding
dependence on loudness. We expected lower RFA values due
to hypokinetic dysarthria.

Duration of pause intervals (DPI) describes the quality
of speech timing, as pauses can be heavily influenced by



1500 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 26, NO. 8, AUGUST 2018

Fig. 2. Graphical illustration of basic principles of individual acoustic speech features. Captions: SD = standard deviation, F0 = fundamental
frequency.

the ability to properly initiate speech [20]. Complex speech
impairment can cause difficulties in initiating speech, which
results in prolongation of pauses. DPI was computed as the
median duration of all pause intervals.

Rate of speech timing (RST) represents an alternative to
pause rate measurement providing more descriptive estimation
of speech flow based not on speech/pause segments but voiced,
unvoiced, and pause intervals [20]. While voiced intervals
reflect the deficits in the phonatory control, unvoiced intervals
are influenced by imprecise articulation. Therefore, the rate
based upon voiced, unvoiced, and pause intervals reflects
overall timing with more complexity, accounting for problems
in all dimensions of speech. For further calculation, each
voiced, unvoiced, and pause interval was described by the
mean time between interval onset and interval end. The total
number of intervals was then calculated for every moment
over the course of the measurement. Final RST value was
obtained as the gradient of the regression line of the time
course. We expected reduced RST values as a consequence of
hypokinetic dysarthria.

D. Statistical Analyses

In order to provide recommendations on acoustic fea-
tures that are suitable as smartphone-based vocal diagnostic

biomarkers of PD, we performed the following statistical
analyses with a pre-selection stage. First, for every partic-
ipant, the final values of six acoustic features related to
sustained phonation and fast syllable repetition were com-
puted by averaging the data obtained in two vocal task
runs. As the one-sample Kolmogorov-Smirnov test did not
indicate non-normally distributed acoustic features, differ-
ences between groups (PD vs. RBD vs. controls) were cal-
culated using one-way analysis of variance with post-hoc
Fisher least-squares difference. Second, Pearson correlation
was applied to test for significant relationships between pairs
of acoustic features applied to recordings obtained from
the microphone and smartphone. Third, the magnitude of
agreement between recording equipment was measured as the
root mean squared error normalized by the mean observed
value (NRMSE) [29]. For the final evaluation, we retained
only features that showed enough statistical power to sep-
arate the investigated groups based on recordings through
the microphone (i.e., physiologically sufficient, p < 0.05)
and in parallel showed very strong correlation and reliability
between both recording devices (i.e., technologically suffi-
cient, Pearson’s r > 0.80 and NRMSE < 20 %). The clas-
sification performance (sensitivity/specificity) of the retained
smartphone-based acoustic features was calculated using
binary logistic regression with leave-one-out cross-validation.
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TABLE III
OVERVIEW OF RESULTS

The overall indication of diagnostic accuracy was reported as
area under curve (AUC) obtained from operating characteristic
curve. Since the RBD group likely represents a mixture of
individuals at different stages of prodromal PD, we performed
an additional post-hoc analysis in order to examine whether
speech abnormalities in the RBD group are associated with an
advanced stage of degeneration and high probability of prodro-
mal PD. Therefore, we compared two RBD subgroups defined
according to the Movement Disorders Society research criteria
for prodromal PD [35]: (i) RBD patients meeting the criteria
for probable prodromal PD (hereafter RBD-pPD subgroup)
and (ii) asymptomatic RBD patients not meeting the criteria
for probable prodromal PD (hereafter RBD-A subgroup). The
inclusion into respective RBD subgroups was based upon
six factors including age, gender, polysomnography-proven
RBD, MDS-UPDRS III score after removal of postural and
action tremor, depression requiring antidepressant therapy,
and positive family history of PD; please see the study by
Berg et al. [35] for comprehensive methodic details regarding
criteria for the diagnosis of prodromal PD. An independent
t-test was applied to compare resulting speech characteristics
between RBD subgroups.

