
Conceptualisation: Chapters from Harmonising Enterprise and
Software Engineering

by

Robert Pergl

A habilitation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague

Prague, September 2018

Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Head of Department:
Ing. Michal Valenta, Ph.D.

Copyright c© 2018 Robert Pergl

ii

Abstract

This habilitation thesis deals with leveraging conceptualisation for harmonising software en-
gineering in the context of enterprise engineering. It is based on the research and work done
in the Centre of Conceptual Modelling and Implementation (CCMi) at the Department
of Software Engineering since its foundation by the author in 2012. Theoretical founda-
tions and key methodologies are introduced. Past and ongoing research and applications
based on them are then elaborated on; These consist of several layers: (i) Methodological
Studies, (ii) Methodological Improvements, (iii) Tooling and (iv) Applications. Achieved
results at the levels of bachelor and diploma theses, Ph.D. and post-doc research projects
are discussed. Key international collaborations, both academic and from practice are also
explained. The core of the thesis then consists of chapters being key already-published,
peer-reviewed publications.

Keywords:
conceptual modelling, ontologies, UML, OntoUML, UFO, BPMN, enterprise engineer-

ing, business process management, DEMO, model-driven engineering, models transform-
ation, evolvability, normalised systems, software engineering, models execution, workflow,
CASE.

iii

Acknowledgements

My deep gratitude belongs to my family, especially my wife Hanka, who devotedly supports
me in my endeavours both mentally and practically. I wish all professors to have such a
wonderful wife!

Starting from the beginnings, I would like to express a deep gratitude to a great evange-
list doc. Ing. Vojtěch Merunka, Ph.D. for kindling the spark in me to pursue the academic
path and opening many wonderful doors to exciting knowledge and opportunities.

I am grateful to late prof. RNDr. Jiř́ı Vańıček, CSc. for opening the golden vault
of theoretical foundations of computer science to me and being my kind mentor during
uneasy explorations.

My sincere thanks go to my superior and dear friend, Ing. Michal Valenta, Ph.D., an
exemplar of an enlightened leader, whose support, wisdom, understanding and excitement
give a unique soul to our family — the Department of Software Engineering. Similarly, my
many thanks go to our first Dean, prof. Ing. Pavel Tvrd́ık, CSc.. The immense support and
trust of these two outstanding personalities enabled founding of the Centre for Conceptual
Modelling and Implementation and its successes. I am happy and grateful that I found the
same trust and support in our current Dean, doc. RNDr. Ing. Marcel Jiřina, Ph.D..

An immense merit goes then to the members of CCMi — my colleagues, PhD, master
and bachelor students who have done a lot of hard work with me (or without me) on
the research and projects; many thanks for their enthusiasm and making CCMi great!
I would like to namely thank prof. Dr. Ing. Petr Kroha, CSc., my kind mentor and
Ing. Zdeněk Rybola, Ph.D., who tirelessly pushed forward our research on OntoUML for
software engineering. My thanks also go to our wonderful department assistant, Mgr. Alena
Libánská, for all her help, smile and warm heart. And there are many more outstanding
people at our Faculty who also have my admiration and thanks, the acknowledgements to
whom could easily fill the whole text.

Now going abroad, my first thoughts go to prof. Giancarlo Guizzardi, an exceptional
scientist and person, whose work has been literally the corner-stone of CCMi. Every
meeting with Giancarlo is a great pleasure, every talk is life-changing and eyes-opening.

Going further in time, the same thanks for bringing an essential and foundational work

v

then goes to the “father of enterprise engineering”, the esteemed prof. Jan L.G. Dietz,
whose kindness and trust in our potential laid foundations in many of our successes and
his invitation to the CIAO! Network opened a wonderful world of topics, collaborations
and friendships.

My thanks goes to the wonderful CIAO! community consisting of excellent scientists
and professionals, whose enthusiasm and knowledge changes the world. My special thanks
go to prof. Jan Verelst for research inspiration and substantial support and belief in our
potential that has brought several trails of intensive and fruitful collaboration. Next special
thanks go to Dr. Steven van Kervel, the founder of ForMetis Consultants and a person with
a golden human character, whose merit is DEMO embedding in practice; we are honoured
he took us to sail that ship with him. A substantial funding of ForMetis to CCMi members
will also not be forgotten.

And arriving to the “implementation” part, we owe a lot to prof. Stéphane Ducasse, a
true visionary and the driving force of the Pharo community, who has been helping and
supporting us tremendously.

Recently, we also found a nice open community in the body of the ELIXIR infrastruc-
ture. Here go many thanks to the Head of ELIXIR Czech Node, RNDr. Jiř́ı Vondrášek,
Ph.D. for accepting us warmly in the community, opening opportunities of contribution
to us and giving us much support in the hard beginnings. Also, this would not happen
without Dr. Luiz Olavo Bonino, who had persuaded me that we can bring a value to
ELIXIR. My thanks also go to Netherlands to amazing prof. Dr. Barend Mons, a vision-
ary now changing the data world to a better, FAIR future, who gave us the opportunity
to start leveraging our skills for this great purpose. Here, I must not forget Dr. Rob Hooft
— it is a real pleasure to cooperate with a genius mind.

Last but not least, I would like to acknowledge a place — a cottage built my grand
parents near the village Žloukovice, where my thoughts flow as nicely as the river Berounka.

vi

Dedication

In loving memory of my dear mother, Ing. Bohdanka Perglová (1946-2018). My deepest
gratitude.

. . .

vii

Contents

1 Foreword of the Author 1

2 Structure of the Thesis 3

I Introduction 7

3 Conceptualisation 9
3.1 Introduction . 9
3.2 Formal Foundations . 10
3.3 Modelling . 12
3.4 Ontologies . 13

3.4.1 UFO and OntoUML . 15
3.4.2 Our Contribution and Applications 16

3.5 Behaviour Conceptualisation . 16
3.5.1 Our Contribution and Applications 18

3.6 Conceptual Modelling Notations . 19
3.6.1 UML and OCL . 19
3.6.2 BPMN . 21

4 Enterprise Engineering 25
4.1 The Discipline of Enterprise Engineering 25
4.2 Enterprise Engineering Theories . 26
4.3 The DEMO Methodology . 28

4.3.1 Methodological Foundations of Enterprise Engineering 28
4.3.2 DEMO Principles . 28
4.3.3 DEMO Diagrams . 32
4.3.4 Our Contribution and Applications 33

4.4 Business Object Relation Modelling . 35

viii

Contents

4.4.1 The Object-Oriented Paradigm Alignment 35
4.4.2 BORM Object Behaviour Analysis 35
4.4.3 Process models in OBA . 36
4.4.4 Our Contribution and Applications 36

4.5 MEMO . 37

5 The Relation of Conceptualisation and Implementation 41
5.1 The Relation of Conceptual Ontological Models and Their Implementation 41

5.1.1 Model-Driven Engineering . 42
5.1.2 Model Execution . 45

5.2 Conceptualisation in Implementation . 46
5.2.1 Interactive Development . 46
5.2.2 Reverse Engineering . 47
5.2.3 Our Contribution and Applications 48

6 Evolvability and Normalized Systems 51
6.1 Introduction . 51
6.2 Principles . 51
6.3 Elements . 52
6.4 Applications and Research . 52
6.5 Our Contribution and Applications . 53

6.5.1 Component Software Systems Design 53
6.5.2 Conceptual Modelling of Precise Technical Systems 54
6.5.3 Evolvability of Documents . 55
6.5.4 Applying the Functional Paradigm for the Normalized Systems Ex-

panders . 55
6.5.5 Normalized Systems Conceptual Modeller 55

7 Software Implementation 57
7.1 The Discipline of Software Engineering . 57
7.2 The Object-Oriented Paradigm . 58

7.2.1 Pharo . 59
7.2.2 Our Contribution and Applications 60

7.3 The Functional Paradigm . 62
7.3.1 Theoretical Foundations . 62
7.3.2 Practical Relevance . 62
7.3.3 Interactive Development . 63
7.3.4 Challenges of FP in Software Engineering 63
7.3.5 Our Contribution and Applications 64

8 Tooling 67
8.1 Computer-Aided Engineering Tools . 67
8.2 Execution Tools . 67

ix

Contents

8.2.1 Business Process Management Tools 67
8.2.2 Workflow Management Systems . 69
8.2.3 Our Contribution and Applications 70

8.3 A Conceptual Modelling Platform . 71
8.3.1 Our Contribution and Applications: OpenCASE/OpenCABE . . . 72
8.3.2 Our Contribution and Applications: DynaCASE/OpenPonk 72

9 Final Thoughts 75

II Chapters 77

10 Supporting Enterprise IS Modelling using Ontological Analysis 79

11 Instance-Level Modelling and Simulation Revisited 97

12 Towards OntoUML for Software Engineering: From Domain Ontology
to Implementation Model 115

13 Towards Formal Foundations for BORM ORD Validation and Simu-
lation 131

14 The Prefix Machine — a Formal Foundation for the BORM OR Dia-
grams Validation and Simulation 141

15 Revisiting the BORM OR Diagram Composition Pattern 161

16 Empirical Study of Applying the DEMO Method for Improving BPMN
Process Models in Academic Environment 175

17 Converting DEMO PSI Transaction Pattern into BPMN: A Complete
Method 185

18 Modelling and Prototyping of Business Applications Based on Multi-
level Domain-Specific Language 203

19 Analysing Functional Paradigm Concepts: The JavaScript Case 223

20 OpenCASE — A Tool for Ontology-Centred Conceptual Modelling 235

21 BORM-II and UML as Accessibility Process in Knowledge and Busi-
ness Modelling 245

22 The OpenPonk Modeling Platform 253

x

Contents

IIIReferences 265

Bibliography 267

Relevant Publications Authored and Co-Authored 283

Relevant Supervised Bachelor’s and Master’s Theses 289

Relevant Reviewed Bachelor’s and Master’s Theses 293

xi

Chapter 1

Foreword of the Author

Software engineering is an ultimate human design endeavour. Its variance of forms and
possibilities surpasses all other design disciplines. The technologies have gone so far that
today’s limits are rather human imagination, complexity management and requirements
engineering.

This is why the importance of conceptual modelling is rising in software engineering,
as well as in other disciplines today — as a human-centred knowledge base of the domain,
a vehicle of shared reasoning and complexity management; all this in a crisp-clear form,
eradicating all mists of vagueness, misinterpretation and misunderstanding.

Thanks to technological advancements, software engineering and enterprise engineer-
ing became close engineering relatives — the younger brother software engineering being
now the right hand of the traditional enterprise engineering discipline: information and
knowledge systems became the neural network of human coordination, cooperation and
co-production.

At the same time, technological, managerial and other advancements have not achieved
a perfect harmony in the enterprise engineering family, yet. The success rate of software
projects is rising, however, the level is still not satisfactory.

Christopher Alexander explains in his legendary work “Notes on the Synthesis of
Form” [1]:

The form is a part of the world over which we have control, and which we
decide to shape while leaving the rest of the world as it is. The context is
that part of the world which puts demands on this form; anything in the world
that makes demands of the form is context. Fitness is a relation of mutual
acceptability between these two. In a problem of design we want to satisfy
the mutual demands which the two make on one another. We want to put the
context and the form into effortless contact or frictionless coexistence.

In my endeavour, the context is enterprise engineering and the form is software engin-
eering. This is why I speak about “harmonising enterprise and software engineering”, as,

1

1. Foreword of the Author

together with Alexander, I believe that speaking about “fitness” of software engineering
can take place just in a right context.

Alas, the topic of finding a proper fit of software engineering in the context of enterprise
engineering is naturally so vast that it will probably be never solved in full, as Alexander
warns us:

In general, unfortunately, we cannot give an adequate description of the
context we are dealing with. The fields of the contexts we encounter in the real
world cannot be described in the unitary fashion . . . There is as yet no theory of
ensembles capable of expressing a unitary description of the varied phenomena
we encounter in the urban context of a dwelling, for example, or in a sonata,
or a production cycle.

Nevertheless, 15 years of research and practice established a strong belief in me that
conceptual modelling together with proper engineering methods, techniques and tools can
push the state-of-the art significantly, while, at the same time not being leveraged enough
in the main-stream software-engineering research outlets and practice — a doubting reader
can themselves make a small survey of a grievous ratio of number of software engineer-
ing institutes and management institutes compared to conceptual modelling and ontology
institutes.

Throughout the years, I tackled several research topics in the area. Apart from being
a challenging and satisfying endeavour, the work has shown high practical relevance and
opened more research topics than it actually solved. This formed into the idea of con-
ceiving a dedicated research and practising group, which was founded in 2012 and named
“Centre for Conceptual Modelling”. The idea was highly inspired by the world leading
conceptual modelling research group Núcleo de Estudos em Modelagem Conceitual e On-
tologias) (NEMO). As more implementation-related topics started to occur, we extended
the name to “Centre for Conceptual Modelling and Implementation” [2].

The presented work brings now a collection of the work done mainly in the first 6
years of CCMi. Its main part consists of chapters addressing individual research problems
in the field. They are already published and reviewed papers. The introductory part
then explains the context, motivation and especially relations between the topics, which
may seem various, but there is a strong silver thread binding them, or more precisely a
cobweb of silver threads giving a coherent whole. Some of the parts present tangible results
in various stages of maturity and adoption, some of them are more a manifesto of open
research problems that we start to tackle.

The targeted readers of this work are fellow researchers interested in our work and,
possibly, a collaboration. Students and new colleagues will find this publication helpful in
acquainting themselves with the topics of their interest and future occupation, being it a
bachelor’s thesis, a master’s thesis, a PhD thesis, or to just peek into the topics of one of
the research groups at FIT CTU.

Robert Pergl
In Žloukovice, August 2018

2

Chapter 2

Structure of the Thesis

Part I contains an introduction to all research topics performed in CCMi. Most of them
were conceived in years before CCMi, however the major work was done between years
2012-2018. The Introduction presents a brief overview of each topic and open research
questions.

Figure 3.1 can be seen as a conceptual map of the text that begins from the centre by
introducing “the heart” — conceptualisation — in Chapter 3, then continuing to the left
to enterprise engineering in Chapter 4, then going right by describing the subtle relation
between conceptual modelling and implementation in Chapter 5, emerging into the topic
of software implementation in Chapter 7 and tooling in Chapter 8. Chapter 6 about
evolvability and Normalised Systems then permeates the whole map in Figure 3.1, so it,
kind of, goes into the third dimension.

The key sections along the way are “Our Contribution and Applications”, where our
results, ongoing and planned research are presented.

Key contributions authored and co-authored by the author then form the chapters of
Part II. As it is not possible to order them by a single key, they are present in the order of
appearance in the Introduction and Table 2.1 summarises the topics involved. A diagram
on Figure 2.1 then presents another, level-based, view on the work done.

Chapters presented in their original form of camera-ready published papers have the
following advantages, why the author decided to persist them:

• All the papers were peer-reviewed; presenting them in their original form does not
introduce new editorial bugs.

• The reader does not need to search the original publications to make precise citations.

• Each chapter contains its own list of references and sections numbering, references
are local, which makes it more convenient in a long and heterogeneous work.

• Each chapter is “self contained” with its own introduction and context, so the reader
may conveniently jump directly to the topic of interest without loosing a context;

3

2. Structure of the Thesis

On the other hand, some information is duplicated, however, the reader may skip an
introduction easily.

4

Table 2.1: Overview of the chapters

Notations and Methodologies Topics

Chapter
UML BPMN BORM DEMO Ontology MDE Tooling

10 Supporting Enterprise IS Modelling using Ontological Analysis X X X
11 Instance-Level Modelling and Simulation Revisited X X X X
12 Towards OntoUML for Software Engineering: From Domain Ontology to Implementation Model X X X X
13 Towards Formal Foundations for BORM ORD Validation and Simulation X X X
14 The Prefix Machine – a Formal Foundation for the BORM OR Diagrams Validation and Simulation X X X
15 Revisiting the BORM OR Diagram Composition Pattern X X

16 X X X
17 Converting DEMO PSI Transaction Pattern into BPMN: A Complete Method X X X X

18 X X
19 Analysing Functional Paradigm Concepts - The JavaScript Case X X
20 OpenCASE - A Tool for Ontology-Centred Conceptual Modelling X X X
21 BORM-II and UML as Accessibility Process in Knowledge and Business Modelling X X X X
22 The OpenPonk Modeling Platform X X X X X

Onto-
UML

Implemen-
tation

Simu-
lation and
Validation

Empirical Study of Applying the DEMO Method for Improving BPMN Process Models in Academic
Environment

Modelling and Prototyping of Business Applications Based on Multilevel Domain-Specific
Language

5

2. Structure of the Thesis

10. Supporting Enterprise
IS Modelling using
Ontological Analysis

11. Instance-Level
Modelling
and Simulation
Revisited

12. Towards OntoUML
for So�ware Engineering:
From Domain Ontology
to Implementation Model
[203], [204], [205], [206],
[207], [208]

13. Towards Formal Foundations
for BORM ORD Validation
and Simulation

14. The Prefix Machine –
a Formal Foundation
for the BORM OR Diagrams
Validation and Simulation

15. Revisiting the BORM
OR Diagram
Composition Pattern

16. Empirical Study of
Applying the DEMO
Method for Improving
BPMN Process Models
in Academic Environment

17. Converting DEMO PSI
Transaction Pattern
into BPMN:
A Complete Method

18. Modelling and Prototyping
of Business Applications
Based on Multilevel
Domain-Specific Language

19. Analysing
Functional
Paradigm
Concepts -
The JavaScript
Case

20. OpenCASE -
A Tool for Ontology-Centred
Conceptual Modelling

21. BORM-II and UML
as Accessibility Process
in Knowledge and
Business Modelling

22. The OpenPonk
Modeling Platform

Methodological Improvements

Tooling

Applications

OntoUML
BORM

DEMO

Methodological Studies

[207] Marrow Donor Registry Simulator

SW
implementation

general
ontology

[193] Gradual Modeling of Information System -
Model of Method Expressed as Transitions
Between Concepts

[197] Enterprise Operational Analysis Using
DEMO and the Enterprise Operating System

[199] BORM-Points:
Introduction and Results
of Practical Testing

[201] BORM model transformation

[209] Confirmation Engine
Design Based
on PSI Theory

[210] Towards the Ontological
Foundations for the So�ware Executable
DEMO Action and Fact Models

[211] A DEMO Machine -
A Formal Foundation for
Execution of DEMO Models

[212] Ad-hoc Runtime
Object Structure
Visualizations
with MetaLinks

[213] Affordance-driven
So�ware Assembling

[214] Tackling the Flexibility-Usability
Trade-off in Component-Based
So�ware Development

[215] Evolvable Documents –
an Initial Conceptualization

[216] Information Support Systems
for Cultural Heritage Protection Against Flooding

[217] Towards Modularity in Live Visual Modeling:
A Case Study with OpenPonk and Kendrick

[220] Data Stewardship Wizard

Figure 2.1: Levels of work done

6

Part I

Introduction

7

Chapter 3

Conceptualisation

3.1 Introduction

Conceptual modelling (CM) is about “representing aspects of the physical and social world
for the purpose of understanding and communication [and, hence] the contribution of
a conceptual modeling notation rests in its ability to promote understanding about the
depicted reality among human users” [3]. Conceptual modelling is the central topic of
CCMi, as it appears to be a missing (highly neglected at best) piece of software and
enterprise engineering. The position of CM is depicted in Figure 3.1, which has become
CCMi’s core scheme.

Figure 3.1: The position of conceptual modelling between enterprise and software engin-
eering [2]

At the same time, as will be explained in Chapter 5, conceptualisation in its most
general form permeates all human endeavour, so it is present in every place of the scheme.
However, if our main goal is harmonisation of enterprise and software engineering, then
the conceptualisation embodied in the discipline of conceptual modelling sits in between,
as depicted.

9

3. Conceptualisation

3.2 Formal Foundations

Formally, conceptual modelling is based on the Triangle of Reference (also called Og-
den’s Triangle or Semantic Triangle) (Figure 3.2), which was used by Ullmann in his
interpretation work [4] (Figure 3.3). The “represents” relation concerns the definition of
language real-world semantics. The dotted line between language and reality in this figure
highlights the fact that the relation between language and reality is always intermediated by
a certain conceptualisation [5]. As such, conceptualisation permeates all human intellectual
endeavours.

Figure 3.2: The Triangle of Meaning by Ogden [6]

Conceptualisations are abstract entities that only exist in the mind of a user or a
community of users of a language. In order to be documented, communicated and analysed,
they must be captured, i.e. represented in terms of some concrete artefact. This implies
that a language is necessary for representing them in a concise, complete and unambiguous
way. [7]

The semiotic ladder is an important corner-stone of information science and concep-
tual modelling. Its original form contains three steps — Syntactics (also called Syntax),
Semantics and Pragmatics. Today, its 5-step form enhanced by Stamper is used in enter-
prise engineering (Figure 3.4).

Mereology is a part of general systems theory on system decomposition and parts,
wholes and boundaries (e.g. [9]).

Next, various mathematical disciplines and apparatus are used in conceptual modelling
and underlying studies [10], [188], typical representatives being:

• Set theory

10

3.2. Formal Foundations

 TERMINOLOGICAL CLARIFICATIONS AND FORMAL CHARACTERIZATIONS 81

individuals and R is a set of extensional relations; I:V→D ∪ R is an
interpretation function assigning elements of D to constant symbols in V,
and elements of R to predicate symbols of V. A model, such as this one,
fixes a particular extensional interpretation of language L.

■

Definition 3.4 (intensional interpretation): Analogously, we can define
an intensional interpretation by means of the structure 〈C,ℑ〉, where C =
〈W,D,ℜ〉 is a conceptualization and ℑ:V → D ∪ ℜ is an intensional
interpretation function which assigns elements of D to constant symbols in
V, and elements of ℜ to predicate symbols in V.

 ■

In (Guarino, 1998), this intensional structure is named the ontological
commitment of language L to a conceptualization C. We therefore consider
this intensional relation as corresponding to the represents relation depicted
in Ullmannís triangle in figure 3.16 depicted below (see discussion in
section 2.1.4).

Symbol
(language)

Concept
(conceptualization)

Thing
(reality)

represents abstracts

refers to

Definition 3.5 (ontological commitment): Given a logical language L
with vocabulary V, an ontological commitment K = 〈C,ℑ〉, a model 〈S,I〉 of L
is said to be compatible with K if: (i) S ∈ Sc; (ii) for each constant c, I(c) =
ℑ(c); (iii) there exists a world w such that for every predicate symbol p, I
maps such a predicate to an admissible extension of ℑ(p), i.e. there is a
conceptual relation ρ such that ℑ(p) = ρ and ρ(w) = I(p). In accordance
with (Guarino, 1998), the set Ik(L) of all models of L that are compatible
with K is named the set of intended models of L according to K..

■

Figure 3-16 Ullmannís
Triangle: the relations
between a thing in
reality, its
conceptualization, and a
symbolic representation
of this conceptualization

Figure 3.3: Ullmann’s Triangle [7]

Figure 3.4: Stamper’s Semiotic Ladder [8]

• Relations

• Graph theory

• Category theory

• Algebras

• Formal languages and grammars

• Logic: mostly predicate logic, modal logic and various descriptive logics

11

3. Conceptualisation

However, a conceptual modeller must be cautious, as mathematical constructs can lead
to ontologically extravagant models [7], an example being an empty set containing an empty
set.

As for the conceptualisation of behaviour, finite state machines and Petri Nets are
typical formalisations used in information and computer science [188].

3.3 Modelling

Model is an abstraction of a certain state of affairs expressed in terms of a set of domain
concepts, i.e., according to a certain conceptualisation [7]. As a concrete artefact, a
represented model must be expressed in some “suitable”1 language. The relation between
conceptualisation, model, modelling language and specification is depited in Figure 3.5.

Figure 3.5: Relations between conceptualisation, model, modelling Language and specific-
ation [7]

The modelling language may be a domain-specific language [11, 12, 13], whose
concepts are “tailored” for a certain domain. An example of such a language is DEMO,
which is focused on making ontological models of enterprises (Chapter 4), or the work
of our student Marek Hakala [259], who created a visual language for modelling of IT
architectures.

General conceptual languages are domain-independent languages specifying primi-
tives usable in various domains. An example of such a language is OntoUML discussed in
Section 3.4.1.

1The suitability here refers to the relevance and language qualities. We do not dive into this topic
here, a thorough discussion may be found in [7].

12

3.4. Ontologies

Ontology-driven conceptual modelling (ODCM) [14] is a branch of conceptual
modelling that devotes itself to an ontological commitment (Section 3.4). While using
mathematical abstractions can lead to conceptualisations that are not aligned with cognit-
ive science [7], ODCM employs sound ontological foundations that are reported to lead to
higher-quality conceptual models [189].

3.4 Ontologies

Ontology comes from Greek ontos (existence, reality) and logos (reason, lore). Philoso-
phical ontology is the science of what is, of the kinds and structures of objects, properties,
events, processes and relations in every area of reality. [15]

The term “ontology” (or ontologia) was itself coined in 1613, independently, by two
philosophers, Rudolf Gockel (Goclenius), in his Lexiconphilosophicum and Jacob Lorhard
(Lorhardus), in his Theatrum philosophicurn. Its first occurrence in English as recorded
by the OED appears in Bailey’s dictionary of 1721, which defines ontology as “an Account
of being in the Abstract”. It was further popularised by Christian Wolff in his work Philo-
sophia prima sive Ontologia [16] (Figure 3.6). Regardless of its name, what we now refer to
as philosophical ontology has sought the definitive and exhaustive classification of entities
in all spheres of being. It can thus be conceived as a kind of generalized chemistry. The
taxonomies which result from philosophical ontology have been intended to be definitive in
the sense that they could serve as answers to such questions as: “What classes of entities
are needed for a complete description and explanation of all the goings-on in the universe”
Or: “What classes of entities are needed to give an account of what makes true all truths?”
They have been designed to be exhaustive in the sense that all types of entities should be
included, including also the types of relations by which entities are tied together. [15].

In engineering disciplines, ontologies became a foundation for knowledge engineer-
ing [17, 18, 19], software engineering [20, 21, 22, 23, 24] and enterprise engineering [25, 26].

The “modern” definition of ontology comes from Studer [19]: “An ontology is a formal,
explicit specification of a shared conceptualisation.” This definition is then elaborated on
by Guarino in [27].

Ontologies can be informal and formal (Figure 3.7). While informal ontologies are
common and widely used, they tend to be vague, their soundness cannot be guaranteed,
they lack inference capabilities and machine-actionability. This is why we focus on formal
ontologies in our endeavours, mostly UFO (Section 3.4.1) being a general ontology and
DEMO (Chapter 4) being a domain-specific enterprise ontology2,3.

Although ontological work may seem academic, the truth cannot be further, as Collier
puts “the opposite of ontology is not non-ontology, but bad ontology” [29]. In other words,
any representation system that has some real-world semantics (as opposed to mere formal
semantics) makes an ontological commitment [30].

2General vs domain-specific is analogous to the discussion in Section 3.3.
3Both are grounded in modal logic, so they belong to the ultimate right on the axis in Figure 3.7.

13

3. Conceptualisation

Figure 3.6: Philosophia prima sive Ontologia (digitalised by Google)

Although the term “ontology” does not appear in computer and information science
frequently, it is due to say that the idea that data are “fragments of a theory of the real-
world and data processing is about manipulating models of such a theory” was conveyed
by Mealy in 1967 [31]. The paper also directly mentions “ontology”. Similarly, Bill Kent
in his book “Data and Reality” [32] states that “the questions aren’t so much about how
we process data as about how we perceive reality” and he puts forward typical ontological
challenges such as topics of identity, unity and classification and relationships.

Although we deal with UFO and OntoUML, there are other approaches that have their
significance in practice and history. These are notably BWW (Bunge-Wand-Weber) [33],
GFO (General Formalized Ontology)/GOL (General Ontology Language) [34] and De-
scriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [35]. As we find
UFO and OntoUML most aligned with our purposes, we do not elaborate on the other
alternatives here.

14

3.4. Ontologies

Figure 3.7: Informal and formal ontological approaches [28]

3.4.1 UFO and OntoUML

Unified Foundational Ontology (UFO) originated as an initiative to develop sound
ontological foundations for conceptual modelling languages [36, 37].

The UFO ontology was developed by consistently putting together a number of theories
originating from areas such as Formal Ontology in philosophy, cognitive science, linguistics
and philosophical logics. It comprises a number of micro-theories addressing fundamental
conceptual modelling notions. The ontology is divided in three strata dealing with different
aspects of reality, namely:

UFO-A — An Ontology of Endurants dealing with aspects of structural conceptual mo-
delling. It is organized as a Four-Category ontology comprising theories of Types
and Taxonomic Structures [38, 39] connected to a theory of object identifiers (includ-
ing a formal semantics in a Sortal Quantified Modal Logics [40]), Part-Whole Re-
lations [41, 42, 43, 44], Particularized Intrinsic Properties, Attributes and Attribute
Value Spaces [45, 46, 47] (including a theory of Datatypes as Measure Structures [48]),
Particularized Relational Properties and Relations [49, 50, 51] and Roles [52, 53];

UFO-B — An Ontology of Perdurants (Events, Processes) dealing with aspects such as
Perdurant Mereology, Temporal Ordering of Perdurants, Object Participation in Per-
durants, Causation, Change and the connection between Perdurans and Endurants
via Dispositions [54];

15

3. Conceptualisation

UFO-C — An Ontology of Intentional and Social Entities, which is constructed on top of
UFO-A and UFO-B, and which addresses notions such as Beliefs, Desires, Intentions,
Goals, Actions, Commitments and Claims, Social Roles and Social Particularized
Relational Complexes (Social Relators), among others [55, 56].

Domain-specific ontologies are then formulated above these, such as UFO-S (the onto-
logy of services) [57], UFO-L (the ontology of the legal core) [58], the ontology of software
engineering [55] or measurement [59].

Then, OntoUML [7] was conceived as an ontologically well-founded version of the
UML 2.0 fragment of class diagrams, technically being a UML profile (Section 3.6.1), for
structural conceptual modelling. The language metamodel strived to incorporate formal
syntactical constraints that would delimit the set of grammatically valid models of the
language to those that represented intended state of affairs admitted by the underlying
ontology. By doing this, the authors have managed to build a modelling language with
explicitly defined formal and real-world semantics [60].

UFO and OntoUML have been applied numerous times in a vast variety of domains.
We recommend reading [60] for a comprehensive account.

3.4.2 Our Contribution and Applications

In our research, we have focused chiefly on applying UFO and OntoUML in software
engineering, which is described in Section 5.1.1. OntoUML is also used in our projects,
such as the Marrow Donor Registry Simulator (Section 3.5.1) and also in students’ theses,
such as [260] and [261] and others mentioned in other places.

3.5 Behaviour Conceptualisation

While conceptual modelling of behaviour is “just” another facet of conceptual modelling
and everything applies to it similarly as to the conceptual modelling of structural aspects,
it poses some significant challenges and open topics.

Ontological study of behaviour has been parallel and much intertwined with the study
of structural aspects of reality. It is rooted in the notion of perdurants, being individuals
composed of temporal parts — as opposed to endurants which are wholly present whenever
they are present. Thus, perdurants are an ontological basis for events that unroll in time.
A notable work in this area has been done by Guizzardi by formulating UFO-B, a concise
Unified Foundational Ontology of events [54], Figure 3.8.

Apart from that, structural ontological models in UFO-A also contain behaviour-related
information, e.g. phases speak about states through which an entity can possibly go through
during its lifetime. However, structural models do not contain details about causation nor
any timing information.

The discipline of enterprise engineering deals with behaviour intensively. The ψ-theory
(Section 4.2) then conceptualises the behaviour in an enterprise as a sequence of acts of

16

3.5. Behaviour Conceptualisation

Figure 3.8: A fragment of a football game described with UFO-B [54]

respective actors (Section 4.3.2.2). The view is event-driven, i.e. acts occur as a reaction
to results of other acts (called facts). The actors then have their agenda, being a list of
facts that need to be responded to.

Now going from the other side, of technical systems, behaviour conceptualisation has
been always one of the most important topics. Each programming paradigm defines an
ontology of behaviour (Section 5.2) that is focused on computation. Going up with ab-
stractions, we arrive to various notions of machines — state machines, Turing Machine,
RASP machine and also Petri nets [188]. While these abstractions have been successfully
used to describe and reason about computational topics, they are limited in their ability
to provide a faithful ontological description of perdurants [190].

17

3. Conceptualisation

3.5.1 Our Contribution and Applications

During our research and practice we identified some open problems in the area of behaviour
conceptualisation.

3.5.1.1 Process Modelling Notations

A detailed comparison of BORM (section 4.4), BPMN (section 3.6.2) and DEMO (sec-
tion 4.3) notations is presented in master’s thesis of Vejražková [61], Cimpl then focused
on UML (section 3.6.1) and BPMN in his bachelor’s thesis [262].

The most used notations for behaviour modelling, UML and BPMN exhibit serious on-
tological flaws (Section 3.6), while there is still no established process-modelling technique
based on UFO-B. The author created a proposal of such a method in the Marrow Donor
Registry Simulator project [191] (Figure 3.9). The proposed method and visualisation was
then used in the bachelor’s thesis of Ondřej Král [225].

3.5.1.2 Modularisation

Behaviour modelling notations lack proper modularisation constructs. In BPMN, there is
the notion of several types of subtask, however it can encapsulate just behaviour of one
swim line (i.e. actor).

In DEMO models, the behaviour is modularised by the notion of transactions that
encapsulate coordination and production acts related to one product. Further modularisa-
tion is achieved using various levels of models (Figure 4.6). However, there is also a need
of arbitrary modularisation levels. This can be achieved using scope of interest, however,
a proper meta-model and methodological guidelines are missing4.

We addressed the topic of modularisation of behaviour with Podloucký in [192] (Chapter 15)
for the case of the BORM OR Diagrams, where we proposed two dimensions of modular-
ity: vertical and horizontal, interestingly coming to diagrams strongly resembling UML
behaviour models (Figure 3.10).

3.5.1.3 Gradual Transformation of Concepts

In an ideal model-driven engineering world (Section 5.1.1), we would have models of several
layers, where the top layer would be a high-level abstraction suitable for managers, the lower
levels would then contain details of the domain and would be suited for domain experts
and analysts, while the lowest levels would contain more and more technical details, up to
an executable artefact. Concepts at various levels would be clearly related, thus supporting
verification of completeness, change management and audit trail. We sketched this vision
together with Ṕıcka in [193]. While this “dream” has partially happened for structural
models, it seems to be far from realisation in behavioural models.

4A paper discussing this was presented by Hans Mulder on EEWC 2018, however, the proceedings
have not been published, yet, at the time of writing this text.

18

3.6. Conceptual Modelling Notations

Figure 3.9: Marrow Donor Registry Simulator — process simulation and a dynamically
responding instance of the structural model

As the model-driven engineering is introduced in Section 5.1.1 and the topic is highly
about implementation, we elaborate on it more in Section 8.2.2.

3.6 Conceptual Modelling Notations

3.6.1 UML and OCL

Unified Modeling Language (UML) [62] is a general-purpose modelling language. As
there are common misunderstandings about it’s nature and purpose, we take this chance
and clarify them.

First, UML is today really a general purpose modelling language. Sometimes in litera-

19

3. Conceptualisation

Figure 3.10: Vertical and horizontal decomposition in BORM

ture, it is being introduced as a software-engineering modelling language [63, 64]. While it is
true that it evolved from object-oriented modelling methods in 1990s, it is not the essence of
UML today [62]. Software engineering diagrams are just one of its profiles [65]. Examples
of other profiles are the System Modeling Language (SysML, [66]) and OntoUML [67],
which are not primarily software-engineering notations.

As such, we can speak about UML either in a broader sense — about a meta-modelling
language for creating custom domain-specific graphical notations — or in a narrow sense
about a well-known software-engineering profile, which specifies the most common diagrams
used for analysis and design of software artefacts (Figure 3.11).

The second misunderstanding is that UML is a method or even a methodology. It
is not, it is just a notation, as is clear from its specification [62]. This confusion comes
from the fact that the notation is introduced typically in software-engineering books along
with a methodology ([63, 64]). This lack of a standardised method results also in different
interpretations of the UML notation and it is hard to use it for sound shared reasoning [68].

Third, although UML in its narrow sense is also used for general-purpose and ontological
conceptual modelling, serious flaws in this respect have been identified [69, 68, 70]. It is
thus advisable to use ontologically-founded conceptual modelling languages with sound
formal foundations, such as OntoUML (Section 3.4.1), whose notation is specified as a
UML profile5.

3.6.1.1 OCL

Object Constraint Language (OCL) [71] is a specification language that is part of the UML
standard. It can be used for the following purposes:

• to access model elements and their values,

5This is an example of the UML narrow-broad confusion — I even met a renowned scientist in the field
of conceptual modelling who, seeing the (negatively) familiar notation, inferred that UFO had the same
vague informal foundations.

20

3.6. Conceptual Modelling Notations

Figure 3.11: UML’s software-engineering profile diagrams [62]

• to define constraints and restrictions for model elements and their values,

• and to define query operations [63].

In [72], the authors define basic syntax and semantics of OCL constructs and introduce
several tools that support modelling and evaluation of OCL constraints. In [73], the authors
define a technique for transformations of OCL constructs into other equivalent forms to
support their definition, validation and transformation.

3.6.1.2 Our Contribution and Applications

In our work, we use UML in its broader sense mainly in the form of the OntoUML profile
(Section 3.4.1) and its narrow sense to express the object-oriented model in transformations
(Section 5.1.1). For this reason, we also intend to have an OCL interpreter in our conceptual
modelling platform OpenPonk (Section 8.3.2), however this showed to be a challenging
task [226].

We use OCL to enrich structural conceptual models, namely in OntoUML, with domain-
specific constraints. This approach is described in [194] (Chapter 11).

3.6.2 BPMN

BPMN stands for “Business Process Modelling Notation” and it is another OMG stand-
ard [74]. It originates from the traditional flowcharting notation that was extended with

21

3. Conceptualisation

event-triggered behaviour, exceptions and other constructs; It is also more precisely defined.
An example of a BPMN diagram is in Figure 3.12.

Figure 3.12: BPMN example: Shipment Process of a hardware retailer [75]

A strong point of BPMN is the existence of BPEL, “Business Process Execution Lan-
guage” by OASIS technical committee, a standard executable language for specifying ac-
tions within business processes with web services. BPMN can be translated into BPEL
and executed on a workflow engine (Section 8.2.2).

The strong point of BPMN is that being effectively an industrial standard, it has become
“linuga franca” in practice and a plethora of commercial and open-source tools is available.

However, BPMN is a mere notation, as the name suggests, so an appropriate modelling
method must be engaged, such as Silver’s [76]. Silver divides the notation into 3 levels:

Descriptive BPMN suitable for business stakeholders containing just a basic notation
elements and a top-down hierarchical style.

Analytical BPMN that uses the full palette of symbols and goes into technical detail of
events, exceptions, etc. It represents a common process language shared by business
and IT.

Executable BPMN that contains additional technical details to make the process ex-
ecutable on a workflow engine: data, services, messages, etc.

Silver also discusses BPMN flaws that mostly come from the fact that BPMN is a
negotiated settlement between rival committees with business interests. Some of them are
amended by the method, however there are redundant elements and patterns to express

22

3.6. Conceptual Modelling Notations

the same thing, which complicates models interoperability. Some unfortunate diagram
patterns are allowed, while some other important constructs are not supported properly
(e.g. states).

Further ontological analysis of the notation with respect to simulation models was
performed by Guizzardi and Wagner in [77]. Although their preliminary results show
100% soundness, which suggests that the core elements of BPMN have been well-chosen,
the results of only 70% lucidity, 60% completeness and 32% laconicity suggest that there
are quite a few ambiguous elements, missing concepts, and redundant elements in BPMN.

The solution of this state is twofold:

1. Replacing BPMN by an alternative — an example being DEMO (Section 4.3). This
approach solves effectively the issues, however, adoption in practice is problematic
due to higher methodological complexity and novel notation6.

2. Complementing BPMN by an quality-improving method — an example being the
Silver’s method or approaches based on applying DEMO methodology for the BPMN
notation (Section 4.3.4.1).

6Which is a general problem — practice tends to stick to the simplest ways of conceptual modelling
possible, in spite of the serious limitations [227].

23

Chapter 4

Enterprise Engineering

4.1 The Discipline of Enterprise Engineering

A century ago, Taylor published a landmark in the organisational sciences: his Principles
of Scientific Management. Many researchers have elaborated on Taylor’s principles, or
have been influenced otherwise. The authors of the manifesto [78] evaluate a century of
enterprise development, and conclude that a paradigm shift is needed for dealing adequately
with the challenges that modern enterprises face. Three generic goals were identified:

Intellectual manageability is the basis for mastering complexity. Enterprise pheno-
mena that are not comprehensively understood, cannot be addressed adequately.
Hence, the nature of necessary changes cannot be determined; consequently they
cannot be brought about effectively. In addition, current development approaches,
for enterprises as a whole and for ICT applications in particular, are cursed with
combinatorial impacts of changes, which make their implementation slow and prac-
tically unmanageable. So, in addition, appropriate ideas of enterprise evolvability are
needed for making changes expeditious and manageable — this topic is addressed by
the research performed at the University in Antwerp and described in Chapter 6.

Organisational concinnity is conditional for making strategic initiatives operational —
in order to perform optimally and to implement changes successfully, enterprises
must operate as a unified and integrated whole, taking into account all aspects that
are deemed relevant. A viable theory and methodology for enterprise engineering
must be able to address all relevant aspects, even those that cannot be foreseen
presently, in a properly integrated way, so that the operational enterprise is always
a coherent and consistent whole. The DEMO methodology (Section 4.3) represents
such a way.

Social devotion is the basis for achieving employee empowerment as well as knowledge-
able management and governance. Contrary to Taylor’s mechanistic view on or-
ganisations, enterprise engineering takes a human-centred view. It considers human

25

4. Enterprise Engineering

beings to be the ‘pearls’ of every enterprise. Therefore, it suggests that all employees
should be fully empowered and competent for the tasks they have to perform. They
must be endorsed with transparent authority and have access to all information they
need in order to perform their tasks in a responsible way. Next, managers must not
only be skilled in managerial work, they must first of all be thoroughly knowledgeable
in the subject field of the enterprise they are managing. This is partially addressed
in the DEMO method, however, the full span of this topic reaches into managerial,
social and psychological sciences.