III. RESULTS

A. Perceptual Speech Severity

According to the MDS-UPDRS III speech item, 13 PD
patients (43 %) and 49 of RBD participants (98 %) perceptually
demonstrated normal speech (score of 0), 16 PD patients
(53 %) and only 1 RBD participant (2 %) mildly affected
speech (score of 1) and 1 PD patient (4 %) moderately affected
speech (score of 2).

B. Pre-Selection Stage

Three features related to monopitch, inappropriate silences
and decreased rate of follow-up speech segments extracted
from monologue were sufficiently sensitive to significantly
separate groups based upon data obtained using the profes-
sional microphone (F0 SD: F2,107 = 10.9, p < 0.001,
η2 = 0.17; DPI: F2,107 = 6.1, p = 0.003, η2 = 0.10;
RST: F2,107 = 5.1, p = 0.008, η2 = 0.09) and showed
very strong correlation and reliability between the professional
microphone and smartphone (F0 SD: r = 0.98, p < 0.001,
NRMSE = 4.7 %; DPI: r = 0.90, p < 0.001, NRMSE =
14.4 %; RST: r = 0.84, p < 0.001, NRMSE = 13.7 %)
(Table III). In addition, the feature related to articulatory
decay was able to statistically differentiate groups (RFA:
F2,107 = 3.3, p = 0.04, η2 = 0.06) but did not provide
enough reliability between both recording devices. Conversely,
the feature related to monoloudness demonstrated very strong
correlation and reliability between both recording devices
(Int SD: r = 0.80, p < 0.001; NRMSE = 10.9 %) but was
not able to statistically differentiate between the investigated
groups. Considering the fast syllable repetition task, features
representing slow SMR and imprecise consonants showed
very strong correlation and reliability between both recording
devices (DDK rate: r = 0.99, p < 0.001; NRMSE = 1.6 %;
VOT: r = 0.82, p < 0.001; NRMSE = 12.2 %) but were
not able to statistically separate the investigated groups. In the
sustained phonation paradigm, only the feature representing
increased noise (HNR) showed very strong correlation and
reliability between both recording devices (r = 0.92, p <
0.001; NRMSE = 7.5 %) but was not able to statistically
separate the investigated groups.
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Fig. 3. Results across suitable speech metrics obtained through the smartphone. (A) Group differences between PD, RBD and controls with
*p < 0.05, **p < 0.01, ***p < 0.001, whereby the symbols represent mean values and error bars represent standard deviation values.
(B) Selected pair of smartphone-based speech features plotted in 2D space with optimal decision boundary (black line) between PD and controls.
Captions: PD = Parkinson’s disease, RBD = rapid eye movement sleep behavior disorder, F0 SD = variability of fundamental frequency, DPI =
duration of pause intervals, RST = rate of speech timing.

C. Smartphone-Based Evaluation

Features related to monopitch, inappropriate silences and
decreased rate of follow-up speech segments recorded through
the smartphone significantly separated the investigated groups
(F0 SD: F2,107 = 9.5, p < 0.001, η2 = 0.15; DPI: F2,107 =
6.4, p = 0.002, η2 = 0.11; RST: F2,107 = 7.9, p < 0.001,
η2 = 0.13) (Figure 3A). Post-hoc analysis detected significant
differences in F0 SD between the PD and control groups
(p < 0.001), between the PD and RBD groups ( p < 0.01)
as well as between the RBD and control groups ( p < 0.05).
Based on DPI, significant post-hoc differences were found
between PD and controls ( p < 0.001) and between PD
and RBD (p < 0.05). Considering RST, significant post-hoc

differences were found between the PD and control groups
(p < 0.001), between the PD and RBD groups ( p < 0.05)
as well as between the RBD and control groups ( p < 0.05).
A combination of three features (F0 SD, DPI and RST) was
able to separate the PD and control groups with AUC 0.85
(sensitivity 75.0 %, specificity 78.6 %), PD and RBD groups
with AUC 0.78 (sensitivity 66.7 %, specificity 71.0 %) and
RBD and control groups with AUC 0.69 (sensitivity 69.8 %,
specificity 64.7 %) (Figure 3B).

D. Comparing RBD Subgroups

As a result of RBD subgroup analysis, 33 RBD patients with
the mean age 69 (SD 8) years, mean RBD symptom duration
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Fig. 4. Results across suitable speech metrics obtained through the smartphone for RBD patients meeting criteria for probable prodromal PD
(RBD-pPD) and asymptomatic RBD patients (RBD-A). The symbols represent mean values and error bars represent standard deviation values.
No statistically significant differences were found between RBD subgroups.

5.4 (SD 4.5) years and mean MDS-UPDRS III total score
5.8 (SD 4.7) fulfilled the criteria for prodromal PD (RBD-
pPD). In addition, 17 RBD patients with the mean age 61
(SD 8) years, mean RBD symptom duration 5.5 (SD 2.9)
years, and mean MDS-UPDRS III total score 3.1 (SD 2.4)
did not meet the criteria for prodromal PD (RBD-A). None
of the features representing monopitch (F0 SD: t48 = −1.1,
p = 0.27), inappropriate silences (DPI: t48 = −0.8, p = 0.42)
and decreased rate of follow-up speech segments (RST: t48 =
1.4, p = 0.17) recorded through the smartphone significantly
separated the RBD-pPD and RBD-A subgroups (Figure 4).

IV. DISCUSSION

Our findings indicate that the detection of speech abnor-
malities in persons at high risk for PD and related disorders
via a smartphone is possible. Smartphones may provide con-
siderable advantages by increasing the number of longitudi-
nal vocal samples from a given individual in an easy and
inexpensive way, which is critical not only for researchers
performing traditional laboratory-based analyses, but also for
pharmaceutical companies developing drugs to treat disorders
affecting motor speech performance such as in PD. Based
upon a large sample of RBD participants in comparison to
early PD and control speakers, we provide recommendation
that investigation of monopitch and speech timing is a good
starting point to capture preclinical PD via a smartphone.
As monopitch, inappropriate silences and decreased rate of
follow-up intervals showed sufficient power and reliability to
capture prodromal speech abnormalities in this cross-sectional
study, they may likely represent biomarkers that appear early
enough in the preclinical course of PD. Indeed, we did not find
any significant group differences for speech features related
to monopitch and speech timing between the asymptomatic
RBD subgroup in very early stage of neurodegeneration and
the RBD subgroup meeting criteria for prodromal PD. This
observation suggests that speech changes may be evaluated

to detect approaching conversion to PD within a longer time
frame. This assumption appears to be in accordance with
previous research showing that vocal and facial akinesia are
the first motor signs to develop, with an estimated prodro-
mal interval of 9.8 years before parkinsonism can be clini-
cally diagnosed [6]. However, the predictive value of speech
abnormalities needs to be established in further prospective
follow-up studies. Observing disease progression over a short
time using well-defined and disease-specific biomarkers may
significantly help to stratify persons at high risk for developing
PD and related disorders for clinical trials, which are crucial
for the development of future neuroprotective therapies. The
current treatment strategies for PD mainly focus on exercise,
various pharmacological approaches, and surgery [40]. Quick,
inexpensive, and non-invasive vocal assessment by smartphone
may help in the recruitment of appropriate cases into large
studies of innovative therapies for prodromal PD and in the
future may also bolster early presymptomatic diagnosis of
synucleinopathy and enable rapid access to neuroprotective
therapy once it will be available.