4.2 Enterprise Engineering Theories

A theoretical framework for positioning the theories, goals, and fundamentals of enterprise
engineering is presented in the Manifesto [78], as well. They are categorised into four
classes: philosophical, ontological, ideological and technological: Figure 4.1.

Figure 4.1: Enterprise engineering theories in the classification scheme [78]

An arrow between two classes means that every theory in the class on the arrow side
is based on a number of theories (possibly none) in the class on the shaft side.

Philosophical theories are theories that address very basic conceptual matters. They
include the philosophical branches of epistemology and phenomenology, as well as
logic (in all of its variants) and mathematics. Philosophical theories are valuated by
their truthfulness within a chosen area. The truthfulness of a philosophical theory
is established by reasoning, and/or by judging its tenability in the face of reality.

26

4.2. Enterprise Engineering Theories

Regarding logical and mathematical theories, this reasoning can mostly be exact. In
the other branches of philosophy, such exactness is mostly not possible.

Ontological theories are theories about the nature of things. They address explanat-
ory and/or predictive relationships in observed phenomena (Section 3.4). Within the
discipline of enterprise engineering, we are particularly concerned with cause-effect re-
lationships in systems. These relationships are (or must be) able to explain observed
behaviour, as well as to predict behaviour to some extent, based on the ontological
understanding that the theory provides. Ontological theories are valuated by their
soundness and their appropriateness. The soundness of an ontological theory is es-
tablished by its being rooted in sound philosophical theories. The appropriateness
of an ontological theory is established by the evaluation of its practical application,
e.g., through expert judgments.

Technological theories are theories that address means-end relations between phenom-
ena. Obviously, this is the core area of engineering (of all kinds). Technological
theories are the foundation of design methods and methodologies. As Alexander
in [1] puts it, a design process is basically a process of analysing a problem (a situ-
ation that one considers undesirable) and synthesising a solution (a situation that
one considers desirable). After having conceived the solution in all detail, it can be
implemented, such that the new situation can be made operational. Implementing
is assigning concrete means to the elements of the implementation model. Techno-
logical theories are valuated by their rigour and their relevance [79]. The rigour of
a technological theory is established by its being rooted in sound ontological theor-
ies. The relevance of a technological theory is established by the evaluation of its
practical application, e.g., through measurements, in evaluative comparisons, and in
adoption studies.

Ideological theories are theories that address the goals people may want to achieve in
society at large, and for us, in enterprises in particular. Ideological theories are
fuelled by visions, convictions and beliefs. Therefore, they are by nature subjective,
in contrast to the objective ontological and technological theories. The role of ideo-
logical theories in enterprise development is to guide the devising and/or choosing of
the changes that are considered necessary, and that consequently have to be accom-
plished. Ideological theories cannot a priori be predicated as truthful or sound and
appropriate, nor as or rigorous or relevant, even if they are rooted in rigorous and
relevant other theories. One can only speak of their societal significance. The signi-
ficance of an ideological theory boils ultimately down to its fruitfulness and utility,
as determined by its supporters.

The theories have been under intensive development for the last 20 years, being mostly
the work of Dietz and Hoogervorst. They were first published in [26] along with the me-
thodological framework and the DEMO methodology. Since then, the newer versions and
additional ones have been published as technical reports to foster community feedback [80].

27

4. Enterprise Engineering

A new edition of the fundamental book [26] is supposed to be published at the end of 2018
containing all the new and updated theories.

4.3 The DEMO Methodology

4.3.1 Methodological Foundations of Enterprise Engineering

Before we focus on the central methodology of enterprise engineering — DEMO — we need
to discuss the role of scientific methodologies in enterprise engineering. March and Smith
in [81] distinguish between “natural sciences” and “design sciences”. Natural sciences are
concerned with understanding and explaining observable phenomena around us. Examples
of natural sciences are physical, biological, social, and behavioural sciences. Specifically
regarding enterprises, social and behavioural sciences seek to understand, explain and
predict organisational and human phenomena [82]. Therefore, these natural sciences would
belong to the class of ontological theories in Figure 4.1. The other important scientific
domain is identified as design sciences [83] and they are concerned with devising artefacts
or other intentionally created results. Therefore, these sciences would belong to the class of
technological theories in Figure 4.1. To further illustrate the distinction between natural
sciences and design sciences, one might say that natural sciences are about finding out
how things are, whereas design sciences are about finding out what is effective [82]. Put
differently, design sciences are about prescribing how things have to be created [81].

Many approaches concerning enterprise design can be noticed with a focus on mod-
els and representations, whereby adequate attention to the theory base can be ques-
tioned [84, 77, 85]. The so-called design science research (DSR) methodology seems
an appropriate candidate for being the main research methodology in enterprise engineer-
ing [78]. It is also already quite widely accepted, notably in the information systems area
(see [81, 82, 86]).

4.3.2 DEMO Principles

DEMO, Design & Engineering Methodology for Organisations, was conceived as an engin-
eering methodology firmly based on the EE theories and supporting the EE principles and
fundamentals [26, 78]:

4.3.2.1 Strict Distinction Between Function and Construction

This fundamental is rooted in the τ -theory. In this sense, DEMO provides a construction
view of the enterprise — its models are white-box and objective.

4.3.2.2 Focus on Essential Transactions and Actors

The complexity of enterprises necessitates a division of tasks to be performed. Because the
enterprise must operate as a unified whole, task differentiation must be properly paired

28

4.3. The DEMO Methodology

to the integration of the distinct tasks. This is the core of the ψ-theory (Performance in
Social Interaction). The notion of differentiation implies that employees are engaged in
numerous different production activities (e.g., concluding an insurance policy, making an
equipment part, paying an invoice, or giving a permission), whereas the notion of integra-
tion demands that these activities are coordinated such that the enterprise operates as an
integrated whole. The ψ-theory provides us with the insight that the coordination and pro-
duction activities occur in universal patterns called transactions (Figure 4.2). These are
the elementary (essential) organisational building blocks of enterprises. Enterprises have
dozens of processes, such as for production, recruitment, purchasing, payment, accounting,
logistics, and so on. Despite their different nature, they all share the same underlying
transaction patterns. Every business process appears to be a tree structure of transactions
(Figure 4.3).

Figure 4.2: The Standard Transaction Pattern [26]

Another major contribution of the ψ-theory to mastering the complexity of organisa-
tions emerges from the distinction between an enterprise’s B-organisation (from business),
I-organisation (from information), and D-organisation (from data and document) [26]. The
ψ-theory-based ontological model of the B-organisation of an enterprise is called its es-
sential model. By adopting this distinction, next to the organisational building block
from the ψ-theory, a reduction in the size of enterprise models is achieved, and in the
time to produce them, of well over 90% [87]. Consequently, a major contribution is offered

29

4. Enterprise Engineering

Figure 4.3: Transaction tree of manufacturing a bicycle [26]

to making enterprises intellectually manageable. Focusing just on the B-organisation is
called abstraction from realisation — the I-organisation being then the realisation
of the B-organisation and the D-organisation being the realisation of the I-organisation
(Figure 4.4).

4.3.2.3 Rigorous Distinction Between Design and Implementation

The β-theory fully explains and clarifies the complete development process of a system,
consisting of three phases: (i) function design, (ii) construction design, and (iii) engineering
(also called implementation design) [88]. By implementation is meant the concrete
realisation of a system. Put differently, implementation concerns the activities for putting
a design into effect. Unlike the other two phases, engineering is a rather deterministic
process executed according to some plan: a precisely defined, detailed scheme of activities,
for accomplishing a clearly defined objective (MDE, Section 5.1.1, being a concrete example
from software engineering). Contrary to engineering, design is a highly non-deterministic
process. It amounts to unrestrictedly exploring design possibilities rather than restrictedly
following a predefined, formalised plan. In the function design phase, the functional (black-
box) model of the object system, i.e., the system to be developed, is produced, starting
from the given functional requirements and the functional principles in the applicable
architecture. Ideally, the functional requirements are based on the essential model of the

30

4.3. The DEMO Methodology

Figure 4.4: The Realisation of an Organisation [26]

using system, i.e., the system that is going to be supported by the object system. In the
construction design phase, a highly abstracted constructional model of the object system is
produced, starting from the functional model. Ideally, this abstract model is an ontological
model, which means that it is fully independent of the way it is or will be implemented.
Consequently, design activities cannot be executed and managed as a project. Applying
implementation-type concepts to design activities amounts to confusing creativity with exe-
cution and planning [78]. In terms of the notion of system lifecycle, enterprise engineering is
concerned with all activities up to the implementation stage, as defined above. Utilisation
of the (implemented) system pertains to the operational utilisation of the system, which
also includes support activities such as maintenance. The overall schema as presented by
the β-theory is presented in Figure 4.5.

In the end, essential models need to be realised and implemented, for which much
more detailed models have to be produced, guided by enterprise architecture. For software
engineering implementation, MDE methods have been developed [89, 90] and also direct
execution of the DEMO models [91, 92].

4.3.2.4 Other Fundamentals

Other fundamentals described in the manifesto [78] are related more to managerial and
social aspects of enterprise engineering, so we do not present them here.

31

4. Enterprise Engineering

Figure 4.5: Generic System Development Process as specified by the β-theory [88]

4.3.3 DEMO Diagrams

DEMO consists of 4 aspect models, which are tightly related by a common meta-model
(Figure 4.6):

Construction model (CM) — the most high-level model depicting transaction kinds,
their products and actor roles.

Process Model (PM) — this model brings details about the process consisting of co-
ordination acts causal relations.

Fact model (FM) — a structural model of products related to transactions and other
facts.

Action Model (AM) — a textual model containing detailed coordination and produc-
tion rules.

A detailed description of the diagrams is not the goal here, we refer the reader to the
bibliography and also teaching materials of the MI-MEP course. Some basics are also
explained in the respective chapters. Let us just comment that compared to e.g. UML
models (Section 3.6.1), we can observe tighter inter-relations between the models and a
careful complexity management (depicted by the size of compartments in Figure 4.6).
Most important, all the diagrams are mere views depicting a certain facet (fragment) of
the whole fact-based model. This enables to build tools with advanced verification and
auxiliary functions, which is an initiative that starts to take place in the community (see
Section 4.3.4).

Another remark should be given about the notion of process in DEMO. Although there
is a process-flow (workflow) happing in the end in an implementation, the models are not

32

4.3. The DEMO Methodology

Figure 4.6: Four aspect DEMO models (according to [26])

flow-based (as compared to e.g. BPMN, Section 3.6.2), but rather event-based, the events
being coordination facts that trigger successive acts. This conceptualisation enables to
express much more complex business rules, however it is challenging for comprehension,
especially by untrained stakeholders [263, 264].

4.3.4 Our Contribution and Applications

CIAO! Enterprise Engineering Network [93] was founded to gather the enterprise engin-
eering community. It currently consists of 13 institutes world-wide that share the vision
of enterprise engineering according to the manifesto [78] and committed themselves to
teaching, practice and research of the theories and methodologies. The focus spans from
management (e.g. University of St. Gallen), through conceptual modelling (e.g. Luxem-
bourg Institute of Science and Technology) to implementation (e.g. University of Antwerp
or University of Madeira), thus covering most of the domains depicted in Figure 3.1. As
such, CIAO!’s philosophy and approach is highly aligned with CCMi’s.

We have been active in several research topics:

• Applying the DEMO methodology for improving business process management (Sec-
tion 4.3.4.1)

• Using DEMO for Smart Contracts specification (Section 4.3.4.2)

33

4. Enterprise Engineering

• Execution of DEMO models (Section 5.1.2.1)

• Evolvability (Section 6.5)

• Applying enterprise engineering theories for component software systems design (Sec-
tion 6.5.1)

Apart from that, we have been using DEMO in our projects, such as the CTU data
warehouse [228], [265] and it has been also applied in students’ theses such as [229].

4.3.4.1 Applying the DEMO methodology for improving business process manage-
ment

The DEMO methodology not only offers modelling notations, but it also provides an
elaborated methodology for complexity management and ontological qualities (Section 4.3).
Along with others, we have shown that they can be used for improving current business
process management techniques and notations, in our case we performed a study in an
academic environment ([195], Chapter 16).

As BPMN is considered an industrial standard for business process modelling (Sec-
tion 3.6.2), we explored the possibilities of converting DEMO diagrams into BPMN. The
foundations were laid in successful master’s theses [264, 266]. In the end, we formulated
a unique method for lossless transformation of the complete DEMO transaction pattern
into BPMN diagrams ([196], Chapter 17). Although the resulting BPMN models are very
complex, as was discussed in [263], their completeness opens a way to bring the precision
of DEMO diagrams into BPMN. An automated transformation along with execution in a
BPMN engine are promising next steps with this respect.

The above research represents a “top-down” approach in business process management:
getting from conceptual models into execution (see also Section 5.1.1). Recently, also the
“bottom-up” approach is getting an attention. The rationale is that in enterprise practice,
the processes in operation usually diverge from their models, or the models had not been
elaborated at all [94]. Starting from analysing the existing processes in operation and then
applying enterprise engineering methods seems promising. We pursued this consideration
and shown in [197] that DEMO can be used along process mining techniques. This path
is now further pursued by Marek Skotnica in his PhD research.

Next, we have been also dealing with accessibility of DEMO for non-technical stakehol-
ders. Adam Žďára designed and implemented interactive visualisations of DEMO models
for managers in his master’s thesis [230] and Petr Nymsa proposed managerial reports
above DEMO in his bachelor’s thesis [267].

4.3.4.2 Using DEMO for Smart Contracts specification

This side (but promising) research explores a potential of combining Block Chain techno-
logies together with DEMO. The core is the master’s thesis of Barbora Hornáčková [198]
supervised by Marek Skotnica. They showed that DEMO transactions may serve as a

34

4.4. Business Object Relation Modelling

promising higher-level description language for Smart Contracts. A paper summarising
the results was presented at the Enterprise Engineering Working Conference (EEWC) in
June 2018 and it raised an attention in the community.

4.4 Business Object Relation Modelling

Business Object Relation Modelling (BORM) is a complex method for analysis and design
of object-oriented systems [95]. It consists of several consequential stages that gradually
evolve the design of the system towards its implementation. The development of this
method started at the Loughborough University in 1993 as a unified approach to business
and IT systems modelling based upon the pure object-oriented paradigm inspired by pro-
gramming languages such as Smalltalk. Its further development has been carried out with
the support of Deloitte Central Europe and it became a practically-applied method ever
since [95] in numerous large projects in Deloitte Consulting [96], urban planning [97, 98]
and others such as: [99]

• the identification of business processes in Prague city hospitals,

• the modelling of properties necessary for the general agricultural commodities whole-
sale sector in the Central European region,

• business process re-engineering in the electricity supply industry,

• business process re-engineering for a telecommunication network management in the
Central European region.

4.4.1 The Object-Oriented Paradigm Alignment

Business Object Relation Modelling is based on the pure object-oriented paradigm. This
paradigm is an antropomorphic approach to conceptualisation of structure and behaviour
of systems, mostly exercised in the software programming and analysis (Section 7.2). The
paradigm’s central concepts are objects and message sending (Section 7.2). Similarly,
BORM focuses on communication between the stakeholders (called participants) and hiding
of the state-process inside them.

4.4.2 BORM Object Behaviour Analysis

The initial stage of BORM is called Object Behaviour Analysis (OBA). It focuses on mo-
delling the objects’ behaviour in the designed IT system, a.k.a. the process analysis [99].

The BORM OBA method is based on the pure object-oriented paradigm described
above. The central role is given to participants, being the objects as opposed to “process-
flow” notion of flowchart-based techniques such as EPCs, BPMN, UML activity diagrams
etc. These methods are based on creating one continuous process flow; Boundaries in the

35

4. Enterprise Engineering

Figure 4.7: A sample BORM Object Relation Diagram.

form of swim lanes can be crossed by the flow, which clearly violates the OO paradigm.
In BORM, a participant represents an autonomous object with its own encapsulated inner
process flow. Participants are connected just by communications, i.e. sending messages
through input and output data flows.

4.4.3 Process models in OBA

The central diagram of OBA is the Object Relation Diagram (ORD) that captures a
behaviour and a communication among objects in the organisation. Figure 4.7 presents a
sample ORD. Details of the notation and our modifications to the original one are described
in the respective chapters mentioned below.

4.4.4 Our Contribution and Applications

The author was working in Deloitte consulting 2004-2008 and during these years applied
BORM on projects for Czech Post and Czech Airlines [199] and was also a member of
the Craft.CASE [100] consulting team in its beginnings. Unfortunately, due to the license
politic, Craft.CASE stopped to be a choice for conceptual modelling platform at some
point, which resulted in own efforts described in Chapter 8.

The core research on BORM in CCMi was the research performed together with Martin
Podloucký during his (unfinished) PhD studies. Our goal was to bring sound formal found-
ations for BORM ORD, which were missing, along with settling execution semantics. As
BORM originated as a business-oriented method, one of its main goals was to be simple,
which brought a certain degree of vagueness. In our research, we strived to maintain this
simplicity, while amending some of the behavioural shortcomings.

The first work [190] (Chapter 13) was focused on identifying the issues in BORM ORD
semantics and execution, mostly related to decision making and parallelism. We formulated

36

4.5. MEMO

the Simultaneity Principle and the Dependency principle and introduced Input and Output
Conditions to effectively address the problems.

Next, in [200] (Chapter 14), we formulated the Prefix Machine, a formalism bringing
precise behaviour specification of ORD. Apart from bringing a formal specification, the
Prefix Machine has also other interesting possibilities for process analysis. Using BORM
in simulation models was then explored by Veronika Larionová in her bachelor thesis [231].

Realising that modularity and composition are key ingredients in managing complexity1,
we then revisited the topic of composition in ORD in [192] (Chapter 15) and formulated
the concepts of horizontal and vertical decomposition (Figure 3.10).

We then returned to the topic of execution semantics and using the Prefix Machine, we
formulated a transformation from Coloured Petri Nets into ORD to ground the execution
semantics in an existing formal apparatus. Unfortunately, the work has not been finished
due to leave of Podloucký and prevailing efforts in other areas (such as Chapter 4 and
Chapter 8). However, the research may be revived now in the cooperation with the Uni-
versity of Antwerp, as BORM ORD seems like a possible suitable notation for modelling
Normalized Systems behaviour (Chapter 6).

Last but not least, we also put a considerable effort in BORM tooling support, which
is described in Chapter 8.

4.5 MEMO

Ulrich Frank and his group at The University of Duisburg-Essen developed a multi-perspec-
tive enterprise modelling conceptual framework together with a programming languages
called MEMO [101]. It differentiates three so called perspectives — strategy, organization
and information system — each of which is structured by four aspects: structure, process,
resources, goals (Figure 4.8).

MEMO offers three specialized languages that support the construction of models:
The strategy modelling language (MEMO-SML) for strategic planning. The organization
modelling language (MEMO-OrgML) serves to model a firm’s organization, including busi-
ness processes and resources. To allow for the specification of information as a foundation
of database design or software development in general, MEMO also includes an object-
oriented modelling language (MEMO-OML) [101].

MEMO’s way of working is through specification of multiple layers of domain-specific
modelling languages (DSML) (Figure 4.9) and it exhibits several characteristics:

Flexible Number of Classification Levels — MEMO can model an arbitrary level of
classification levels, as is shown in Figure 4.9.

Relaxing the Rigid Instantiation/Specialization Dichotomy — Instantiation can
naturally happen at any level of specialisation (dark objects in Figure 4.9).

1More in Chapter 6.

37

4. Enterprise Engineering

Figure 4.8: MEMO’s multi-perspective structre [101]

No Strict Separation of Language Levels — MEMO allows a versatile conception of
(meta) models that allow classes on different classification levels to be part of one
model. This enables to utter statements such as “Cross Racer R3 is one of our most
successful products”, while “Cross Racer R3” represents a concept on a different level
than ”Product”.

By committing to such a conceptualisation principles, MEMO effectively solves com-
plexities related to multi-level conceptual modelling that has been traditionally addressed
by powertypes [103, 104]. However, MEMO approach does not take into account subtler
ontological distinctions and aspects, as can be seen from extensive work of Carvalho et
al. [105, 106, 107, 108, 109].

As for the implementation of MEMO, the first version of MEMO Tools for modelling,
simulation and execution was implemented in Smalltalk (VisualWorks). In 2003 it was
reimplemented in Java Eclipse, which enabled better meta-modelling facilities through use
of XMF (executable Metamodeling Facility [110, 111]), which enables execution of models
(Section 5.1.2). A subset of MEMO was also implemented in the ADOxx platform [112].

38

4.5. MEMO

Figure 4.9: An example of a MEMO hierarchy of languages [102]

39

Chapter 5

The Relation of Conceptualisation and
Implementation

There are two types of the relation of conceptualisation and implementation:

1. The relation of conceptual ontological models and their implementation (Section 5.1).

2. Conceptualisation in the implementation itself (Section 5.2).

5.1 The Relation of Conceptual Ontological Models and
Their Implementation

Realising the essence of the relation lies in realising the distinction between ontology (or
“natural sciences”) and design science, which was explained in Section 4.1 — While onto-
logy deals with “what is”, i.e. things that exist (Section 3.4), design science is a discipline
of creating artefacts, i.e. things to be. This also comes to a frequent question of the relation
between conceptual modelling and ontologies. The answer is that conceptual modelling is
a broader term: we may model things that are, i.e. we do a work of an ontologist, or we
model the artefacts to be created, i.e. a designer’s work. In enterprise engineering, both are
usually performed: first we need to describe the current state — usually called the “as-is
model” — and then we proceed to reengineering, supportive technical systems design, etc.,
where “to-be” models are created.

In harmonising enterprise and software engineering, the study of the relation and the
supporting methods is an important topic. We can observe two major approaches taken:

1. Model-Driven Engineering

2. Model Execution

41

5. The Relation of Conceptualisation and Implementation

5.1.1 Model-Driven Engineering

Model-driven engineering denotes efforts to elevate the level of abstraction used to
develop software [113]. One typical effort was the development of computer-aided software
engineering (CASE) in 1980s, which focused on developing software methods and tools that
enabled developers to express their designs in terms of conceptual models, typically dia-
grams [114]. CASE tools however did not generally succeed, mostly due to a big semantic
gap between the conceptual and technical levels [113].

Today’s model-driven engineering efforts are mostly framed by the Model Driven Ar-
chitecture (MDA)1, being a framework for software development defined by the Object
Management Group (OMG). The key to MDA is the importance of models in the soft-
ware development process. Within MDA, the software development process is driven by
the activity of modelling the software system [115], however, compared to the CASE ap-
proach, this happens at several interconnected levels [116], which overcomes the semantic
gap between the conceptual and technical levels [117]:

Computation Independent Model (CIM) — A model describing the environment,
business processes and business requirements for the product. This model is the most
abstract specification dealing with the real business, abstracting from any concrete
and specific implementation and technologies. The goal of the model is to capture
what is expected of the product. CIM is usually referred to as the domain model.

Platform Independent Model (PIM) — A model describing the requirements and
specification of the system. The model usually consists of conceptual data mod-
els, use case models, description of system functions and processes. However, all the
requirements are defined in a general form abstracting from a concrete technologies
and platform. The goal of the model is to define the system functions and behaviour
that can be applied to various technologies, platforms and environments. PIM is
usually referred to as the conceptual2 or analytical model.

Platform Specific Model (PSM) — A model describing the design of the system for a
specific platform. This model captures the way how the system requirements defined
in the PIM are realized using the specific technologies. Therefore, platform specific
tools, constructs, libraries and objects can be used in the model. PSM is usually
referred to as the logical model of the system and provides visualisation and docu-
mentation of the final source code.

Implementation Specific Model (ISM) — This level of abstraction is the actual code
of the system with its implementation documentation (JavaDoc, PHPDoc, etc.).
Sometimes ISM is also referred to as the physical model.

1Syntactically, a hyphen between Model-Driven is common. However, in OMG materials, the hyphen
is not present.

2The attentive reader has probably realised that this name is not fully ontologically correct, as all the
four models are in their essence conceptual models according to the definition (Chapter 3).

42

5.1. The Relation of Conceptual Ontological Models and Their Implementation

The relation between the models is shown in Figure 5.1. The software development
method based on MDA is called the Model-Driven Development (MDD).

Figure 5.1: Models of MDA [117]

A similar approach towards more fine-grained concepts transition from the conceptual
level to an implementation is exercised in BORM (Figure 5.23).

An interesting solution is exhibited by the Normalised Systems Expanders (Chapter 6).
While originally not focused on modelling, the NS Descriptors represent textual models
in the end4 and a code is being generated from them. The semantic gap is overcome in
this case by generating NS Elements, higher-level components forming together a coherent
class of applications — client-server CRUD applications — and also by introducing carefully
designed customisations mechanism of the generated code.

5.1.1.1 Our Contribution and Applications

The author started to tackle this topic in 2006 together with Marek Ṕıcka; In [193], we
elaborated on the BORM method (Section 4.4) and the transition of its concepts, as the
schema in Figure 5.2 had not been elaborated into an engineering method. The initial
ideas were then elaborated together with Petr Špĺıchal in 2011 [201], where we presented
our achievements on method of transformations of the models between various phases of
the engineering process. We studied BORM’s models along with their meta-model. UML
(Section 3.6.1) was selected as the output of the transformation.

3Here, the term “conceptual modeling” is also used in its confusing narrow sense.
4A new graphical NS modeller is currently being developed — Section 6.5

43

5. The Relation of Conceptualisation and Implementation

Figure 5.2: BORM: Evolution of concepts [95]

In the traditional MDA, UML models are typically used for PIM modelling. As ex-
plained in Section 3.6.1 and Section 3.4.1, OntoUML exhibits higher ontological conceptual
modelling qualities. This is why we started a research on using OntoUML in MDE-based
software engineering. Together with Zdeněk Rybola, we elaborated a method for trans-
formation of OntoUML models into software-engineering models — UML in it’s narrow
sense (see Section 3.6.1).

The rationale of using OntoUML for MDD together with principles of transformation of
OntoUML into UML were formulated by the author and introduced in [202] (Chapter 12).
Zdeněk Rybola then continued with the author by elaborating a 2-step approach: (i) trans-
formation of OntoUML into UML and (ii) transformation of UML into a relational database
schema [203] consisting of transformation of rigid Sortal types in general [204], Kinds and
Subkinds specifically [205] and anti-rigid Sortal types [206]. A comprehensive example
can be found in [207]. The above-mentioned work is summarised in Rybola’s dissertation
thesis [117]. Next, elaborations about optimisation of the transformation were published
in [208].

Additionaly, Rybola and Richta elaborated the third step, the transformation of the

44

5.1. The Relation of Conceptual Ontological Models and Their Implementation

PSM with the additional constraints into the ISM to define the constructs in the database
to hold the data and maintain the constraints [118, 119, 118, 120, 121, 122, 117].

A contribution to this topic is also the bachelor’s thesis [232], in which Matúš Vološin
implemented generation of a Smalltalk code from an OntoUML model. Similarly, in a
more detailed way, Dan Homola elaborated a transformation from OntoUML into a general
object language and then into C# in his master’s thesis [233].

5.1.2 Model Execution

In the end of Section 4.3.2.3 we mentioned that DEMO models can be directly executed,
which is thanks to their high expressiveness. Kervel and ForMetis Consultants, GmBh, a
Dutch company, developed DEMO Engine, an interpreter of DEMO models. The formal
foundations were laid in [123] and the concept was successfully implemented in enterprise
practice [90, 91, 124].

Another example of direct models execution is MEMO (Section 4.5). Its current im-
plementation is based on XMF, a language execution engine featuring a metamodel called
XCore [111]. Ulrich Frank explains: “XMF allows access to and modification of its own
specification and its runtime system. Hence, there is no clear distinction between the lan-
guage and a corresponding meta-language, and therefore XMF is reflective. Furthermore,
it includes tools for building compilers for further languages. That makes XMF a meta-
programming facility that allows execution of code written in different languages in the
same runtime system.” [102]

5.1.2.1 Our Contribution and Applications

The DEMO Engine originally supported the Construction and Process Models (Figure 4.6).
Marek Skotnica pursued in his bachelor’s [234] and master’s theses [235] implementation
of the Action Model rules.

We have been also applying enterprise engineering theories in software engineering in
other ways. COPS GmBh is an Austrian-Czech software development company that de-
velops complex financial software systems (“corima” being its flagship product). Ondřej
Dvořák developed a confirmation engine according to ψ-theory [209] that has been imple-
mented in the company.

While diving deeper into the topic of DEMO models executions, we realised a formal
gap between the ontological level of DEMO models and an execution of them. While
ontological models do not assume any realisation nor implementation (Section 4.3.2.2,
Section 4.3.2.3), the execution of them materialises both. This can be related to a situation
of a computation, where there is a mathematical formula and then a computer programme
doing the computation. The gap is filled-in by a formal machine — e.g. the Turing Machine
(Section 3.5). Similarly, we strived to fill-in the gap between the DEMO models and their
execution with Marek Skotnica, resulting in the concept of the DEMO Machine [210], [211].

As industrial-grade BPMN/BPEL execution engines are available (see also Section 8.2),
we elaborated a method for transformation of DEMO models into BPMN, which is de-

45

5. The Relation of Conceptualisation and Implementation

scribed in Section 4.3.4.1. Another work on transformation of DEMO models into an
exectuable model is the master’s thesis of Vejražková [61], who proposed a method of par-
tial transformation of DEMO models into Petri Nets. Apart from that, her work contains
a comparison of BORM, BPMN and DEMO.

Next, we also explored the other way — a tight integration of a software code and its
conceptual model. Marek Suchánek in his master’s thesis [236] developed a Haskell library
enabling to express, visualise and verify conceptual models directly in the code, which
represents a “bottom-up” approach.

5.2 Conceptualisation in Implementation

If we look back at the semiotic triangle (Figure 3.2), we can see that in case of software
coding (being one of the key activities in implementation), the sign is the code. There is
a two-way relation between implementation concepts and their encoding:

1. Creating a code as a process of expressing the (executable) conceptualisation.

2. Perceiving a code in order to create a conceptualisation in the mind (understanding
the pragmatics of the code, Figure 3.4). We will speak about two situations:

a) Interactive, live development

b) Reverse engineering

While the first point has been elaborated in theory and practice of programming very
intensively in the form of programming languages development and support tooling for code
generation, the second point seems to be somehow neglected, especially the interactive
development. Maintaining a strong conceptual and cognitive bound with the code has
been a tradition of pure object-oriented technologies (Section 7.2) and also in functional
programming (Section 7.3).

5.2.1 Interactive Development

A person very active in the area of interactive code perception is Bret Victor, an author
of suggestive and mind-opening talks [125, 126, 127, 128], where he presents deficiencies,
principles and also several solutions contributing to the problem (Figure 5.3). His principles
inspired authors of interactive programming tools such as LightTable or ProtoREPL [129].
In his talk “The Future of Programming” [130], Victor also shows that there had appeared
very progressive approaches and technologies in the past decades that got somehow lost in
the history5. A case of one such “almost lost” technology is the Smalltalk programming
language and its unique environment (Section 7.2). We describe some of the interactive
tools in Smalltalk in Section 7.2.1.

5Because history is written by money and marketing, not by excellence (author).

46

5.2. Conceptualisation in Implementation

Figure 5.3: A dynamic correspondence between the code and its effect [126]

5.2.2 Reverse Engineering

Reverse engineering is “the process of analyzing the subject systems to

• Identify the system’s components and their interrelationships and

• Create the representations of the systems in another form or at higher level of ab-
straction.” [131]

There are several approaches possible [132, 133]:

Static Analysis based on structural information of the code.

Dynamic analysis uses execution trace of the programme.

Hybrid — the combination of static and dynamic.

An example of a static analysis approach is MOOSE, an extensible language-independent
environment for reengineering object-oriented systems with the following characterist-
ics: [134]

• It supports reengineering of applications developed in different object-oriented lan-
guages, as its core model is language independent which, if needed, can be customized
to incorporate language specific features.

47

5. The Relation of Conceptualisation and Implementation

• It is extensible. New entities such as measurements or special-purpose relationships
can be added to the environment.

• It supports reengineering by providing facilities for analysing and storing multiple
models, for refactoring and by providing support for analysis methods such as metrics
and the inference of properties of source code entities.

• Its implementation being fully object-oriented, MOOSE provides a complete descrip-
tion of the meta-model entities in terms of objects that are easily parametrised and/or
extended.

MOOSE is built entirely in the Pharo programming environment (Section 7.2.1). It
uses the Roassal visualisation library [135], which enables dynamic visualisations of the
analysed code (Figure 5.4).

Figure 5.4: An example of a static code analysis in MOOSE [136]

5.2.3 Our Contribution and Applications

Veronika Larionova performed an extensive review of reverse engineering approaches and
tools in her master’s thesis [237] that is actually an exploration of possibilities for rejuvena-
tion of applications by expanding Normalised Systems based on legacy code (see Chapter 6).
This challenging topic will be also pursued in PhD research of Jan Blizničenko.

48

5.2. Conceptualisation in Implementation

Peter Uhnák developed a dynamic analysis tool for the Pharo programming environ-
ment [212]. Leveraging Pharo MetaLinks, it enables an unobtrusive analysis of the running
code and generates instance diagrams (Figure 5.5). The motivation for developing the tool
was helping to understand complex code, in this case Spec, Pharo’s graphical user interface
library.

Figure 5.5: An Instance Diagram with an unexpected link from SpecWrapper to Window-
Model

49

Chapter 6

Evolvability and Normalized Systems

6.1 Introduction

In the first decades of the 21st century, organizations are operating in hypercompetitive
environments, constantly monitoring their environment for new business opportunities and
striving for customer satisfaction by delivering products and services of unprecedented
quality. This has resulted in enterprises that are faced with challenges such as increasing
complexity and increasing change. These challenges require high evolvability, agility or
flexibility of the organization and its information systems. However, current methodologies
for the development of information systems struggle to meet this demand for flexibility [137,
138]1.

6.2 Principles

The theoretical framework of Normalized Systems is based on systems stability theory and
entropy [139, 140]. It applies an analysis of the modular structure of software architectures
of information systems. This modular structure consists of constructs in programming
languages such as procedures, functions, classes, services and, most recently, aspects. The
framework consists firstly of 4 principles, which indicate when so-called combinatorial
effects occur in a modular structure. A combinatorial effect exists when the size of the
impact of a change to a software architecture is dependent on the size of the information
system [137, 138]. Combinatorial effects therefore represent a particularly harmful kind of
coupling in the software architecture, as such effects cause information systems to become
increasingly difficult to maintain during their life cycle, until they cannot be maintained
any more in a cost-effective way and ultimately have to be replaced by an information
system with similar functionality. In other words, combinatorial effects explain why current

1Most of the text in Section 6.1 to Section 6.4 was used from unofficial materials provided by Jan
Verelst, with his kind permission.

51

6. Evolvability and Normalized Systems

software architectures are inherently limited in their flexibility. Furthermore, they also have
highly a negative effect on other quality factors such as reusability.

6.3 Elements

The goal is therefore to build information systems free from combinatorial effects. To that
end, the theoretical framework contains 5 elements, with which the basic functionality of
virtually all information systems can be built. These elements are [139]:

• a data element for storing data,

• an action element for the execution of a calculation or algorithm,

• a workflow element for the execution of sequences of action elements,

• a connector element for input and output functionality, and

• a trigger element for time- or status-based execution of action elements.

An application, then, can be built consisting of N instances of these elements. These
instances are parametrised copies of the 5 elements, and can therefore be built using a
kind of code generation, which is called “element expansion”. As it can be proven that
these elements do not contain combinatorial effects, it is also guaranteed that the resulting
application is free from combinatorial effects, and therefore guaranteed to be more evolvable
and reusable than current information systems [139, 141].

The Normalized Systems theoretical framework applies to any system consisting of mo-
dular structures and is therefore completely independent of specific programming languages
and the use of specific packages or frameworks. Hence, the elements can in principle be
built in any combination of technologies (including programming languages, packages and
frameworks). The essence of the framework remains that certain “errors against evolvabi-
lity”, i.e. combinatorial effects, systematically need to be removed from modular structures
which results in “evolvable modularity”, irrespective of the particular language or frame-
work being used.

6.4 Applications and Research

The practical relevance of NS has been demonstrated by NSX, a spin-off company of the
University in Antwerp that built so-called NS Expanders — a system that generates
normalized client-server web applications with the structure described above. The code
is generated (expanded) from NS Descriptors containing the structural and behavioural
specification. Specific functionality currently not possible to express in specifications is
then hard-coded as so-called customisations. The Expanders have been already applied
in tens of mission-critical complex business software systems.

52

6.5. Our Contribution and Applications

Additionally, a research on Normalized Systems is performed at the department of
Management Information Systems of the University of Antwerp. This research aims at,
for example, advancing the theoretical framework at the software architecture level, as
well as the application of the Normalized Systems principles to business processes and
organizations [142, 143, 144, 145, 146]. The goal is to strive for “evolvable modular”
organisations, which can satisfy the ever growing demand for flexibility.

6.5 Our Contribution and Applications

We started cooperation with the University in Antwerp in 2012. The first achievement
became the bachelor’s thesis of Kolař́ık [238], who explored the idea of applying OntoUML
(Section 3.4.1) for conceptual modelling of Normalized Systems. The promising approach
took some time to settle and it is now going to be further pursued in the PhD study of
Marek Suchánek.

Next, Janeček explored in his master’s thesis options for alternative database backends
for the NS Expanders [268].

Currently, there are several joint research topics and projects we pursue together with
the University in Antwerp:

1. PhD research of Ondřej Dvořák focused on component software systems design (Sec-
tion 6.5.1)

2. PhD research of Marek Suchánek focused on conceptual modelling of precise technical
systems (Section 6.5.2)

3. Evolvability of documents (Section 6.5.3)

4. PhD research of Vojtěch Knaisl focused on applying functional paradigm and func-
tional programming languages for expanding of server-side normalized web applica-
tions and PhD research of Jan Slifka focused on applying functional paradigm and
functional programming languages for expanding of client-side normalized web ap-
plications (Section 6.5.4)

5. Building NS Conceptual modeller by Peter Uhnák (Section 6.5.5)

Let us now briefly describe these projects.

6.5.1 Component Software Systems Design

In the PhD research by Dvořák, we try to get nearer McIllroy’ vision of software assembling
instead of programming it. He dreamed about components organized into standardised
libraries:

“. . . I would like to see components become a dignified branch of software engineering.
I would like to see standard catalogues of routines, classified by precision, robustness,

53

6. Evolvability and Normalized Systems

time-space performance, size limits, and binding time of parameters. I would like to apply
routines in the catalogue to any one of a large class of often quite different machines,
without too much pain. . . ” [147]

We apply enterprise engineering theories, namely τ -theory and β-theory (Section 4.2)
to achieve a controlled engineering approach for managing the relationship between sys-
tem function and its construction (F/C), thus facilitating changing technology challenges
more rigorously and efficiently. We formulated the notion of Affordance-Driven Assembling
(ADA) and its simplified version Objectified Affordance-Driven Assembling (O-ADA),
which together with the so-called Semantic Descriptions represent a software-engineering
approach enabling reasoning about users and their purposes versus components and their
properties. Our experiments show that engineering methods based on these theories may
increase reusability of code and improve important metrics such as costs, time reduction
and error rate decrease, especially when switching to a new technology. [213]

We approach this goal by exploring the relationship between F/C. In particular, we ap-
ply a software design approach to build component-based systems by clearly defining the
function, construction, and F/C relationship of components. After the first formalisation
steps and prototypes, we now work on a domain-specific language for semantic descrip-
tions, independent on a specific programming language, as well as on further evaluation in
practice.

As component-based software development poses also “Increase flexibility, decrease
usability” trade-off influencing the effectiveness of reusing artefacts [148], we addressed this
fundamental topic in our research. In [214], we explain that equally flexible components can
considerably differ in usability costs. Therefore, the architecture of components matters
to evaluate final cost on building software. We proposed a model of building components
that can help to decrease costs on software development, while providing a demanded level
of flexibility.

6.5.2 Conceptual Modelling of Precise Technical Systems

This research embodies the ultimate vision of CCMi depicted in Figure 3.1, because its
ambition is to connect the “ultimate ends” — a pure (i.e. with no technical details) business
conceptual model up to the technical specification.

The first exploratory work was done by Marek Suchánek in his master’s thesis [236],
in which we went “bottom-up” by creating domain annotations in code (namely Haskell)
thus enabling business domain modelling being tightly bound to code.

In our collaboration with the University of Antwerp, we now pursue the “top-down”
approach, i.e. designing a set of interconnected models from the domain-based down to
the implementation-based, similarly to MDE (Section 5.1.1), but encompassing not only a
structure, but also a behaviour. The first exploration of this approach was the mentioned
master’s thesis of Kolař́ık [238]. The topic will be now further pursued by Marek Suchánek
in his double-degree PhD research.

54

6.5. Our Contribution and Applications

6.5.3 Evolvability of Documents

This side project builds on the preliminary work of Oorts [149], who applied Normalized
Systems theories in the domain of document management, namely managing a university
curriculum — study program designs exhibit by their nature large amounts of dependencies
due to constraints of prerequisite courses, courses being taught in several study programs,
etc. These characteristics make managing and changing study programs very complex,
on occasion even preventing study program changes. In his work, he brought solutions
to these challenges based on the concept of modular and evolvable system design. Basic
engineering concepts such as modularity, coupling and cohesion were used to explain and
illustrate the evolvability and traceability of study programs.

Our motivation is to generalise Oorts’ approach and design a technical solution for
managing course knowledge in an evolvable manner. We first focused on making a proper
domain ontology of modular documents [215]. Our next step is to design a prototype
solution for managing the OntoUML.org portal contents [150].

6.5.4 Applying the Functional Paradigm for the Normalized Systems
Expanders

Functional programming and functional languages are traditional approaches with known
benefits (Section 7.3). Today, we witness a renaissance of them — new languages and solu-
tions for building high-quality enterprise software systems are emerging and practically
every modern programming language offers at least some support for functional program-
ming. Their superiority to the imperative and object-oriented programming in terms of
testability, parallelization, reusability and provability along with high expressiveness are
the motivation for exploring what they can bring with combination of NS. The hypo-
thesis is they support NS principles in a better way that other programming approaches.
As such, the expanded code may exhibit better qualities itself and with the respect to
customisations.