In general, our findings related to comparison between the
professional microphone and smartphone concur with previous
studies demonstrating that recordings obtained through smart-
phones are useful for detecting vocal changes [29], [41]–[44].
With respect to dysphonia measurements, Praat algorithms
for the detection of the fundamental frequency and HNR
showed good reliability between the professional microphone
and smartphone, which is in perfect agreement with previous
surveys [29], [44]. This is likely due to the nature of the
fundamental frequency and its harmonic frequencies that rep-
resent major events in the frequency domain of speech signal
and thus can be detected accurately despite the influence of
surrounding factors. The same robustness was not observed for
perturbation measures such as jitter and shimmer that rely not
only on detection of the fundamental frequency but also on
dynamic and spectral characteristics of the recording system.
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In concordance with our results, previous data has already
shown significant differences between perturbation measures
obtained through various recording systems [29], [42], [43].
One possible solution for future studies is to apply cepstral
peak prominence as the measure of overall irregularity, which
has been shown to be more robust and relevant than jitter
and shimmer for dysphonia analysis [45]. Considering speech
timing, we observed accurate detection of DPI as well as RST,
which is partially in contrast to previous research reporting
rather unreliable results related to pause characteristics [29].
These discrepancies may be due to the fact that previous
research [29] applied a detector for dysarthric speech based
upon a single intensity threshold [46], while we used a robust
speech-pause detector [20], which has been shown to outper-
form this former conventional detector by Rosen et al. [46].
Regarding the fast syllable repetition paradigm, we found
reliable detection of the DDK rate as well as VOT between the
professional microphone and smartphone. However, to the best
of our knowledge, the suitability of measures extracted from
SMR has never been tested across different devices. Finally,
the features related to signal amplitude measured in the dB
scale such as RFA were found to be inaccurate. This result
was expected and can be explained by the variable position
of smartphone during recording, especially when considering
the typical hand tremor of PD patients.

A combination of three features representing monopitch,
inappropriate silences and decreased rate of follow-up speech
segments was able to distinguish between PD and control
groups with an AUC of 0.85 and between RBD and control
groups with an AUC of 0.69. The findings related to deficits
in speech timing in RBD are not surprising as they have
been reported recently [20], although the reliability of their
assessment through smartphone has never been investigated.
However, the reduced intonation in RBD observed in the
present work provides new insight into the production of
speech in prodromal parkinsonism. This observation is in
concordance with a previous study that reported cases with
reduced intonation variability detectable several years before
the onset of the first PD motor symptoms [47]. Interestingly,
only features extracted from monologue were sufficiently
sensitive to statistically separate the investigated groups, sug-
gesting that use of functional PD-related vocal tasks such as
sustained phonation and syllable repetition are not essential
nor optimal to capture prodromal speech impairment. This
finding is in agreement with the general assumption that PD
speech performance varies across the specific task performed
and that analysis of spontaneous utterances is the best way
to assess the impact of PD on speech [48], [49]. Conversely,
several previous studies have shown reasonable sensitivity in
detecting PD-related speech deficits using mainly the paradigm
of sustained phonation (see [28], [36], [50]). One possible
explanation is the different complexity of the speaking tasks.
While sustained phonation may be useful to elicit some
aspects of dysphonia, it is not suitable to detect the wide
range of articulatory deficits related to hypokinetic dysarthria.
Considering that we investigated very early stages of PD
and other synucleinopathies with relatively preserved speech

performance, a more articulatory demanding speech task than
sustained phonation is presumably required to capture subtle
changes of speech due to neurodegeneration. Another expla-
nation could be that previous results were based on a large
number of speech features including more advanced linear
and non-linear methods, which have been demonstrated to
work better in PD than standard perturbation algorithms [51].
The functional vocal tasks may also be insensitive due to
the relatively older control group in the present study (mean
age of 65 years) compared to previous research (mean age
of 58 years) [21], [22]. Higher age causes significant perfor-
mance decline in perturbation measures [52] as well as in max-
imum repetition rate [53] during functional vocal paradigms,
especially in persons above 60 years of age.

Since analysis and processing of speech disorders in
PD has become an attractive scientific discipline in recent
years, there is a vast number of vocal characteristics and
advanced linear and non-linear methods available with a
proven efficiency in separating healthy controls from PD
(see [50], [54]–[56]). We carefully stratified and selected only
11 features based mainly upon two criteria. The first crite-
rion was hypothesis-driven and considered that the selected
speech metric should have well-defined pathophysiological
interpretation with respect to PD and was previously shown
to be powerful enough in differentiating between early, drug-
naïve PD and healthy controls [19]–[22]. The severity of
speech disorder in PD increases with disease progression and
certain speech deficits develop later in the course of the
disease [37], [54]. Accordingly, previous studies have inves-
tigated PD speech characteristics mostly in more advanced
stages of disease [28], making it difficult to generalize these
observations to prodromal or very early PD. In addition,
the vast majority of previous studies have examined speech
in PD under dopaminergic medication with different doses
and delays from drug initiation [28]. Since dopaminergic
treatment can significantly affect speech performance [57],
it is difficult to conclude whether the observed changes were
due to PD itself or to drug effects. The second criterion was
technologically-driven and considered that the selected speech
metric was practically useful for smartphone analysis. In other
words, the selected speech metric should work properly in
common environments with a low ambient noise level and can
be extracted and analyzed using automatic process with mini-
mum user control [19]–[22]. Consequently, we did not investi-
gate changes in formant frequencies during vowel production,
which is one of the core features of dysarthrias [58]. Indeed,
vowel space metrics have been shown to reflect reduced
articulatory range of motion present already in the early stages
of PD [47], [59], suggesting they may discriminate between
controls and patients at high risk for developing PD. How-
ever, analysis of vowel space metrics in dysarthric speech is
currently based on time-consuming manual identification and
analysis of selected corner vowels [48], [58], while reliable
automated analysis methods have not yet been introduced.
Nevertheless, the 11 acoustic features used in the present
study sufficiently cover the multidimensional impairement
of hypokinetic dysarthria and, importantly, all these metrics
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could be relatively easily fine-tuned to allow fully automated
smartphone analysis.

There are some limitations to the present study. We recorded
all participants using the same Sony Xperia Z1 Compact. How-
ever, signal processing differs from smartphone to smartphone
and the resulting changes could be more substantial in more
sophisticated and more expensive devices [60]. Therefore,
we provided experimentally-measured frequency response of
testing smartphone and future studies can compare differences
between their smartphones and the smartphone used in the
present study. The Sony Xperia Z1 Compact was chosen as
it can be considered a mainstream product among available
smartphones. It was commercially-available and a relatively
inexpensive mid-range smartphone in the year 2015. The
motivation for choosing a mid-range product was based on
the assumption that in the future, due to continuous advances
in technology, even low-cost smartphones will provide at least
similar microphone characteristics such as this type, allowing
screening of the entire population. Additionally, we decided
that the participant should hold the phone during the examina-
tion rather than placing the phone on the table or having it held
by the investigator, as holding the phone currently represents
the most common way of calling through smartphones. As the
first step of research in this domain, our recordings were
performed in a relatively quiet room with a low ambient noise
level. To use the proposed methodology in practice, it might
be necessary to collect recordings through smartphones in
various realistic scenarios (e.g., with background noise in an
urban environment), which would likely introduce additional
distortion to the recorded signals. In particular, the most
promising biomarker discovered in the present study is mono-
pitch and measures based on the fundamental frequency appear
to be robust against the recording system, environmental noise,
and their combination [61]. Moreover, the currently proposed
approach can already be used to monitor speech performance
via smartphone in a common home or clinic environment
with a low ambient noise level. The possible applicability
of smartphones in detecting prodromal speech abnormalities
was demonstrated only in the RBD group, whereas future
steps for extension of our approach to other populations
with high risk of developing PD such as carriers of genes
causing PD are warranted. In agreement with the reported
prevalence of RBD [62], our dataset is composed particularly
of male participants and thus we cannot exclude the possi-
bility that the observed speech patterns may be influenced by
gender-specific aspects. The majority of our PD patients did
not exhibit RBD symptoms while PD with and without RBD
may represent distinct disease phenotypes [63]. In addition,
the majority of RBD patients convert to either PD or dementia
with Lewy bodies [10]. Nevertheless, the perceptual inves-
tigation revealed that dementia with Lewy bodies manifests
very similar hypokinetic and monotonic patterns of dysarthria
compared to PD [64]. Indeed, values of measures related to
monopitch and inappropriate silences in our RBD participants
clearly intermediated between those of PD patients and healthy
controls, indicating a certain independence of monopitch and
inappropriate silences on parkinsonian phenotype.