The PhD research of Knaisl that starts in September 2018 is focused on exploring the
functional paradigm for typical server-side tasks like data processing, data exchange with
other systems, CRUD, suitable models of persistence, etc.

The parallel PhD research of Slifka (also starting September 2018) addresses the chal-
lenges of the client side: interactive user interface, DOM manipulations traditionally com-
plicated by incompatibility of different web browsers and precipitous development of web
technologies — browsers, standards and especially libraries and frameworks, again with
respect to code qualities and customisation, again with respect to code qualities and cus-
tomisations.

6.5.5 Normalized Systems Conceptual Modeller

The first version of NS Descriptors format was a textual technical language [139] that
was not easily accessible for non-programmers. Because of that, the Prime Radiant was

55

6. Evolvability and Normalized Systems

developed, being a web-application (a NS system itself) for more user-friendly creation of
NS Descriptors [151]. While being more user-friendly, the Prime Radiant is effectively a
graphical user interface for NS Descriptors, thus still being a challenge for less technical
analysts.

The NS Conceptual Modeller is a joint project of the University of Antwerp, NSX and
CCMi focused on developing a full-featured CASE tool providing visual diagrams, verific-
ations and generation of NS Descriptors. The solution is based on our open conceptual
modelling platform, OpenPonk (Section 8.3.2). Most of the current work was done by
Peter Uhnák in his master’s thesis [239] and he continues his work in NSX now.

56

Chapter 7

Software Implementation

Enterprise engineering sees implementation as a general means of “giving life” to the de-
signed conceptual model — there is a multitude of possible implementations spanning from
pure human involvement via primitive technical systems up to modern IT. Figure 3.1 de-
picts some of the implementation concepts. We will now elaborate on “materialisation” of
conceptual models in the form of software artefacts.

7.1 The Discipline of Software Engineering

Before we start speaking about software implementation, we should root it in the discipline
of software engineering.

The IEEE authority defines software engineering as “the systematic application of sci-
entific and technological knowledge, methods, and experience to the design, implementa-
tion, testing, and documentation of software” [152].

This definition names the most important activities and phases of which we deal with
implementation and it also expresses our ultimate goal: systematic application of scientific
and technological knowledge and methods, in our case through rigorous application of
conceptual modelling (Section 3.3) in the context of enterprise engineering (Chapter 4).

What does it mean to look at software implementation from the perspective of concep-
tual modelling? In our approach, it means looking at the code literally as at a conceptual
model. Technically, programme code is a textual model1 specifying a conceptualisation of
structures and computation [188]:

• For the imperative programming paradigm, the key concept is instruction.

• For the structured (imperative) programming paradigm, the key concepts are also
sequence, selection and iteration.

1There are even approaches of graphical programming languages, such as Aardappel, LabVIEW or
GRAPNEL, however, they have not achieved much popularity.

57

7. Software Implementation

• In the modular programming, the concept of module is introduced.

• In the object-oriented paradigm we speak about objects, messages, attributes, classes,
etc.

• For the case of functional paradigm, function and their composition are key concepts.

• In the logical programming paradigm, predicates are the key concept.

From the conceptual point, software development means formulating terms and their
relations in the selected conceptualisation (programming paradigm). We abstract here from
topics such as time and space complexity, technical limits and failures and other low-level
concerns. Instead, we focus on qualities such as expressiveness, evolvability (Chapter 6),
understandability, soundness, coherence and concinnity.

Let us now briefly introduce the paradigms we are dealing with in our research from
this point.

7.2 The Object-Oriented Paradigm

The object-oriented (OO) paradigm originated in 1960s for programming simulations (the
Simula programming language). It influenced many today’s object-oriented languages,
however in its pure form it was mainly developed in XEROX Parc in 1970s and 1980s
by the team of Alan Kay, who, being a biologist, based OO on the conceptual model of
living organisms — a notion of an autonomous object with some internal structure and
behaviour communicating with the outer environment through message sending [153]
(Figure 7.1). Today, the object-oriented paradigm is blurred by a lot of hybrid concepts
causing confusion, however, this is the true essence of OO, as meant by Alan Kay, who
confirmed this e.g. in 2003: “OOP to me means only messaging, local retention and pro-
tection and hiding of state-process, and extreme late-binding of all things.” [154]. This
conceptualisation enables to abstract out “technicalities”2, which is why pure OO is one
of the corner stones of implementation explorations in CCMi.

While there are tens of hybrid object-oriented languages (i.e. imperative languages
with object features), languages that can be considered pure are few – Smalltalk [155]
and Eiffel [156] being the most well-known representatives, while Smalltalk was developed
in XEROX Parc along with the paradigm and technical implementation. Thanks to its
purity, the language is very simple, the syntax fits literally on a post card (Figure 7.2).

It is probably not by chance that the community around pure object-oriented tech-
nologies has traditionally paid a lot of attention to conceptual and cognitive aspects of
programming (Section 5.2). Throughout the decades, the live coding principles and tools
have been developed and improved. The first Smalltalk implementation in XEROX Parc
was already supporting live coding, debugging and inspecting objects on-the-fly [153]. Suc-
cessive implementations such as Visual Age for Smalltalk by IBM or VisualWorks Smalltalk

2Which come from legacy, demands for high performance, systems integration and other aspects.

58

7.2. The Object-Oriented Paradigm

Method
M

e
th

o
d

M
e
th

o
d

Method

M
e
th

o
d

M
e
th

o
d

Attributes

and inner stateful

behaviour
Message

Behavio
ur

Response

Figure 7.1: The object-oriented paradigm by Kay (inspired by [153])

Figure 7.2: The syntax of Smalltalk fits on a post card [157]

pushed these possibilities further. Visual Works is today the major commercial Smalltalk
implementation, while Pharo stands for the major open-source implementation.

7.2.1 Pharo

Pharo is a pure object-oriented programming language and a powerful environment, fo-
cused on simplicity and immediate feedback [158], thus enabling interactive live develop-
ment (see Section 5.2.1). The “Glamorous Toolkit” developed under the MOOSE project
(Section 5.2.2) provides “moldable” tools that have been integrated into the Pharo base:

Moldable Inspector further extends possibilities of traditional Smalltalk object Inspector
by providing intelligent views based on content [159, 160]. Moreover, extending the

59

7. Software Implementation

inspector by custom views is possible (Figure 7.3).

Moldable Spotter enables quick search of concepts in the system, similarly to Spotter
on Mac OS. It can be also easily extended to search user-defined objects. Using an
internal DSL, the authors have created 100 custom searches for 30 different data
types. On average, extending Moldable Spotter with a new type of search required
8 lines of code [161].

Moldable Debugger — The traditional Smalltalk debugger enables live interaction with
the system, i.e. debugging on-the-fly, often without restarting the running code. The
Moldable Debugger goes further by enabling developers to create specific debuggers
with custom debugging operations for stepping through the execution and custom
user interfaces [162], Figure 7.4.

Figure 7.3: Moldable Inspector with several views (screenshot from OpenPonk, Sec-
tion 8.3.2). The Generalisation view is custom.

7.2.2 Our Contribution and Applications

We have been utilising Pharo in teaching of pure object-oriented paradigm (BI-OMO,
BI-OOP) and also in projects:

• Vulnerability assessment tool — protection of cultural heritage against floods by the
author [216]

60

7.2. The Object-Oriented Paradigm

Figure 7.4: A domain-specific debugger for Glamour: (1) visualisation showing the model
of the browser currently constructed [162].

• DayWork.cz — a short-term job portal; the backend was developed in Pharo by
Michal Balda [240] and then continued by Jan Blizničenko.

• Live visualisation of epidemiological models — implementation of modular models
for the Kendrick epidemiological modeller backend [241], [217]

• OpenPonk — an open platform for conceputal modelling (Section 8.3.2)

• Runtime Object Structure Visualisations (Section 5.2.3)

We are active members of Pharo Consortium — a body of legal entities, who use and
contribute to Pharo [163]. Exceptionally active has been CCMi member Peter Uhnák, the

61

7. Software Implementation

chief programmer of OpenPonk (Section 8.3.2), who contributed to the Roassal visualisa-
tion library used to provide the diagramming support and the Spec UI framework. Apart
from more than 10 versatile libraries, his contributions include code contributions, debug-
ging, detailed bug reports, extensive discussions, and providing help to new and existing
developers alike (Pharo mailing list (2000+ mails), StackOverflow (top 5% contributor to
UML, top 10% to Smalltalk and Pharo)) [239].

7.3 The Functional Paradigm

“Functional programming (FP) is so called because a program consists entirely of functions.
. . . Typically the main function is defined in terms of other functions, which in turn are
defined in terms of still more functions, until at the bottom level the functions are language
primitives.” [164]

“The special characteristics and advantages of functional programming are often sum-
med up more or less as follows. Functional programs contain no assignment statements, so
variables, once given a value, never change. More generally, functional programs contain no
side-effects of any kind. A function call can have no effect other than to compute its result.
This eliminates a major source of bugs, and also makes the order of execution irrelevant
— since no side-effect can change the value of an expression, it can be evaluated at any
time. This relieves the programmer of the burden of prescribing the flow of control (and
enables a compiler/interpreter to do advanced optimisations — author). Since expressions
can be evaluated at any time, one can freely replace variables by their values and vice versa
— that is, programs are ‘referentially transparent’. This freedom helps make functional
programs more tractable mathematically than their conventional counterparts.” [164]

In these two paragraphs, Hughes explains the essence of the functional paradigm, an-
other programming approach focused on simplicity, conceptual purity and high practical
relevance.

7.3.1 Theoretical Foundations

As the the main principles of functional paradigm are discussed in [218] (Chapter 19), we
will not introduce them here.

7.3.2 Practical Relevance

Twenty five years after writing the fundamental paper “Why Functional Programming
Matters” [164], Hughes returns together with Hu and Wang to the topic and they evaluate
“How Functional Programming Mattered” [165] and they enthusiastically state: “Func-
tional programming is now at the forefront of a new generation of programming tech-
nologies, and enjoying increasing popularity and influence”. Observing the further rise
of functional programming languages and solutions, we can say that the trend gets even
stronger in the recent 3 years.

62

7.3. The Functional Paradigm

In several respects, the purely-functional system surpasses an object-oriented system,
as is explained in [219] (Chapter 18). On the other hand, key challenges of the functional
paradigm are:

• Side effects, such as disk reading and writing and user interactions.

• Modelling an order of operations.

• Modelling time in the system.

While these are exactly the strong points of OOP (Section 7.2), there are also ap-
proaches in FP addressing them:

1. Allowing side-effects in the system, thus allowing impure parts. This is the way of
Lisp or Clojure [166, 167, 168].

2. Using advanced functional abstractions — the Haskell programming language uses
various types of Monads that simulate impure behaviour in a pure way [169, 170, 171].

3. Introducing infinite streams through lazy evaluation and the abstractions of func-
tional reactive programming (see below).

7.3.3 Interactive Development

The functional programming practice typically also gives focus to live interactive develop-
ment to maintain the concept-sign correspondence (Section 5.2.1). This happens through
REPL (Read-Eval-Print-Loop) tools [172] available in FP implementations. They are tra-
ditionally command-line interactive tools, however modern REPLs can be built in the
programming environment (e.g. LightTable) and they can even support graphical output
(ProtoREPL [129], Figure 7.5).

At the same time, currently, pure object-oriented technologies seem to offer more im-
mersive interactive development experience3.

7.3.4 Challenges of FP in Software Engineering

Traditionally, functional programming had been a domain of computer science. LISP ac-
tually stands for “List processing” and this was a typical task apart from scientific compu-
tations and artificial intelligence. However, along with IT development, the FP languages
implementations matured into general-purpose industrial-strength solutions. Also, new
modern implementations started to occur (such as Clojure or Rust) and practically all
traditional high-level programming languages offer pure functional features4. A great warp

3Although the author does not have any research results on this topic at hand.
4e.g. Java since version 1.8 and C++ since version 11 have lambda functions, Groovy has a strong

support for FP [242], etc.

63

7. Software Implementation

Figure 7.5: ProtoREPL live evaluation during coding [129]

for functional programming also happens in client-side web programming, where there is
already a serious assortment of FP languages that compile to Javascript, not mentioning
that JavaScript itself can be used as a purely-functional programming language [173], [218].

So, we have a paradigm with long history and experience and its modern implement-
ations available. However, software engineering based on pure functional paradigm seems
not to be in its full. We argue that there are two main reasons:

1. Switching to functional paradigm from traditional imperative-style thinking (includ-
ing object-orientation) is not easy, as every major paradigm shift.

2. There seems to be a gap between the programming in small (which was the traditional
ground of FP) and programming in big — assembling modern complex modular
architectures.

7.3.5 Our Contribution and Applications

Functional paradigm due to its conceptual purity and benefits described above is one of the
interesting topics of CCMi. Compared to other topics, this is the youngest one, so we have
now more topics and opportunities than results. Our motivation comes from observing a
gap that seems to be between the functional programming paradigm and modern software
engineering, i.e. addressing point 2 from above. The important topics from our perspective
are:

64

7.3. The Functional Paradigm

• Model-driven Engineering seems practically missing in the world of functional pro-
gramming.

• Missing higher-level functional design patterns similar to [174]. While some patterns
of the object-oriented paradigm are trivial thanks to first-class functions (such as
the Command Pattern), there seems to be missing a generally-agreed cookbook on
solving enterprise software systems architectural patterns in FP.

• Dynamically vs statically-typed. The “battle” between static and dynamic typing
seems to rage over ages with no tangible results. There has been attempts to deal
with this dichotomy such as [175, 176, 177], however sound engineering approaches
to the topic still seem to be scarce.

• Applications of the paradigm to address modern challenges, such as graphical user
interfaces [178], big data and databases [179], client-server web applications [180] and
others have been undertaken, however, again, there seems to be missing engineering
methodologies that would enable broader industrial adoption.

The relation between pure functional paradigm and domain conceptualisation, namely
in the form of a DSL is shown in [219] (Chapter 18).

There were several bachelor’s theses exploring the application of functional program-
ming in practice, mostly for web application development [243], [244], [245] and user-
interface generation [246].

The first systematic attempt to tackle the topics in CCMi was a PhD research of Lukáš
Janeček. We started with putting together conceptualisation of the paradigm in [218]
(Chapter 19) and showed their presence in a surprisingly traditional language: JavaScript.
As, sadly, Lukáš abandoned his PhD studies, the line of research was suspended and
it is now being resumed in two PhD research topics of Vojtěch Knaisl and Jan Slifka.
The research will be performed in collaboration with the University of Antwerp and the
Normalised Systems Expanders will be used as a practical relevance ground. The goal is to
start conceiving the missing engineering methodologies for leveraging modern functional
programming in enterprise engineering, both at the server-side (Vojtěch Knaisl) and client-
side (Jan Slifka).

Apart from research involvement, we have been using pure FP in our projects. The
most notable is Data Stewardship Wizard [220], [247], [248], a joint project of ELIXIR-CZ
and ELIXIR-NL, where tooling for data stewards and researchers to help with devising data
management plans is being developed. We develop the software using pure FP technologies
— GHC (Haskell) on server side and Elm on client side.

Similar technologies have been used also in the Marrow Donor Registry Simulator pro-
ject (Section 3.5.1).

65

Chapter 8

Tooling

Modern engineering is unthinkable without proper software tools. Software and enterprise
engineering are no exceptions. We deal with two types of software engineering tools here:

• Computer-aided engineering tools (CAE)

• Execution tools

8.1 Computer-Aided Engineering Tools

Computer-aided engineering tools (CAE) is the broad usage of computer software to aid in
engineering analysis tasks. In our discipline, these are CASE tools (Computer-Aided Soft-
ware Engineering) (see Section 5.1.1) and CABE (Computer-Aided Business Engineering).

Although the name “CABE” is nicely expressive and coherent, it is used rarely1 and the
reader can rather find them under other names such as Business Process Modelling Tools,
Enterprise Modelling Tools or Business Process Management Tools. The aim of CABE
tools is similar to CASE — to facilitate creating a model of an organisation (typically in the
forms of diagrams), to help it visualise, communicate, verify and generate implementation
or at least implementation models. Examples of such tools are Sparx Systems’ Enterprise
Architect [181] or Visual Paradigm [182]. Some CABE tools are even integrated with
execution engines, so the models may be directly executed (the next section).

8.2 Execution Tools

8.2.1 Business Process Management Tools

While implementation of structural concepts leads to database systems (see e.g. Sec-
tion 5.1.1.1), execution of behaviour is a more complex topic, both in the theoretical

1The author found it mentioned in a work of a renowned Czech professor Václav Řepa, however just
in Czech, so no reference is provided here.

67

8. Tooling

level (Section 3.5) and the practical level. While database systems are arguably present
as an information support in all modern enterprises and there is a plethora of their types,
providers and licenses, behaviour-supporting systems are considerably more scarce. In
case of enterprise engineering, we talk about process execution in the context of Business
Process Management (BPM).

The terminology is not clear in this area, however Jaroslav Fibichr did a nice job in his
master’s thesis [269] to describe the state-of-the-art of this topic and he summarises that
“BPM is defined as a set of principles, methods and tools used to identify, design, execute,
monitor and control business processes”. The life-cycle is depicted in Figure 8.1.

Figure 8.1: Business Process Management life cycle according to Smith and Fingar [183]

While BPM does not necessarily implicate software support (its history starts sometime
in 18th century with Adam Smith), we are interested in tools here: “Business Process
Management System/Suite (BPMS) refers to a set of (software) tools that support the
continuous process improvement efforts in the organization across all phases of the process
life cycle.” An overview of current biggest players in the field is given by Figure 8.2.

We can see that the definition of BPMS suggests a certain overlap with CABE and
also other tools out-of-scope of this text, such as decision-support tools. However, we are
interested specifically in the Operation phase, as it is where business process execution
takes place.

68

8.2. Execution Tools

Figure 8.2: Business Process Management Suites magic quadrant

8.2.2 Workflow Management Systems

Workflow management systems can be seen as a subset of BPMS — a workflow system
“organizes the routing of case data amongst the human resources and through application
programs” [184]. Although workflow management has obviously also its roots surpassing
software engineering, today’s workflow management systems began to occur in mid 1990s2

by “take the business processes out of the applications” approach [184].

2Their origins can be traced to 1970s to XEROX Parc and the “Office Automation Systems” project.

69

8. Tooling

First workflow management systems were modelled using Petri Nets, the current in-
dustrial systems use typically BPMN (Figure 8.3, Section 3.6.2).

Figure 8.3: IBM Process Designer

A good example of a workflow execution engine based on the model-driven architecture
is IBM BPM (Figure 8.3), where there are typically several layers of process models, the
highest level being the business process model and the lowest being “boxes with code”
implementing the low-level technical tasks, such as reading data from a database. However,
the transitions between models are still quite coarse and limited by the BPMN notation
expressiveness and its possibilities of modularisation (see also Section 3.5). Moreover,
the solution is proprietary and high licence fees limit adoption by budget-tight smaller
companies.

The situation in open-source workflow engines is even further from an MDE ideal —
the gap between the business and technical level is quite broad and deep: usually a single
level of BPMN models is accompanied by a loosely-coupled code.

8.2.3 Our Contribution and Applications

Joint projects of the Faculty of Information Technology and the Centre of Knowledge
Management at the Faculty of Electrical Engineering towards building university work-

70

8.3. A Conceptual Modelling Platform

flow systems created a considerable experience with both commercial (IBM BPM) and
open-source systems, which is elaborated in bachelor’s theses of Klára Jeĺınková [270] and
Vladimı́r Šimon [271]. Roman Lanský then presented achievements in creating modular
components in IBM BPM in his bachelor’s thesis [272].

Next, in Section 4.4.4, we explained our work on executability of BORM models. We
continued our theoretical work into the form of process simulation tool that started as a stu-
dent team project and was then continued in bachelor’s theses by Michal Balda [249] (using
the pure OO paradigm) and Oskar Maxa [273] (using the functional paradigm). Alžběta
Zyková then designed and implemented a true workflow engine prototype in her bachelor’s
thesis [250]. This workflow engine was planned to be used in the project “Protecting Cul-
tural Heritage from Floods” funded by the Ministry of Culture of Czech Republic [216],
unfortunately, it has not happened (from reasons unrelated to the tool).

As for DEMO, we explained our work done on execution of DEMO models in Sec-
tion 5.1.2.1. Moreover, Roman Lanský in his master’s thesis [251] designed and developed
a prototype of a messaging and task-management application based on the ψ-theory and
Radek Buša designed and implemented a prototype of a web-based modeller of DEMO
diagrams that generates web forms in his bachelor’s thesis [274].

8.3 A Conceptual Modelling Platform

Research in the field of conceptual modelling that has an ambition to be not merely theoret-
ical comes at certain point to the question of how to implement the ideas of new notations
and algorithms over models such as verification, inference, models transformation, code
generation, etc. In CCMi, we had come to this point as well3.

There are generally three typical ways how to approach this task:

1. Programming a tool “from the scratch”. This has a benefit of greatest freedom
and flexibility, however, implementing a diagramming software properly is not a
trivial task and given limited resources, such academic projects usually lead to user-
unfriendly tools incompatible with the rest of the world, doomed to being abandoned
and forgotten — sadly with the elaborately implemented results of its authors.

2. Using a meta-modelling tool [185] such as MetaEDIT+. This class of tools enables
(at a user level) implementing own modelling notations and algorithms. However,
the user is limited by the abilities of the tool and its extensibility has inherent bounds
compared to the first approach. Moreover, the author has not found a usable tool
with an open-source license.

3. Using a conceptual modelling platform, which has a form of loosely-coupled libraries
and frameworks available in a general-purpose programming language.

3In fact, this topic had been in the mind of the author even before the CCMi conceiving.

71

8. Tooling

8.3.1 Our Contribution and Applications: OpenCASE/OpenCABE

We took the third way. Podloucký started developing an open platform for conceptual
modelling in 2010 using the Eclipse Modelling Framework (EMF) for the Java platform.
The result in 2012 was a tool for the BORM method, which implemented some of the
author’s ideas, such as a distinction between entities and elements ([221], Chapter 10),
business properties and open API ([222], Chapter 20). The name of the tool started
as OpenCASE, which was later changed to OpenCABE along with stronger orientation
towards business engineering. One of the strong points of the tool is also generating of
non-technical-people-friendly operational manuals ([223], Chapter 21).

8.3.2 Our Contribution and Applications: DynaCASE/OpenPonk

The OpenCASE/OpenCABE project was success in its ability to deliver a usable CASE
tool for the BORM method that was used in projects, as well as in teaching, while mate-
rialising research results. However, it failed in delivering an accessible open platform for
conceptual modelling, as the complexity of learning EMF and OpenCASE’s architecture
showed to be tremendous, thus effectively preventing, for example, students to elaborate
bachelor and master theses using the platform. The second weak point was low interactivity
with models in the modelling and meta-modelling process in the spirit of Section 5.2.1.

The author hypothesised that these failures resulted from rigid static nature of the Java
platform. This is how the idea emerged to implement a conceptual modelling platform in
Pharo (Section 7.2.1). The hypothesis was that dynamic interactive nature of a pure OO
language implementation will enable to significantly reduce code boilerplate and increase
dynamic interactive behaviour of the tool. The project started as an exploration by a
student team project. The most active team member, Peter Uhnák then continued in
development. The achievements are summarised in his bachelor’s thesis [252] and [224]
(Chapter 22). The hopes laid in this project by the author were fulfilled — the foundations
of an open platform for conceptual modelling had been laid in a few semesters and the
code base is a fraction to the OpenCASE’s. The tool enables live interaction with models
and prototyping of algorithms, visualisations and simulations.

The greatest excitement showed to be the learnability of the platform — already several
students were able to master the platform and implement solutions in their theses, such
as verification of models [253], reports generation [254], simulation [255] or implementing
new notations and modelling tools, such as DEMO [256], BPMN [257], OntoUML instance
models [258] and OCL interpreter [226].

This project also undertook a name change — the original name “DynaCASE” was
expressing the dynamic nature of the platform. However, there was an inconvenient name
clash with an existing project and the name also did not reveal the ambition to be actually
a plaform for tools development. In the end, the OpenPonk name was chosen, “ponk”
being a Czech word for a “workbench”.

This versatile workbench has been used in two major projects. The first was facilit-
ating the design of agent-based models and a code generation to promote participatory

72

8.3. A Conceptual Modelling Platform

modelling [186] — a project where round-trip engineering was implemented to generate
code from models.

The second project is the NS Conceptual Modeller introduced in Section 6.5.5.

73

Chapter 9

Final Thoughts

Here ends the introductory part and the reader is definitely eager to emerge into reading
the chapters. However, there are some notes that are due to be written here.

First of all, it was quite a challenge to order the text in a flow, as the presented topics are
highly related and intertwined. I hope that the ordering “middle-left-right” from Figure 3.1
gave a good logical flow of the text. At the same time, before emerging into the chapters,
the reader may like to glance back at Table 2.1 to refresh the topics categorisation in its
full.

Next, I would like to share an observation about conceptual modelling. It is a discipline
in some respects similar to taiji or yoga: there seems to be a cloud of myth and esoterics that
may even repel so-called “practical people”, however, once you emerge in them, you discover
that they are merely about realising, training and applying simple principles that permeate
everyday life. Conceptualisation is the same — practitioners of all engineering disciplines
do them — often unconsciously — every day and they do not realise how much it defines
their job and its outputs. A master of conceptual modelling is similar to a yoga master:
they are able to master trivial tasks much better and they gain almost “supernatural”
abilities for managing hard tasks; in case of conceptual modelling these are abilities to
master complexity, assist domain experts in formulating precise specifications, analysts
and designers in proper ways of transforming them into a sound design and developers of
all kinds in their realisation. Unfortunately, compared to yoga and taiji, the society and
practitioners still do not realise the potential of this discipline fully. My wish is that a
reader after reading this work can sense a glimpse of this potential.

The above is also related to a relative youth of the discipline of conceptual modelling.
While being here literally since antiquity, ontology and semiotics had been rather a philo-
sophical interest without much practical relevance. This changed tremendously when a
focus of human development moved from dealing with material things into dealing with
immaterial concepts (Figure 3.2). Today, the society lives mostly in an artificial concep-
tual space consisting of social norms, commitments and claims on one hand and artefacts
designed to embody these concepts on the other — enterprise and software engineering be-
ing probably the most representative examples of disciplines revolving almost exclusively

75

9. Final Thoughts

around this new artificial human world.
The youth of the “modern conceptual modelling” inevitably means lack and immaturity

of methods and tools. Looking from the positive side, there is a wide space of research and
engineering topics to be addressed. In this work, I showed the topics tackled by CCMi in
our research and projects, however the problem space is so huge that working on one topic
opens an explosion of new research topics. We try to balance the breadth/width ratio and
we are positive that in the coming years, we will go both deeper in existing topics and have
more capacity to possibly address additional ones, as was already sketched in the text.

Last but not least, there is a warning. The text may create a nice vision of lego pieces
falling together into right places thanks to having solid formal foundations, engineering
methods and tools. Indeed, “There is nothing so practical as a good theory”, as Kurt
Lewin suggests, however, there are (sadly) limits, as Goethe counters: “All theory, dear
friend, is gray, but the golden tree of life springs ever green.” We can observe these
two poles, for example, in a harmoniously complementary cooperation of our fathers of
enterprise engineering: Jan Dietz and Jan Hoogervorst. While Jan Dietz tamed the design
of enterprises in the Lewin’s way and gave us solid formal foundations and sound DEMO
methodology, Jan Hoogervorst pinpoints the gravity of the social level of enterprises that
bring disturbances into formally designed models1.

Similar discussions take place in software engineering, which has been turning from rigid
software project management to agile approaches emphasising communication, feedback
and other humane aspects. Some authors go so far to relate software development more to
growing plants than an engineering discipline. You can, maybe surprisingly, find exactly
this attitude in the legendary “The Pragmatic Programmer” [187].

This having said, I strongly believe that studying formal approaches, formulating en-
gineering methodologies and growing supporting tools is a strong way forward both in
enterprise and software engineering. It is for a great good that “soft” disciplines are here
to remind us about our human nature and what is really important in life, as did Karel
Čapek, a famous Czech novelist, who gave the concept of a “robot” to our technical world.

1Referring here to the brilliant keynote of Jan Hoogervorst “The Imerative for the Empoyee-Centric
Theory of Organizatin and its Significances for Enterprise Engineering” given at EEWC 2017 in Antwerp.

76

Part II

Chapters

77

Chapter 10

Supporting Enterprise IS Modelling
using Ontological Analysis

[221] Pergl, R. Supporting enterprise IS modelling using ontological analysis. Lecture Notes
in Business Information Processing, volume 88 LNBIP, 2011: pp. 130–144.

79

Supporting Enterprise IS Modelling using
Ontological Analysis

Robert Pergl

Department of Information Engineering,
Faculty of Economics and Management,

Czech University of Life Sciences,
Prague, Czech Republic

pergl@pef.czu.cz

Abstract. The goal of this contribution is to show that incorporating
ontological analysis into modelling of enterprise information and knowl-
edge systems during the software engineering process may bring consider-
able benefits. Necessary terms related to ontological analysis are defined,
the most important being the Concept Map of the Domain (CMoD). The
BORM method is then analysed from the ontological point of view and
the ontological analysis is showed in the context of the layered Model
Driven Architecture approach. Possible gaps that may occur between
the layers in practice are studied. Two methods how to incorporate the
ontological analysis into the modelling process to overcome those gaps
are presented and discussed.

Key words: ontologies, ontological analysis, enterprise systems mod-
elling, BORM method, Model Driven Architecture

1 Goal

The goal of this contribution is to show that incorporating ontological analysis
into modelling of enterprise information and knowledge systems during the soft-
ware engineering process may bring considerable benefits. The concept is shown
using the BORM method. Theoretical foundations and methodological aspects
are provided as well.

2 Methodology

Necessary terms related to ontological analysis are defined, the most impor-
tant being the Concept Map of the Domain (CMoD). The BORM method is
then analysed from the ontological point of view and the ontological analysis
is showed in the context of the layered Model Driven Architecture approach.
Possible gaps that may occur between the layers in praxis are showed, and their
consequences are discussed. Two methods how to incorporate the ontological
analysis into the modelling process to overcome those gaps are presented and

80

their additional benefits together with drawbacks are discussed. The more com-
plex of the methods is presented on a practical example. In the end some related
work is mentioned and conclusions are future work are formulated.

3 Motivation

Modelling is a crucial part of the software engineering process. Its goal is to create
a set of models that in the end result in technical specification of the system and
enable a successful implementation by technical experts (database architects,
programmers, designers, etc.) that typically have just a vague knowledge about
the problem domain. For the modelling to be the most effective and efficient,
consistency of elements in the models must be maintained. This may be a hard
task, because often we need to put the same elements into various diagrams of
the same type and there are elements in different diagram types that are closely
related to each other. Changes made to diagrams during the model evolution
thus may provide very painful tasks of consistency maintaining.

Consistency of diagrams is crucial for requirements traceability. It ensures
and documents that the life cycle is being followed [4], because

– It demonstrates the relation between the modelling inputs and outputs.
– It ensures that every model is based on some predecessor that has its founda-

tion in some requirement.
– It contributes to model validation.

Consistency and requirements traceability offer these additional benefits [20]:

– Certification support
– Impact analysis
– Maintenance
– Project traceability
– Changes to older systems
– Reusability
– Risks mitigation
– Testability

Moreover, as put in [15], pure software-engineering conceptual modelling may
be short in many areas, ontology modelling among many others.

We also felt somehow motivated by the statement published in [6]:

Without ontologies, or the conceptualizations that underlie knowledge,
there cannot be a vocabulary for representing knowledge. Thus, the first
step in devising an effective knowledge-representation system, and vo-
cabulary, is to perform an effective ontological analysis of the field, or
domain. Weak analyses lead to incoherent knowledge bases.

81

4 Definition of Terms

4.1 Ontology

The word ontology comes from the Greek ontos (“being”) and logos (“word”).
It generally studies the categories of things that exist or may exist in some
domain [18].

Ontologies are used in a wide range of scientific and engineering applications
and thus there are several definitions that stress various facets of ontologies. We
will present a few that are closely related to our goal:

Definition 1. Ontology is a specification of a conceptualization. [11]

This definition stresses the modelling nature of ontologies: Conceptualization
means an abstract, simplified view of the world consisting of concepts, objects
and other entities that are assumed to exist in an area of interest, and the rela-
tionships that exist among them. Specification means a formal and declarative
representation.

Definition 2. Ontology is a set of knowledge terms, including the vocabulary,
the semantic interconnections, and some simple rules of inference and logic for
some particular topic. [12]

This definition includes the term vocabulary which we will utilise for referring
to the terms in a subject area.

Definition 3. Ontology is the basic structure or armature around which a
knowledge base can be built. [19]

For us, ontology will be a basic structure or armature around which a model
of an information or knowledge system can be built.

4.2 Concept map

Definition 4. Semantic network (or concept map) is knowledge represen-
tation technique that attempts to reflect cognition [5].

Concept map is one way how to express ontology [9]. We will use concept
maps as a convenient and visual way of ontology description. Let us introduce
it formally:

Definition 5. Concept map is a directed graph GCM , where

– VCM is a set of vertices that represent terms of the domain. Each vertex is
denoted by the corresponding term identifier.

– ECM is a set of edges that represent relations between the terms. Each edge
is denoted by the relation identifier.

– MCM is a mapping that assigns an ordered pair of vertices (v1, v2), v1, v2 ∈
VCM to every edge e ∈ ECM .

82

Similarly to the Model Driven Architecture [8], we specify several layers of
ontologies:

Definition 6. Concept map of domain D (CMoD) is a concept map, where
vertices represent terms from domain D and edges represent relations between
the terms.

Definition 7. Concept map of domain model DM (CMoDM) is a concept
map, where vertices represent elements of domain model DM and edges represent
relations between the elements.

Definition 8. Concept map of metamodel MM (CMoMM) is a concept
map, where vertices represent elements of metamodel MM and edges represent
relations between the elements.

According to the “industry standard” for information and knowledge sys-
tems modelling, the UML notation [7], we may distinguish structure diagrams
and behaviour diagrams, which represent two main views of a model. We will
stick to this categorisation, however we selected the BORM method [13] for our
purpose, because it encompasses business modelling and has a strong emphasis
on conceptual correctness and consistent gradual transformation of terms [14].

For our purpose we will consider the ontology of a model in the BORM
method as depicted in Figure 1. This is not a complete ontology, just a simplified
subset that contains concepts and relations crucial for our needs.

Fig. 1. Concept map of a BORM model (partial)

Data Flow as a concept can not be consistently drawn into the presented con-
cept map. Formally, Communication is a relation between two activities whose

83

meaning is “Activity X communicates to activity Y”. This relation has two at-
tributes: Input Data Flows and Output Data Flows, each being a set of Data
Flows (Figure 2). Unfortunately this cannot be expressed using just the graph
theory formalism1.

Fig. 2. Concept map of Communication

The whole architecture of models including ontologies is depicted in Fig-
ure 32. Lower-level elements are linguistic instances [3] of higher-level elements.

Fig. 3. Layered architecture of ontologies

This model maintains consistency in each layer and consistency between the
layers. However, in real-life modelling we usually need to put more elements rep-
resenting the same model term – e.g. Employee may be a participant in both

1 Formally this would lead for instance to two mappings from the set of Communica-
tions into the set of Data Flows.

2 For our purpose, we do not need the fourth, meta-metamodel layer.

84

the scenarios Ordering and Invoicing. The situation is depicted in Figure 4.
Various elements of the same modelling term require to keep track of the repre-
sentationOf relations in the model to maintain the identity:

Definition 9. We say that the model element x is ontologically equivalent to
the model element y if and only if there exist relations representationOf(x, t)
and representationOf(y, t), where t is an element of the CMoD. We denote this
x $ y.

The absence of representationOf relations in the model then leads to ele-
ment identity loss, which leads to inconsistencies in models. When for in-
stance the user wants to rename Employee to Company Employee and renames
just one representation of it. Element identity loss also paralyses reportings and
simulations. Unfortunately, most CASE tools do not support maintaining of
representationOf relations. There is partial support e.g. in the Craft.CASE tool
(www.craftcase.com), but it is not complete3.

Fig. 4. Ontology maintaining the identities

The consistency between layers M1 and M2 makes no problem in practice,
since every model element is instantiated from its class when put to model, and
CASE tools track this relation. However, the consistency between layers M0
and M1 is usually practically omitted during modelling. The author does not
know any CASE tool that would e.g. keep track that the class Employee and the
participant Employee are two representations of the domain term Employee.

3 More about this will follow later.

85

Without the explicit concept map of a domain and due to omitting the rep-
resenationOf relations between the layers M0 and M1, the term identity loss
occurs. This may result in inconsistencies of the terms in the M1 layer. On the
other hand, maintaining the identity of terms in the M1 layer through the repre-
senationOf relations from the M0 layer enables sophisticated consistency checks,
reporting and change management.

4.3 Semantics of the Concept Map

As mentioned in 3, an important role of ontology is to specify a vocabulary of
a domain, specifically a controlled vocabulary that provides a finite list of
terms together with an unambiguous interpretation of those terms. Every use of
a term from a controlled vocabulary then denotes exactly the same thing in the
domain.

While the M1 and M2 layers are implied by the used methodology (here
BORM), the M0 layer is a subject to domain conceptualizations and, conse-
quently, domain ontologies are established by the consensus of the domain ex-
perts. The terms used to express these domain ontologies must be rooted in
a domain independent philosophically and cognitively well-founded system of
real-world categories, i.e. a foundational (upper-level) ontology [10].

In ontological analysis, we may distinguish two categories of terms according
to the modelling context:

Terms with the domain context – Those terms are uniquely identified by
the context of the domain. For the BORM method those are:
– Business Architecture Diagram

– Function
– Scenario

– Class Diagram
– Class

– OBA Diagram
– Participant Role
– Data Flow

“Being uniquely identified by the context of the domain” means that for
example the class Employee or the scenario Issue and order are unique
terms in the domain of Trading company X.

Terms with the model context – As opposed to the first category, these
terms are uniquely identified in their context only. In the BORM method
those are:
– Attribute, Method – identified in the context of the Class. Thus the name

of a Company is a different term than the name of an Employee.
– State, Action – identified in the context of the Participant Role.
– Communication – identified by the pair (Source Action, Destination Ac-

tion)

86

We use dot-notation for denoting the context4: Company.name, Employee.name,
Employee.waits, Employee.sends and we call such term a fully qualified
term.

Labels of activities and states may consist of several words and even several
sentences. In such case we may enclose the terms in quotes, e.g. Employee."sends
the invoice", which is mandatory if the term label contains dots. Quotes in
the label must be escaped using the backslash character, which is a well-known
mechanism from programming languages5.

BORM OBA diagrams permit to make nested process inside a participant
state6. In this situation the context of nested states and activities would be the
full context from the participant to the state/activity, e.g. Employee."prepares
an order"."collects requirements".consults

5 CMoD: the Method

We will present two possible methods for creating and maintaing a Concept Map
of a Domain.

5.1 Vocabulary Method

This is a method that brings the least possible additional activities to the mod-
elling process while offering the benefit of identity maintaining. This approach
is aligned with the Agile Modelling [2] in a sense that the ontological analysis is
performed just in the most necessary extent. The method is based on on-demand
introduction of terms into the concept map. It may be summarized into several
points:

1. Start with an empty CMoD.
2. Perform the usual modelling in the M1 layer and elaborate the necessary

diagrams and their elements.
3. If there occurs a need to reuse an element e in some other context (diagram),

i.e. to create the element e’ that is a copy of element e:
a) Insert an element t into the CMoD representing some domain term.
b) Create the relation representationOf(e, t).
c) Create the relation representationOf(e′, t).

4. If there occurs a situation where you create a new element y of class u in
the layer M1 and there exists an element x of class v in the same layer such
that u is ontologically equivalent to v:
a) Insert an element t into the CMoD representing some domain term.

4 This is just a matter of choice, another schemes like using slashes, arrows, etc. work
the same.

5 Again, this issue may be solved using various approaches.
6 This is depicted in Figure 1 by the “contains” relation between two States and a

State and an Activity.

87

b) Create the relation representationOf(y, t).
c) Create the relation representationOf(x, t).

An example of this situation may be Employee of class Participant and
Employee of class Class. The names, however, may generally differ, although
it is not recommended from the ontological point of view.

In this method we omit relations between the terms and the resulting CMoD is
a flat controlled vocabulary and may be represented just using the set of terms.

5.2 Complete Ontological Analysis

In this method we create a (more or less) complete CMoD including the relations.
Conceptual maps then serve not just as an identity maintaining device, but as a
stand-alone knowledge formalisation and representation technique that helps to
understand, record, share, communicate and validate knowledge of the domain.
Models of the domain are then built upon the previously created CMoD(s).

Figure 5 depicts the position of ontological analysis and the created CMoDs in
the context of Ambler’s software development process ([1]). Ontological analysis
is performed during the Initate and Construct phases, whereas the resulting
concept maps may be utilised during the whole project life cycle7. In the typical
iterative development process, OA will be performed during every iteration.

Fig. 5. Ontological analysis in the software development process

A simple example of CMoD is in Figure 6. It represents a (partial) ontology
of an internal company supply store. We denote the terms by unique capital
letters enclosed in square brackets and relations between the terms by unique

7 Concept maps may be updated during any stage of course, e.g. if an error or ambi-
guity is detected.

88

small letters enclosed in round brackets, so that we may easily express the rep-
resentationOf relations.

Fig. 6. Example: ontological analysis of an internal company supply store

This CMoD may be have been created during the requirements gathering and
initial modelling sessions with the future IS customer. Standard BORM analysis
and modelling then follows (refer to [?] for details). During this analysis, the
Business Architecture diagram (Figure 7) is created that depicts the process
architecture.

Fig. 7. Business Architecture diagram of the example

There are two scenarios identified and a transition relation between them.
The representationOf relations with the elements of the CMoD are presented.
As we may see, all the CMoD elements and relations are covered, i.e. this is a
surjective mapping. This is not a coincidence. The mapping represented by the
representationOf relations should be always surjective. We may informally
“prove” this theorem using absurdum proof: If the mapping is not surjective,
it would mean that there exists at least one element t in the CMoD such that

89

there is no mapping represenatationOf(e, t), where e is some element of the BA
diagram8. This would mean that the domain term represented by the element t is
not related to any scenario and thus would be needless. This represents a simple
inter-layer consistency check. If the mapping happens to be non-surjective,
then either:

– The term is needless and should be thus removed from the CMoD.
– Or the term is crucial and thus represents some requirement that should result

in relating it to some scenario.