V. CONCLUSION

Our work represents the first step toward the use of
smartphone technology for the evaluation of prodromal
vocal impairment due to neurodegenerative synucleinopathy.
Biomarkers collected through a smartphone including speech
performance have the potential to revolutionize the diagnos-
tic process in these neurodegenerative diseases and improve
stratification for future neuroprotective therapy against PD
and related neurodegenerative disorders. Future studies should
consider complementing the present methods with other
prospective and well-defined PD-specific features and test
their reliability in common, realistic environmental scenar-
ios. In addition, longitudinal studies are needed to confirm
and further elaborate our findings and to show the sensitiv-
ity of speech parameters as potential diagnostic biomarkers.
We envisage that our findings will support a continuum of
technology solutions in this area and increase the accessibility
of voice monitoring for a wider PD and prodromal PD
populations.

REFERENCES

[1] W. Poewe et al., “Parkinson disease,” Nature Rev. Disease Primers,
vol. 23, p. 17013, Mar. 2017, doi: 10.1038/nrdp.2017.13.

[2] M. C. de Rijk et al., “Prevalence of Parkinson’s disease in Europe:
A collaborative study of population-based cohorts. Neurologic diseases
in the elderly research group,” Neurology, vol. 54, no. 11, pp. S21–S23,
2000.

[3] L. J. Findley, “The economic impact of Parkinson’s disease,”
Parkinsonism Related Disorders, vol. 13, pp. S8–S12, Sep. 2007,
doi: 10.1016/j.parkreldis.2007.06.003.

[4] M. C. Rodriguez-Oroz et al., “Initial clinical manifestations of
Parkinson’s disease: Features and pathophysiological mechanisms,”
Lancet Neurol., vol. 8, no. 12, pp. 1128–1139, 2009, doi: 10.1016/
S1474-4422(09)70293-5.

[5] H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K. Jellinger, and
F. Seitelberger, “Brain dopamine and the syndromes of Parkinson and
Huntington Clinical, morphological and neurochemical correlations,”
J. Neurol. Sci., vol. 20, no. 4, pp. 415–455, 1973, doi: 10.1016/0022-
510X(73)90175-5.

[6] R. B. Postuma, J.-F. Gagnon, J.-A. Bertrand, D. G. Marchand, and
J. Y. Montplaisir, “Parkinson risk in idiopathic REM sleep behavior
disorder preparing for neuroprotective trials,” Neurology, vol. 84, no. 11,
pp. 1104–1113, 2015, doi: 10.1212/WNL.0000000000001364.

[7] C. H. Schenck et al., “Rapid eye movement sleep behavior disorder:
Devising controlled active treatment studies for symptomatic and neuro-
protective therapy—A consensus statement from the international rapid
eye movement sleep behavior disorder study group,” Sleep Med., vol. 14,
no. 8, pp. 795–806, 2013, doi: 10.1016/j.sleep.2013.02.016.

[8] B. Högl, A. Stefani, and A. Videnovic, “Idiopathic REM sleep behav-
iour disorder and neurodegeneration—An update,” Nature Rev. Neurol.,
vol. 14, pp. 40–55, Nov. 2018, doi: 10.1038/nrneurol.2017.157.

[9] B. Boeve, “REM sleep behavior disorder: Updated review of the
core features, the REM sleep behavior disorder-neurodegenerative dis-
ease association, evolving concepts, controversies, and future direc-
tions,” Ann. NY Acad. Sci., vol. 1184, no. 2, pp. 15–54, 2010,
doi: 10.1111/j.1749-6632.2009.05115.x.

[10] A. Iranzo et al., “Neurodegenerative disorder risk in idiopathic REM
sleep behavior disorder: Study in 174 patients,” PLoS ONE, vol. 9, no. 2,
p. e89741, 2014, doi: 10.1371/journal.pone.0089741.

[11] A. Iranzo et al., “Neurodegenerative disease status and post-mortem
pathology in idiopathic rapid-eye-movement sleep behaviour disor-
der: An observational cohort study,” Lancet Neurol., vol. 12, no. 5,
pp. 443–453, 2013, doi: 10.1371/journal.pone.0089741.

[12] C. H. Schenck, B. F. Boeve, and M. W. Mahowald, “Delayed emergence
of a parkinsonian disorder or dementia in 81% of older men initially
diagnosed with idiopathic rapid eye movement sleep behavior disorder:
A 16-year update on a previously reported series,” Sleep Med., vol. 14,
no. 8, pp. 748–774, 2013, doi: 10.1016/j.sleep.2012.10.009.

http://dx.doi.org/10.1038/nrdp.2017.13
http://dx.doi.org/10.1016/j.parkreldis.2007.06.003
http://dx.doi.org/10.1016/0022-510X(73)90175-5
http://dx.doi.org/10.1016/0022-510X(73)90175-5
http://dx.doi.org/10.1212/WNL.0000000000001364
http://dx.doi.org/10.1016/j.sleep.2013.02.016
http://dx.doi.org/10.1038/nrneurol.2017.157
http://dx.doi.org/10.1111/j.1749-6632.2009.05115.x
http://dx.doi.org/10.1371/journal.pone.0089741
http://dx.doi.org/10.1371/journal.pone.0089741
http://dx.doi.org/10.1371/journal.pone.0089741
http://dx.doi.org/10.1371/journal.pone.0089741
http://dx.doi.org/10.1016/j.sleep.2012.10.009
http://dx.doi.org/10.1016/S1474-4422(09)70293-5
http://dx.doi.org/10.1016/S1474-4422(09)70293-5


1506 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 26, NO. 8, AUGUST 2018

[13] R. B. Postuma, A. E. Lang, J. F. Gagnon, A. Pelletier, and
J. Y. Montplaisir, “How does parkinsonism start? Prodromal
Parkinsonism motor changes in idiopathic REM sleep behaviour disor-
der,” Brain, vol. 135, no. 6, pp. 1860–1870, 2012, doi: 10.1016/S1474-
4422(13)70056-5.

[14] R. B. Postuma, J. F. Gagnon, S. Rompré, and J. Y. Montplaisir, “Severity
of REM atonia loss in idiopathic REM sleep behavior disorder predicts
Parkinson disease,” Neurology, vol. 74, no. 5, pp. 239–244, 2010,
doi: 10.1212/WNL.0b013e3181ca0166.

[15] R. B. Postuma et al., “Identifying prodromal Parkinson’s disease: Pre-
motor disorders in Parkinson’s disease,” Movement Disorders, vol. 27,
no. 5, pp. 617–626, 2012, doi: 10.1002/mds.24996.

[16] J. R. Duffy, Motor Speech Disorders. Substrates, Differential Diagnosis
and Management, 3rd ed. St. Louis, MO, USA: Elsevier Health Sciences,
2013.

[17] A. K. Ho, R. Iansek, C. Marigliani, J. L. Bradshaw, and S. Gates,
“Speech impairment in a large sample of patients with Parkinson’s
disease,” Behav. Neurol., vol. 11, no. 3, pp. 131–137, 1999.

[18] J. W. Tetrud, “Preclinical Parkinson’s disease: Detection of motor and
nonmotor manifestations,” Neurology, vol. 41, no. 2, pp. 69–71, 1991.

[19] J. Rusz et al., “Quantitative assessment of motor speech abnormalities
in idiopathic rapid eye movement sleep behaviour disorder,” Sleep Med.,
vol. 19, pp. 141–147, Mar. 2016, doi: 10.1016/j.sleep.2015.07.030.
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