Next we may elaborate the ORD diagram for each scenario (Figure 8 and
Figure 9).

Fig. 8. ORD of the scenario “Ordering of Store Items”

Again, the elements and relations of the diagrams are related to the elements
and relations of the CMoD. Moreover, the set of inter-layer relations for each
diagram should be equal to the set of relations of the corresponding scenario.
This provides a kind of elements transistion check (see [16] for a discussion
about the importance of maintaining transitions between model concepts)9.

Figure 10 finally shows the class model (without attributes) of the example
and its representationOf relations.

As we may see, every diagram adds some details that are not depicted in
the CMoD – ORD diagrams add process and collaboration details, while class
diagrams add details about the relations and attributes (which we ommited
in Figure 10) – and at the same time it omits some terms and relations from the
CMoD as it represents a certain limited view.

8 Or the union of all BA diagrams if there are more in the model.
9 The absurdum “proof” may be done here as well.

90

Fig. 9. ORD of the scenario “Delivering Store Items”

Fig. 10. Class diagram of the example

6 Discussion and Conclusions

Ontological analysis may be performed in an “agile style” by just building the
controlled vocabulary (subsection 5.1) along with the usual modelling. This ap-
proach means minimum overhead and brings the support for

– identity maintaining,
– models refactoring,
– consistency checks,
– elements transistions checks,
– impact analysis during the change management.

91

If we perform a complete ontological analysis (subsection 5.2), i.e. we analyse
also relations between the term, we deepen the above benefits. Apart from them,
a complete ontological analysis may take advantage of wide variety of ontology
engineering tools for the created concept maps: validations, reasoning, model
transformations, knowledge bases utilisation, prototyping, problem-solving and
inference tools and others. On the other hand, a thorough ontological analysis
increases elaborateness of analysis phase and brings higher demands on analysts.

As for the model refactorings support and consistency maintenance, we would
propose the following two approaches that may be implemented into a CASE
tool:

– If e is a model element, t is the CMoD element (domain term) and there holds
representationOf(e, t), then the name of e would be taken from the name of t
(let us denote e.name = t.name). This may not, however, be always suitable,
thus assigning a flag to the representationOf relation that would be used to
switch this feature on and off as needed would be necessary.

– If the name is not taken, whenever t.name is changed, the user is presented
with the list of the related elements (i.e. the set of elements E = e1, e2, . . . , en,
where there exists representationOf(ei, t)) that may be affected by this
change. The same would happen if the user is about to remove the term t
from the CMoD.

The BORM method distinguishes between the terms Participant and Partic-
ipant Role, where Participant is an entity from the domain that plays (typically
several) roles (like “performs”, “is informed”, “is responsible”, etc.) in various
scenarios and it may even play several roles in one scenario. This distinction is
very useful, because it enables us to keep track of the Participant identity re-
lated to its several roles. However, if we introduce the concept of maintaing the
representationOf relations between the layers M0 and M1 (Figure 3), we may
omit the concept of Participant.

Ontological analysis concept supporting the modelling process was presented
on the BORM methodology, however it may be used for any modelling method
and notation, like UML, OMT, SA/SD and others and similar benefits may be
expected.

7 Related Work

Craft.CASE is the most advanced CASE tool for the BORM method10 known
to the author. Some glimpses of the concepts presented in this paper are imple-
mented in the tool:

– The Sketch tool supports drawing of free elements, which may be used to
draw concept maps, however, their utilisation in the future modelling steps is
limited.

10 Precisely speaking, Craft.CASE implements the C.C method, which has however
the same syntax of the diagrams and the semantics differs just in slight details.

92

– Craft.CASE maintains the identity of data flows by putting them into a con-
trolled vocabulary, which ensures consistency when renaming and this concept
is also succesfully utilised in reporting.

– Craft.CASE elements follow the concept of Model-View. One element may
be copy-pasted into several places while maintaining a simple identity. This
assures automated renaming and property changes, however extensive use is
limited by the absence of the controlled vocabulary.

These features bring considerable advantages over the tools that do not support
them, but unfortunatelly, they are just separate ideas without the proper formal
and methodological framework, which limits their benefits and also brings some
unpleasant side-effects11.

8 Future Work

The research continues both on the formal, methodological and practical levels.
One vast topic is the method of creating the concept maps and related questions:
How to identify the crucial terms? Which relations should be captured and which
should be omitted? Is it possible to make some standardized set of relations?
. . . Many answers to the ontological analysis questions and methods may be
found in the existing literature about ontological engineering, however they are
usually too general or directed towards knowledge management or semantic web
development, not to enterprise systems modelling.

Another field is utilisation of the presented concepts and methods. Some of
the most imporant utilisation possibilities were listed above, however there are
definitely many more: e.g. we are now working on the multi-language support
for modelling using concept maps.

And last but definitely not least – practical utilisation of the presented con-
cepts requires a quality CASE tools support. This is probably the most appealing
topic and we are working on a CASE tool prototype for the BORM method that
would incorporate ontological analysis as described, and bring its benefits into
practice.

Acknowledgements

This contribution was elaborated with a support of grant no. 201011130043
of Grant Agency of The Faculty of Economics and Management of the Czech
University of Life Sciences in Prague.

11 Mostly with the respect to the C.C scripting language implemented in the tool for
elements manipulations.

93

References

1. Ambler, S.W.: Process Patterns : Building Large-Scale Systems Using Object Tech-
nology, Cambridge University Press (1998).

2. Ambler, S.W.: The Object Primer – Agile Model-driven Development with UML
2.0, Cambridge University Press (2005).

3. Atkinson, C., Kühne, T.: “Model-driven development: A metamodeling founda-
tion”, In: IEEE Software, Vol. 20, no. 5, pp. 36-41 (2003).

4. Baldwin, D.: “Software Development Life Cycles: Outline for Develop-
ing a Traceability Matrix”, The Regulatory forum, available online at
http://www.regulatory.com/forum/article/tracedoc.html

5. Barr, A., Feigenbaum, E.A. (eds.): The Handbook of Artificial Intelligence, William
Kaufmann, Los Altos, CA (2003).

6. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: “What are ontologies, and
why do we need them?” In: IEEE Intelligent Systems, Vol. 14, no. 1, pp. 20-26
(1999).

7. Fowler M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage (3rd Edition), Addison-Wesley Professional, ISBN 978-0321193681 (2003).

8. Frankel, S.D.: Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley, New York (2003).

9. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering and Ontology
Development (2nd Edition), Springer (2009).

10. Guizzardi, G. “The Role of Foundational Ontology for Conceptual Modeling and
Domain Ontology Representation”, Companion Paper for the Invited Keynote
Speech, 7th International Baltic Conference on Databases and Information Sys-
tems, Vilnius, Lithuania (2006)

11. Gruber, T.R.: “A translation approach to portable ontology specifications”, In:
Knowledge Acquisition, Vol. 5, no. 2, pp. 199-220 (1993).

12. Hendler J.: “Agents and the semantic web”, In: IEEE Intelligent Systems, Vol 16,
no. 2, pp. 30-37 (2001).

13. Knott, R.P., Merunka, V., Polk, J.: “The BORM methodology: a third-generation
fully object-oriented methodology”, In: Knowledge-Based Systems, Vol. 16, no. 2,
pp. 77-89 (2003).

14. Knott, R.P., Merunka, V., Polak, J.: “The BORM Method: A Third Generation
Object-Oriented Methodology. In Management of the Object-Oriented Develop-
ment Process”, ed. Liping Liu, and Borislav Roussev, ISBN 9781591406044, 337-
360 (2006).

15. Molhanec, M. “STEP standard - Perspective and futurity”. In 29TH INTERNA-
TIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY, 495-499. In-
ternational Spring Seminar on Electronics Technology, ISSE. 345 E 47TH ST, NEW
YORK, NY 10017 USA: IEEE. ISBN 978-1-4244-0550-3 (2006).

16. Picka, M., Pergl, R.: Gradual modeling of information system: Model of method
expressed as transitions between concepts. In: ICEIS 2006 - Proceedings of the
Eighth International Conference on Enterprise Information Systems: Databases
and Information Systems Integration, pp. 538-541, Paphos, Cyprus (2006).

17. Selic, B.:“The pragmatics of model-driven development”, In: IEEE Software, Vol
20, no. 5, pp. 19-25 (2003).

18. Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational
Foundations, Brooks Cole, Pacific Grove, CA (2000).

94

19. Swartout, W.R., Tate, A.: “Guest editors’ intruduction: Ontologies”, In: IEEE
Intelligent Systems, Vol 14, no. 1, pp. 18-19 (1999).

20. Wiegers K. E.: “Software Requirements”, Second Edition, Microsoft Press (2003).

95

Chapter 11

Instance-Level Modelling and
Simulation Revisited

[194] Pergl, R.; Sales, T. P.; Rybola, Z. Instance-Level Modelling and Simulation Revisited.
In Enterprise and Organizational Modeling and Simulation, Valencia, 281 Spain: Springer,
June 2013, ISBN 978-3-642-41637-8, pp. 85 – 100.

97

Instance-Level Modelling and Simulation
Revisited

Robert Pergl, Tiago Prince Sales, Zdeněk Rybola

Department of Software Engineering,
Faculty of Information Technologies,

Czech Technical University in Prague, Czech Republic
{robert.pergl,zdenek.rybola}@fit.cvut.cz

Ontology and Conceptual Modeling Research Group (NEMO),
Computer Science Department,

Federal University of Esprito Santo, Brazil
tpsales@inf.ufes.br

Abstract. Instance-level modelling is a sort of conceptual modelling
that deals with concrete objects instead of general classes and types.
Instance-level modelling approach offers a rather innovative way for com-
munication with domain experts extremely useful for them, as they can
see their real data in the context of the given model. Various approaches
were presented in the paper “Instance-Level modelling and Simulation
Using Lambda-Calculus and Object-Oriented Environments” at EOMAS
2011. The present paper is a sequel and it presents additional approaches
we find useful in practice: Fact-oriented modelling, OntoUML in combi-
nation with OCL and the Alloy and Eclipse-based framework Dresden-
OCL. We present key features of the various approaches and demonstrate
them on a running example, we follow up with a discussion comparing
these approaches. Notice that OntoUML combined with the Alloy is an
original research achievement built on the research of OntoUML.

Key words: Instance-level modelling, OntoUML, Alloy, Fact-Oriented
Modelling, ORM, DresdenOCL

1 Introduction

Conceptual modelling as defined in [1] is an activity of describing some aspects
of a domain of interest formally for understanding and communicating. The
activity leads to a conceptual model, which should be used and understood by
humans.

The quality of the results (i.e., the conceptual model) can be evaluated with
respect to various aspects, some of which concern the used language, other con-
cerning the models itself [2], [3]. To obtain high-quality conceptual models, sev-
eral factors are in play:

– How is the model powerful with respect to the given domain and the goal of
the modelling.

98

– Correct understanding of the domain structure, facts and rules, as perceived
by the modeller.

– Understanding of the model by the domain expert.

The last point is rather crucial as it is a necessary condition for model val-
idation. We understand validation as an activity performed by modellers and
domain experts to evaluate if the model accurately captures the expert’s view
of the domain concepts and if all the necessary concepts and properties were
modelled.

We all know that business users have issues dealing with technical models
[3]. Given that, their model validation is not optimal: if the domain expert does
not fully understand the contents and especially the relations in the model, the
validation they provide covers the model only partially.

Software engineers’ experience shows that users are able to validate the model
fully only once they put their hands on the software product [4]. This causes
rather serious problems for software engineers: an error identified in the resulting
product is way more expensive to fix than errors discovered in earlier stages of
the software development [5].

This makes instance-level modelling a very promising approach for software
engineering, knowledge engineering and generally any efforts of domain con-
ceptualisation, because its main concern is to identify domain constraints, in
particular those that are not easily captured by conceptual modelling notations.
This is fully explained in [6]: Merunka discusses lambda calculus utilisation for
instance-level modelling, i.e. computation and manipulation aspects of instances.
In this paper, we would like to follow his lead and discuss instance-level mod-
elling from the perspective of structural modelling, which – in fact – logically
precedes Merunka’s topic. Structural modelling provides a solid back-bone for
any further model development and operations upon the model.

2 Goals and the Structure of the Paper

The goal of the paper is to provide modellers with various approaches to struc-
tural instance-level modelling.

The structure of of the paper is as follows: Section 3 provides an overview on
instance-level modelling. Section 4 presents three selected approaches for com-
parison: the fact-oriented modelling approach represented by ORM; OntoUML
with combination of OCL and Alloy (our original contribution); and the Dres-
den OCL approach. Section 5 presents running examples implemented using all
three approaches. After that, we discuss and compare features of each method
in Section 6. Finally,Section 7 presents our conclusions and future works.

99

3 Instance-level Modelling and the Quality of Model

Let us just briefly summarize the importance of instance-level modelling in the
conceptualization process. We will provide a complete thought flow; the essential
statements are in bold below.

As Birkmeier and Overhage comment in [3], “the quality of conceptual models
is influenced by a variety of factors”. Hadar and Soffer present a scheme depicted
in Figure 1 showing modelling process as one of the key factors.

122 D. Birkmeier and S. Overhage

model. Satisfaction generally is to be measured by means of the users’ attitude towards
the usage of the product, e.g. as the extent to which users are free from discomfort [12].
It was measured by questioning users during a post-test survey.

As part of the study design, we also had to account for any intervening variables
as they could influence the model quality in addition to the used modeling language
and so bias the results. Generally, the quality of conceptual models is influenced by
a variety of factors [15,16,17], which are summarized in Figure 1. The human factor
has an influence on the quality of the resulting process model, as different perceptions
and interpretations of reality, diverging professional experiences, or varying perceptions
of model quality may affect the selection of the modeling language and the modeling
process. As such effects cause variations in the resulting process models, differences
between individual users have to be controlled, e.g. by increasing the sample size.

Human

Modeling Language

Modeling Process

Model

Fig. 1. Factors that affect the quality of a conceptual model [17]

Apart from the human factor, the quality of a business process model is mainly influ-
enced by the chosen modeling language, especially by its expressive power and com-
plexity [18]. The expressive power of a modeling language thereby is determined by
its ontological completeness and its ontological clarity. A modeling language is onto-
logical complete, if it is possible to represent all relevant aspects of a domain with its
language constructs. A modeling language is ontologically clear if there are no redun-
dant or superfluous constructs and constructs are not overloaded (i.e. cannot be used to
model different domain aspects). The complexity of a language is determined by the
number of constructs and the number of ways to combine them [18].

Regarding complexity and completeness, many similarities between BPMN and
UML AD become obvious [4]. Both, e.g., use the same construct to model process
steps and model control flow branches in a similar way (see Figures 4 and 5 for ex-
amples). There are, however, also differences, like the modeling of events or the data
flow, which in BPMN has to be separated from the control flow [2]. Moreover, BPMN
only offers a reduced set of core constructs and uses variations of these to depict similar
process patterns. E.g., it comprises similar elements to model different kinds of events
or to depict branches of the control flow. Both the reduced set of core constructs as
well as the separation of control and data flow, have been used as a rationale to claim a
superior usability of BPMN for business users [3,4]. Introducing variants of constructs,
however, reduces the ontological clarity of a language as apparently similar constructs
exhibit differing semantics. Therefore, it remains to be validated whether the presumed
superior usability of BPMN actually holds in practice.

With its properties, the modeling language also influences the modeling process, in
which the perceived reality is transcribed and communicated as a written model. This

Fig. 1. Factors that affect the quality of a conceptual model [7]

The modelling process in the context of Ullman’s triangle [8] (Figure 2)
means to perform abstraction to create conceptualization from the reality. To
ensure that the conceptualization is correct, we need to validate it with the
domain expert [9]. If the domain expert understands the language in which the
conceptual model is written (that is, s/he understands both the syntax and the
semantics), we may expect that the validation is performed dutifully. However,
business users usually have issues with technical notations and abstractions, as
may be seen e.g. in [3]; thorough validation is hence close to impossible.

As Merunka suggests in [6], a perfect solution for non-technical
users to talk about their domain is instance-level modelling. This may
be achieved using the three following ways:

1. Asking the domain expert to present some samples of instance-level data –
this approach is used for conceptualization e.g. in [9].

2. Generating instance examples based on the conceptualization and asking the
domain expert to confirm that the conceptualization expresses the domain
– this approach is discussed in [6] and may be also achieved by Alloy, as
discussed in subsection 4.3.

3. Generating instance counter-examples to eliminate conceptualization leaks,
i.e. that it is not possible to generate instances that are not aligned with the
domain; the Alloy approach can achieve that, see subsection 4.3.

4 Selected Approaches

First, there are several approaches discussed in [6]: BlueJ, .NET Object Test
Bench and, finally, author’s original lambda-calculus based approach. The first

100

 TERMINOLOGICAL CLARIFICATIONS AND FORMAL CHARACTERIZATIONS 81

individuals and R is a set of extensional relations; I:V→D ∪ R is an
interpretation function assigning elements of D to constant symbols in V,
and elements of R to predicate symbols of V. A model, such as this one,
fixes a particular extensional interpretation of language L.

■

Definition 3.4 (intensional interpretation): Analogously, we can define
an intensional interpretation by means of the structure 〈C,ℑ〉, where C =
〈W,D,ℜ〉 is a conceptualization and ℑ:V → D ∪ ℜ is an intensional
interpretation function which assigns elements of D to constant symbols in
V, and elements of ℜ to predicate symbols in V.

 ■

In (Guarino, 1998), this intensional structure is named the ontological
commitment of language L to a conceptualization C. We therefore consider
this intensional relation as corresponding to the represents relation depicted
in Ullmannís triangle in figure 3.16 depicted below (see discussion in
section 2.1.4).

Symbol
(language)

Concept
(conceptualization)

Thing
(reality)

represents abstracts

refers to

Definition 3.5 (ontological commitment): Given a logical language L
with vocabulary V, an ontological commitment K = 〈C,ℑ〉, a model 〈S,I〉 of L
is said to be compatible with K if: (i) S ∈ Sc; (ii) for each constant c, I(c) =
ℑ(c); (iii) there exists a world w such that for every predicate symbol p, I
maps such a predicate to an admissible extension of ℑ(p), i.e. there is a
conceptual relation ρ such that ℑ(p) = ρ and ρ(w) = I(p). In accordance
with (Guarino, 1998), the set Ik(L) of all models of L that are compatible
with K is named the set of intended models of L according to K..

■

Figure 3-16 Ullmannís
Triangle: the relations
between a thing in
reality, its
conceptualization, and a
symbolic representation
of this conceptualization

Fig. 2. Ullman’s triangle [10])

two mentioned (BlueJ and .NET Object Test Bench) are focused on UML and
programmers’ needs and, hence, they do not deal with the ontological level of the
model. Merunka’s approach, on the other hand, targets calculations and query-
ing. In the rest of this section, we would like to discuss some other instance-level
modelling approaches that are focused on structural aspects. For this paper, we
selected four of them: traditional Fact-Oriented Modelling, OntoUML, Alloy and
OCL. They are all based on instance-level modelling, however, they differ in their
characteristics and their original purpose. In the running example (Section 5)
we present our own original approach that connects OntoUML + OCL + Alloy.

4.1 Fact-Oriented Modelling

Fact-oriented modelling is one of the traditional approaches within instance-
level modelling. It was formulated by Terry Halpin in his Ph.D. thesis in 1989,
its roots, however, reach to 1970s. Fact-oriented modelling - as described by
Halpin in [9] - is a conceptual approach to information modelling and informa-
tion systems engineering. It was designed to promote correctness, clarity, and
adaptability. This approach enables us to model, transform, and query informa-
tion in terms of the underlying facts of interest, where facts and rules may be
verbalized in language that is readily understandable by non-technically-minded
users from the business domain. In contrast to UML-based modelling (e.g. On-
toUML, see subsection 4.2), fact-oriented models are attribute-free: they treat
all facts as relationships (unary, binary, ternary etc.). For example, the following
fact types Person smokes; Person was born in Country are used to replace
the attributes Person.isSmoker and Person.birthCountry.

Still, the most popular fact-oriented approach is probably Object-Role
modelling (ORM). It got its name because it pictures the world in terms
of objects (entities or values) that play roles (parts in relationships). There is a
number of closely related dialects, all of which use a similar object-role graphi-
cal notation and there are also approaches adopting different graphical notations
(for more details refer to e.g. [9]).

101

4.2 OntoUML

OntoUML is an ontologically well-founded conceptual modelling language that
aims to describe structural aspects of a given domain of interest [10]. An On-
toUML model is understood as a reference conceptual model, which is used
mainly to achieve semantic interoperability between agents, both human and ar-
tificial. As it is a very promising modelling language used in practice successfully,
we will discuss its fundamentals and its relation to instance-level modelling.

The main concern of OntoUML language is to capture a conceptualization
of a community regarding the given domain of interest in the most precise way.
To achieve that, the language was designed to reflect the Unified Foundational
Ontology (UFO) concepts [10]. UFO, then, is a domain independent system
of categories, which addresses ontological structural aspects of individuals and
universals, such as instantiation, rigidity, identity and dependence.

The language was designed as an UML Profile to be more accessible to users.
Each stereotype is embedded with constraints; this, then, provides precise mean-
ing for the concepts and it restricts the way in which they can be combined to
develop a model.

OntoUML has been successfully employed in a number of projects in sev-
eral different domains, from Petroleum and Gas [11] to News Information Man-
agement [12] and data center IT architecture [13]. In fact, after a significant
number of successful applications in real-world engineering settings [14], it has
been recently considered as a possible proposal to the OMG SIMF (Semantic
Information Model Federation) standardization request call [15].

4.3 Alloy

Alloy [16] is a language developed for describing structural properties. It was
created by Daniel Jackson at MIT. It is a declarative, first-order logic language
based on set theory. The language is supported by an instance level-oriented
solver named Alloy Analyzer: the analyzer takes the constraints of a model and
tries to find structures that satisfy them.

An Alloy specification consists of logical constraints defined in signature and
fact declarations. When a specification is instantiated by the Alloy Analyzer,
atoms are generated from signatures. Importantly, the atoms respect the logical
constraints in the model. In other words, a signature at the model level introduces
a set of atoms at the instance level.

The analysis made by the Alloy Analyzer is based on the SAT (boolean satisfi-
ability) technology. The Analyzer translates constraints from Alloy into Boolean
formulas, which are then fed to an off-the-shelf SAT solver. The analysis can be
performed in two different ways: first, as a model exploration, through exam-
ple generation; and second, as a property checking, through search of counter
examples.

Alloy has been applied as a validation tool for different purposes such as an
analysis of UML models [17], verification of Java Code [18], and for verification
of i* models [19].

102

To help modellers in defining the necessary instance-level constraints and to
understand their modelling decisions, the OntoUML language is supported by a
validation tool, named OntoUML2Alloy [20]. This tool automatically translates
OntoUML models into an Alloy specification and it allows the modellers to
implement their OCL constraints directly in Alloy.

4.4 OCL and DresdenOCL

Object Constraint Language – OCL [21] – is a specification language used to
delimit restrictions for a UML model that cannot be expressed directly in the
UML notation. OCL is a part of the UML standard [22]. It is used to define
invariants (conditions that must be satisfied by all instances of the element),
pre- and post-conditions of element methods and it can be even used as a query
language.

DresdenOCL [23] is a toolkit for modelling OCL constraints and their trans-
formations and interpretations. DresdenOCL is distributed as a stand-alone li-
brary as well as a plugin to Eclipse IDE. The toolkit is capable of working
on various models, like UML, EMF and Java. It provides syntax checker for
OCL constraints and it also interprets the constraints in the context of a loaded
model and a model instance. Therefore, the toolkit can be used for simulation
and model validation; as a model instance it can be created with real object
samples and evaluated against the model and constraints. The toolkit also pro-
vides tools for model transformation and source code generation along with the
OCL constraints into SQL and Java/AspectJ.

5 A Running Example – Book Publishing

In this section, we present a running example from a domain of book publishing.
We want to demonstrate the conceptualization possibilities of the approaches we
discussed above and, in particular, we want to focus on a quality of the given
model and its instance-level modelling features. The example originally comes
from [9] where it is modelled in ORM. We like the example, especially because
it is not trivial, it contains several “tricky” facts that can appear in practice and
that - we believe - cannot be expressed easily without instance-level modelling.

5.1 ORM

Figure 3 shows am ORM schema for the given domain. As already mentioned,
the example (alongside with the following description) was adopted from [9].
We refer the reader to a detailed description of how to develop such a schema
cooperating with the domain expert to the original paper.

Each book is identified by an International Standard Book Number (ISBN),
each person is identified by a person number, each grade is identified by a
grade number in the range 1 through 5, each gender is identified by a code

103

Book
(ISBN)

is authored by

Person
(.nr)

is assigned for review by
“ReviewAssignment !”

PersonName

has/is of

Gender
(.code)

is of

{‘M’, ‘F’}

has

PersonTitle

is restricted to

resulted in Grade
(.nr) {1..5}

BookTitle

has

Year
(CE)

was published in

Published
Book*

is translated from

… in … sold ...

NrCopies
sold total- * is a best seller*

* Each PublishedBook is a Book that was published in some Year.
* For each PublishedBook, totalCopiesSold= sum(copiesSoldInYear).
* PublishedBook is a best seller iff PublishedBook sold total NrCopies >= 10000.

[copiesSoldInYear]

[totalCopiesSold]

≥ 2

Fig. 2. An ORM schema for a book publishing domain

The external uniqueness constraint (circled bar) indicates that the combination of BookTitle and Year applies to at
most one Book. The acyclic ring constraint (circle with three dots and a bar) on the book translation predicate
indicates that no book can be a translation of itself or any of its ancestor translation sources. The exclusion
constraint (circled cross) indicates that no book can be assigned for review by one of its authors. The frequency
constraint (≥ 2) indicates that each book that is assigned for review is assigned for review by at least two persons.
The subset constraint (circled subset symbol) means that if a person has a title that is restricted to some gender, then
the person must be of that gender. The first argument of this subset constraint is a person-gender role pair projected
from a join path that performs a conceptual join on PersonTitle. The last two lines at the bottom of the schema
declare two derivation rules, one specified in attribute-style using role names and the other in relational style using
predicate readings

KEY APPLICATIONS

ORM has been used productively in industry for over 30 years, in all kinds of business domains. Commercial tools
supporting the fact-oriented approach include Microsoft’s Visio for Enterprise Architects, and the FCO-IM tool
CaseTalk (www.casetalk.com). CogNIAM, a tool supporting NIAM2007 is under development at PNA Active
Media (http://cogniam.com/). Free ORM tools include VisioModeler and Infagon (www.mattic.com). Dogma
Modeler (www.starlab.vub.ac.be) and T-Lex [15] are academic ORM-based tools for specifying ontologies.
NORMA (http://sourceforge.net/projects/orm), an open-source plug-in to Microsoft® Visual Studio, is under
development to provide deep support for ORM 2 [3].

FUTURE DIRECTIONS
Research in many countries is actively extending ORM in many areas (e.g. dynamic rules, ontology extensions,
language extensions, process modeling). A detailed overview of this research may be found in [9]. General
information about ORM, and links to other relevant sites, may be found at www.ORMFoundation.org and
www.orm.net.

CROSS REFERENCES
Conceptual schema design, Data model, Entity Relationship (ER) Model, UML.

Fig. 3. ORM version of the book publishing conceptual model

(M for male and F for female), and each year is identified by its common era
(CE) number. PublishedBook is a derived subtype determined by the subtype
definition shown at the bottom of the figure. ReviewAssignment objectifies the
relationship Book is assigned for review by Person, and is independent,
since an instance of it may exist without playing any other role (one can know
about a review assignment before knowing what grade would result from that
assignment).

The internal uniqueness constraints (depicted as bars) and mandatory role
constraints (solid dots) are verbalized as follows: Each Book is translated from at
most one Book; Each Book has exactly one BookTitle; Each Book was published
in at most one Year; for each Published Book and Year, that PublishedBook in
that Year sold at most one NrCopies; Each PublishedBook sold at most one
total NrCopies; It is possible that the same Book is authored by more than one
Person and that more than one Book is authored by the same Person; Each
Book is authored by some Person; It is possible that the same Book is assigned
for review by more than one Person and that more than one Book is assigned
for review by the same Person; Each ReviewAssignment resulted in at most one
Grade; Each Person has exactly one PersonName; Each Person has at most one
Gender; Each Person has at most one PersonTitle; Each PersonTitle is restricted
to at most one Gender.

The external uniqueness constraint (circled bar) indicates that the combi-
nation of BookTitle and Year applies to at most one Book. The acyclic ring
constraint (circle with three dots and a bar) on the book translation predi-
cate indicates that no book can be a translation of itself or any of its ancestor
translation sources. The exclusion constraint (circled cross) indicates that no

104

book can be assigned for review by one of its authors. The frequency con-
straint (≥ 2) indicates that each book that is assigned for review is assigned for
review by at least two persons. The subset constraint (circled subset symbol)
means that if a person has a title that is restricted to some gender, then the
person must be of that gender. The first argument of this subset constraint is a
person-gender role pair projected from a joint path that performs a conceptual
join on PersonTitle. The last two lines at the bottom of the schema declare
two derivation rules, one specified in attribute-style using role names and the
other in relational style using predicate readings.

5.2 OntoUML+OCL+Alloy

Figure 4 depicts the book publishing domain example in OntoUML.

Fig. 4. OntoUML version of the book publishing conceptual model

Expressing type-level constraints in OntoUML The kind stereotype rep-
resents rigid types, i.e., their instances must always instantiate them in every
possible scenario. It also provides identity principle for its instances and thus,
no objects can instantiate two kinds simultaneously. Two kinds are identified
in this model: Person and Book. Kinds may be specialized by subkinds; these
are also rigid types, but that don’t provide identity. Subkinds always contain
individuals that share the same identity principle and thus, subkinds may only
specialize one kind. Hence, Man, Woman and Book translation are subkinds in
the model.

Roles represent anti-rigid types which are relationally dependent. Anti-
rigidity means that for every individual who is an instance of a role in a given
moment, there is at least another moment (either in the future or in the past)

105

in which that individual is not an instance of the role anymore. Relation depen-
dency means that for an object to be an instance of a role, it must be related
to at least one other object. In the example, this concept enables modellers to
express that Person can become Authors and Reviewers when they have an
authorship on a Book or when they are assigned to review a book, respectively.
And that a book can be translated if there is another book that is its translation.

The relations that characterize role are objectified by relators in OntoUML.
This – also rigid – type is externally dependent on the composing roles; that
means that the individuals that are related through an instance of a relator may
never change during the existence of the relator. For example, for every instance
of Review Assignment, the Book and the Person are always the same. Relators
have a complementary restriction: every instance of a relator must mediate at
least two distinct individuals, for example, the Translation forbids the existence
of Books which are a translation of themselves at the same time.

Even though the running example does not contain this construct, we would
like to mention the phase type, as it is closely related to the instance-level mod-
elling. The phase constraint states that for every phase partition, an instance
might instantiate only one phase. However, a kind – like a Person - can have
different phase partitions, like:

– A phase partition regarding people’s age; it contains the phases: Child, Adult
and Elder.

– Another phase partition regarding their health containing the phases: Sick
Person and Healthy Person.

In this example, hence, it is possible for an instance of a Person to be both a
Child and Sick, or an Adult and Healthy. But an instance can never be Sick

and Healthy at the same time, as much as it cannot be a Child and an Adult

simultaneously.
Other examples of such instance-level constraints would be weak supplemen-

tation for meronymic relations: a whole must have at least two disjoint parts; the
relator rule described in the previous section which states that a relator must
mediate at least two distinct individuals.

Expressing Instance-Level Constraints in OCL Although the graphical
notation allows modellers to express many important ontological distinctions, it
is not sufficient for expressing all instance-level restrictions, such as a Person

may not review their own books. To achieve that, the models must be en-
riched with OCL rules. For this restriction, a possible OCL invariant would be:

context _’Reviewed Book’

inv noAuthorReviewHisBook :

self.oclAsType(Book).authorship.author->asSet()->

excludesAll(self.assignment.reviewer->asSet())

Another enforced domain restriction is that every instance of Book which
plays the role of Published Book is not related to two or more instances of
SoldYear which have the same Year attribute.

106

context _’Published Book’

inv : self.soldyear->isUnique(Year)

The objectification of some relations through the relators improves expressiv-
ity of the model, since it allows for a representation of additional cardinalities.
For example, it allows expressing that a Review Assignment assigns a single
Book to exactly one Reviewer - and not many, as it could have been interpreted.
On the other hand, it may be necessary to express that certain elements should
not be related twice by different relators. So, for the Authorship relator, it is
necessary to state that every Person is an Author of a Book only once: this
requires to express that an Author is related to exactly one Authorship relator
for every Book which he is an author of.

context _’Book’

inv : self.authorship->isUnique(author)

context _’Author’

inv : self.authorship->isUnique(book)

For derivation attributes, such as totalCopiesSold of Published book, it
can specified as:

context _’Published Book’::totalCopiesSold:int

derive : self.soldyear.copiesSoldInYear->sum()

Fig. 5. Possible instantiation of the book publishing OntoUML model in Alloy

Identifying instance-level constraints in Alloy OntoUML modellers may
use the Alloy tools to visualize the consequences of their modelling decisions. An

107

example generated in Alloy represents a set of possible Worlds according to the
conceptual model. Figure 5 is a possible instantiation of the running example in
Alloy.

Notice that we did not set the Best Sellers as those books that were sold
more than 1000 times by chance. Since there was no restriction associated with it,
the validation tool generated an example in which a book was a best seller after
having sold only 26 copies. This example shows how the supporting tools help
users to identify missing constraints in their models – even though OntoUML
does not provide instance-level restriction constructs.

5.3 DresdenOCL implementation

DresdenOCL toolkit [23] can be used to create a conceptual model in pure UML
enriched with a set of OCL rules. In addition, the tool allows users to popu-
late their model by manually created instances and it allows the users to check
whether this set of instances complies with the model specification. On top of
that, the tool can be used to generate SQL or Java/AspectJ source codes of the
application, and this, too, can be used to specify model instances.

UML model definition with OCL constraints The UML version of the
running example, developed in the MDT UML2 plugin in Eclipse, is shown in
Figure 6. Note that there are some simplifications compared to the OntoUML
version, since UML does not support imposing all the constraints on the model.
The presented model can be easily loaded in DresdenOCL Toolkit in Eclipse.

In the running example, a rather tangible difference between the OntoUML
and the UML version is that, in the latter, there is no notion of modality. All
types in UML are rigid; it means that if an object is an instance of a Book,
it cannot be changed to be an instance of a Publishment. This is in a stark
contrast to the Role classes in the OntoUML model: here, if an object needs to
change its type, it must be destroyed and created as an instance of another type.

Another clear difference is that, in UML, material relations do not require
the representation of relators. They are employed, if the modeller wants to have
at least one attribute. This is the case for the Review class: it has the attribute
grade – and it is not the case for the Authorship (between Person and Book)
and Book Translation (between Book and Translated Book).

Finally, the Publishment has been modelled by a composition of classes Book
and Publishment, not by a role specialization.

To mantain the restrictions given by the domain, OCL constraints must be
defined as discussed in Section 5.2. In DresdenOCL, the constraints are stored
in a separate file loaded to the tool along with the model. In addition to the con-
straints discussed above, there are additional constraints - that must be defined
- to express the restrictions defined by the OntoUML constructs themselves. For
instance, in the UML model, we do not restrict the amount of reviews per book
to two because we do not have the role Reviewed Book. Therefore, an additional
constraint must be defined as follows:

108

Fig. 6. UML version of the book publishing conceptual model

-- no or at least two reviews for each book

context Book inv noOrTwoReviews:

if self.reviews->size() > 0

then self.reviews->size() >= 2

else true

endif

Model simulation and validation DresdenOCL toolkit can be used for model
validation and simulation: an instance of the model can be evaluated against the
OCL constraints. The model instance can be loaded from an EMF Ecore-based
model instances, Java class files or XML files. An example of a Java class used
for the definition of the running example’s instance is shown in Figure 7. The
model instance defines the same objects identified in Figure 5 with the object4

being a reviewer for one of his own books.
When the model and the model instance is loaded to the toolkit, OCL con-

straints can be interpreted to validate the model instance. Figure 8 shows the
Eclipse perspective with the constraints, loaded model instance and OCL in-
terpretation results. In the lower left-hand side panel, there are the results for

109

public class BookInstanceProvider {

public static List<Object> getModelObjects() {

List<Object> result = new ArrayList<Object>();

Person person0 = new Male();

person0.setPersonName("String_5");

person0.setPersonTitle("String_7");

person0.setNr(63);

result.add(person0);

...

Book book1 = new Book();

book1.setBookTitle("String_8");

book1.setIsbn("String_6");

result.add(book1);

...

person3.getBooks().add(book5);

book5.getAuthors().add(person3);

...

return result;

}

}

Fig. 7. An example of a model instance definition for DresdenOCL toolkit in a Java
class

each OCL constraint interpreted in all possible contexts. A violation is detected
by the false result for one of the reviews: the reviewer is also one of the book
authors.

Fig. 8. The Eclipse perspective with the OCL constraint, the loaded model instance
and the OCL constraints interpretation results

110

6 Discussion and Related Work

ORM represents a very precise and highly expressive approach. A lot of complex
instance-level constraints may be formalized – the diagram in Figure 3 covers al-
most all instance-level constraints. On the other hand, ORM is based exclusively
on mathematical constructs (set theory, predicate logic, relations and their char-
acteristics) - and this is its main disadvantage. As Guizzardi explains in [10], the
mathematics (formal semantics) does not guarantee ontological and cognitive
consistency. In fact, set theory may create ontological extravagances not aligned
with our human real-world cognition.

Avoiding attributes in the fact-oriented modelling enhances semantic stabil-
ity, as noted in [9]. For example, if we used a birthCountry attribute and then
later decided to record the population of countries, we would need to remodel
the information as a relationship and recode all the queries based on it. As user
requirements may change during the project [4], this may turn out to be a great
benefit. An attribute-free approach is highly instance-oriented: it enables all fact
structures to be easily populated with fact instances. For more details on fact-
oriented modelling and its comparison to attribute-based approaches, see e.g.
[9].

OntoUML is focused on producing ontologically well-founded models – it
combines mathematical constructs with cognitive science. It certainly encom-
passes several instance-level constructs (e.g. an individual may instantiate only
one phase in a given phase partition, which may change over time) and instance-
level models may be generated from it using the simulation in Alloy. However,
OntoUML is not entirely focused on instance-level modelling and it lacks some
of the required constructs. These, of course, may be added using additional
mechanisms, like the OCL rules presented in the running example.

To further help modellers to discover the missing instance-level constraints, a
set of semantic antipatterns have been identified for OntoUML in [24]. Semantic
antipatterns are recurrent modelling decisions that - even though logically valid
- are prone to produce mismatches between the represented and the intended
instances of the conceptual model, i.e. the models do not represent the domain
accurately. In [24], 6 antipatterns were presented, in general referring to instance-
level constraints that OntoUML graphical notation cannot capture. The authors
suggest to seek a solution in a form of OCL constraints, which in a certain
degree, makes up for the lack of additional language constructs for instance-
level constraints.

The tool support provided for OntoUML by the Alloy simulation does not
require from the user to specify test cases; this, of course, makes validation more
efficient. Nonetheless, it is also possible to further restrict the simulation by
writing user-defined constraints. This leaves the modellers free to specify partic-
ular scenarios they want to analyse. This simulation approach for OntoUML is
however limited mainly by the size of instances the tool is able to generate.

The DresdenOCL toolkit is able to provide direct OCL instance modelling
and interpretation, but given that it is based on pure UML, it limits ontological
expressive power rather significantly.

111

7 Conclusions and Future Work

In the paper, we dealt with instance-level modelling from the perspective of
structural modelling. Instance-level modelling represents an important concept
both for ensuring model quality and also for improving communication with
non-technical domain experts.

We presented a traditional fact-oriented approaches – ORM – and a combina-
tion of OntoUML+Alloy+OCL supported by the Alloy analyzer. Both solutions
have their pros and cons. The strength of ORM lies in a rich palette of constructs
that enables very precise instance-level constraints specifications. We found the
strength of OntoUML in the focus on ontologically well-formed models. Missing
instance-level constructs may be provided using OCL, this, however, is a less
elegant solution. By exemplification the meaning of the models, the Alloy tool
helps the communication between modellers and domain experts.

Should we envisage possible future research for OntoUML+OCL+Alloy, we
think that some of the OntoUML concepts should be revised from the perspective
of instance-level modelling. The tool support is also under intensive development
in both research groups mentioned in Acknowledgements. We also plan to start
working on a two-way approach of instance and class-based modelling.

Acknowledgements. This paper was elaborated under the cooperation of:

– The Centre for Conceptual Modelling http://ccm.fit.cvut.cz supported
by Faculty of Information Technologies, Czech Technical University and grant
no. SGS13/099/OHK3/1T/18 of the Czech Technical University.

– The Ontology and Conceptual Modeling Research Group (NEMO) http://

nemo.inf.ufes.br supported by FAPES (PRONEX grant 52272362).

References

1. Mylopoulos, J.: Conceptual modelling and telos. In: Conceptual Modeling,
Databases, and Case: An Integrated View of Information Systems Development.
(1992)

2. Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages & Computing 10(4) (August 1999)
317–342

3. Birkmeier, D., Overhage, S.: Is BPMN really first choice in joint architecture
development? an empirical study on the usability of BPMN and UML activity
diagrams for business users. In: Research into Practice Reality and Gaps. Volume
6093. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 119–134

4. Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, Dave Thomas: Manifesto for agile software development (2001)

5. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1)
(January 2001) 135137

112

6. Merunka, V.: Instance-level modeling and simulation using lambda-calculus and
object-oriented environments. In: Enterprise and Organizational Modeling and
Simulation. Volume 88. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 145–
158

7. Hadar, I., Soffer, P.: Variations in conceptual modeling: Classification and onto-
logical analysis. Journal of the Association for Information Systems 7(8) (August
2006) 568–592 WOS:000246738800004.

8. Ullmann, S.: Semantics: an introduction to the science of meaning. Barnes &
Noble (December 1978)

9. Halpin, T.: Fact-oriented modeling: Past, present and future. In: Conceptual
Modelling in Information Systems Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007) 19–38

10. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Volume
015. University of Twente, Enschede (2005)

11. Guizzardi, G., Baio, F.A., Lopes, M., de Almeida Falbo, R.: The role of foun-
dational ontologies for domain ontology engineering: An industrial case study in
the domain of oil and gas exploration and production. International Journal of
Information Systems Modeling and Design (IJISMD) 1(2) (2010) 122

12. Carolo, F., Burlamaqui, L.: Improving Web Content Management with Semantic
Technologies. SemTech, San Francisco (2011)

13. Silva, H.C.e., de Castro, R.d.C.C., Gomes, M.J.N., Garcia, A.S.: IT architecture
from the service continuity perspective: Application of well-founded ontology in
corporate environments. Journal of Information Security Research 3(2) (2012)
4763

14. U. S. Department of Defense: Data Modeling Guide (DMG) for an Enterprise
Logical Data Model

15. Group, O.M.: Semantic Information Model Federation (SIMF): Candidates and
Gaps

16. Jackson, D.: Software Abstractions - Logic, Language and Analisys. Revised ed
edn. The MIT Press, Cambridge, Massachusetts (2012)

17. Bordbar, B., Anastasakis, K.: UML2ALLOY: a tool for lightweight modelling of
discrete event systems. In Guimares, N., Isaas, P.T., eds.: IADIS AC, IADIS (2005)
209216

18. Dennis, G., Chang, F.S.H., Jackson, D.: Modular verification of code with SAT. In:
Proceedings of the 2006 international symposium on Software testing and analysis.
ISSTA ’06, New York, NY, USA, ACM (2006) 109120

19. Atinga, P., Krishna, A.: Verification of i* models using alloy. In: Information
Systems Development. Springer New York (2011) 6374

20. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Validating modal
aspects of OntoUML conceptual models using automatically generated visual
world structures. Journal of Universal Computer Science 16(20) (November 2010)
29042933

21. OMG: Object constraint language, version 2.3.1 (January 2012)
22. Arlow, J., Neustadt, I.: UML 2.0 and the Unified Process: Practical Object-

Oriented Analysis and Design (2nd Edition). Addison-Wesley Professional (2005)
23. Demuth, B.: DresdenOCL (March 2013)
24. Sales, T.P., Barcelos, P.P.F., Guizzardi, G.: Identification of semantic anti-patterns

in ontology-driven conceptual modeling via visual simulation. In: 4th International
Workshop on Ontology-Driven Information Systems (ODISE), together with the
7th International Conference on Formal Ontology in Information Systems (FOIS),
Graz, Austria (2012)

113

Chapter 12

Towards OntoUML for Software
Engineering: From Domain Ontology to

Implementation Model

[202] Pergl, R.; Sales, T. P.; Rybola, Z. Towards OntoUML for Software Engineering: From
Domain Ontology to Implementation Model. In Proceedings of MEDI 2013, volume 3rd,
Amantea, Italy: Springer, Sept. 2013, ISBN 978-3-642-41365-0, pp. 249–263.

115

Towards OntoUML for Software Engineering:
from Domain Ontology to Implementation

Model

Robert Pergl, Tiago Prince Sales, Zdeněk Rybola

Department of Software Engineering,
Faculty of Information Technology,

Czech Technical University in Prague, Czech Republic
{robert.pergl,zdenek.rybola}@fit.cvut.cz

Ontology and Conceptual Modeling Research Group (NEMO),
Computer Science Department,

Federal University of Esprito Santo, Brazil
tpsales@inf.ufes.br

Abstract. OntoUML is a promising method for ontological modelling.
In this paper, we discuss its possible use for software engineering. We pro-
pose a method of transformation of an ontological model into a software-
engineering object-oriented class model in UML and its instantiation.
Our approach is based on the following best practices: pure object-
oriented paradigm and approach of dividing state and identity as in-
troduced in the Clojure programming language.

Key words: OntoUML, Sortals, UML, object-oriented modelling, mod-
els transformation

1 Introduction

Software engineering is a demanding discipline that deals with complex systems.
The goal of software engineering is to ensure a quality software implementation
of these complex systems. Various reports (e.g. Standish Group’s) show that the
success rate of software projects is far from satisfactory. We see the transfor-
mation of an ontological conceptual model into an implementation model as an
engineering method that may contribute to better results and higher quality of
the resulting software. We address the topic related to the preservation of infor-
mation between the successive software-engineering project phases as discussed
e.g. in [1]. We discuss the transformation of a structural conceptual model (in
OntoUML) into a structural implementation model (in UML) during the design
phase.

116

2 Goals and the Structure of the Paper

On one hand, we want to present our original method of transformation of on-
tologically well-founded conceptual models, written in OntoUML, into a pure
object implementation model described by the UML class diagrams. To achieve
that, we determine the following subgoals:

1. To develop a basic transformation of a conceptual OntoUML model into an
implementation object-oriented model (section 4).

2. To develop a transformation of individual OntoUML entity types: We will
limit ourselves to Sortal types in this paper (section 5).

3. To present a complete example of transformation of a sample model (sec-
tion 6).

3 Methods and Materials

3.1 OntoUML

OntoUML is an ontology-based conceptual modelling language, initially pro-
posed in Guizzardi’s PhD Thesis [2] as a lightweight extension of UML (using
the notion of Profiles). The language is based on the cognitive science achieve-
ments of understanding specifics of our perception and on modal logic and related
mathematical foundations (sets and relations).

Unlike other extensions of UML, OntoUML does not build on the UML’s
ontologically vague “class” notion, rather it constitutes a complete system in-
dependent of the original UML elements. It uses some aspects (like classes),
however, it omits a set of other problematic concepts (for instance aggregation
and composition) and replaces them with its own ontologically correct concepts.

OntoUML is designed to comply with the Unified Foundational Ontology
(UFO) and because of that, it provides expressive and precise constructs for
modellers to capture a domain of interest. OntoUML addresses many problems
in conceptual modelling, such as part-whole relations [3], and Roles and the
counting problem [4].

The language has been successfully applied in different contexts. In [5], the
authors developed an ontology using OntoUML for the domain of electrophysiol-
ogy, which was used to provide semantic interoperability for medical protocols.
Another application was for a domain of transport networks, in which it was
applied to evaluate an ITU-T standard for transport networks [6].

OntoUML Sortals The notion of Sortals incorporated in OntoUML is the
very same of the one in UFO, so in order to explain it, we must come back to
the foundational ontology. One can understand UFO as a theory regarding indi-
viduals and universals. In conceptual modelling, universals are known as classes
and individuals as objects, which instantiate these classes. Sortal universals are
a special type of classes whose individuals follow the same identity principle, in
contrast to Non-Sortal universals, which do not. Examples of Sortal universals

117

are Person, Student and Child. Examples of Non-Sortal universals are Customer
(can be a Person or a Corporation – different kinds) and Insurable Item (can be
a Car, a House or even a Person).

Identity principle is the feature that makes possible for one to count and
distinguish individuals. The universal Person, for example, if understood from a
social perspective, could define that its identity principle is one’s social security
number, whilst in a more biological perspective, it could be one’s fingerprint.
Some Sortal universals define the identity principle for their instances, whilst
others just inherit it.

Another important ontological property of Sortals is rigidity. Some Sortals
are rigid, which means that for every individual who instantiates the Sortal, they
must always do so in every moment during its life cycle (e.g. Man, Company,
Apple). On the other hand, some Sortals are anti-rigid, which means that an
individual can instantiate it in a given moment and not do so in another one
(e.g. Student, Employee, Child).

Kinds and Subkinds. In UFO there are three types of Sortals that define the
identity principle for their instances (named Substance Sortal Universals): Kinds,
Quantities and Collectives. Since the principle of identity of an individual must
never change, these are also rigid types. In addition, every individual must have
an (exactly one) identity principle, so all individuals must be an instance of
exclusively one such universal. Subkinds represent another type of Sortals, which
are rigid and they inherit the identity principle from other types. For that reason,
they must always have a Substance Sortal as an ancestor. In this paper, we focus
only on the Kinds and Subkinds Substance Sortals.

Roles. The Role Sortal defines an entity type of a Role an object plays when
in a relation to other objects. Similar to Subkind, Role inherits the ontological
identity from its Substance Sortal ancestor. It is an anti-rigid and relationally
dependent concept. This means at the instance level that for an individual to
play a given Role, i.e. to be a Role instance, it must participate in a relation
with some other object. The anti-rigid property of Roles requires that we handle
it dynamically in the implementation – the object can start to play the Role and
stop playing the Role during its life.

Phases. In UFO, a Phase universal is a type whose instantiation is characterized
by a change in an intrinsic property of an individual. Since it is out of the scope
of this paper to discuss properties, it is sufficient to say that intrinsic properties
are the opposite of relational properties. An intrinsic property can be structured,
such as person’s age, or unstructured, like one’s headache.

Phases are anti-rigid and they inherit their identity principle from their Sub-
stance Sortal ancestor. An additional constraint on the Phase type is that it must
be represented in partitions, i.e. Phases must belong to a disjoint and complete
generalization set. An example of a Phase partition is phases of a person’s life:
A person can be a child, an adult or an elder. Each phase is characterized by a
certain range of age and every person must be in exactly one of these phases.

118

According to the features of OntoUML mentioned above, we consider OntoUML
very suitable for conceptual modelling as it can distinguish many various types
of entities. Therefore, we also consider a tranformation of such a model into
an implementation model very important to support the use of OntoUML in
software engineering.

3.2 Object Model and UML

Object model started as a notion of programming paradigm in 1960s. It first
appeared in the Simula programming language and it was nurtured in many fol-
lowing languages since then. Along the object-oriented programming (OOP), the
object-oriented analysis (OOA) and the object-oriented design (OOD) together
with object-oriented modelling (OOM) were established [7]. Today, object-
oriented approaches dominate the software engineering and programming prac-
tice.

In this paper, we stick to pure object-oriented model which is exemplified e.g.
in the Smalltalk programming language [8]. We utilize the following concepts:

Object – an entity that has encapsulated inner state in the form of attributes
and reacts to messages sent by other objects by invoking methods, which
are the only external representation of the object.

Class – a “template” that contains a structure of attributes and methods code.
A class can spawn its instances – objects. In pure object model, class is an
object as well and thus it may receive messages.

Constructor – a special class method for spawning instances (new in Smalltalk).
By redefining the constructor, we may achieve special initialization of a new
instance. This approach differs in many hybrid object languages (like C++),
where the constructor is an instance method that is called after a new in-
stance is created, thus having limited control over instance spawning.

Collection – a special object that can compose an unspecified (conceptually
unlimited) number of instances. In pure object-oriented approach, the mem-
bers of a collection may be of heterogeneous classes (which is unfortunately
not true for hybrid languages like Java or C++).

We consider two basic relations between classes:

Inheritance – the is-a, or generalization-specialization relation. Here we deal
with inheritance of classes, although inheritance of objects (without a class
system) is also possible.

Aggregation 1 – the part-of relation between objects, where the aggregating
object contains an aggregated object as its part. This is technically achieved
by putting the object to an attribute. In the class diagram, aggregation is

1 In UML, apart from aggregation, composition is discussed as another term for part-
whole relations. For our purpose, we will use the term aggregation in its broader
meaning including composition and also other flavours of part-whole relationships
as discussed by Guizzardi in [9].

119

represented by a directed association (arrow) from the aggregating object’s
class to the aggregated object’s class.

As for the notation, we will stick to the Unified Modeling Language (UML),
a standardized general-purpose modelling language that was created for object-
oriented software engineering. It includes a set of graphic notation techniques
to create visual models of object-oriented software-intensive systems. Although
UML was designed to be a conceptual modelling language as well, it is better
suited for implementation modelling, as it misses (and messes) crucial concep-
tual concepts [2]. We use a subset of class diagram notation for our purpose of
the transformation of an OntoUML conceptual model into a UML implementa-
tion model here. For further information, see numerous literature available, we
recommend [10].

3.3 The Concept of State and Identity

The concept of state and identity was introduced2 in the Clojure programming
language, a pure functional language coming from Lisp. However, its importance
spans to conceptual modelling, as well. In our work we use it in the transfor-
mation to build completely dynamic object hierarchies that may be changed
on-the-fly.

“Clojure introduces a philosophical and conceptual paradigm shift in its
treatment of things. It takes the standard notion of a thing (an object or a
variable) and decomposes it into two separate concepts - state and identity. Ev-
ery thing has both a state and an identity. State is a value associated with an
identity at a particular moment in time, whereas identity is the part of a thing
that does not change, and creates the link between many different states at many
different times. The value of each state is immutable and cannot change. Rather,
change is modelled by the identity being updated to refer to a different state
entirely.” – [11].

In this approach the notion of value is very close to OntoUML’s notion of
Quality Value, where Quality is a sort of “identity” and Quality Value is its
“state”.

Hickey states that state and identity are usually unified in object-oriented
languages, however, he also states that it does not have to be so.

In our approach, we apply the distinction of state and identity in pure object-
oriented paradigm, as we discern identity objects and value objects. Identity
objects are not allowed to hold any values, they just refer to the associated
states. This enables us to build dynamic object hierarchies that may be changed
on-the-fly. This could be especially useful when dealing with the history aspect
of the data – for instance to capture the relations and attributes of an object
in some history moment before changing its Phase or Role. We exemplify this
approach in section 6.

2 Here we do not want to go into philosophical roots of this concept, though we do
not doubt that a discussion of this would be both deep and useful.

120

4 Transformation of OntoUML into Object Model

In this section, we present the foundations of a transformation. The transforma-
tion is well-known and very similar to the transformation of UML conceptual
models. Therefore we emphasize the most important aspects of the tranforma-
tion into an object implementantion model. For details about specific Sortals
transformation, see section 5.

An object model is very near to human thinking [12] and thus to OntoUML as
well, so the transformation is rather straightforward (compared to – for example
– a relational model). The object model contains less constructs than OntoUML.
That means an OntoUML model thus needs to “collapse” into object-oriented
concepts introduced in the previous subsection:

– Object (class) with attributes and methods,
– Object aggregation,
– Inheritance.

Various types of entities in OntoUML (Kind, Subkind, Role, . . .) are trans-
formed into object model classes. So, the discussion leads to the question how
not to loose semantics during the transformation. Unfortunately, the space limi-
tation does not allow us to discuss the issue in detail. We, however, redirect the
interested reader to [1], where this issue is discussed.

4.1 Transformation of Attributes

An example of an OntoUML entity type with attributes is in Figure 1.

Fig. 1. An example of OntoUML entity type with attributes

The transformation of attributes is one-to-one with respect to the following:

– We may map types to a concrete object-oriented language or let them be
general.

– Maximal multiplicities 0..1 of the attributes lead to instance variables.
– Maximal multiplicities * of the attributes lead to collections.
– For mandatory attributes with multiplicities 1..1, it is necessary to ensure

non-empty value of instance variable.
– For mandatory attributes with multiplicities 1..*, it is necessary to ensure

non-empty collection.

121

Ensuring Mandatory Attributes An object model contains no support for
declarative specification of mandatory attributes. The mandatory attributes thus
need to be handled in methods. The suggest the following two options:

1. “Hard method”: Enforce a value insertion when creating or updating the in-
stance. Prevent inserting empty value (null in most languages) in constructor
and other methods by throwing an error.

2. “Soft method”: Do not prevent inserting empty values but implement con-
sistency checks when required – i.e. before persisting to a database.

4.2 Implementation of Associations

Association is a bidirectional relation between classes that has a name and
“multiplicity” values at both sides, i.e. 4 characteristics (2x lower bound,
2x upper bound).

An example of OntoUML association is shown in Figure 2.

Fig. 2. An example of an OntoUML association

The following types of multiplicities are distinguished [7]:

1:1 – every instance of class A has (at maximum) one instance to which at most
one instance of class B is associated.

1:N – every instance of class A may have one or more instances of class B
associated (it corresponds to UML’s 1..* multiplicity).

M:N – an instance of class A may have more instances of class B associated
and the instance of class B may have more instances of class A associated
(corresponds to UML’s *..* multiplicity).

The most direct implementation of an association is by aggregation (part-of
relation between objects). Aggregation in object model is, however, a unidirec-
tional relation. This is quite a complex issue and it may be solved by various
approaches, as discussed e.g. in [13] or [14]. For the simplicity of concepts’ ex-
planations in this paper, we will limit ourselves to just one-direction references
approach to transforming associations to object model – see Figure 3 for an ex-
ample of 1:N-type association transformation. The direction of the aggregation
is chosen according to primary navigation needs in this situation and we do not
assume backward navigation.

As the aggregation leads to ordinary attributes, the issue of ensuring the
minimal multiplicities of 1 at the opposite side of arrow – the target – is equiv-
alent with ensuring the mandatory attributes described in section 4.1. Ensuring
the mandatory presence of the instance on the arrow side – the source – is not
trivial, as may be seen in [13], [14] or [15] and we will thus not discuss it here.

122

Implementace of association type 1:N

1 Navigation Person! Address

2 Navigation Address! Person

Ing. Robert Pergl, Ph.D. (FIT CTU) OntoUML to OO BIE-OMO 13 / 38
Fig. 3. Transformation of a 1:N bidirectional association into an unidirectional aggre-
gation

5 OntoUML Sortals Transformation

This section discusses the main principles of transformations of individual Sor-
tals into an object model classes. For each Sortal, we briefly and informally
summarize its features that are important from the software-engineering point
of view. We present the transformation into a class model in UML and we provide
additional comments.

5.1 Kind and Subkind

The Kind type defines an object’s identity and its attributes. According to our
approach of dividing identity and state – see subsection 3.3, the <<kind>> entity
type is transformed into two classes – one to hold the identity and the other to
hold the state.

The Subkind type defines additional features of other Kinds and Subkinds,
and thus forms a specialization hierarchy. It also makes the identity more accu-
rate. Therefore, both the identity and the state parts have to be transformed
along with the hierarchy. An example of the Kind and Subkind hierarchy is
shown in Figure 4. For simplicity, we will not include the identity and state sep-
arating in the following parts describing the transformation of other OntoUML
concepts.

5.2 Role

The most straightforward transformation of a Role type is to implement each
<<role>> class in the OntoUML model by its own class in the UML model.
However, because of the anti-rigidity, this class cannot be a specialization of its
supertype from the OntoUML model because the specialization is rigid in UML

123

Fig. 4. Transformation of a Role type into a UML model

models and OO implementation languages – it cannot be changed during the life
of the instance. Therefore, the generalization from the OntoUML model must
be transformed into an aggregation that can be easily modified during the life
of the instance without changing the identity provided by the associated rigid
supertype. An example of such a transformation is shown in Figure 5.

Fig. 5. Transformation of a Role type into a UML model

5.3 Phase

The transformation of the Phase entity type is similar to the transformation
of Roles. Each <<role>> class in the OntoUML model is transformed into a
UML class. To preserve the anti-rigidity of Phases in a UML model where the
specialization and the generalization are rigid, the Phase partition hierarchy
cannot be implemented by specialization. Instead, it is realized as an aggregation.
However, compared to Roles, an entity may be in just one Phase of the Phase
partition. We may denote this using XOR constraint, as shown in Figure 6,
where an OntoUML model of various restaurant table states is transformed into
a pure object implementation model in UML.

XOR constraint means that an instance of the Person type composes an
instance of one of the phases in its Phase attribute. Additionally, the target

124

Fig. 6. Example of the Phase transformation

multiplicity constraint is 1 ; that means that each instance of the Person type
must contain an instance of just one of the phases.

In fact, the transformation is platform-dependent. In dynamically-typed
object-oriented languages (Smalltalk, Python, . . .) a programmer is able to
put objects of various types into the same attribute. However, in static object-
oriented programming languages (Java, C++, C#, . . .), all attributes must de-
fine its type. To be able to put all the phases to the same attribute, an abstract
supertype or an interface is necessary, as shown in Figure 7.

Fig. 7. Example of the Phase transformation for static object-oriented languages

6 Example of Transformation

In the example, we will include history information in the UML model, i.e. we
track not just the current world, but all the worlds that happened to exist in the

125

past. As in [16], we “assume that the only thing specified in the domain ontol-
ogy is how many times a certain substantial may play the same Role universal
simultaneously, not throughout lifetime”.

Figure 8 presents a sample model containing rigid and anti-rigid types. Fig-
ure 9 presents a transformed model according to the principles described above,
where we need to:

1. Separate rigid and anti-rigid parts into distinct composed objects.
2. Separate identity and state (subsection 3.3).

Fig. 8. Example of transformation – OntoUML conceptual model

Fig. 9. Example of transformation – UML implementation model

As for the instance level, Figure 10 depicts a sample OntoUML instances
in two different worlds. Having unlimited dynamic behaviour of entity types at
instance-level OntoUML, we perceive just the resulting identities and their at-

126

tributes, while in the object model’s instance world in Figure 11 the information
is divided into the corresponding instances of classes3.

Fig. 10. Example of transformation – OntoUML instances example

7 Discussion and Related Work

The issue of conceptual modelling and domain ontologies have been discussed
in many publications and papers. In [2], the author defines the OntoUML lan-
guage based on Unified Foundational Ontology – UFO – for conceptual modelling
without discussing its use in software engineering.

The use of OntoUML for software engineering is discussed in [16]. The au-
thor discusses the conceptual modelling at two levels – the ontological and the
informational. He also suggests a transformation of an OntoUML model into
an object-oriented UML implementation model. However, our approach differs
in some aspects: In [16], the author presents transformation for object-oriented
implementation model. We deal with a pure object implementation model and,
therefore, there are some differences. These differences become rather crucial
when dealing with anti-rigid types like Roles and Phases. Furthermore, the au-
thor transforms Role types from the OntoUML model into associations in the
UML model. We, on the other hand, prefer transforming the Roles into sep-
arate UML classes in order to capture Role attributes. Consequently, we also
use methods in the implementation to achieve the best quality object design.
Moreover, we consider using aggregation of Phase classes and Role classes in the
UML model to be more dynamic and, therefore, it conforms better to the pure
object implementation. It also enables more flexible run-time manipulation of
Roles and Phases. Additionally, we also deal with another OntoUML and UFO
concept – Phases – that are not discussed in [16]. On the other hand, Carraretto
deals with other entity types (Relators, Non-Sortals) that we do not cover here.

3 We use a slightly simplified notation for collections here – personStates and houses
collections are represented by a forked line leading to its members

127

Fig. 11. Example of transformation – object instances example (UML)

The problem of object Roles and its transformation has also been discussed
in many publications and papers – for instance in [17], [18] and [19] and others.
The transformation of relationships has been also discussed in [15] in the context
of relational databases and multiplicity constraints where the reader may find
thorough discussion of the topics.

There are books and papers started to be written about the Clojure program-
ming language (e.g. [20], [11], [21]). It is a pure functional language inspired by
traditional Lisp and it provides several interesting ideas related to the topic of
the paper. In this paper, we discussed the concept of separation of state and
identity. However, the concept of immutability is also relevant to the topic of
implementing OntoUML models – by implementing immutability of data struc-
tures, we get a complete separation of OntoUML worlds and so the mechanism
shown in Figure 11 is maintained automatically by the interpreter.

8 Conclusions

Transformation of OntoUML (ontological) models into software engineering
models is not a trivial issue, as we face limitations in current technologies. We
discussed mostly a pure object-oriented technology here. It is perceived today as

128

the most advanced technology for implementing business information systems.
Moreover, pure object-oriented paradigm is language-agnostic, as it may be (with
more or less limitations) applied not only in pure object-oriented languages as
Smalltalk, but also in hybrid ones like Java or C++.

With respect to OntoUML models, we see the following issues as crucial:

– Achieving maximum dynamic of systems – we prefer aggregation instead of
static inheritance.

– Separating state from identity – here, we see Clojure’s approach as very
promising.

We see the following issues as important topics for future research:

– Generating automatic constraints checking for the transformed models for
various paradigms and programming languages, as shown e.g. in [15].

– Transformations of OntoUML Non-Sortal entity types and other types (es-
pecially Relators and Part-Whole relations are very important in software
engineering).

– Development of open, flexible and yet user-friendly and practical CASE tools
supporting the transformations.

Acknowledgements. This paper was elaborated under the cooperation of:

– The Centre for Conceptual Modelling http://ccm.fit.cvut.cz supported
by Faculty of Information Technologies, Czech Technical University and grant
no. SGS13/099/OHK3/1T/18 of the Czech Technical University.

– The Ontology and Conceptual Modeling Research Group (NEMO) http://

nemo.inf.ufes.br supported by FAPES (PRONEX grant #52272362)

References

1. Ṕıcka, M., Pergl, R.: Gradual modeling of information system: Model of method
expressed as transitions between concepts. In: ICEIS 2006 - 8th International
Conference on Enterprise Information Systems, Proceedings. Volume ISAS. (2006)
538–541

2. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Volume
015. University of Twente, Enschede (2005)

3. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual
modeling revisited, Amsterdam, The Netherlands (2009)

4. Guizzardi, G.: Agent roles, qua individuals and the counting problem. Software
Engineering of Multi-Agent Systems (IV) (2006)

5. Goncalves, B., Guizzardi, G., Pereira Filho, J.G.: Using an ECG reference ontology
for semantic interoperability of ECG data. Special Issue on Ontologies for Clinical
and Translational Research (2011)

6. Barcelos, P.P.F., Guizzardi, G., Garcia, A.S., Monteiro, M.: Ontological evaluation
of the ITU-T recommendation g.805. Volume 18., Cyprus, IEEE Press (2011)

7. Booch, G., Maksimchuk, R.A., Engel, M.W., Young, B.J., Conallen, J., Houston,
K.A.: Object-Oriented Analysis and Design with Applications. 3 edn. Addison-
Wesley Professional (April 2007)

129

8. Hunt, J.: Smalltalk and Object Orientation: An Introduction. 1st edition. edn.
Springer (July 1997)

9. Guizzardi, G.: Representing collectives and their members in UML conceptual
models: An ontological analysis. In: Advances in Conceptual Modeling: Applica-
tions and Challenges. Volume 6413. Springer-Verlag Berlin, Berlin (2010) 265–274
WOS:000289184200033.

10. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. 3 edn. Addison-Wesley Professional (September 2003)

11. VanderHart, L., Sierra, S.: Practical Clojure. 1 edn. Apress (June 2010)
12. Kay, A.C.: The early history of smalltalk. SIGPLAN Not. 28(3) (March 1993)

6995
13. Dominik Gessenharter: Mapping the UML2 semantics of associations to a java

code generation model. In: Model Driven Engineering Languages and Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008) 813–827

14. Dominik Gessenharter: Implementing UML associations in java: a slim code pat-
tern for a complex modeling concept. In: Proceedings of the Workshop on Rela-
tionships and Associations in Object-Oriented Languages. RAOOL ’09, New York,
NY, USA, ACM (2009) 1724

15. Zdeněk Rybola, Karel Richta: Transformation of special multiplicity constraints -
comparison of possible realizations. In: FedCSIS 2012, Wroclaw, Poland (Septem-
ber 2012)

16. Roberto Carraretto: Separating Ontological and Informational Concerns: A Model-
driven Approach for Conceptual Modeling. Master thesis, Federal University of
Espirito Santo (2012)

17. Gottlob, G., Schrefl, M., Rck, B.: Extending object-oriented systems with roles.
ACM Trans. Inf. Syst. 14(3) (July 1996) 268296

18. Cabot, J., Ravents, R.: Conceptual modelling patterns for roles. In: Journal on
Data Semantics V. Volume 3870. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006) 158–184

19. Bierman, G., Wren, A.: First-class relationships in an object-oriented language.
In: ECOOP 2005 - Object-Oriented Programming. Volume 3586. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005) 262–286

20. R. Mark Volkmann: Clojure - functional programming for the JVM
21. Halloway, S.: Programming Clojure. 1 edn. Pragmatic Bookshelf (June 2009)

130

Chapter 13

Towards Formal Foundations for BORM
ORD Validation and Simulation

[190] Podloucký, M.; Pergl, R. Towards Formal Foundations for BORM ORD Validation
and Simulation. In Proceedings of the 16th International Conference on Enterprise In-
formation Systems, SCITEPRESS - Science and and Technology Publications, 2014, ISBN
978-989-758-027-7, pp. 315–322.

131

Towards Formal Foundations for BORM ORD Validation and
Simulation

Martin Podloucký, Robert Pergl
Department of Software Engineering
Faculty of Information Technology

Czech Technical University in Prague
Czech Republic

{martin.podloucky,robert.pergl}@fit.cvut.cz

Keywords: BORM, ORD, Process simulation, Process analysis, Formal foundations

Abstract: Business Object Relation Modelling (BORM) is a method for systems analysis and design that utilises an
object oriented paradigm in combination with business process modelling. BORM’s Object Relation Diagram
(ORD) is successfully used in practice for object behaviour analysis (OBA). We, however, identified several
flaws in the diagram’s behaviour semantics. These occur mostly due to inconsistent and incomplete formal
specification of the ORD behaviour. In this paper, we try to amend this gap by introducing so called input and
output conditions, which we consider to be the most important first step towards a sound formal specification
of the ORD.

1 INTRODUCTION

1.1 Motivation

Business Object Relation Modelling (BORM) is a
complex method for systems analysis and design that
utilises an object oriented paradigm in combination
with business process modelling. It originated at the
Loughborough University, UK in 1993. Successfull
utilisations have been reported and published ever
since, mostly in the area of IT and knowledge sys-
tems analysis and design (Knott et al., 2003), Ob-
ject Behavior Analysis (Knott et al., 2000), (Merunka
and Merunkova, 2013), Organization Modelling and
Simulation (Brozek et al., 2010), ontological analy-
sis (Pergl, 2011) and Business Intelligence (Merunka
and Molhanec, 2011). Several other methods and
techniques are based on the BORM method, such
as FSM-Based Object-Oriented Organization Model-
ing and Simulation (Merunka, 2012), the C.C Lan-
guage (Merunka et al., 2008) or a complexity esti-
mation method called “BORM Points” (Struska and
Merunka, 2007).

We agree with BORM’s authors Knott, Merunka
and Polak that there is a need for a simple, yet ex-
pressive tool for process modelling – and such a

tool is BORM. In our experience, we can fully sup-
port (Knott et al., 2000) statement that it is a good
approach to “start with a limited set of high level
concepts which can subsequently be transformed
into more software-oriented concepts necessary for
the construction of a software oriented conceptual
model”, or – as other work on BORM suggests – into
other types of artefacts and interpretations.

We have been using BORM successfully in prac-
tice for several years, as discussed in (Struska and
Pergl, 2009), that we had an honour to present at
ICEIS in 2009. Our professional focus is mostly
on analysis and design of enterprise processes and
behavioural analysis. Our practical experience led
us to develop our own CASE tool to satisfy our
needs in practical BORM usage. The first achieve-
ments were published in (Pergl and Tuma, 2012).
After building a modelling tool that suited our needs,
we started working on implementing simulation of
BORM ORD (Object Relation Diagrams)1, which is
the core of BORM’s behaviour aka process descrip-
tion (Knott et al., 2000). We were mostly inspired
by Craft.CASE2, for – as far as we know – there is

1This diagram is called “BOBA” ORD in (Knott et al.,
2000), an abbreviation from “BORM Object Behaviour
Analysis”.

2http://craftcase.com

132

no other comparable tool for BORM diagrams simu-
lation available today. Even though, one of BORM
authors – Vojtech Merunka – gave a series of lec-
tures on the Craft.CASE development, as witnessed
in (Merunka, 2010), it seems, unfortunately, that there
is no foundational paper that would explain the simu-
lation semantics and rules in detail.

1.2 Goals

As advocated above, the main advantage of the
BORM methodology and Object Relations Diagrams
in particular is their great practical usefulness. On
the other hand, we see one big disadvantage and it
is a lack of sound formal foundations which would
allow to clearly and precisely define the structure
and semantics of ORD and other concepts related to
BORM. Nowadays, many of such concepts are un-
derstood only intuitively. Therefore, the main goal
of our work is to create sound formal foundations for
BORM, which would not only help in understanding
the semantics of BORM, but it will also help us to
implement advanced software tools for this method.

The first results are presented in this paper, which
addresses issues related to simulation and execution
of the Object Relation Diagrams. The specific goals
are:

• to thoroughly describe the semantics of BORM
Object Relation Diagrams,

• to identify and discuss the main issues and ambi-
guities of the ORD semantics,

• to suggest an extension or modification of the
ORD such that the above issues can be overcome
and

• to start laying down the sound formal foundation
for the ORD.

1.3 Structure of the paper

In section 2 we introduce BORM’s Object Relation
Diagram, being the focus of our study. We describe
the basics of ORD together with minor changes to the
meta-model we propose.

In section 3 we inspect the semantics of ORD and
we try to deal with its basic ambiguities.

In section 4 we introduce the concept of input and
output conditions which should resolve the described
issues.

The rest of the paper follows a common structure:
Discussion, Related work, Future work and Conclu-
sion.

2 BUSINESS OBJECT RELATION
MODELLING

This section introduces the Business Object Rela-
tion Modelling (BORM) methodology. We limit our-
selves just to the Object Behaviour Analysis method
(OBA)3, its purpose, advantages and also details with
respect to the issues we discuss here. In the following
text, we abbreviate BORM OBA to “BOBA”, as seen
in (Knott et al., 2000).

Since BOBA generally studies processes, it is
appropriate to explain our use of the term, in parti-
cular given the amount of definitions available in the
literature. For the purposes of this work, we stick to
the simple, practically-oriented definition provided by
ISO 9000:2000:
Definition 1. Process is a set of interrelated or inter-
acting activities that transforms inputs into outputs.

As the term activity has a specific (narrower)
meaning in BOBA, we substitute ISO’s term activity
in the definition by task in this paper. Thus the term
task will have a general informal meaning “something
that needs to be done in order to accomplish a partic-
ular goal in a process”.

2.1 Object Relation Diagrams

BORM methodology introduces Object Relation Dia-
gram (ORD) to model processes and perform BOBA.
Since in (Knott et al., 2000) only a very brief descrip-
tion of the ORD notation can be found, we start by
a thorough description of the basic concepts of this
modelling notation (Figure 1).

2.1.1 Participants, states, activities

The Object Relation Diagram is a graphical descrip-
tion of a process. It is essentially a collection of par-
ticipants (depicted as grey rectangles), which are in
turn collections of states (white rectangles) and acti-
vities (white ellipses). Each participant in ORD rep-
resents a person, an organization or a system partici-

3For a more thorough description of BORM itself, we
refer the reader to the references.

133

Participant A

State A1

Figure 1: A sample Object Relation Diagram.

pating in the process. Participants follow the struc-
ture of the Mealy’s machine (Mealy, 1955). States
are thus the primary components of each participant.
Each participant has exactly one start state (marked
with black arrow) and at least one final state (drawn
with double-line border) – this is our first proposal
for ORD change, as the original syntax uses spe-
cial symbols for a start state and a final state sim-
ilar to UML Activity Models, while our concept is
completely aligned with the definition of Mealy’s ma-
chine, where the start state and end states are regular
states.

States are connected by transitions which are rep-
resented as arrows. If two states A and B are con-
nected by a transition, the participant being in state A
can continue to state B.

On each transition, there may be an activity which
describes what is happening when the participant
transitions from one state to the other. The word
“may” represents our second proposal for the ORD
notation: In the original notation, the activities are
required between the states, which is sometimes not
wanted – analysts4 then invent artificial activites like
”no action”, etc. Our proposal is nothing more than
incorporating the notion of the ε-transition from the
theory of finite state machines, i.e. a spontaneous
transition from one state into the other.

The purpose of activities is twofold. First, follow-
ing the semantics of the Mealy’s machine, an activity
represents an action which produces some kind of an

4Let us call the person doing the modelling an “analyst”.

output. Such an output may or may not be in fact tan-
gible. In the end, an activity may simply be a task5

that needs to be done by the participant in order to ad-
vance to the next state. The mere fact, that the task
was done, is being considered as the output.

2.1.2 Communications and data flows

The second purpose of the activities is that they allow
participants to communicate with each other. Acti-
vities can be connected by communications (drawn
as horizontal dashed-line arrows). Communications
represent channels for sending outputs of an activity
of a participant to another participant. Such outputs
are called data flows. Data flow is information or an
artefact that is sent from a participant to another par-
ticipant. The participant containing the activity with
the outward communication arrow is always the ini-
tiator of the communication. Data flows sent by the
initiator are called input data flows. In reaction, the
receiving participant may send output data flows back
to the initiator.

The original concept of communications in ORD
presumes that both initiating and receiving partici-
pants must be in the initiating and the respective re-
ceiving activity at the same time in order for the com-
munication to take place. We call such a commu-
nication direct. Howerver, in practical applications
of ORD, we often find ourselves in the need for an
indirect communications, as well. A direct commu-
nication models the situation where two interacting
participants need to actually meet each other either
personally, over a phone or using some other direct
medium. On the other hand, if for example Bob writes
an email to Alice, she does not have to wait at the
other end to receive it. The e-mail waits for her un-
til she opens it and Bob may in the meanwhile con-
tinue in his agenda. Thus, this represents our third
proposal: the communication may be marked as in-
direct, which means that the initiator does not have to
wait until the receiver arrives at his receiving activity
and he may go right to the following state. The re-
ceiver, on the other hand, always needs to wait, until
the respective data flow arrives.

2.1.3 Conditions

Transitions may be also restricted by conditions. If
more than one transition comes out of a state, a con-
dition may be placed on any number of the transi-

5We use the term task with the meaning explained in
section 2.

134

tions. The participant may go forward along a transi-
tion only when its condition is met. Example of such
a situation is shown in Figure 1. Conditions are used
to express restrictions on decisions of participants and
they are usually expressed in the natural language.

2.1.4 Other constructs

So far, we have described the basics of ORD seman-
tics and graphical notation. There are also other, more
advanced constructs in ORD. A state, for example,
may contain a nested process; Conditions may be
placed on communications as well. However, we do
not deal with these contructs in this paper, since we
identified that they bring serious complexity to the in-
terpretation and simulation of processes.

2.2 ORD simulation

Apart from structural aspects of ORD, we need to dis-
cuss the behavioural aspects. In fact, simulation or
execution of processes defined by ORD is the main
challenge of our work. As already mentioned in the
Introduction, there is no canonical definition of how
the ORD process should by executed. As far as we
know, the only implementation of ORD simulation is
offered by the Craft.CASE modelling tool.

Figure 2 illustrates the first five steps of simula-
tion of one simple participant, as performed by the
Craft.CASE tool. When the participant is in a par-
ticular state, or it is performing a particular activity,
such state or activity is highlighted with dark grey
background. We say that such a state or activity is
being visited. We see that the participant in the fi-
gure faces a decision at the start state X and chooses
to proceed both of the possible ways simultaneously.
We call such parallel ways branches. This illustration
enables us to inspect the main issues with the simula-
tion of processes defined by ORD.

3 REVISION OF ORD PROCESS
BEHAVIOUR

ORD in the BORM methodology is a simple, yet
a powerful way of describing and visualising business
process. Its semantics can be easily described, es-
pecially to people with little technical knowledge in
process modelling. That, of course, is a great advan-
tage in the business environment. On the other hand,

ORD still suffers from ambiguities in definitions and
that, consequently, causes serious troubles especially
when process simulation and analysis come to play.

3.1 Decision making and parallelism

Let us discuss the ambiguities and issues of the ORD
behaviour that we mentioned above. Decision making
and parallelism are the fundamental ones. There
seems to be a lack of agreement on them. On the one
hand, Knott, Merunka and Polak state in (Knott et al.,
2000) that “BOBAs process model is strictly based
on the theory of finite automata”, namely on Mealy’s
machines. On the other hand, Brozek, Merunka and
Merunkova explain in (Brozek et al., 2010) that “vi-
sual simulation of a business process is based on
marked-graph Petri net” – but neither explain how
these two different perspectives should merge to-
gether into a consistent and sound theoretical foun-
dation and interpretation of the process specified by
the ORD.

3.2 The simultaneity principle

The basic difference between Petri nets (Peterson,
1981) and Mealy’s machines (Mealy, 1955) lies in the
fact that Petri nets operate on the basis of massive pa-
rallelism, whereas Mealy’s machines, when executed,
always follow one simple path. The Craft.CASE tool
obviously uses Petri nets to simulate processes as doc-
umented by Figure 2. However, this approach im-
poses a serious challenge of an ontologically correct
interpretation of the notion of parallelism. From this
perspective, we propose a notion of the simultaneity
principle:
Principle 1. The simultaneity principle states that
no participant can be split into multiple instances and
thus perform several tasks in parallel.

This principle states that even though any partici-
pant may be in several states at once, no participant
can actually perform several activities at once. The
parallel branches in ORD have, therefore, ontologi-
cally this meaning – the activities belonging to differ-
ent branches do not depend on each other. From that
follows that such activities can be done regardless of
order, which allows one to perform them virtually in
parallel. Therefore, if a participant is required to do
activities in parallel, the actual meaning is that it can
choose to do them in any order desired, or switch be-
tween doing them, as wanted6. It is evident that this

6The situation may be compared to the preemptive mul-

135

X

Participant A

cond 1

D

cond 2

C

B

E

H

F

G

X

Participant A

cond 1

D

cond 2

C

B

E

H

F

G

X

Participant A

cond 1

D

cond 2

C

B

E

H

F

G

X

Participant A

D

C

B

E

H

F

G

X

Participant A

cond 1

D

cond 2

C

B

E

H

F

G

Step 1 Step 2 Step 3 Step 4 Step 5

cond 1

cond 2

Figure 2: Simulation of a participant facing a decision.

concept imposes some constraints on the general be-
haviour of Petri nets, where multiple parallel tokens
are moving independently through the structure of the
net. The simultaneity principle is illustrated in Fi-
gure 2. If the participant A finds itself in the state X ,
it faces a decision where to go next. In the next step it
appears to perform both the following activities at the
same time which is, in fact, only a graphical illustra-
tion of the principle described above.

Furthermore, it is necessary to ontologically clar-
ify what happens once the participant arrives to the
state F . For example, if the participant arrives to F
by the shorter of the two possible branches, should it
wait in F until the other branch is completed as well?
If so, what happens once the participant had chosen
only one branch at the state X? In such a case the pro-
cess falls into a deadlock. On the other hand, if we
just follow the Petri net behaviour, no merge is per-
formed and we get an ontologically extravagant situ-
ation as depicted in 2, where the participant actually
arrives to F multiple times. This is in direct contra-
diction with the dependency principle.

The above issue could be solved simply by stating
that F waits only for those branches, that had been ac-
tually chosen. Unfortunately, the nature of this issue
seems to be deeper. When creating a process model,
the analyst should be given a way to explicitly define
which decisions are valid in a given state and which
are not. For instance, executing several branches may
not be possible in some situations in the reality. In-
stead, a process may require that there is precisely
one of the possible branches that needs to be com-
pleted in order to advance further. Since simultane-
ous and exclusive choices are both valid in process
definition and simulation, we come to the conclusion

titasking of a computer processor.

that neither Mealy’s machines, nor Petri nets provide
a sufficient formal description of the ORD process be-
haviour.

3.3 The dependency principle

Before we introduce the second principle of ORD se-
mantics, we first need to clarify some terminology.
From the perspective of ORD, we talk about states
and activities, states being the primary components of
a participant in the process. When a transition is made
from one state to another, an activity is performed and
we say that the participant completed a task. To iden-
tify that task, we associate it with the state at which
the participant has arrived. So the notions of task and
state will be synonymous from our point of view.

Above, we already informally touched the notion
of the task dependency, which is a very essential
principle of process definition regardless of particular
methodology. The terms “interrelated and interact-
ing” in Definition 1 denote the fact that often several
tasks have to be completed prior to completing an-
other task. From now on, we refer to this principle as
the dependency principle:

Principle 2. The dependency principle states that a
task A may require other task to be completed before
A can be completed.

The rules that determine on which tasks the task A
depends, may be quite complex. Let us have a set of
tasks {X , Y , Z}. For example, the task A may require
a completion of exactly two tasks from this set. Thus,
we need a sufficiently expressive system for specify-
ing such dependency conditions – we introduce such
a system utilising boolean algebra in the next section.

136

Participant

State A

Figure 3: Sample input and output conditions.

4 INPUT/OUTPUT CONDITIONS

Having explained the main challenges, we may
start formulating new formal foundations of the ORD.
We start by introducing the concept of input and out-
put conditions, which incorporates the dependency
principle into the ORD and targets the formalisation
of the simultaneity principle.

4.1 Input and output conditions

To be able to express the dependency principle in an
ORD, we attach an input condition to each state:

Definition 2. Input condition of a state is a boolean
expression whose variables are the transitions ending
in that state. It specifies that the execution of the pro-
cess cannot advance further from the given state until
its input condition is met, i.e. until the corresponding
boolean expression is evaluated as being true.

Similarly, each state also has an output condition.

Definition 3. Output condition is a boolean expres-
sion whose variables are the outgoing transitions from
the given state. It specifies admitted combinations of
branches into which the process execution may split
itself from this state.

Figure 3 shows an example of input and out-
put conditions allowing precisely two distinct paths
through the participant’s state graph. State A has an
output condition which says that exactly one of two
possible transitions may be chosen to continue for-
ward. The state D has, in turn, an input condition say-
ing, that exactly one branch is allowed to complete.

The input condition of a state is interpreted as fol-
lows: When several branches merge in one state, then
this state waits for all of them to complete and only
then evaluates its input condition. If the condition

is met, the participant may advance to the next state,
otherwise the process fails.

The output conditions, on the other hand, en-
sure that when the process flow splits into several
branches, only the appropriate branches are allowed
to be chosen, i.e. the branches that do not allow the
process to fail – falling into deadlock. Therefore, in-
put and output conditions provide a solution to ad-
dressing both the simultaneity and the dependency
principles. Since each state waits for all the branches
to complete before evaluating its input condition, it
prevents the situation, where the participant would
split into several independent instances, because one
branch took more steps to complete. Moreover, each
state now specifies exactly on what branches it de-
pends and thus perfectly expresses the dependency
principle.

5 Discussion

The solution of the issues with ORD process be-
haviour interpretation and simulation proposed here
lies in the introduction of the input/output conditions
of states. The solution has the following features:

1. Input/output condition are expressions in boolean
logic and therefore general and unambiguous.

2. They address both the simultaneity and depen-
dency principle.

3. No additional elements in the ORD are needed,
so the diagrams remain clear and simple as was
intended by the authors.

6 Related work

As we stated above, we are not aware of any sys-
tematic effort to build formal foundations of BOBA.
Given that, our work is very likely quite novel for
BORM. However, looking at model execution, sim-
ulations and behaviour analysis from a broader per-
spective, we may identify other attempts similar to
ours – and at these, we want to look at now. There
are generally two complementary approaches:

1. Start with a formal apparatus and build a practi-
cally applicable domain-oriented method and/or
tool.

2. Start with a method used in practice and upgrade
it into a simulation-able or an executable model.

137

Starting with the first type of approach, Brand’s
and Zafiropulo’s Communicating Finite State Ma-
chines are an example. Their purpose was to de-
sign communication protocols (Brand and Zafirop-
ulo, 1983). The authors took the finite state machines
(FSM) theory and upgraded it consistently for mod-
elling several together-bound FSMs. Another exam-
ple of such an approach is Pattavita’s and Trigila’s
proposal to combine the FSM with Petri nets for mod-
elling communicating processes (Pattavina and Trig-
ila, 1984). Another example is the Yasper tool for
workflow modelling and analysis (van Hee et al.,
2006); it is based on Petri nets enriched by several
practical concepts from the domain of process analy-
sis (hierarchies, choices, roles and others).

The second mentioned approach, i.e. to upgrade
an existing method, is exemplified by our work. Kin-
dred spirit to ours is Barjis: he proposed a method for
developing executable models of business systems.
Barjis’ method is based on the DEMO method (Di-
etz, 2006). To make the static DEMO models exe-
cutable, Barjis proposed a transformation into Petri
nets (Barjis, 2007). His insight has been recently fol-
lowed by, for instance, Vejrazkova and Meshkat (Ve-
jrazkova and Meshkat, 2013).

We are also aware of similar approaches focused
on standard ”industry” notations UML and BPMN.
In spite of general popularity of these notations, we
do not deal with them, as they suffer from vagueness,
ambiguities and ontological flaws, as mentioned by
e.g. Silver in (Silver, 2011) or Dijkman et al. in (Di-
jkman et al., 2008). Guizzardi performed a deep anal-
ysis of BPMN suitability for expressing simulation
models in (Guizzardi and Wagner, 2011) with quite
discouraging results for researchers and practitioners
focused on ontological soundness of modelling.

Though we could continue in compiling a list of
similar approaches, our goal was just to document
that a combination of a practical approach with a ro-
bust formal foundation leads to a new level of under-
standing of modelling methods, improving their ex-
pressiveness, power and, ultimately, their usefulness.

7 Future work

As implied by the title of the paper, our goal was
just to make first steps towards sound formal foun-
dations of BORM. The future work means to spec-
ify a complete formalism for ontologically sound ex-
ecution and simulation of processes defined by ORD.

This formalism should encompass the needed fea-
tures of Mealy’s machine and Petri nets, while at the
same time not allowing ontologically extravagant sit-
uations.

In this paper, we omitted advanced ORD con-
structs (communication conditions and nested pro-
cesses). These constructs should be also studied in
the future work.

8 Conclusion

We described the syntax and semantics of BORM
Object Behaviour Analysis (BOBA) – Object Rela-
tion Diagrams (ORD). We discussed the main issues
and ambiguities of the ORD semantics with the re-
spect to execution and simulation of processes defined
by ORD. We proposed minor changes and enhance-
ments for the model. Then, as the first step towards
a sound formalisation of BOBA, we introduced the
input and output conditions enhancement for states.

Our honest hope is that our contribution may be
an inspiration for both BORM practitioners and for-
malists to join their forces to bring BOBA to a new
level of expressive power and possibilities.

REFERENCES

Barjis, J. (2007). Developing executable models of busi-
ness systems. Setubal. Insticc-Inst Syst Technologies
Information Control & Communication.

Brand, D. and Zafiropulo, P. (1983). On communication
finite-state machines. Journal of the ACM, 30(2):323–
342.

Brozek, J., Merunka, V., and Merunkova, I. (2010). Or-
ganization modeling and simulation using BORM ap-
proach, volume 63 of Lecture Notes in Business Infor-
mation Processing.

Dietz, J. L. G. (2006). Enterprise ontology: theory and
methodology. Springer, Berlin; New York.

Dijkman, R. M., Dumas, M., and Ouyang, C. (2008). Se-
mantics and analysis of business process models in
bpmn. Inf. Softw. Technol., 50(12):1281–1294.

Guizzardi, G. and Wagner, G. (2011). Can BPMN be
used for making simulation models? Lecture Notes
in Business Information Processing, 88 LNBIP:100–
115. 00004.

Knott, R., Merunka, V., and Polak, J. (2000). Process mod-
eling for object oriented analysis using BORM ob-
ject behavioral analysis. In 4th International Con-
ference on Requirements engineering, 2000. Proceed-
ings, pages 7–16.

138

Knott, R., Merunka, V., and Polak, J. (2003). The BORM
methodology: a third-generation fully object-oriented
methodology. Knowledge-Based Systems, 16(2):77–
89.

Mealy, G. H. (1955). A method for synthesizing sequential
circuits. Bell System Technical Journal, 34(5):1045–
1079.

Merunka, V. (2010). Object-oriented proces modeling and
simulation – borm experience. Trakia Journal of Sci-
ences, 8(3):71–87.

Merunka, V. (2012). FSM-Based object-oriented organiza-
tion modeling and simulation. In Aalst, W., Mylopou-
los, J., Rosemann, M., Shaw, M. J., Szyperski, C., Ba-
jec, M., and Eder, J., editors, Advanced Information
Systems Engineering Workshops, volume 112, pages
398–412. Springer Berlin Heidelberg.

Merunka, V. and Merunkova, I. (2013). Role of OBA ap-
proach in object-oriented process modelling and sim-
ulation. In Barjis, J., Gupta, A., and Meshkat, A.,
editors, Enterprise and Organizational Modeling and
Simulation, volume 153 of Lecture Notes in Business
Information Processing, pages 74–84. Springer Berlin
Heidelberg.

Merunka, V. and Molhanec, M. (2011). BORM: agile mod-
elling for business intelligence. In Rahman El Sheikh,
A. A. and Alnoukari, M., editors, Business Intelli-
gence and Agile Methodologies for Knowledge-Based
Organizations: Cross-Disciplinary Applications. IGI
Global.

Merunka, V., Nouza, O., and Broek, J. (2008). Automated
model transformations using the C.C language. In Di-
etz, J., Albani, A., and Barjis, J., editors, Advances in
Enterprise Engineering I, volume 10 of Lecture Notes
in Business Information Processing, pages 137–151.
Springer Berlin Heidelberg.

Pattavina, A. and Trigila, S. (1984). Combined use of finite-
state machines and petri nets for modelling commu-
nicating processes. Electronics Letters, 20(22):915–
916.

Pergl, R. (2011). Supporting enterprise IS modelling using
ontological analysis. Lecture Notes in Business Infor-
mation Processing, 88:130–144.

Pergl, R. and Tuma, J. (2012). OpenCASE – a tool
for ontology-centred conceptual modelling. Lecture
Notes in Business Information Processing, 112:511–
518.

Peterson, J. L. (1981). Petri net theory and the modeling of
systems. Prentice Hall.

Silver, B. (2011). BPMN Method and Style, 2nd Edition,
with BPMN Implementer’s Guide: A structured ap-
proach for business process modeling and implemen-
tation using BPMN 2.0. Cody-Cassidy Press.

Struska, Z. and Merunka, V. (2007). BORM points - new
concept proposal of complexity estimation method.
In Cardoso, J., Cordeiro, J., and Filipe, J., editors,
Proceedings of the ninth international conference on
enterprise information systems, pages 580–586. IN-
STICC.

Struska, Z. and Pergl, R. (2009). BORM-points: introduc-

tion and results of practical testing. Lecture Notes in
Business Information Processing, 24:590–599.

van Hee, K., Oanea, O., Post, R., Somers, L., and van der
Werf, J. (2006). Yasper: a tool for workflow model-
ing and analysis. In Sixth International Conference on
Application of Concurrency to System Design, 2006.
ACSD 2006, pages 279 –282.

Vejrazkova, Z. and Meshkat, A. (2013). Translating
DEMO models into petri net. In Enterprise and Or-
ganizational Modeling and Simulation, volume 153.
Springer Verlag Heidelberg.

139

Chapter 14

The Prefix Machine — a Formal
Foundation for the BORM OR

Diagrams Validation and Simulation

[200] Podloucký, M.; Pergl, R. The Prefix Machine – a Formal Foundation for the BORM
OR Diagrams Validation and Simulation. In Enterprise and Organizational Modeling and
Simulation, volume 191, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, ISBN 978-
3-662-44859-5, pp. 113–131.

141

The Prefix Machine – A Formal Foundation
for the BORM OR Diagrams Validation

and Simulation

Martin Podloucký and Robert Pergl(B)

Department of Software Engineering, Faculty of Information Technology,
Czech Technical University, Prague, Czech Republic
{martin.podloucky,robert.pergl}@fit.cvut.cz

Abstract. Business Object Relation Modelling (BORM) is a method
for systems analysis and design that utilises an object oriented paradigm
in combination with business process modelling. BORM’s Object Rela-
tion Diagram (ORD) is successfully used in practice for object behaviour
analysis (OBA). OBA has found its firm place for visualisation and sim-
ulation of processes, however several ontological flaws were identified and
there seems to be missing a strong formal foundation that would enable
correct reasoning about the models. In this paper, we propose a sound
formal foundation for BORM’S ORD. Based on this formal foundation
(which we call “the prefix machine”), we get not only to a precise behav-
iour specification, but it also offers some interesting means of process
analysis.

Keywords: Prefix machine · BORM · OR diagrams · Process simulation ·
Process analysis · Formal foundations

1 Introduction

1.1 Motivation

Business Object Relation Modelling (BORM) is a complex method for systems
analysis and design that utilises an object oriented paradigm in combination
with business process modelling. It is not probably necessary to introduce this
method at EOMAS, so we will save precious space and dive into the problem
directly. The diagram notation is not very complex and will be probably clear
from the figures. Readers interested in more detail will find everything necessary
in the references.

The authors of this paper have been using BORM successfully in practice
for several years both in management consulting practice and research projects.
Unfortunately, it seems there is no foundational paper that would explain the
simulation semantics and rules in detail, which limits the use of BORM for
mere diagramming and – inaccurate and ontologically not correct – simulations
that are provided by the Craft.CASE tool [7]. We think that BORM has bigger
potential for rigorous process analysis, as we intend to show in this paper.

c© Springer International Publishing Switzerland 2014
J. Barjis and R. Pergl (Eds.): EOMAS 2014, LNBIP 191, pp. 113–131, 2014.
DOI: 10.1007/978-3-662-44860-1 7

142

114 M. Podloucký and R. Pergl

1.2 Goals

In this paper we introduce a new formal model based on basic mathematical
formalisms (sets, mappings, relations), graph theory and boolean algebra, that
models the behaviour of BORM Object Relation Diagram (ORD). The model
was designed with the following subgoals in mind:

– Simple, clear and sound formal model that would allow for formal foundations
for conclusive BORM ORD behaviour interpretation.

– Having a formal description that serves as a specification (and probably also
as a construction) for developing software for BORM ORD validations and
simulations.

– The model should describe ideally all behaviour of BORM ORD that is com-
monly agreed upon.

– The model should not allow ontologically extravagant interpretations (i.e.
interpretations that are not aligned with our perception of the process mod-
elling domain).

1.3 Structure of the Paper

In Sect. 2 we briefly introduce BORM’s Object Relation Diagram, being the
focus of our study. In Sect. 3 we sum up the conclusions made in our previous
paper [10] together with the current state of our work. In Sect. 4 we present our
formal foundations of ORD. We begin with a simplification of the ORD model
and we gradually define and describe the prefix machine and its execution model.
In Sect. 5 we show an example to illustrate usage of the prefix machine. We also
briefly describe process simulation and analysis based upon the prefix machine
semantics.

The rest of the paper follows a common structure: Discussion, Related work,
Conclusions and future work.

2 Object Relation Diagrams

Given that we set out to give a formal description of OR diagrams, we start by
a very brief description of the basic concepts of this modelling notation together
with minor changes to the meta-model we performed. A more thorough descrip-
tion of OR diagram notation can be found in our previous paper [10] and origi-
nally in the work introducing the object behavioural analysis [6].

Since processes are the major theme of our work, it is appropriate to explain
our use of the term, in particular given the amount of definitions available in
the literature. For the purposes of this work, we stick to the simple, practically-
oriented definition provided by ISO 9000:2000:

Definition 1. Process is a set of interrelated or interacting activities that
transforms inputs into outputs.

143

The Prefix Machine 115

Fig. 1. A sample Object Relation Diagram. Inspired by [6].

To describe such a process, the BORM methodology uses the OR diagram.
Figure 1 shows an ORD example taken from [6]. It describes a process of inter-
action among a customer, a cashier and a cash desk terminal.

The customer, cashier and terminal are so called participants of the process.
Participants are basically state machines consisting of states – represented as
rectangles – and transitions between them, represented as arrows. On each tran-
sition, there is an activity, represented as an ellipse. An activity represents an
output of the process, which may simply be a task that needs to be done by
the participant in order to advance to the next state. Activities from different
participants can be connected by so called communications. These allow partic-
ipants to communicate with each other. Communications are channels through
which data flows can be sent.

For our purposes, we make one syntax change to the original BORM notation:
We do not use extra symbols for start states and end states, rather we have
switched to a notation more consistent with the definition of finite state machine:
a start and a finite state are ordinary states distinguished only by an attribute.
Graphically, we use a triangle symbol for a start state and a double line for an
end state, as may be seen in Fig. 1 and the following ones.

144

116 M. Podloucký and R. Pergl

3 Current State

In our previous paper [10], we started to explore the major issue of the BORM
OR diagrams which is the lack of solid formal foundations. This issue becomes
most apparent when one would like to actually execute the process defined by an
OR diagram for the purpose of simulation or even orchestration. The simulation
or execution of processes defined by ORD is therefore the main challenge of
our work. As we have already mentioned in our previous work [10], there is no
canonical definition of how the ORD process should by executed yet. Hence, we
stand at the point where we need to investigate the semantics of the OR diagram
and develop our own solution to this problem.

3.1 Simultaneity and Dependency Principles

When trying to identify the most fundamental principles underlying the execu-
tion of the OR diagram [10], we formulated the dependency principle and
the simultaneity principle. As these principles have been already thoroughly
discussed [10], we mention them here again only briefly.

Principle 1. The simultaneity principle states that no participant can in
fact split itself into multiple instances and actually do several tasks in parallel.

This principle states that even though any participant may be in several
states at once, no participant can actually perform several tasks at once. The
parallel branches in ORD have, therefore, ontologically this meaning: The activ-
ities belonging to different branches do not depend on each other. From that
follows that such activities can be done regardless of order, which allows one to
perform them virtually in parallel. Therefore, if a participant is required to do
activities in parallel, the actual meaning is that he can choose to do them in any
order desired, or switch between doing them as wanted.

The statement that activities belonging to different branches do not depend
on each other brings us to the dependency principle.

Principle 2. The dependency principle states that a task A may require
other tasks to be completed before A itself can be completed.

The terms “interrelated” and “interacting” in Definition 1 imply the fact that
often several tasks have to be completed prior to completing another task. The
rules that determine on which tasks the task A depends may be quite complex.
Let us have a set of tasks {X, Y , Z}. For example, the task A may require
a completion of exactly two tasks from this set. Thus, we need a sufficiently
expressive system for specifying such dependency conditions. We have already
introduced such a system [10] which utilises boolean algebra and is called input
and output conditions.

145

The Prefix Machine 117

3.2 Input/output Conditions

To be able to express the dependency principle in an ORD, we propose to attach
an input condition to each state:

Definition 2. Input condition of a state is a boolean expression whose vari-
ables are the transitions ending in that state. It specifies that the execution of
the process cannot advance further from the given state until its input condition
is met, i.e. until the corresponding boolean expression is evaluated as being true.

Similarly, we propose that each state also should have an output condition.

Definition 3. Output condition is a boolean expression whose variables are
the outgoing transitions from the given state. It specifies admitted combinations
of branches into which the process execution may split itself from this state.

Figure 2 shows an example of input and output conditions allowing precisely
two distinct paths through the participant’s state graph. State A has an output
condition which says (using the classical boolean XOR operator) that exactly
one of two possible transitions may be chosen to continue forward. The state
D has, in turn, an input condition saying that exactly one branch is allowed to
complete.

Having arrived at this point we have introduced all the necessary concepts
from our previous work [10]. The main challenge now is to put these concepts on a
solid basis and develop a formal framework for the execution of processes defined
by OR diagrams. We need to precisely define the behavioural aspect of the OR
diagram based on input/output conditions and the simultaneity principle. As
explained in our paper [10], neither Mealy’s machines nor Petri nets provide a
suitable framework to begin with. Therefore, we need to develop our own formal
machine, which would be capable of expressing the desired semantics of OR
models regarding their simulation and execution. We will call this machine the
prefix machine.

Fig. 2. Sample input and output conditions.

146

118 M. Podloucký and R. Pergl

3.3 Simplified OR Model

As the current OR diagram does not have any formal model, we have to start
from scratch and develop our own, maybe redefining some portions of the ORD
along the way. Here starts our journey towards the prefix machine. In this section,
we start a rather informal description of the prefix machine making ourselves
ready for the more formal next section.

The prefix machine aims at formalizing a merge of both Mealy’s machine and
Petri net and overcomes the issues described above and in the paper [10]. The
machine is based on directed graphs of states (similarly to the Mealy’s machine),
and its execution uses tokens (a trait typical for Petri nets). To describe the
necessary concepts using the graph theory, we use the standard terminology [1].

The prefix machine is a somewhat simplified model aiming at capturing the
essence of the “future” OR diagram while omitting unnecessary details and com-
plexities from the current OR diagram. The prefix machine should then evolve
into a formal basis upon which the future revised OR diagram should be based.

The prefix machine is basically structured as a directed graph. The correspon-
dence between the current ORD and a directed graph is rather straightforward.

1. States correspond to vertices.
2. Transitions along with their respective activities correspond to edges.

We call the resulting digraph edges transitions as well, reducing, in essence,
activities to transitions between states. At the same time, transitions represent
dependencies between states, and thus express the dependency principle. For the
sake of simplicity, we diverge from the current OR diagram structure a little by
changing three important concepts.

1. We place communications between states instead of activities (recall that
activities are no longer represented as vertices).

2. As it is convenient to have only one kind of edges in a directed graph, we
replace communications in the model by transitions. We assume that in order
for a communication to happen, both its source and target states have to be
visited by their respective participants. This actually makes these two states
dependent on each other, so we can represent each communication with two
opposite transitions.

3. We do not allow cycles in the model, i.e. we discuss loop-less processes only.

None of the first two changes diminish the expressive power of the formal
model in any way. The third change, on the other hand, certainly diminishes
the expressive power and we are prepared to address this issue in our further
research.

Notice, however, that by replacing communicationswith transitions,we already
introduced cycles of length 2. A general directed graph can be transformed into an
acyclic graph (to model a process) simply by contracting all strongly connected
components into single vertices. Thus, after the aforementioned cycles removal, the
source and target state of each communication collapses into a single communica-
tion state. Incidentally, such a result corresponds exactly to the intended meaning:

147

The Prefix Machine 119

The act of communication between two participants in an OR diagram may hap-
pen just when both of them are visiting their respective communicating states.

Notice also that neither participants nor data flows are included in the sim-
plified OR model. At this level of abstraction it is immaterial for us which task
is executed by whom and what exactly is being sent along the communications
lines.

4 The Prefix Machine

Now we are ready for the precise formal definition of the prefix machine. From
now on, we use Greek letters such as ϕ, ψ to denote boolean expressions.
We work rather extensively with them, with a special kind – positive boolean
expression, in particular.

Definition 4. A boolean expression of at least one variable which evaluates to
false when all of its variables are false, is called positive.

Let V be an arbitrary finite set. We denote by EV the set of all positive
boolean expressions whose variables are elements of V . Notice, that EV does
not contain formulas with no variables – the truth constant � and the false
constant ⊥. We deal with them separately. The rationale behind positive boolean
expressions and constants will become clear later on, when we discuss the prefix
machine execution. Now we have the tools for the long awaited formal definition
of the prefix machine ready.

Definition 5. Prefix Machine G is a 5-tuple (S, T,K, e−, f), where

– S is a set of digraph vertices representing states,
– T = {(x, y) | x, y ∈ S} is a set of oriented edges representing transitions,
– K ⊆ S is a set of communication states,
– e− : S → E = ET ∪ {�} is the mapping of states to their input conditions,
– f ∈ S is the terminal state.

According to the above explanation, ET is the set of all positive boolean
expressions with variables drawn from T . The set of all possible input conditions
E also includes the � constant. This is merely for convenience and it is justified
further below.

To explain the notion of the terminal state, let us first consider the following
notation. For a given state x we denote the number of its ingoing transitions by
deg−(x) and the number of its outgoing transitions by deg+(x). The terminal
state f is the one and only state for which deg+(f) = 0. On the other hand,
there may be several states for which deg−(x) = 0.

Definition 6. A state x ∈ S for which deg−
G(x) = 0 is called an initial state.

Let us denote IG the set of all initial states of G.

Definition 7. The condition e−
f assigned to the terminal state is called the

terminal condition.

148

120 M. Podloucký and R. Pergl

Continuing the prefix machine definition, we add some further restrictions to
it. For a state x ∈ S, let us denote its outgoing transitions as t1x, . . . , tnx and
its ingoing transitions as u1

x, . . . , um
x .

The following statements hold:

∀x ∈ S ∃ϕ(u1
x, . . . , un

x) ∈ E : e−(x) = ϕ (1)

∀x ∈ K : deg+(x) = deg−(x) = 2 (2)

∀x ∈ K : e−(x) = u1
x ∧ u2

x (3)

Formula (1) says that there is an input condition for each state of G and all
ingoing transitions of x are variables of that condition. This is where the constant
� comes in handy since it is the only valid choice for the input conditions
of the initial states which do not have any ingoing transitions. Formula (2)
ensures that there are exactly two ingoing and two outgoing transitions for each
communication state. This fact reflects the nature of a communication state:
a communication state was created by merging two states from two different
participants in the OR model. Thus, there must be exactly two paths going
through each communication state, and each path has been taken by a different
participant. Formula (3) ensures that both of those participants must be present
in the communication state in order to advance further.

The definition of the prefix machine is now complete. Nevertheless, we need
to define another important concept. Similarly to the mapping of the input
conditions e−, we define the mapping e+

G : S → E of output conditions.
However, this mapping is not a part of the prefix machine definition, since it

is completely derived from the machine’s structure and properties. The mapping
is derived as follows:

– e+
G(f) = �

– ∀x ∈ K : e+
G(x) = t1x ∧ t2x

– ∀x ∈ S \ {K ∪ {f}} : e+
G(x) = t1x ∨ · · · ∨ tnx ,

There are also several important facts implied by the definition of the prefix
machine that are worth mentioning.

∀x ∈ IG : e−
G(x) = � (4)

∀x ∈ S : deg−
G(x) = 1 ⇒ e−(x) = idu (5)

Formula (4) says that when a state x is initial, there is no other possible choice for
its input condition than the expression �. Formula (5) says that when the state
x has only one ingoing transition u, again, there is only one possible choice for
its input condition – and that is a positive expression consisting of one and only
one variable u. There is precisely one such expression for each variable u and it
is the identity denoted by idu.

149

The Prefix Machine 121

4.1 Prefix Machine Examples

We can see two examples of prefix machines in Fig. 3. States are represented
as rectangles and transitions as arrows. Let us first look at the machine G1.
We can see a sample input condition u1 ⊕ u2 attached to the state z. Here we
use the symbol ⊕ to denote logical non-equivalence (the same operator as XOR)
and u1, u2 to denote ingoing transitions to the state z. Notice also the terminal
state depicted as a crossed rectangle. Here we have omitted the obvious constant
and identity input conditions which are attached to the initial states and states
with only one ingoing transition. This prefix machine represents a participant,
who needs to take one simple decision and the input condition ensures that they
cannot choose to go both ways simultaneously.

The machine G2 is a bit more complex. It actually represents two partici-
pants. This is clear from the fact that it contains two initial states. It contains
one communication state depicted by a dashed rectangle which represents the
situation where these two participants need to communicate with each other.
Notice also the terminal condition attached to the final state, which says that
both of these participants need to successfully finish. Examples of how such
machines relate to OR diagrams and how exactly they are executed are pre-
sented in Sect. 5.

Fig. 3. Examples of prefix machines.

4.2 Prefix Machine Execution

Let us now proceed to the formal definition of a process simulation, as defined
by the prefix machine. Let G = (S, T,K, e−, f) be a prefix machine. We put
S̄ = S \ {f}.

Definition 8. State visitor is a mapping g : S̄ → {∅, , } with the following

properties:

∀x ∈ IG : g(x) =
(6)

∀x ∈ S̄ : g(x) �= ∅ ⇒ ∀y((y, x) ∈ T ⇒ g(y) �= ∅) (7)

150

122 M. Podloucký and R. Pergl

The purpose of the mapping g is to assign a token to each state of the
machine with the exception of the terminal state. We distinguish between two
types of tokens – positive () and negative ().

Definition 9. We say that a state x ∈ S̄ is positively visited or having a
positive token if g(x) = .

Definition 10. We say that a state x ∈ S̄ is negatively visited or having a
negative token if g(x) = .

Definition 11. We say that a state x ∈ S̄ is unvisited or having no token
if g(x) = ∅.

We use the tokens as boolean variables with representing the value true
and representing false. By assigning a positive token to the state x, we express
the situation where x’s participant has already passed through x. A negative
token means that the x’s participant will never pass through x. No token means
that in the current execution step, it has not been yet decided whether the state
will ever be visited or not. Now we can define the notion of configuration.

Definition 12. The structure C = (G, g) is called a configuration of G.

We can now interpret the above properties in the following way. Property (6)
says that all initial states are always visited in all configurations of G. Prop-
erty (7) ensures that when the state x is visited, all states on the path from the
initial state to x are visited as well. The name prefix machine comes from this
very property.

Sample prefix machine configurations can be seen on the left side of Fig. 4.
White, grey and black circles represent unvisited, positively visited and nega-
tively visited states respectively. Of course, there are many other configurations
possible in this case. However, not all of them are interesting and useful here.
Let us, therefore, define two special kinds of useful configurations.

Fig. 4. Sample configurations of a simple prefix machine.

151

The Prefix Machine 123

Definition 13. Configuration C = (G, g) is called an initial configuration if

g(IG) = { } ∧ g(S̄ \ IG) = {∅}.

Definition 14. Configuration C = (G, g) is called a terminal configuration

if g(S̄) = { , }.

From the above definitions we can see that each prefix machine G has pre-
cisely one initial configuration and possibly several terminal configurations. Now
we would like to define relationships between different configurations of the prefix
machine G. We do this by defining a mapping h called a transition visitor.

Definition 15. Mapping h : T → {∅, , } is called a transition visitor if

∀(x, y) ∈ T : h((x, y)) = ∅ ⇔ g(x) = ∅ (8)

∀x ∈ S̄ : g(x) �= ∅ ⇒ g(x) = e+(x)[h] = e−(x)[h] (9)

This mapping is also required in order to evaluate the input and output
conditions. We need to assign logical values to transitions, since they represent
variables of those conditions. Thus, the symbol ϕ[h] denotes the value of the
condition ϕ under the mapping h (recall that we are using the tokens as logical
variables). Now we can interpret the above formulas as follows. Formula (8) says
that a transition is visited if and only if it is going out of a visited state. For-
mula (9) ensures that the token on the state x indeed corresponds to evaluation
of both the input and output condition of x.

If there exists h that meets the properties (8) and (9) for a given config-
uration, it is called the reachability witness. Let’s now denote Vh = {t ∈
T |h(t) �= ∅} the set of transitions visited by the reachability witness h. Now we
are prepared for the following definitions.

Definition 16. Let C1, C2 be configurations of a prefix machine G. We say that
the configuration C2 is reachable from the configuration C1 if C2 is reachable
by the witness h2, C1 is reachable by the witness h1 and the following conditions
hold

Vh1
⊆ Vh2

(10)

∀x ∈ Vh1
∩ Vh2

: h1(x) = h2(x) (11)

Definition 17. We say that the configuration of a prefix machine G is reach-
able if it is reachable from the initial configuration of G.

There may be more than one reachability witness for a configuration. The
right side of Fig. 4 shows three possible witnesses for one initial configuration.
This is allowed by the output condition of the state x.

Let’s denote RG the set of all reachable configurations of the machine G.
By the properties of the ⊆ relation we observe that the reachability relation on

152

124 M. Podloucký and R. Pergl

RG is reflexive, transitive and antisymmetric. This implies that the relation is a
partial ordering of RG with one minimal element – the initial configuration, and
possibly several maximum elements – the terminal configurations. When we view
this partial ordering as a directed graph we call this structure a configuration
graph.

4.3 Process Simulation

Simulation of a process represented as prefix machine is done simply by tra-
versing successive configurations of its configuration graph. Each path from the
initial configuration to a terminal configuration is then called a simulation
course. The configuration graph thus represents all possible simulation courses
of a process and as such it can be used not only for process simulation, but also
for process analysis.

5 Application and Examples

In the previous section, we developed a formal framework such, that it can
serve as a base for sound definition of process simulation. This section presents
two demonstrative examples illustrating the use of the framework to simulate
and analyse processes in BORM. These examples also help to clarify the rather
abstract and formal definitions presented in the previous section.

5.1 Example 1

As a first example, in Fig. 5, we can see a participant that needs to make a
decision. This situation is modelled by the current OR diagram on one side and
by the prefix machine on the other. The input condition at the terminal state z
states that exactly one branch is allowed to be completed.

Let us look at all possible configurations of this machine pictured in Fig. 6.
Configurations labelled as D are possible, but not reachable: there is no valid
transition visitor satisfying all the required properties for any of them. On the

X

Y

Participant

V

ZB

U2

U1 xor U 2

U1

Fig. 5. A model of a simple decision participant using the prefix machine.

153

The Prefix Machine 125

Fig. 6. All possible configurations of the machine H.

other hand, all the C configurations are reachable. In Fig. 7 we see all the reach-
able configurations with their respective transition visitors. Figure 8 then shows
the resulting configuration graph.

Notice that the configuration C11 in Fig. 7 is terminal, but however, its joining
state z is visited negatively and therefore the process arrives at the terminal state
also negatively. Arriving at a terminal state may be interpreted as achieving a
specific goal. Hence, the simulation course ending in configuration C11 did not
reach the goal of the process. In the real world situation, we would say that
the execution of the process has failed. The configuration graph in Fig. 8 even
shows that when the simulation reaches the configuration C8, it is doomed to
eventually end up in C11 – and thus to fail. We use the terminal condition on
the terminal state f to capture this notion formally. As the definition for the
prefix machine says, all the transitions going into the terminal state are variables
of the terminal condition. Logical values for these variables are provided by the
transition visitor h. Therefore, the terminal condition can be evaluated only at
a terminal configuration. In other words, the condition is evaluated at the end
of the execution and states exactly which combinations of the terminal tokens
represent a successfully completed execution of the process.

Now we have the tools to define the so called failed configurations.

Definition 18. We say that the configuration is failed when one of the fol-
lowing conditions holds.

– The configuration is terminal and the terminal condition evaluates to false.
– All paths from the configuration lead to failed configurations.

Finding failed configurations is very useful in a process execution analy-
sis. Constructing a configuration graph and identifying the failed configurations

154

126 M. Podloucký and R. Pergl

Fig. 7. All reachable configurations of the machine H with their respective transition
visitors.

allows us to see valid scenarios of the process. When looking at the configura-
tion graph in Fig. 8, we see all the failed configuration grayed out. Hence, we can
easily see all the valid paths through the configuration graph.

Depending on our overall goals, we may consider the process successful even
when just some of the participants reach terminal states (typically, the “cus-
tomer” of the process). The purpose of the terminal condition in the prefix
machine definition is precisely to allow such freedom in specification of the
process goals. Since there is a straightforward mapping from the process machine
states to participants, construction of the terminal condition can by done easily.

5.2 Example 2

The second example is a bit more complicated because it shows how communica-
tion states function. Figure 9 shows a model of two communicating participants.

155

The Prefix Machine 127

Fig. 8. The complete configuration graph of H (left). Failed configurations highlighted
(right).

XB

Y B

ZB

Participant B

V

XA

Y A

ZA

Participant A

U2

U1 xor U 2

U1

Fig. 9. A model of two communicating participants using the prefix machine.

Notice how the two communicating states from the OR diagram transform into
one state in the prefix machine. As this example contains more states, its num-
ber of reachable configurations starts to grow large. Figure 10 tries to show all
the 19 reachable configuration along with their 24 different transition visitors
for an illustration purpose. It is now even more practical to look at the resulting
configuration graph in Fig. 11.

You can notice an interesting thing there. It seems, that most of the reachable
configuration are actually failed. This is due to the rather restrictive terminal
condition seen in Fig. 9. This condition requires that both of the participants
finish successfully. Notice, however, that when the participant B chooses to avoid
communicating with the participant A by choosing to go to the other possible
branch at state xb, participant A cannot finish successfully. This is because A has
no option to avoid communicating like participant B. This is a nice example of
the process analysis framework. We have discovered that even though participant
B seems to have a choice at state xb, he actually has only one option in order
for the whole process to succeed.

156

128 M. Podloucký and R. Pergl

Fig. 10. All reachable configurations of the machine K with their respective transition
visitors.

157

The Prefix Machine 129

Fig. 11. The complete configuration graph of K with failed configurations highlighted.

6 Discussion

The previous section showed an example of how the prefix machine is used for
simulation of BORM processes and how it can be applied to a process analysis.

The concept of failed configurations is a very useful tool in process analysis,
especially if a suitable software were available. Such software tool may be used
to algorithmically construct the configuration graph of a given process and,
ultimately, to allow the user to inspect it closely or, simply, to learn more about
the whole process. Such software, for example, could be used to identify all
the courses doomed to fail and to illustrate them graphically; this, then, would
identify in a neat way exactly those decisions in the process that lead to an
inevitable failure.

It is not without interest that more accurate state output conditions (rep-
resenting branching conditions) may be actually inferred from input conditions
in the prefix machine. These inferred output conditions would allow only non-
failing paths through the configuration graph when simulating the process. This
opens another option for a process modelling tool which would enable the user
to assign not only input, but also output conditions to every state. Then, an
algorithm can be used to check whether those output user-specified conditions
actually correspond to valid choices in the process by comparing them to the
inferred output conditions.

158

130 M. Podloucký and R. Pergl

7 Related Work

As we stated above, we are not aware of any systematic effort to build formal
foundations of BORM OBA. Given that, our work is very likely quite novel for
BORM. However, looking at model execution, simulations and behaviour analy-
sis from a broader perspective, we may identify other attempts similar to ours –
and at these, we want to look at now. There are generally two complementary
approaches:

1. Start with a formal apparatus and build a practically applicable domain-
oriented method and/or tool.

2. Start with a method used in practice and upgrade it into a simulation-able
or an executable model.

Starting with the first type of approach, Brand’s and Zafiropulo’s Commu-
nicating Finite State Machines are an example. Their purpose was to design
communication protocols [3]. The authors took the finite state machines (FSM)
theory and upgraded it consistently for modelling several together-bound FSMs.
Another example of such an approach is Pattavita’s and Trigila’s proposal to
combine the FSM with Petri nets for modelling communicating processes [8].
Another example is the Yasper tool for workflow modelling and analysis [5]; it
is based on Petri nets enriched by several practical concepts from the domain of
process analysis (hierarchies, choices, roles and others).

The second mentioned approach, i.e. to upgrade an existing method is exem-
plified by our work. Kindred spirit to ours is Barjis: he proposed a method for
developing executable models of business systems. Barjis’ method is based on the
DEMO method [4]. To make the static DEMO models executable, Barjis pro-
posed a transformation into Petri nets [2]. His insight has been recently followed
by, for instance, Vejrazkova and Meshkat [11].

8 Conclusion and Future Work

In this paper, we proposed a formal foundation for BORM Object Behaviour
Analysis and Object Relation Diagrams (ORD). We call the resulting formal-
ism “the prefix machine” (Sect. 4). This machine not only formally defines the
behaviour of ORD, but it also enables the user to perform automated process
analysis (Sect. 5) by finding valid and failed process scenarios.

With our prefix machine, we are now able to analyse the behaviour of OR
diagrams, as we showed in the example and as we discussed above. We also
proposed a couple of practical cases ready to implement in Sect. 5. However,
we still miss a complete picture of the process in its discrete steps. So, to fill
that gap, as a first step, we try to describe a complete visualisation of the ORD
behaviour through the process. Another area for future work is to look at a
formal model of cycles omitted by the prefix machine.

In order of the prefix machine to be useful and usable, we need a tool support.
We plan to implement the prefix machine into the OpenCASE [9] tool.

159

The Prefix Machine 131

Acknowledgements. This paper was written with the support of the SGS14 grant no.
103/OHK3/1T/18. The authors would also like to express their very great appreciation
to Oskar Maxa for his insightful ideas and valuable contribution to this work.

References

1. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications.
Springer Monographs in Mathematics. Springer, London (2009)

2. Barjis, J.: Developing Executable Models of Business Systems. INSTICC - Institute
for Systems and Technologies of Information, Control and Communication, Setubal
(2007)

3. Brand, D., Zafiropulo, P.: On communication finite-state machines. J. ACM 30(2),
323–342 (1983)

4. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Berlin
(2006)

5. van Hee, K., Oanea, O., Post, R., Somers, L., van der Werf, J.: Yasper: a tool for
workflow modeling and analysis. In: Sixth International Conference on Application
of Concurrency to System Design, 2006. ACSD 2006, pp. 279–282, June 2006

6. Knott, R., Merunka, V., Polák, J.: Process modeling for object oriented analy-
sis using BORM object behavioral analysis. In: 4th International Conference on
Requirements Engineering, 2000. Proceedings, pp. 7–16 (2000)

7. Merunka, V.: Object-oriented process modeling and simulation - BORM experi-
ence. Trakia J. Sci. 8(3), 71–87 (2010)

8. Pattavina, A., Trigila, S.: Combined use of finite-state machines and petri nets for
modelling communicating processes. Electron. Lett. 20(22), 915–916 (1984)

9. Pergl, R., Tůma, J.: OpenCASE – a tool for ontology-centred conceptual modelling.
In: Bajec, M., Eder, J. (eds.) CAiSE Workshops 2012. LNBIP, vol. 112, pp. 511–
518. Springer, Heidelberg (2012)

10. Podloucký, M., Pergl, R.: Towards formal foundation for the BORM OR diagrams
validation and simulation. In: Proceedings of the 16th International Conference on
Enterprise Information Systems, pp. 315–322 (2014)

11. Vejrazkova, Z., Meshkat, A.: Translating DEMO models into petri net. In:
Barjis, J., Gupta, A., Meshkat, A. (eds.) EOMAS 2013. LNBIP, vol. 153,
pp. 57–73. Springer, Heidelberg (2013)

160

Chapter 15

Revisiting the BORM OR Diagram
Composition Pattern

[192] Podloucký, M.; Pergl, R.; Kroha, P. Revisiting the BORM OR Diagram Composition
Pattern. In Enterprise and Organizational Modeling and Simulation, Lecture Notes in
Business Information Processing, volume 231, Stockholm: Springer, 2015, pp. 102–113.

161

Revisiting the BORM OR Diagram Composition Pattern

Martin Podloucký(B), Robert Pergl, and Petr Kroha

Department of Software Engineering, Faculty of Information Technology,
Czech Technical University, Prague, Czech Republic

{martin.podloucky,robert.pergl,petr.kroha}@fit.cvut.cz

Abstract. This paper addresses the notion of process decomposition as a tool
for managing process complexity in BORM Object Relation Diagram. It investi-
gates the composition principle already present in ORD and shows it as ambigu-
ous and mostly unsuitable for that purpose. Substantial changes to the original
meta-model of ORD are proposed by introducing a new concept called tasks.
The implications of introducing this new concept are then investigated, especially
concerning decomposition of communications in a BORM process.

Keywords: Process composition · BORM · BOBA · OR diagrams

1 Introduction

The Business Object Relation Modelling (BORM) has been developed at the Lough-
borough University since 1993 [6] and later have became a practically-applied method
with scientific interest, becoming a tradtitional topic of EOMAS [7–9,11]. BORM is
an elaborate method for systems analysis and design utilising object-oriented paradigm
in combination with business process modelling. Since we are mostly interested in the
business process modelling, the primary focus of our research is on the initial phase of
the BORM called Object Behaviour Analysis (BOBA) [6].

1.1 Motivation

We have been using BOBA and other BPM methods successfully in practice for several
years in management consulting practice, research projects and software development.
Throughout the time, we began to greatly appreciate the BOBA approach to business
process modelling, and we see many strengths and qualities in this approach. On the
other hand, however, we also ran across several problems in the original BOBA, one of
which is the concept of process decomposition.

It is probably not necessary to explain that real-life business processes are seldom
clear and simple. In many cases, the processes are very complicated, and the resulting
model is very difficult to comprehend. We believe that the most effective concept for
managing such complexity in processes is the idea of composition. Unfortunately, the
principle of composition in the BOBA’s ORD (Object Relationship Diagram) is defined
quite vaguely, and we see significant inconsistencies and limitations in its usage.

c© Springer International Publishing Switzerland 2015
J. Barjis et al. (Eds.): EOMAS 2015, LNBIP 231, pp. 102–113, 2015.
DOI: 10.1007/978-3-319-24626-0 8

162

The BORM Composition 103

1.2 The Goal

The intention behind this paper is to address the issues of process composition in ORD.
Our goal is to identify problematic spots in this original concept and eventually present
a new approach and new definition of process composition which, once incorporated
into ORD, would bring the BOBA to a next level of practical usefulness.

2 The BORM Method

In this paper, we use a version of ORD which is slightly different then the original
concept described in [6]. In our previous work [12], we introduced some minor changes
to the original syntax of the diagram to make it more compliant with the definition of
Mealy’s machine and to make it more useful in practice. We always point out these
differences throughout the paper when in danger of confusion.

The original concept of BORM was inspired by experience in the area of software
engineering. There is often a significant discord in the communication of ideas about
particular problem domain between different stakeholders such as software developers
and analysts on one hand, and business people on the other. This observation is sup-
ported be the original authors of BORM, who say that there is a problem to

“. . . find a common language for the developers to express their understanding
of the problem space that is both sufficiently rich for the developers to fully
articulate their ideas, while also being comprehensible to users from all areas
of discourse.” [6]

We agree with this experience and, in unison with the authors, we believe BORM
may be such a common language. As we explained in the motivation, we cherish the
fundamental principles upon which BOBA is built. In our view, the most important
of them is simplicity. The BOBA process model is based upon communicating finite-
state machines which makes ORD especially clear in structure and appearance (see
Fig. 1). This truly allows people with varying technical and business backgrounds to
easily understand the process diagrams even at the very first sight. The properties that
contribute most to the high comprehensibility of ORD are in our view:

1. a small set of simple and easy-to-understand building blocks with clear intentions
behind them,

2. a straightforward depiction of participants of the process and
3. a very transparent depiction of communication amongst participants similar to that

of UML sequence diagrams.

On the contrary, however, there are also several weaknesses in the original BOBA
framework. Over the time we came into disagreement with some of the fundamen-
tal notions upon which the BOBA process diagram stands. Since we still believe that
BOBA has a big potential especially regarding rigorous process analysis, our overall
and long-term goal is to elevate BOBA to a next level by addressing its shortcomings
and proposing appropriate enhancements to overcome them.

Our objections towards ORD are essentially twofold. Firstly, it is the lack of sound
formal foundations of ORD meta-model and secondly, it is the unsatisfying definition
of the composition.

163

104 M. Podloucký et al.

2.1 The Formal Foundations

We agree completely with van der Aalst that solid formal foundations are very valuable
since they allow for exact reasoning about the properties of the whole process, they do
not leave any scope for ambiguity, and they increase the potential for analysis [1].

The original authors of BORM claim that ORD is based upon communicating finite-
state machines (FSMs), namely Mealy’s machines [3]. However, the proposed ORD
behaviour diverges significantly from the execution semantics of the FSMs. This leaves
a big scope for ambiguity in the execution and simulation of the modelled processes.
In our previous work [11,12], we explored these problems to a great extent, and we
observed that ORD structure is based upon Mealy’s machines but the behaviour corre-
sponds more to Petri nets. This led us to a formulation of a new formal model of ORD
execution called the Prefix Machine [11], which is to some extent a combination of

Fig. 1. A sample BORM Object Relation Diagram taken from [11]. Each participant is a Mealy
finite-state machine. States are represented as rounded rectangles and activities as dashed ovals.
Transistions are depicted as solid lines and communications as dashed lines.

164

The BORM Composition 105

Mealy’s machines and Petri nets. That work introduced a precise formal grounding of
ORD and BOBA. The relation between ORD, Mealy’s machines, and Petri nets is dis-
cussed in our previous paper [12] in detail. Some open questions still remain, though.
One of such open topics is process composition that we intend to explore in this paper.

2.2 The Process Composition

We believe that one of the most important tasks in process modelling is managing
process complexity. Processes in the business reality are seldom simple and neat, the
very opposite is quite often the case. As we explained in the beginning of this section,
the primary aim of BORM and BOBA in particular is to serve as a communication lan-
guage bridging the areas of discourse of software engineers and business stakeholders.
As such, it strives for greatest simplicity and abstraction to suit the business people,
yet still maintaining sufficient technical detail for the engineers. This is hard to achieve
without a powerful system for managing the process complexity.

The human mind certainly has a limited capacity for processing visual informa-
tion. A process diagram with hundreds of elements is difficult to comprehend even for
a skilled person. A famous work by George Miller [10] in the field of cognitive psy-
chology suggests that the number of objects an average human can hold in working
memory is 7 ± 2. Having this argument in mind, we would like to have a well-defined
concept of process composition in BOBA allowing us to decompose a process diagram
into different levels of abstraction each of which contaning as few elements or concepts
as possible.

Object relation diagram in BOBA already has a construct to express process com-
position, however, we find it mostly unsuitable. In order to describe this construct and
to support the further discussion, we are using a simplified version of the waterfall soft-
ware development process as an illustrative example.

Figure 2 depicts this process in both collapsed and expanded form. Notice how the
state Develops the software on the left side of the diagram is marked with a plus
sign signalling that the state is composite. Composite states in ORD are used to encap-
sulate a sub-process and to hide it when a reader wants to abstract from too much detail.
The sub-process can be revealed by expanding the composite state as seen on the right
side of Fig. 2.

The waterfall example in Fig. 2 shows a standard way of using composition in
BOBA. At the first sight, this concept may seem useful and straightforward. Though,
under a more thorough look, serious doubts arise.

Imagine at first, that the software company is unable to create the product on its
own and it needs an external supplier to develop a specialised library. As a result, the
sub-process in the composite state now contains a communication, as depicted in Fig. 3.

Now the important question is, what to do with this communication when the com-
posite state is collapsed. Since the ORD meta-model is based upon communicating
finite-state machines, states cannot communicate, only the activities can. It seems,
therefore, that states should not allow composition, and they should rather be atomic
elements. Actually, this issue points to a more fundamental ontological problem in the
BOBA method.

165

106 M. Podloucký et al.

(a) State collapsed. (b) State expanded.

Fig. 2. Example of a simple composite state.

Fig. 3. Composite state with a communication.

166

The BORM Composition 107

Many a time, we see that processes modelled using BOBA contain states that repre-
sent some non-trivial work being done. Let us look again at Fig. 3 and at states such as
Analysis, Design or Testing. In our view, this approach overloads the concept of a
state too much. It is contradiction with the fundamental concepts of state machines and
computation theory in general. There, a state is understood as a kind of milestone and
not as a unit of work. By allowing composite states, BOBA itself goes against this very
principle.

To make BOBA compliant with the theory of FSM, we propose that states
should be only milestones or named points in time. The only allowed activity in
a state ought to be waiting. The only way how some actual work can be done in
a process is by transitioning from one state to another.

2.3 New Composition in BOBA

From the above paragraphs, it seems that BOBA and ORD require some polishing and
redefinition of some basic terms to make it more consistent. In fact, though, the problem
of composition goes much deeper and revels broader area of ideas and problems to deal
with.

In the following two sections, we elaborate on these challenges.

First, we propose that ORD would benefit from more then a single principle
of process decomposition. In fact, we see two orthogonal decomposition principles
which can be incorporated into ORD to better manage the complexity of BOBA
processes. We call them the horizontal and the vertical decomposition.

3 Vertical Decomposition

The term vertical decomposition1 covers the principle of the composite states described
in the previous section. Beware, however, that we had already dismissed the construct
of composite states as contradictory. Yet, we still find the concept of vertical decompo-
sition very useful. The question is, then, how to express this concept in a proper way.

The obvious first choice might be to use composite activities. As they represent tran-
sitions between states, they ought to represent the actual units of work in the process.
This concept can be, however, dismissed just as promptly as the previous one using
states. Let us look again at the right side of Fig. 2. The sub-process in the expanded state
Develops the software has two mutually exclusive outcomes. These have to be
mapped to corresponding distinct branches in the super-process. Yet, when we change
the composite state to a composite activity, this is no longer possible since the control
flow cannot branch at an activity2.

1 The name of the notion comes from the visual appearance of ORD. When the composite states
are collapsing, the diagram is shrinking vertically.

2 The original version of ORD actually allows branching at an activity. The modified version we
are working with now does not. It became necessary to restrict activities in such a way to get
a better alignment with the definition of Mealy’s machine [12].

167

108 M. Podloucký et al.

Since only a state can be used to fork and join the control flow, we can
use neither states nor activities as elements of composition without completely
violating their fundamental semantics. It seems we need to keep states and ac-
tivities atomic and introduce a completely new kind of element used as means
of composition.

3.1 Tasks

We call the new composition element a task. Figure 4 shows the original composite
state transformed into a task. In the diagram, we use a wide border to depict a task to
distinguish it from the states and activities. As Fig. 4 shows, a task can be expanded and
collapsed to show or hide the inner content.

(a) Task expanded. (b) Task collapsed.

Fig. 4. Example of a task.

A fundamental new concept coming with the tasks are so-called ports. They
appear as symbols on the border of a task and they are used to define an interface
of the task with the outer world. We distinguish two kinds of task interfaces, the
transition interface and the communication interface.

The transition interface is used to specify the branching of the process flow. The
interface uses the so-called entry ports (depicted as empty squares �) and exit ports
(depicted as filled squares �). Entry ports specify where a branch of the process may
enter the task. Each task must have at least one entry port. When it has two entry ports
for example, two distinct branches of the process need to enter the task. The number

168

The BORM Composition 109

of exit ports specifies how many branches exit from the task when it is completed (see
Fig. 4). The task has no exit ports if the process terminates in it.

The communication interface is used to specify communications of a task and it is
based upon exactly the same principles as the transition interface. The interface uses
inputs ports (depicted as empty circles �) and output ports (depicted as filled circles
�). Each input port represents a target of one communication and a task may have any
number of such ports (including zero). Similarly, each task can have any number of
output ports representing sources of communication.

Thanks to the ports, the transition and communication interface of a task
remain exposed even when the task is collapsed. This is not the case in the
original concept of composition using states or activities.

We can say that introducing our concept of tasks and interfaces in business process
modelling corresponds to the concept of separation of interface and implementation in
software engineering. This successful concept lead to the possibility of implementation
evolution without changing the interface. In this case, the old, well-known method of
stepwise decomposition may be viewed as corresponding.

4 Horizontal Decomposition

In fact, we have already been silently using the horizontal decomposition in ORD dia-
grams throughout the paper. See for example Fig. 3 where two of the participants are
collapsed horizontally to omit unnecessary detail in their structure. Using this second
kind of decomposition, any participant can be collapsed to a vertical line representing
just its communication interface. This is another convenient way to hide a large amount
of possibly insubstantial detail in the process diagram.

An interesting observation (though, without further elaboration in this paper) is the
fact that we get a diagram very similar to the UML sequence diagram [4] (Fig. 5a) by

(a) A horizontally collapsed ORD reminds
of a UML Sequence Diagram

(b) A totally collapsed ORD reminds of a
UML Communication Diagram.

Fig. 5. UML-like diagrams of the waterfall model.

169

110 M. Podloucký et al.

horizontally collapsing all of the participants. To bring this idea even further, we can
at first collapse all the participants vertically as far as possible arriving at participants
containing only the top-most task or tasks. Second, we can do complete horizontal col-
lapse, eventually arriving at something similar to the UML Communication diagram [4]
(Fig. 5b). In order to do this, however, we need to also collapse all the communications
between participants to a single connection. This option opens a non-trivial discussion
we touch in the next section.

Nevertheless, the horizontal decomposition does not seem to pose such challenges
as the vertical one and it seems fairly consistent in its simplicity. Therefore, we leave it
now and focus on the issue of vertical decomposition of communications.

5 The Challenge of Communication Decomposition

The above illustration suggests that the idea of collapsing communications to a single
connection is rather straightforward. Yet, it is so only when we do not want to retain
any structure of the communication interface among the respective participants. In this
simple case, one cannot take one of the aggregated connections and connect it to an
input port of some task, since the connection represents several single communications.

Eventually, we would like to be able to collapse the communication interface of
a participant (or a task) as much as possible, while still retaining enough information
about the structure of this interface, so it can be used to connect the participant to
communication ports of other tasks in the process. Figure 6 shows a simple situation of
this kind. The expanded version of the task on the left has four output communications.
When this task is collapsed (on the right), there are several possibilities how to deal
with the communications:

1. To leave them as they are. In that case, each communication can be connected to
some input port right away, but we lose all the information about the structure of the
interface.

2. To collapse all communications into one connection. This time, however, we cannot
connect these connections to input ports right away since the only thing we know
about the communication is its existence.

3. To group only parallel communications together. Yet, still are we left with aggre-
gated connections which cannot be connected to input ports.

We argue that neither of the three proposed approaches is fully suitable. Some do
not reflect the structure of the communication interface, whilst the others do not allow
to connect the communications right away to input ports. The issue of communication
decomposition seems to open a bigger topic, and we leave it to be investigated in a
further research.

6 Summary and Discussion

Throughout the previous sections, we argued that the composition principle already
present in ORD is not suitable as means for managing process complexity. The con-
cepts of composite states or activities result in ambiguities and even contradictions

170

The BORM Composition 111

Fig. 6. Collapsing communications of a task.

(Sect. 2.2) with the basic notion of state in the finite-state machines. Having realised
that, we strived to introduce a proper concept of composition into ORD. Our concept of
tasks addresses the composition issues and brings flexible ways of composition result-
ing in new forms of ORD diagrams that resemble certain UML diagrams. However,
the topic of composition is not totally solved, mostly due to challenges concerning
decomposition of communications. The structure of communications of a task seems to
contain an inherent complexity in it which is difficult to abstract from.

7 Related Work

Decomposition is an established concept in process-modelling methods and notations,
as the goal of model comprehensibility is a natural driver, as we described in Sect. 2.2.
Let us here briefly elaborate on most notable related efforts in other process-modelling
approaches and their features.

Let us start with Yourdon’s Data-flow diagrams (DFD) [14]. Processes are the
holders of activities. Activities may be decomposed into a larger detail, i.e. DFD dia-
grams are generally recursive. We like the way decomposition is solved in DFDs, as
it exhibits pure recursive behaviour and maintains consistency between the various
decomposition levels: everything that goes into an activity on the level up needs to
go into the decomposed diagram and so on. We adopt this approach of consistency
handling, however it is impossible to maintain purely recursive composition in more
complex approaches like BORM.

In the family of Unified Modeling Language (UML) diagrams [2,4], there are sev-
eral behaviour-related diagrams that may be used to model certain aspects of processes.
The basic ones are the Sequence Diagram and the Activity Diagram we already touched

171

112 M. Podloucký et al.

above, the State Machine Diagram and the Communication Diagram. The ref operator
is used in Sequence Diagram to reference an interaction defined in another diagram. In
the Activity Diagram, an action can be decomposed into a subactivity. Input and output
parametres may be specified, which can be related to our “ports” concept. The State
Machine Diagram allows nested states, however, we perceive a serious flaw in the fact
that the nested state may have a transition to the state in the level above, which vio-
lates separation of levels and kills recursivity. The Communication Diagram (called the
Collaboration Diagram in UML 1.x) enables the decomposition of message flows, thus
expressing the routine-subroutine relations in an algorithm.

Business Process Modelling Notation (BPMN) [13] offers a quite rich assortment
of decomposition of activities:

– A Task, a basic unit of work may be decomposed into a sub-process.
– A Transaction is a set of activities that logically belong together; it might follow a

specified transaction protocol.
– An Event Sub-Process is placed into a Process or Sub-Process. It is activated when

its start event gets triggered and can interrupt the higher level process context or run
in parallel (non-interrupting) depending on the start event.

– A Call Activity is a wrapper for a globally defined Task or Process reused in the
current Process.

Moreover, various activity markers may be used to refine the behaviour of decomposed
activities: the Loop Marker, the Parallel Marker, the Sequential Marker, the Ad Hoc
Marker. The broad offer of decomposition concepts in BPMN may be a benefit for exe-
cutable BPMN models, however, we find them too complex and hardly comprehensible
for business users.

The last related work, we mention here, is the Hierarchical Coloured Petri Net
(HCPN) extension [5], which brings the concept of modules into the standard Petri
Net. Modules have ports similar to our approach, apart from input and output ports,
input-output ports are supported. HCPN introduces also a new type of model, the Hier-
archical Protocol Model, which shows the decomposition relations. The decomposition
in HCPN is clean and recursive, which is possible mostly due to the simple nature of
Petri Net concepts.

8 Conclusion and Future Work

We proposed a new model of decomposition for the BORM OR Diagrams. The new
model addresses ontological and formal flaws of the original “naive” way of decom-
position and offers interesting new concepts like vertical and horizontal decomposi-
tion. At the same time, new challenges arise, mostly in the topic of communication
(de)composition, which would support further abstraction and detail hiding. Also, by
introducing the concept of tasks, we substantially changed the structure of ORD and its
execution semantics which needs to be reflected in its formal meta-model. The Prefix
Machine mentioned at the beginning of this paper needs to be revisited to accommodate
these new concepts.

Last but not least, the new decomposition concepts need thorough testing in practice
to show possible ontological or practical flaws in special situations.

172

The BORM Composition 113

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: a
survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

2. Arlow, J., Neustadt, I.: UML 2.0 and The Unified Process: Practical Object-Oriented Analy-
sis and Design, 2nd edn. Addison-Wesley Professional, Boston (2005)

3. Brožek, J., Merunka, V., Merunková, I.: Organization modeling and simulation using BORM
approach. In: Barjis, J. (ed.) EOMAS 2010. LNBIP, vol. 63, pp. 27–40. Springer, Heidelberg
(2010)

4. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Professional, Reading (2003)

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Springer, Berlin (2009)
6. Knott, R., Merunka, V., Polák, J.: Process Modeling for Object Oriented Analysis using

BORM Object Behavioral Analysis. In: 4th International Conference on Requirements engi-
neering, 2000. Proceedings. pp. 7–16. IEEE (2000)

7. Merunka, V.: Instance-level modeling and simulation using lambda-calculus and object-
oriented environments. In: Barjis, J., Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP,
vol. 88, pp. 145–158. Springer, Heidelberg (2011)

8. Merunka, V., Merunková, I.: Role of OBA approach in object-oriented process modelling
and simulation. In: Barjis, J., Gupta, A., Meshkat, A. (eds.) EOMAS 2013. LNBIP, vol. 153,
pp. 74–84. Springer, Heidelberg (2013)

9. Merunka, V., Nouza, O., Brožek, J.: Automated model transformations using the C.C lan-
guage. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) Advances in Enterprise Engineering I.
Lecture Notes in Business Information Processing, vol. 10, pp. 137–151. Springer, Berlin
(2008)

10. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81–97 (1956)

11. Podloucký, M., Pergl, R.: The prefix machine – a formal foundation for the BORM OR
diagrams validation and simulation. In: Barjis, J., Pergl, R. (eds.) EOMAS 2014. LNBIP,
vol. 191, pp. 113–131. Springer, Heidelberg (2014)

12. Podloucký, M., Pergl, R.: Towards formal foundations for BORM ORD validation and sim-
ulation. In: Proceedings of the 17th International Conference on Enterprise Information Sys-
tems, pp. 315–322, April 2014

13. Silver, B.: BPMN method and style with BPMN implementer’s guide: a structured approach
for business process modeling and implementation using BPMN 2.0. Cody-Cassidy Press,
Aptos (2011)

14. Yourdon, E.: Modern Structured Analysis. Yourdon Press, Englewood Cliffs (1989)

173

Chapter 16

Empirical Study of Applying the DEMO
Method for Improving BPMN Process

Models in Academic Environment

[195] Náplava, P.; Pergl, R. Empirical Study of Applying the DEMO Method for Improving
BPMN Process Models in Academic Environment. In 2015 IEEE 17th Conference on
Business Informatics, volume 2, July 2015, pp. 18–26.

175

Empirical Study of Applying the DEMO Method
for Improving BPMN Process Models in Academic

Environment
Pavel Naplava

Faculty of Electrical Engineering
Czech Technical University in Prague

Technicka 2
160 00 Praha 6, Czech Republic

Email: naplava@fel.cvut.cz

Robert Pergl
Faculty of Information Technologies

Czech Technical University in Prague
Thakurova 9

160 00 Praha 6, Czech Republic
Email: robert.pergl@fit.cvut.cz

Abstract—Since 2009 approximately 500 business processes
have been mapped and modelled at the Faculty of Electrical
Engineering of the Czech Technical University in Prague. BPMN
has been selected as the most suitable notation for the mapping
purposes at the beginning of the project. The mapping has been
done mostly by students from the Business Process Center of
Excellence, a part of Faculty’s Dean’s office since 2009. This
paper contains results of an experiment focused on possibilities
of improving quality of existing results using the DEMO method-
ology. Next, we were interested in ways of enhancing students’
skills of process modelling to create unambiguous and consistent
models as a“result of a DEMO Bachelor course. Both students
from the Center of Excellence and ordinary university students
passed the DEMO Bachelor course of Enterprise Engineering
Institute and their were given assignments of devising ontological
analysis of the existing BPMN models. The results of the
experiment are discussed in the paper, as well as considerations
about future steps.

Keywords: BPM, BPMN, DEMO, process mapping, process
analysis

I. INTRODUCTION

All organizations try to find optimal ways to effectively
realize their own business. It does not matter whether we are
talking about a profit based or a nonprofit based subject. The
problems are mostly the same – low efficiency, high costs,
low response time, unsatisfied customers, etc. It can be simply
said that any organization must solve two conflicting demands:
improving output quality on the one side and lowering oper-
ating costs or raising the organization’s income on the other.
Academic institutions can primarily minimize operating costs
only according to the legislative rules.

As it was presented in Hronza [1] and Náplava [2], in 2009
the Dean of the Faculty of Electrical Engineering at the Czech
Technical University (CTU FEE) decided to optimize faculty
operations (minimal costs, minimal redundancy of supporting
activities, maximal automation of selected processes, full-
cost model etc.) and started a transformation of the faculty
becoming more of a business process oriented organization.
The main reason was to prepare the faculty for the coming

of new long term changes (reduced budget, lower number of
students, wider industry cooperation, more scientific projects).

For the purposes of the faculty transformation project the
dean established a new internal Business Process Center of
Excellence (BPCE). Two fulltime employees work in the
center, along with three PhD students and approx. 15 CTU
students in the form of paid internships. All students have
passed BPCE business process management courses and have
been trained for the BPM skills. The student internships are
between 2 and 3 years. New students are trained by the senior
students.

The first BPCE’s task was to analyze the existing success-
ful transformation projects. The key results of the provided
analysis are as follows:

• The supporting processes are the areas with the highest
potential [3];

• It is neither possible nor necessary to transform all
activities;

• It is necessary to start with processes that are not subjects
of power interests [4];

• It is not reasonable to provide all changes at the same
time;

• Transformation of any institution is a long term project.

The results of BPCE’s investigation confirmed the assump-
tions regarding what must be done but did not give instructions
on how to do it. This was the reason it was decided to create
a new methodology based on the common BPM principles and
practical experiences of the BPCE founders.

A. Business Process Management

Every transformation project starts with a deep understand-
ing of the organization and its behavior. Different types of
models are used for this purpose in practice. Through organi-
zation and behavior models it is possible to easily and visually
identify potential problems and point out previously-unaware
improvements needed to optimize the situation. Today, such
models are called business processes and their management

2015 IEEE 17th Conference on Business Informatics

978-1-4673-7340-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CBI.2015.12

18176

is called Business Process Management (BPM). Some of the
BPM’s benefits are as follows [5]:

• Clear visibility and knowledge of an organization’s ac-
tivities;

• Definition of duties and roles within a company;
• Possibility to simulate and evaluate different business

process scenarios;
• Identification of potential optimization areas;
• Ability to identify bottlenecks.
The current definition of BPM and business process have

been dated to the early 1990s [5]. Hammer and Champy [6]
defined a business process as “a collection of activities that
takes one or more kinds of input and creates an output that
is of value to the customer. A business process has a goal
and is affected by events occurring in the external world or
in other processes.” This definition views a business process
as a systematic ordering of work activities across time and
place. Davenport [7] defined business process as “a structured,
measured set of activities designed to produce a specified
output for a particular customer or market. It implies a strong
emphasis on how work is done within an organization, in
contrast to a product focus’s emphasis on what. A process
is thus a specific ordering of work activities across time
and place, with a beginning, an end, and clearly identified
inputs and outputs: a structure for action.” Both definitions
omit the role of those performing work activities and their
collaboration. These aspects were mentioned in Ould [8], who
viewed a business process as:

• a set of purposeful activities;
• Activities are collaboratively carried out by a group of

actors (human or machine);
• Activities can cross functional boundaries and are invari-

ably driven by the outside world.
In this definition it is important to note that a business

process is not carried out by a single individual or department
only, but it can involve many different people or systems from
different organizations. All are working together to achieve
a common business goals. Business processes can be analyzed
and optimized by either practical experiences or by scientific
investigations. In order for the results obtained from the
analysis to be reasonable it is necessary to have mechanisms
more sophisticated than simple qualitative analysis of static
diagrammatic models [9]. Aguilar-Saven [10] and Zakarian
[11] recommend in their work the usage of formal techniques
for an analysis of process models in order to make process
modeling more attractive and meaningful. This formal ap-
proach to business processes modelling enables a measurement
of the attainment of strategic goals and objectives by using
performance indicators [12]. It is necessary always to think
about both dynamic and functional aspects of the business
process. According to van der Aalst [13] three different types
of business process analyses exist:

• Validation; i.e., testing whether the business process be-
haves as expected in a given context;

• Verification; i.e., establishing the correctness of a business

process;
• Performance analysis; i.e., evaluating the ability to meet

requirements with respect to throughput times, service
levels, and resource utilization or other quantitative fac-
tors.

B. Business Process Modelling Notation

Many different notations for business process modelling
in practice exist: BPMN, EPC, UML, IDEF0, etc. The main
difference between them is in their usage; for example, UML
is mostly used by software developers, BPMN is used by
business analysts, etc. As the most suitable notation for
the CTU FEE purposes BPMN (Business Process Modeling
Notation) notation has been selected at the beginning of the
transformation project.

The main reason why the BPMN was selected was the
fact the notation is perceived as intuitive [14] and, based on
the Semiotic Quality Framework applicaton, it can be easily
learned for simple use and it is easy to understand [15].

II. GOALS AND METHODOLOGY

The goal of this paper is to provide a case study report
of applying the DEMO method to improve business process
modelling practice done in BPMN at the Faculty of Electrical
Engineering of Czech Technical University in Prague. The
current situation is that in recent 5 years, some 500 processes
were analysed and mapped in BPMN. Because the follow-up
goals of the CTU FEE’s project are the mapping of the fac-
ulty’s main processes, mapping of processes from other CTU’s
faculties and automation of the selected mapped processes all
found issues must be solved. One of the possible solutions can
be a combination of the BPMN and DEMO as it is described
in [14]. At the same time, we wanted to leverage the opening
of a new DEMO course for CTU’s students. It seemed to be
a way how to enhance the quality of the team and created
results with minimal costs.

The structure of the paper is as follows:
We begin by a brief description of the current situation of

BPM at the Faculty in section III. Next, we summarise the
necessary theoretical background of the DEMO methology in
section IV. We describe the setup of the performed study in
section V and follow by its evaluation in section VI, which is
the most important section. We mention some related work in
section VII and finally, we draw conclusions and future plans
in section VIII.

III. INITIAL SITUATION DESCRIPTION

Since 2009 BPCE has mapped and created approximately
500 process models (maps). In order for the project to be
successful BPCE decided to start with a mapping of the
dean’s office processes and then present described process
models to the whole faculty academia. It was planned for
models to describe AS-IS state, but process owners provided
a natural optimization too. This means owners did not strictly
describe AS-IS state but they provided simple modifications
based on their and other employees experience (ideas) and

19177

created “pseudo” TO-BE models. After the first versions
of created maps were accepted BPCE decided to add an
extended form of the description. The reason was that the
BPMN description is understood primarily by the owners
and implementers of the process. Consumers of the process
sometimes do not completely understand what to do and how
to do it. Therefore new form of process description based on
the BPMN and called “process as a service” has been added.
The term “process as a service” can be simply described as
a scenario of user actions. It represents a group of all related
processes and information necessary for doing selected activity
by employees, teachers or students. It combines both well
known AS-IS and new, employees required, TO-BE activities.
For example a simple scenario of education technical support
is presented in fig. 1. Any teacher is able to see which technical
support can he/she use during his/her lecture/seminar and how
to ask for it.

Fig. 1. Example of a process as a service.

Since 2009 approximately 150 processes as a service have
been created. All created process maps and processes as
a service are presented on the process portal that is a part
of the faculty website. Anyone who is granted access to this
portal can find any required information from his/her point of
view, and can also provide feedback.

After 5 years of the CTU FEE’s processes mapping BPCE
has analyzed realized outputs and used method. The results
are as follows:

• BPMN can capture business processes without the need
of a special methodology.

• Created models are easily readable by business people.
• BPMN can be learned quickly and newbies can create

new models after a short training of cca 20 hours in 10
weeks.

• Cooperation with students brings flexibility and creativity
to processes’ mapping.

• Only few elements of BPMN have been used for the
models creation.

On the other hand:

• Selected created models can be used as an input for the
process automation but the details of created models are
insufficient.

• Nonexistence of the BPMN’s models creation method-
ology and implicit model creation ontology results in
ambiguous, inconsistent and incomplete models.

• Nonexistence of the unified ontology complicates vali-
dation of the models created by the different BPCE’s
members (mostly students), reusability of already created
models for other academic subjects and uniform training
of new BPCE members.

Because the follow-up goals of the CTU FEE’s project
are the mapping of the faculty’s main processes, mapping of
processes from other CTU’s faculties and automation of the
selected mapped processes, all the identified issues must be
solved. One of the possible solutions can be a combination of
the BPMN and DEMO as it is described in [14] and elaborated
in the following section. Also the opening of the new DEMO
course for CTU’s students seemed to be a way how to enhance
the quality of the team and created results with minimal costs.

IV. DEMO METHOD OVERVIEW

DEMO stands for “Design and Engineering Method for
Organisations” and we consider it the leading methodology of
Enterprise Engineering discipline, as it is grounded in scientific
theories, mainly the system ontology of Bunge, teleology and
the theory of communicative act of Habermas. At the same
time, its benefits for the practical use has been proven, as
documented e.g. in [16] or [17].

For our purpose, we selected DEMO because of the
promises made in [18] (and acknowledged in later works). The
paper’s running example is similar to our situation in a respect
that we have flowchart-based (BPMN) models, which we want
to elevate to an enterprise engineering model and formulate
conclusions. For his running example, Dietz concludes that:

1) The ontological model of (the running example) is
really and fully abstracted from the current way in
which it operates... These properties, of course, make the
ontological model very stable, as organisational changes
and specific ways of implementation will not change the
model.

2) The ontological model of (the running example) shows
things that have no explicit implementation – tacitly
performed coordination acts are meant. We agree with
Dietz that these omissions are potential breakdowns in
business processes as soon as changes are implemented.

Moreover, Op’t Land and Dietz in [16] showed that DEMO

• Offers a significant reduction of complexity (over 90% in
terms of the size of documentation).

• It is an instrument for detecting tacitly performed coor-
dination acts.

The above benefits seem very promising for us, as they
address our concerns mentioned earlier. Thus we tried to apply
DEMO for our case.

20178

For a brief description of DEMO, we take a help of Op’t
Land and Dietz [16]:

A complete, so-called essential model of an organization
consists of four aspect models: Construction Model (CM),
Process Model (PM), Action Model (AM), and State Model
(SM). The CM specifies the composition, the environment
and the structure of the organization. It contains the iden-
tified transaction types, the associated actor roles as well
as the information links between actor roles and transaction
banks (the conceptual containers of the process history). The
PM details each transaction type according to the universal
transaction pattern. In addition, it shows the structure of the
identified business processes, which are trees of transactions.
The AM specifies the imperatively formulated business rules
that serve as guidelines for the actors in dealing with their
agenda. The SM specifies the object classes, the fact types
and the declarative formulations of the business rules.

For our case, we focus on the two most fundamental models:
CM and PM. Again, we let Op’t Land and Dietz [16] explain:

A Construction Model shows the network of identified
transaction types and the corresponding actor roles. E.g.,
transaction type T01 delivers a business service to actor role
A00. A00 is called the initiator (consumer) and A01 the
executor (producer). The executor of a transaction is marked
by a small black diamond on the edge of the actor role box.
The solid line between A00 and T01 is the initiator link;
the solid line between A01 and T01 is the executor link.
fig. 2 also shows that some other actor role (A07) needs to
have access to the history of transactions T01 (production
facts as well as coordination facts (e.g., status “requested”,
“promised”, “stated”, “accepted”)). This is represented by the
dashed line between A07 and T01.

Fig. 2. Typical constructs of a DEMO Construction Model [16]

The DEMO Process Model reveals details of the transac-
tions with the respect to universal transaction pattern. The so-
called standard transaction pattern is depicted in fig. 3. The
“happy flow” consists of request, promise, state and
accept, as is depicted in fig. 4, which is also called the basic
transaction pattern. Apart from the happy flow, decline
may happen instead of promise and reject may happen
instead of accept. Then, a new attempt may be made, or

quit, resp. stop may end the transaction unsuccessfully.
This logic is automatically included in all DEMO transactions,
which is one of the reasons why the models are so compact
– it would need a lot more diagram elements to express the
transaction pattern of every transaction kind using a flowchart-
like notation.

rq

pmpm

st

ac

initiator executor

rq

st

ac

dc

qt qt

rj

sp sp

rq: request
pm: promise
st: state
ac: accept

dc: decline
qt: quit
rj: reject
sp: stop

dc

rj

E
-p

ha
se

R
-p

ha
se

O
-p

ha
se

Fig. 3. DEMO Standard Transaction Pattern [19]

customer producer

result
stated

result
accepted

result
promised

result
produced

request

desired
result

result
requested

promise

stateaccept

Fig. 4. Happy flow of a transaction [19]

Real situations may become even more complicated, which
is addressed by the complete transaction pattern in fig. 5. It
incorporates the notion of revocation – an actor may want to
“take back” their act done before1. If that is allowed by the
other party, the transaction “rolls back” to the desired state.

The complete transaction pattern is not depicted in CM
nor PM, however we find interesting to incorporate it in our
analysis.

1In the DEMO theory, nothing can disappear, so the original fact remains
in the fact bank, however, the transaction flow is changed.

21179

Fig. 5. DEMO Complete Transaction Pattern [20]

V. STUDY SETUP

The conditions under which the DEMO method was applied
were:

• There is already a considerable amount of process mod-
elling done, as described in section III.

• We have trained BPMN process analysts (both the BPCE
and non-BPCE students) with no previous DEMO expe-
rience. They are master students.

The students were given a DEMO Bachelor training (we
teach DEMO Bachelor course to our master students) prior to
their work and then they were coached during their work by
a DEMO Master.

There were 5 student teams of 5-6 students. Each team was
assigned some area of processes. The tasks were:

1) Divide the existing process description into ontological,
infological and datalogical parts.

2) Create Transaction Product Table (TPT) and Organi-
sation Construction Diagram (OCD) at the ontological
level.

3) Elaborate an analysis table for each transaction.
4) Create a sample of PSD (Process Structure Diagrams,

[21] for about 7 transactions.
5) Create a necessary OFD.
6) Show two interesting AM descriptions.
7) Create an actor - actor role mapping table.
8) Formulate the conclusions.

The student teams analysed totally 34 processes spanning
in size from a few activities to an A4 scheme.

VI. STUDY EVALUATION

A. Task 1

The first task, discerning the existing process description
into ontological, infological and datalogical parts was carried
out by “colouring” the BPMN diagrams using red, green
and blue colours, similarly to the running example in [18].
A sample colouring is shown in fig. 6.

The overall results were:
• 124 ontological parts of the models
• 79 infological parts of the models
• 76 datalogical parts of the models
By “parts” here we mean BPMN elements, mostly tasks

and gateways. The students had generally no difficulties in
proper distinguishing the three levels. The results show that in
spite of a lack of solid engineering method during the process
modelling, the analysts’ training moved them into “preferring”
the ontological matter in their diagrams. However, using these
rough numbers, we see that the ontological essence is still just
some 44% of the diagrams.

B. Task 2

Overall, 58 ontological transactions were identified by the
teams and verified by the DEMO Master. Here, the students

22180

Fig. 6. Sample BPMN process colouring

Transaction ID: T03
Transaction Name: Admission Fee Payment
Product: The admission fee has been paid
Initiator: The admission clerk

Request: unclear
Promise: unclear
State: Stating the payment document during the

admission process
Accept: Accepting the payment document

Decline: not modelled
Reject: not modelled

Revoke request: not modelled
Revoke promise: not modelled
Revoke statement: not modelled
Revoke acceptance: not modelled

TABLE I
TRANSACTION ANALYSIS TABLE

needed some practice in formulating properly the transaction
kinds and especially the products. It came out that although
a great deal of attention was paid to these constructs during
the lectures, several rounds of practice and feedback were
necessary for this skill to evolve sufficiently.

Now, if we compare the number of parts of the orignal
models, which were analysed, i.e. 127+79+76 = 279 with the
resulting number of 58 transactions, we come to a result that
the analysed models’ essence is 21% of the original amount
of model parts. Again, it is above the officially stated 10%,
showing that the BPMN analysts did an above-average job in
modelling the essence.

C. Task 3

table I shows an example of a transaction analysis table,
which were elaborated for each transaction kind based on the
original BPMN models.

We can say that transaction analysis tables were the most
interesting part of the outputs. They clearly show how various
parts of the complete transaction pattern were covered by the
existing models. Here, we confirm that mostly happy paths
were described, with occasional unhappy branches in the most
typical situations. This was an expectable result, however,
we were quite surprised, that sometimes even parts of the
happy path were missing, like in table I, which describes
the admission fee payment transaction that happens as a part
of student enrolment into the study programme admission
process. In the BPMN diagram, it was supposed that the
student states the payment document during the admission
process, however the corresponding request was nowhere to
be found. Discussions with stakeholders were not part of the
project, so we do not know for sure, but we expect that it is
supposed that the student just “knows he has to pay” from the
instructions on the web.

We find the transaction analysis table being a powerful
device for models improving, as they clearly show transaction
parts that are described unclear or not at all. Of course, for
many situations, it makes sense not to allow the revoke acts,
however it is just beneficial to ponder these situations during
the modelling.

D. Tasks 4, 5, 6

The results of these tasks were standard DEMO PSD, OFD
and AM models. Students clearly struggled with OFD and
especially the AM models, so we will not discuss them here.
PSD models often revealed additional discussions about the
precise binding of the transaction steps – “is statement enough,
or do we need the acceptance of Tx to promise Ty”? These
questions are clearly a positive effect of the DEMO training
and raising them leads to more accurate process models.

E. Task 7

The actor - actor role mapping table is shown in table II,
where “A” means that the actor is responsible for a certain

23181

actor role, while “D” means that the actor is delegated to
perform a certain actor role.

In spite of being not so much impressive achievement at
the first sight, we think that this table actually may have
the strongest impact at the managerial level. The situation
is that very often during the process mapping, responsibility
and authority discussions take place, which complicates the
modelling, causes confusions and delays. It has even happened
at one faculty that this type of discussion killed the efforts
of process management entirely. DEMO distinguishes very
strictly between the actor roles, being the holders of respon-
sibility and authority and actual actors. Using this separation,
the analysis and political discussions are separated – they take
place just over the mapping table in the second step.

At the same time, this separation of actor roles from actors
caused really hard time to our students. In the end, they were
able to make the paradigm shift, however it was definitely one
the most hard ones for them. They were fluent in telling apart
“Alena” from “secretary”, however this additional abstraction
level needed a considerable time and practice to sink.

F. Task 8

From the variety of conclusions the students made, let us
pinpoint the ones we find the most interesting and beneficial
to take into account:

• All teams complained that often they were not able to tell
apart ontological, infological and datalogical parts of the
diagrams. It showed that this was not due to lack of their
knowledge and training, but due to lack of information
in the models, which would need some additional clarifi-
cations from the stakeholders, e.g. “preparing the list of
students” could have been primarily ontological, infolog-
ical or a datalogical act depending on the competences
exercised.

• a lot of confusion was about the transaction analysis table.
The students filled in the obvious information expressed
in the diagrams, however then a lot of questions remained.
Additional discussions with the stakeholders would be
necessary to clarify them.

• Sometimes it was possible to map the “elements flow”
in the original BPMN diagrams to the parts of the trans-
action pattern in a mostly straightforward way, however
sometimes it was quite hard to put the “puzzle” together
and identify certain BPMN tasks as transaction pattern
coordination acts.

• Some hard times were posed to students by the fact
that some of the original BPMN models were modelled
from the perspective of one instance of a student, like
making a decision about accepting them into a study
programme, while the others were the “mass” ones, like
carrying out the admission tests. It showed that BPMN is
quite a comfortable platform to mix and interweave these
levels, DEMO does not tolerate vagueness in this form.

VII. RELATED WORK

Nuffel, Mulder and Kervel provide a thorough study of
enhancing the formal foundations of BPMN by Enterprise
Ontology in [14]. Other efforts to enhance existing modelling
methodologies by DEMO were done for ArchiMate [22] and
ARIS [23].

An important aspect of methodology change is also its adop-
tion. Kris and Verelst in [24] discuss various challenges and
tasks that are related to adoption of the DEMO methodology
by organisations (a research agenda).

At the practical level, we may mention efforts of Czech
Ministry of Education. To assist Czech academic and research
institutions, the Ministry carried out a project called “Efficient
Institutions” (EFIN) during the years 2009–2012 [25]. Its
goal was to help institutions analyse their present situation
and propose which management methods be used in the
key institution’s areas to optimize their operations. During
the project’s discussions and workshops it showed that some
institutions had attempted to start transformation activities, but
all of them failed sooner or later. The main reason was that
no methodology on how to successfully put a transformation
project into practice existed. This fact was confirmed by
representatives of 8 from the total 26 Czech public higher
education institutions participating in the EFIN project [26].
As for the private institutions, only 2 of the total 45 [27]
were participating in the project but they also confirmed that
attempts to transform the institution were unsuccessful. Also,
the analysis of foreign academic institutions did not find any
generally usable methodology [28]. It has been only found that
the standard managerial methods usually used in commercial
organizations are commonly used in these institutions too. The
most important finding was that their operations were based
on the process management (BPM) principles.

VIII. CONCLUSIONS AND FUTURE WORK

The study setup was quite different from the most DEMO-
application studies in the sense that the analysts were not sea-
soned professionals working at big enterprise projects, but they
were master students just after getting the DEMO Bachelor
course. We can conclude that even with this “lightweight”
training process, the results showed positive effects of the
training. Specifically, the students exhibited

• Better skills in precise formulations (better naming and
expressions).

• The ability to discern ontological, infological and data-
logical levels and their importance.

• It is interesting that the original analysts performed an
above-average job while doing the BPMN modelling, as
the essential DEMO model is usually 10% of the original
model. In our case, it is 21% of the original model.

On the other hand, the students of course lacked the
experience of DEMO professionals, which showed especially
in:

• They are not able to reach the most essential and simple
models.

24182

���������	
�� 	�	���
�
������� ������	�
���
�� �������
�� �	�����	���
�� �� �������
�� ��!	��"#���
��
$%& �
$%' �
$%(8 �
$%) �
$%* �
$%+ �
$%, � 8
$%- 8 �
$%. �
$&% �
$&& �
$&' �
$&(� 8
$&) �
$&* �
$&+ �
$&, 8 �
$&- �
$&. �

TABLE II
THE MAPPING BETWEEN THE TRANSACTION ACTOR ROLES (ROWS) AND SPECIFIC FACULTY POSITIONS (COLUMNS)

• They struggle with proper formulations of transaction
products.

• They struggle with separating actor roles and actors.
It would be interesting to draw some conclusions about the

correlation between the level of DEMO adoption versus the
previous process modelling experience and skills. Howerver,
we do not dare to draw such conclusions, because there are
a lot of aspects that may affect the correlation significantly, as

• Our BPMN-trained students tend to be “above-average”
students with a high motivation to learn new things.

• Some of them are working on diploma theses related to
process modelling.

• They are analytical types, while some of the others were
rather programmers.

Our feeling is that providing more theoretical lectures to
the students would not raise the quality of their results, on the
other hand, providing more exercises and practical training
has this potential. It would be interesting to do some further
research on this.

At the general level, the study helped us considerably with
formulating current shortcomings of our analysis:

• There are confusions about distinguishing red, green and
blue levels – for some activities, like report generation,
it is not generally clarified to which level does it belong.

• Negotiating about competences – right now, process
mapping is sometimes blocked by petty discussions who
will do what.

• Improving BPMN models using DEMO analysis requires

participation of the stakeholders: e.g. sometimes it is
necessary to clarify some concepts to decide about the
ontological level.

The following research steps will start with the detailed
analysis by

• studying the feedback from the last run of the DEMO
course,

• results of master and bachelor thesis dealing with:
– BPMN and DEMO comparison and application from

the student’s point of view,
– BPMN and S-BPM comparison and application from

the student’s point of view,
– BPMN and UML comparison and application from

the student’s point of view.
The goal of the analyses is to identify general BPM abilities

of technically oriented students (CTU’s students) and evaluate
differences between BPM experienced and non-experienced
students. Based on the analysis results, the main interests
(hypothesis) of the future research are as follows:

• Is it possible to minimize student’s lack of practical
DEMO experience? Is there a way how to extend basic
DEMO course, for example by adding one or more
practical seminars, to minimize student’s confusions in
practical DEMO methodology application? These ques-
tions are a part of a big question, how to properly educate
students with of entry levels of BPM knowledge and
skills.

• How to leverage the potential in the DEMO methodology

25183

for our current situation of process mapping at our
University? Mostly, how to extend the present mapping
methodology to improve it.

• The next generation of the methodology will probably
need to specify various analysts roles according to their
skills and tasks.

• How to balance the resulting models to be complete and
detailed to become valuable input for enterpise and soft-
ware engineering processes, while at the same time make
them easily understandable by common users, to make
them a knowlege base and a communication medium, as
well?

• Is it possible to elaborate a set of selected faculty pro-
cesses that can be generally used in any faculty both
inside and outside the CTU? Is the DEMO methodol-
ogy an appropriate tool for increasing ratio of reusable
processes? What are the main problems of academic pro-
cesses reusability? Can DEMO help to identify process
reusability bottlenecks?

REFERENCES

[1] R. Hronza and M. Speta, “Business Process Center of Excellence at the
Faculty of Electrical Engineering at the Czech Technical University in
Prague,” in 2013 IEEE 15th Conference on Business Informatics (CBI),
Jul. 2013, pp. 346–349.

[2] P. Náplava, R. Hronza, J. Kočı́, and J. Pavlı́ček, “How to Successfully
Start the Transformation of an Academic Institution Case study on
the process mapping project at the Czech Technical University,” in
Complementary proceedings of the 8th Workshop on Transformation
& Engineering of Enterprises (TEE 2014), and the 1st International
Workshop on Capability-oriented Business Informatics (CoBI 2014)
co-located with the 16th IEEE International Conference on Business
Informatics (CBI 2014), vol. 1. Geneva: Aachen: RWTH Aachen
University, 2014, pp. 1–15.

[3] K. Schedler and U. Helmuth, “Process management in public sector
organizations,” in Public Management and Governance. Routledge
(Oxon (UK)), 2009, vol. 2, pp. 181–198.

[4] B. Adenso-Dı́az and A. F. Canteli, “Business Process Reengineering and
University Organisation: a normative approach from the Spanish case,”
Journal of Higher Education Policy & Management, vol. 23, no. 1, pp.
63–73, May 2001.

[5] R. K. L. Ko, “A Computer Scientist’s Introductory Guide to Business
Process Management (BPM),” Crossroads, vol. 15, no. 4, pp. 11–18, Jun.
2009. [Online]. Available: http://doi.acm.org/10.1145/1558897.1558901

[6] M. Hammer and J. Champy, “Reengineering the corporation:
A manifesto for business revolution,” Business Horizons,
vol. 36, no. 5, pp. 90–91, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0007681305800643

[7] T. H. Davenport, Process Innovation: Reengineering Work Through
Information Technology. Boston, MA, USA: Harvard Business School
Press, 1993.

[8] M. A. Ould, Business Processes: Modelling and Analysis for Re-
Engineering and Improvement. New York, NY: John Wiley & Sons,
May 1995.

[9] K. Vergidis, A. Tiwari, and B. Majeed, “Business Process Analysis and
Optimization: Beyond Reengineering,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 1,
pp. 69–82, 2008.

[10] R. S. Aguilar-Savén, “Business process modelling: Review and
framework,” International Journal of Production Economics,
vol. 90, no. 2, pp. 129–149, Jul. 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925527303001026

[11] A. Zakarian, “Analysis of Process Models: A Fuzzy Logic Approach,”
The International Journal of Advanced Manufacturing Technology,
vol. 17, no. 6, pp. 444–452, Apr. 2001. [Online]. Available:
http://link.springer.com/10.1007/s001700170162

[12] C. Lewis, “A source of competitive advantage?” Management Account-
ing (GB), vol. 71, no. 1, pp. 44–46, 1993.

[13] W. M. P. van der Aalst, “Business Process Management: A Personal
View,” Business Process Management Journal, vol. 10, no. 2, pp. 135–
139, 2004.

[14] D. Van Nuffel, H. Mulder, and S. Van Kervel, “Enhancing the Formal
Foundations of BPMN by Enterprise Ontology,” in Advances in Enter-
prise Engineering III, W. van der Aalst, J. Mylopoulos, N. M. Sadeh,
M. J. Shaw, C. Szyperski, A. Albani, J. Barjis, and J. L. G. Dietz, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 34, pp. 115–
129.

[15] O. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in
conceptual modeling,” IEEE Software, vol. 11, no. 2, pp. 42–49, Mar.
1994.

[16] M. Op ’t Land and J. L. G. Dietz, “Benefits of Enterprise Ontology in
Governing Complex Enterprise Transformations,” in Advances in Enter-
prise Engineering VI, W. van der Aalst, J. Mylopoulos, M. Rosemann,
M. J. Shaw, C. Szyperski, A. Albani, D. Aveiro, and J. Barjis, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 110, pp. 77–
92.

[17] C. Décosse, W. A. Molnar, and H. A. Proper, “What Does DEMO
Do? A Qualitative Analysis about DEMO in Practice: Founders, Mod-
ellers and Beneficiaries,” in Advances in Enterprise Engineering VIII,
W. van der Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw, C. Szyper-
ski, D. Aveiro, J. Tribolet, and D. Gouveia, Eds. Cham: Springer
International Publishing, 2014, vol. 174, pp. 16–30.

[18] J. L. G. Dietz, “ENTERPRISE ONTOLOGY - UNDERSTANDING
THE ESSENCE OF ORGANIZATIONAL OPERATION,” in Enterprise
Information Systems VII, C.-S. Chen, J. Filipe, I. Seruca, and J. Cordeiro,
Eds. Dordrecht: Springer Netherlands, 2006, pp. 19–30.

[19] ——, Enterprise ontology: theory and methodology. Berlin; New York:
Springer, 2006.

[20] Jan L.G. Dietz, THE ESSENCE OF ORGANISATION - AN INTRODUC-
TION TO ENTERPRISE ENGINEERING. Sapio bv, 2012, 00000.

[21] ——, “DEMO-3 Models and Representations (version 3.7),” Jan. 2014.
[22] R. Ettema and J. L. G. Dietz, “ArchiMate and DEMO – Mates to

Date?” in Advances in Enterprise Engineering III, W. van der Aalst,
J. Mylopoulos, N. M. Sadeh, M. J. Shaw, C. Szyperski, A. Albani,
J. Barjis, and J. L. G. Dietz, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, vol. 34, pp. 172–186.

[23] D. Strijdhaftig, “On The Coupling Of Architectures: Leveraging DEMO
Theory Within The ARIS Framework,” Ph.D. dissertation, TU Delft,
Sep. 2008.

[24] K. Ven and J. Verelst, “The Adoption of DEMO: A Research Agenda,” in
Advances in Enterprise Engineering III, W. van der Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, C. Szyperski, A. Albani, J. Barjis, and J. L. G.
Dietz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
vol. 34, pp. 157–171.

[25] MinistryOfEducationYouthAndSports, “Projekt EFIN, Analyza 2:
Zkusenosti a vhodne pristupy efektivniho (in Czech),” Jan.
2015. [Online]. Available: http://efin.reformy-msmt.cz/download-
document/efin-analyza-2-cs-project

[26] ——, “Public Higher Education Institutions – Websites,” Jan.
2015. [Online]. Available: http://www.msmt.cz/areas-of-work/tertiary-
education/public-higher-education-institutions-websites

[27] ——, “Overview of Private Higher Education Institutions,” Jan.
2015. [Online]. Available: http://www.msmt.cz/areas-of-work/tertiary-
education/overview-of-private-higher-education-institutions

[28] O. Kubera, “Analysis and Optimization of Faculty Processes (in Czech),”
Master Thesis, CTU FEE Prague, 2012.

26184

Chapter 17

Converting DEMO PSI Transaction
Pattern into BPMN: A Complete

Method

[196] Mráz, O.; Náplava, P.; Pergl, R.; et al. Converting DEMO PSI Transaction Pattern
into BPMN: A Complete Method. In Advances in Enterprise Engineering XI: 7th Enter-
prise Engineering Working Conference, EEWC 2017, Antwerp, Belgium, May 8-12, 2017,
Proceedings, Cham: Springer International Publishing, 2017, ISBN 978-3-319-57955-9,
pp. 85–98.

185

Converting DEMO PSI Transaction Pattern into
BPMN: A Complete Method

Ondřej Mráz, Pavel Náplava, Robert Pergl, Marek Skotnica

Czech Technical University in Prague, Czech Republic
mraz.ondra@gmail.com, naplava@fel.cvut.cz
perglr@fit.cvut.cz, skotnicam@fit.cvut.cz

Abstract. The goal of this paper is to contribute to efforts of improving
the Business Process Modelling (BPM) practice. We present an original
method for converting enterprise ontology Design & Engineering Method
for Organisations (DEMO) process models into a BPMN 2.0 notation. By
this approach, we are able to mitigate certain methodological deficiencies
of BPMN. The method exhibits the following qualities: Implementation
of the complete transaction pattern formulated by the PSI-theory, correct
managing of multiple child transaction instances, and executability of the
resulting BPMN model.

Key words: PSI-theory, BPMN, DEMO, Business Process Modelling,
Enterprise Ontology, Conceptual Modelling

1 Introduction

BPMN (Business Process Model and Notation) [1] is a graphical notation that
is used for modelling business processes. Key characteristics of BPMN are sim-
plicity of the underlying theory (flowchart), standardised notation and a large
number of tools. This makes BPMN one of the most wide-spread process mod-
elling notation in practice, in spite of its limitations and flaws. BPMN offers
three different types of diagrams: Choreography, Conversation and Collabora-
tion diagrams. For this work, only the Collaboration Diagram will be considered.
This diagram expresses the process flow in achieving participants’ goals.

One of the BPMN weaknesses is the absence of a methodology for construct-
ing diagrams, which is addressed for example by Silver [2]. Nevertheless, the
design freedom is still too broad, which results in different modelling styles of
individual analysts and different models depicting the same situation, which
complicates enterprise engineering tasks like mergers and reorganisations.

DEMO (Design & Engineering Method for Organisations) [3] is a leading
modelling method used in the discipline of Enterprise Engineering [4] based on
deep and sound theoretical basis (the PSI-theory) and high ontological relevance.
Its benefits for the practical use has been proven, as documented for example
in [5] or [6]. It does not limit itself just to process modelling, but it also deals
with capturing structural (factual) knowledge and business rules, thus deliver-
ing a complete enterprise ontology exhibiting certain criteria (C4E). However,

186

2 Ondřej Mráz et al.

compared to BPMN, DEMO is still a niche approach and relatively demanding
to master. Also, a limited number of tools is available today.

For a brief description of DEMO, we take a help of Op’t Land and Dietz [5]:
A complete, so-called essential model of an organization consists of four

aspect models: Construction Model (CM), Process Model (PM), Action Model
(AM), and State Model (SM). The CM specifies the composition, the environ-
ment and the structure of the organization. It contains the identified transaction
types, the associated actor roles as well as the information links between actor
roles and transaction banks (the conceptual containers of the process history).
The PM details each transaction type according to the universal transaction
pattern. In addition, it shows the structure of the identified business processes,
which are trees of transactions. The AM specifies the imperatively formulated
business rules that serve as guidelines for the actors in dealing with their agenda.
The SM specifies the object classes, the fact types and the declarative formula-
tions of the business rules.

The DEMO Process Model reveals details of the transactions with the respect
to universal transaction pattern. The basis is the “happy flow” consisting of
request, promise, state and accept, as is depicted in fig. 1, which is also called
the basic transaction pattern. In the so-called standard transaction pattern (not
depicted), decline may happen instead of promise and reject may happen
instead of accept. Then, a new attempt may be made, or quit, resp. stop may
end the transaction unsuccessfully.

Fig. 1. Happy flow of a transaction [3]

Real situations may become even more complicated, which is addressed by
the complete transaction pattern in fig. 2. It incorporates the notion of revocation
– an actor may want to “take back” their act done before1. If that is allowed by
the other party, the transaction “rolls back” to the desired state.

The logic of the complete transaction pattern is automatically included in all
DEMO transactions, which is one of the reasons why the models are compact.

1 In the DEMO theory, nothing can disappear, so the original fact remains in the fact
bank, however, the transaction flow is changed.

187

Title Suppressed Due to Excessive Length 3

Fig. 2. DEMO Complete Transaction Pattern [7]

The main goal of this paper is to combine the simplicity of the BPMN and
ontological qualities of the DEMO. The result is the method that converts en-
terprise ontology Design & Engineering Method for Organisations (DEMO) pro-
cess models into a BPMN 2.0 notation. This approach mitigates the mentioned
absence of a sound methodological approach for BPMN. The BPMN models
resulting from the described method converge, similarly to DEMO, to one es-
sential model, thus eliminating different modelling styles of individual analysts
leading to comparable models. Our other requirements are: implementation of
the complete transaction pattern formulated by the PSI-theory, correct man-
aging of multiple child transaction instances, and executability of the resulting
BPMN model.

We start the paper by the discussion of the related work of efforts of im-
proving BPM and BPMN, specifically the approaches based on applying the
enterprise-engineering rigour (section 2). We then briefly present results of a
comparative analysis of DEMO and BPMN (section 3), which led to formulat-
ing our method of conversion (section 4). We demonstrate the method on an
example (section 5). Finally, we discuss the result and formulate conclusions
(section 6).

2 Related Work - Improving BPM and BPMN

A poor ontological quality of BPMN is generally known and documented [8].
The most practised remedy is exercising a methodological approach like the one
proposed by Silver [2], who distinguishes three levels of BPMN: (i) Descriptive,

188

4 Ondřej Mráz et al.

(ii) Analytical and (iii) Executable and proposes several analysis patterns and
anti-patterns.

The discipline of enterprise engineering (EE) [4] brought about a rigorous
approach of building an enterprise ontology (EO) [3], DEMO being its modelling
method. There are several foundational EE theories, the most notable being
the PSI-theory. As on of the central concerns of EE is the business process
management, the effort to apply EE theories (EET) to the existing (less formal
approaches) is promising. The efforts in this area are twofold:

1. Applying EET for analysis of existing BPMN models of business processes:
for example [9], [10] and [11].

2. Enhancing the formal foundations of BPMN by EET: for example [9], [10],
[12], [13], [14]

2.1 Applying EET for Analysis of Existing BPMN Models of
Business Processes

Caetano et al. showed that applying the DEMO PSI-theory to improve business
process modelling deserves attention [9]. The authors started by analysing ex-
isting BPMN models and identified missing DEMO transaction pattern steps in
these models. It had been determined or each BPMN activity from the analysed
models, whether this activity is an ontological, infological or datalogical part of
a transaction. It had been also determined, which part of the transaction pattern
each activity represents. Next, the authors created an ATD and a PSD diagram
of DEMO and using a PSD diagram, they enriched existing BPMN models by
adding missing parts of the transaction pattern into the BPMN models.

In the second part, the authors present results of applying this method to
analysis of existing BPMN models of key processes of a big organization (more
than 500 activities and 60 actors). The authors identified numerous missing act
types in the original BPMN models. The results from this analysis were:

– 25% of production C-acts missing in the original BPMN model,
– 25% of request C-acts missing in the original BPMN model,
– 50% of promise C-acts missing in the original BPMN model,
– 25% of state C-acts missing in the original BPMN model,
– 40% of accept C-acts missing in the original BPMN model.

Results reported by Pergl and Náplava for an academic institution [11] state
reduction of DEMO essential models complexity to 21% of the original BPMN
size and several model quality improvements similar to [9].

2.2 Enhancing the Formal Foundations of BPMN by EET

These efforts aim to precisely express the EE ontological constructs using the
standard BPMN notation. Two approaches have been followed. The first is to
enhance the BPMN models by adding the missing C-(F)acts and other constructs
from the PSI-theory. Caetano [9] is an example of this method.

189

Title Suppressed Due to Excessive Length 5

The second way is generating BPMN models from the DEMO models. This
method was discussed in two diploma theses [13], [14], from which the approach
in this paper was designed.

3 Analysis of DEMO and BPMN

Here follows observations of comparing various aspects of DEMO with respect to
BPMN, from which follows the conversion principles and decisions made. These
were formulated based on the DEMO theory axioms and models definitions
related to the BPMN elements definitions, as introduced in section 1.

– Similar parts of methods that can be simply transformed from the DEMO to
BPMN:
– The Process Structure Diagram (PSD) of DEMO contains process informa-

tion, which can be related to a BPMN process diagram.
– The Action Model (AM) of DEMO expresses complex decision rules for

Coordination acts (C-acts)2. The contained information can be used for
branching in BPMN.

– BPMN does not distinguish the three key human abilities (forma, informa,
performa), however applying this distinction can be introduced straightfor-
wardly, as shown for example in [11]. As this concern is orthogonal to our
effort, we do not discuss the distinction axiom here.

– Related to the point above, the (atomic) actor roles in DEMO are executors
of exactly one transaction, while swimlanes may contain many different
actions.

– Different parts of methods that require deep analysis before transformation
from DEMO to BPMN:
– The DEMO Transaction Axiom concept does not exist in BPMN. Only

happy flows and the most obvious unhappy flows are expressed in models.
– The Object Fact Diagram (OFD) being a factual model does not have an

analogy in BPMN.
– DEMO and BPMN employ different execution models. While BPMN is flow-

based, DEMO operates on the basis of a so-called CRISP model [3], which
may be characterised as an event-driven, or more precisely, an agenda-driven
execution model.

– The Construction Model (CM) of DEMO is an abstraction that does not
specify process, it provides just structural information.

4 Converting DEMO into BPMN

The goal is to convert the complete transaction axiom into BPMN, including all
revoke types. Sections 4.1 to 4.4 describe all the necessary pieces and section 4.7
presents the result. We used BPMN 2.0 and leveraged the newly available Data
Store construct.
2 Apart from containing all the information from the other models.

190

6 Ondřej Mráz et al.

4.1 C-acts

C-acts are essentially activities that take place in order specified by the transac-
tion pattern. BPMN has the concept of activities and the order is specified by
sequence flows. As C-acts are atomic, the appropriate activity type is task.

4.2 C-facts

As mentioned in section 1, a C-fact becomes existent in the world as a conse-
quence of performing a C-act. Heller in his thesis [13] lists three possibilities of
expressing C-facts using BPMN:

1. Not explicitly expressed – the existence of the fact-C is not explicitly ex-
pressed. It is indirectly realised by a sequence flow. This option is sufficient
if revokes are not considered (see further).

2. Using a BPMN message – the actor, who performs the given C-act sends a
BPMN message with the C-fact to the other actor (transaction participant).

3. Using a BPMN signal – the actor, who performs the given C-act emits a
BPMN signal on creating a C-fact. This has the benefit that apart from the
other actor, any other actor may subscribe to the signal reception, which is
aligned with the PSI-theory, where facts are present in the world, not only
in the transaction, thus available also outside the transaction (modelled by
interstriction links).

However, under a closer consideration, none of the above solutions are com-
pletely sufficient for a correct handling of revokes. For each revoke act, the PSI-
theory specifies a certain state in which the transaction must be. The state is
formulated like “X or further”: request(ed) or further, promise(d) or further
and so on. This is why we decided for another representation: the BPMN 2.0
data store, into which the state of the transaction is stored. This data store is
connected to every C-act activity by an association.

4.3 P-(F)acts

It is not necessary to store information about them creating a P-(f)act into
the data store, because they can be derived from C-(f)acts: According to the
PSI-theory, the P-fact starts to exist based on acceptance of the product, so
P-(f)acts can be expressed by an activity only. If need be (optimisation of an
implementation), they can be stored similarly to the C-(f)acts described above.

4.4 Actors

Swimlanes in BPMN are isomorphic to actors in DEMO [10]. BPMN lacks a
higher abstraction level of actor roles, being the logical sum of responsibility,
authority and competence necessary to carry out the product [3]. There are gen-
erally two approaches: (i) abstracting the swimlanes to actor roles (like Decider

191

Title Suppressed Due to Excessive Length 7

or Concluder), (ii) remaining on the BPMN’s low level of abstraction and using
swimlanes to represent actors – company functional roles – like CEO or specific
people like Jane.

Another possibility for representing actor roles is using BPMN pools, where
each pool represents one actor. The resulting BPMN models will be very simi-
lar to models using swimlanes, however we have not chosen this representation
because: (i) The correspondence of actor roles and transactions is not explicit,
(ii) sequence flow cannot be used between pools, which would result in using
messages, further complicating the diagrams.

4.5 The Composition Axiom

A composition of transactions may be dealt with in two ways: (i) to model all
the transactions in one diagram, (ii) to separate diagram for every transaction.
Generally, both approaches are valid, but (ii) may lead to huge diagrams, as can
be seen in fig. 10 and fig. 11. As (ii) guarantees the limit of the diagram size, we
preferred it. On the other hand, it may render understanding of the big picture
harder.

We propose the following 2-part expression of the composite axiom:

1. Launching a child transaction in a specific place in the parent trans-
action. The child transaction must be started just after creating a specific
C-fact. A message-throwing event may be used in case of initiating a single
child transaction. In case of firing multiple child transactions, signals are ap-
propriate, similar to the C-acts above. Moreover, it is needed to ensure the
multiplicity. In case that it is greater than one, we need to initiate several
child transaction instances. This is achieved either by using a cycle for cre-
ating child transactions or a loop activity. Modelling by cycle (fig. 3) means,
that the model contains an activity counting, how many times the activ-
ity was run. After this activity, there is a gateway. If the counter has not
reached the number of child transaction instances to spawn, the process goes
into message throwing event to start a child transaction instance and then
the process returns to the counting activity. This happens 0..N times, as
required. When multiplicity is modelled by a loop activity (fig. 4), the activ-
ity is in the form of a subprocess (with parallel loop), which sends a signal3

that starts a child transaction. In the examples described below, the first
(counter) variant is used because the model is more explicit. At the same
time for models with a multitude of child transactions, the more concise
loop variant is recommended. Also, from the execution point, the implemen-
tation variant may be driven by the vendor, as correlation of instances must
be ensured (more discussed in section 4.8).

2. Blocking execution of the parent process until the child process has not
reached the given state (creating a C-fact being waited on). This blocking can

3 We cannot use a message send in this situation, because the encapsulation would be
violated.

192

8 Ondřej Mráz et al.

Fig. 3. Launching child transactions by using counter

Fig. 4. Launching child transactions by using loop

be realized by a BPMN catching event condition in the parent process waiting
for a specific condition before the given C-act. Here, a conditional event must
be used instead of a signal event, as we do not wait just for a signal, but
for a specific instance in case of multiple child transaction instances. This
situation is modelled in fig. 5. Again, specific vendor correlation techniques
may apply (section 4.8).

Fig. 5. Waiting for a child transaction

4.6 Revokes

Revokes are the most challenging part of the conversion. Let us present the
challenges and how we dealt with them:

193

Title Suppressed Due to Excessive Length 9

– A revoke must be applied on a specific instance of the transaction; in a certain
time, there can be several parallel transaction instances running. This must
be ensured by the BPMN system (section 4.8).

– A revoke can be fired independently on the running main process. Can be
modelled straightforward, as BPMN allows several independent start events.

– A revoke can be fired only if the transaction is in an allowed state. This
we ensure by an activity checking the state of the transaction, which was
previously stored into a data store.

– When revoking a C-fact, after which a child transaction has been started,
the child transaction must be completely revoked. This is done by calling
a compensation throwing event by the revoke, followed by performing the
compensation activity by the corresponding parent transaction.

– In the process flow, there can happen a situation, that a P-fact was already
created (the P-act has been finished), while a revoke moves the process to a
state preceding performing the P-act. In this case, it is necessary to “throw-
away” the P-fact. We solve this using a BPMN compensation element and the
respective compensation activity, similarly to the previous point.

– A revoke must be initiated by the actor who performed the respective C-act
to be revoked. This is ensured by using the same identifier for the swimlane
of the actor role initiating the revoke as for the actor role of the respective
transaction.

A revoke works in the following steps according to the transaction pattern.
First, the revoking actor asks the other actor for granting the revoke. The other
actor allows or refuses. If the revoke is allowed, the main process returns to the
appropriate state. We model this by using simple BPMN subprocess with a set
of appropriate activities (fig. 7).

4.7 The Resulting BPMN Model

The complete transaction pattern described by the BPMN notation illustrates
fig. 64. Although it describes only one transaction, it is very complex and com-
plicated. As it is presented in section 5 and discussed in section 6, models con-
taining more than one transaction are not easily readable by usual readers and
it is recommended to use them for the process execution in BPM systems.

4.8 The Execution

Apart from documentation purposes, BPMN models can be simulated and/or
executed. While designing the conversion, we tried to make the resulting BPMN
model precisely following the required behaviour. Unfortunately, the BPMN

4 The authors are aware that this and the following models may not be legible in
the printed version. We recommend obtaining the electronic (zoomable) version.
Also, the source models may be downloaded from https://ccmi.fit.cvut.cz/

methodologies/bpmn/

194

10 Ondřej Mráz et al.

Fig. 6. Transaction in BPMN, Happy flow is marked by green colour

standard does not specify the execution implementation details. Each company
developing BPM system (system for modelling, simulation and execution of pro-
cesses), as Intalio, BizAgi or IBM, has their specific implementation, which re-
quires various additional modelling and programming steps necessary to make
the model executable. At the same time, some of the BPMN constructs may
not be supported or they are implemented differently. All these aspects must be
taken into consideration for turning the resulting BPMN models into an exe-
cutable form. Generally, here are the things that must be implemented:

195

Title Suppressed Due to Excessive Length 11

Fig. 7. Revokes in BPMN

– Agenda handling. The possibility to start a process and providing a “task
inbox” of the required reactions on the originating C-facts. This requires de-
veloping some sort of user interface (UI).

– Allowing the participants to make their choices. Again, some sort of UI solves
this. Also, some choices may be determined by complex facts evaluation spec-
ified in the Action Model. There are two possible approaches:
1. Leaving the evaluation to users, which means the users have the rules in

their head or consult the Action Model or any other codification of the
rules.

2. Programming the BPM system to (help) evaluate the rules. The extent to
which the automation may happen depends on the possibilities of the BPM
system used and also on the context (the availability of the necessary data
in the company technological systems and their accessibility).

– Signals handling.
– Implementation of reading and writing data to data stores.
– Instance matching. Specific instances of transactions must be matched in some

situations as child transactions (section 4.5) and revokes (section 4.6). Intalio
and Oracle call this concept a “correlation”.

196

12 Ondřej Mráz et al.

5 Example – Case Voley

As an example for the demonstration of our method, the traditional Case Voley
example [7] was selected because of its simplicity, yet including the substantial
constructs. In fig. 8 and fig. 9 there are OCD and PSD diagrams of this example.

Fig. 8. OCD of Case Voley[7]

Fig. 9. PSD of Case Voley[7]

The process has two transactions and three actors. The transformed BPMN
model converted by the described method is in fig. 10 and fig. 11 . Subprocesses
depicted in fig. 7 are not shown here, as they are generally the same.

6 Discussion and Conclusions

The limitation of typical BPMN models from the view of the PSI-theory lie in
their limited expression of reactions to unexpected situations. Many situations
like decline, reject and especially revokes are not covered in the models, which
causes operation troubles. The presented conversion method offers a remedy

197

Title Suppressed Due to Excessive Length 13

Fig. 10. Case Voley converted into BPMN – part 1

to this by bringing the complete transaction pattern into BPMN, which means
including all revokes. Moreover, compared to the previous efforts, our method
deals with spawning of multiple child transaction instances (initiation links with
multiplicity 6= 1) and waiting for them in the parent transaction (waiting links
with multiplicity 6= 1). Also, the resulting models are executable.

As for the DEMO models covered, the described conversion method covers
the Construction Model plus the Process Model. Based on a concrete BPM
system implementation, decision rules contained in the Action Model can be

198

14 Ondřej Mráz et al.

Fig. 11. Case Voley converted into BPMN – part 2

incorporated in the respective activities, as described in section 4.8, which is
also true for rules from the State Model.

The concept of interstriction has not been discussed, however a keen reader
has probably realised that whenever an actor in its activity needs a specific
information from another transaction, it is simply modelled by accessing the
respective transaction data store.

As DEMO models exhibit the C4E criteria [3], it is interesting to discuss
them with the respect to the resulting BPMN models:

– Coherent – As we do not cover multiple types of models, this criterium is not
applicable.

199

Title Suppressed Due to Excessive Length 15

– Comprehensive – As we cover the complete transaction pattern, the resulting
BPMN models exhibit the same comprehensibility as the CM + PM models
and partially the AM and SM.

– Consistent – The hypothesis is that if the method is used properly (prefer-
ably by automation), the resulting BPMN models will be consistent, as bigger
models are created from the presented basic building blocks using concatena-
tion and recursion. However, this hypothesis must be explored and verified in
future research.

– Concise – There is nothing superfluous in the resulting models. The reader may
make a proof for themselves using proof by contradiction: trying to remove
some of the generated elements results in malfunction.

– Essential – Not applicable for our method, as this quality is related to the
distinction axiom, which we left out, as explained in section 3.

The example shows that in spite of the simplicity of the DEMO model in-
volved, the resulting BPMN model is complex. The reason is mostly the complete
transaction pattern, which covers all the possible situations according to the PSI-
theory. The question arises about the human readability. There are several points
to this topic:

1. In practice, the model may be made smaller by leaving out the parts, which
are not applicable (which means they (almost) never happen). These are
typically the revoke patterns.

2. Yet, for complex models the resulting size may remain still unmanageable.
In this case it would be advisable to cut the model into smaller pieces using
some sort of decomposition and/or link BPMN elements. The concrete way
how to do this may be explored in a future research.

3. It is questionable whether a human readability is required. If one wants
human-readable diagrams according to the PSI-theory, the DEMO diagrams
are the solution, as they have been tailored to it. It may be the case that
learning and applying them comes at a lower cost than forcing the diagrams
into a BPMN notation, just because “BPMN is the standard”.

Our stance is that the greatest possibilities of our method lie in machine
readability, which means generating BPMN models that can be fed into a BPMN
execution system to implement an automated workflow that is able to react to
every possible situation specified by the complete transaction pattern, not just
a typical BPMN “happy path with a bit of branching”.

Apart from converting the DEMO models, the conversion may be applied
also for analysis of existing BPMN models of business processes as described
in section 2.1. The way of working would be to transform the BPMN models
into DEMO and then generate the “supercharged” BPMN version by converting
them back using our method.

As for the future work, a verification on a bigger models from practice is
necessary. As such conversion will not be feasible by hand, an implementation
of the conversion automation will be required.

200

16 Ondřej Mráz et al.

Acknowledgements

This research has been funded by CTU SGS grant No. SGS16/120/OHK3/1T/18.
The authors wish to deeply thank ForMetis BV and especially Dr. Steven van
Kervel for the kind support of this research.

References

1. OMG: OMG: Business Process Model and Notation (BPMN) Version 2.0
2. Silver, B.: BPMN Method and Style, 2nd Edition, with BPMN Implementer’s

Guide: A structured approach for business process modeling and implementation
using BPMN 2.0. Cody-Cassidy Press (October 2011) 00000.

3. Dietz, J.L.G.: Enterprise ontology: theory and methodology. Springer, Berlin; New
York (2006) 00021.

4. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., Kervel, S.J.V.: The discipline of enterprise
engineering. International Journal of Organisational Design and Engineering 3(1)
(2013) 86–114 00042.

5. Op ’t Land, M., Dietz, J.L.G.: Benefits of Enterprise Ontology in Governing Com-
plex Enterprise Transformations. In van der Aalst, W., Mylopoulos, J., Rosemann,
M., Shaw, M.J., Szyperski, C., Albani, A., Aveiro, D., Barjis, J., eds.: Advances
in Enterprise Engineering VI. Volume 110. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012) 77–92 00000.

6. Décosse, C., Molnar, W.A., Proper, H.A.: What Does DEMO Do? A Qualita-
tive Analysis about DEMO in Practice: Founders, Modellers and Beneficiaries.
In van der Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C.,
Aveiro, D., Tribolet, J., Gouveia, D., eds.: Advances in Enterprise Engineering
VIII. Volume 174. Springer International Publishing, Cham (2014) 16–30 00000.

7. Dietz, J.L.: THE ESSENCE OF ORGANIZATION - AN INTRODUCTION TO
ENTERPRISE ENGINEERING. Sapio bv (2012) 00000.

8. Guizzardi, G., Wagner, G.: Can BPMN be used for making simulation models?
Lecture Notes in Business Information Processing 88 LNBIP (2011) 100–115
00017.

9. Caetano, A., Assis, A., Borbinha, J., Tribolet, J.: An Application of the Ψ -Theory
to the Analysis of Business Process Models. SpringerLink (2013) 258–267

10. Van Nuffel, D., Mulder, H., Van Kervel, S.: Enhancing the Formal Foundations of
BPMN by Enterprise Ontology. In van der Aalst, W., Mylopoulos, J., Sadeh, N.M.,
Shaw, M.J., Szyperski, C., Albani, A., Barjis, J., Dietz, J.L.G., eds.: Advances in
Enterprise Engineering III. Volume 34. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2009) 115–129 00000.

11. Naplava, P., Pergl, R.: Empirical Study of Applying the DEMO Method for Im-
proving BPMN Process Models in Academic Environment. In: 2015 IEEE 17th
Conference on Business Informatics. Volume 2. (July 2015) 18–26

12. Figueira, C., Aveiro, D.: A New Action Rule Syntax for DEmo MOdels Based Au-
tomatic worKflow procEss geneRation (DEMOBAKER). In Aveiro, D., Tribolet,
J., Gouveia, D., eds.: Advances in Enterprise Engineering VIII. Number 174 in Lec-
ture Notes in Business Information Processing. Springer International Publishing
(May 2014) 46–60 00000.

201

Title Suppressed Due to Excessive Length 17

13. Heller, S.: Usage of DEMO Methods for BPMN Models Creation. Master thesis,
Czech Technical University in Prague. Computing and Information Centre. URL:
https://ccmi.fit.cvut.cz/wp-content/uploads/2017/03/Heller thesis 2016.pdf
(2016)

14. Mráz, O.: Možnosti využit́ı metodiky DEMO pro zvýšeńı kvality
BPMN modelu. Master thesis, Czech Technical University in Prague.
Computing and Information Centre. URL: https://ccmi.fit.cvut.cz/wp-
content/uploads/2017/03/Mraz thesis 2016.pdf (2016)

202

Chapter 18

Modelling and Prototyping of Business
Applications Based on Multilevel

Domain-Specific Language

[219] Pergl, R. Modelling and prototyping of business applications based on multilevel
domain-specific language. Lecture Notes in Business Information Processing, volume 88
LNBIP, 2011: pp. 173–191.

203

Modelling and Prototyping of Business
Applications based on Multilevel

Domain-Specific Language

Robert Pergl

Department of Information Engineering,
Faculty of Economics and Management,

Czech University of Life Sciences,
Prague, Czech Republic

pergl@pef.czu.cz

Abstract. An effective approach to modelling and prototyping of busi-
ness applications is presented in this paper. The approach is based on
three concepts: The concept of data structure abstraction, the concept
of a behavioural model based on the dynamic functional approach and
a design approach based on creating multiple levels of a domain-specific
language. The characteristics of each concept are presented. A technique
how to combine them together to create highly detailed descriptive mod-
els that may be easily turned to prototypes is shown and demonstrated.
Limitations are formulated and benefits over the object-oriented ap-
proach are discussed, as well.

Key words: Functional modelling, Prototyping, Domain-specific lan-
guages, Abstract data structures, Functional programming languages,
Clojure, Lisp

1 Introduction

Some voices in the computer-science community start to point that computer
science development is stuck in the object-oriented approach (OOA) and there
is a several-year stagnation in the development of computer science techniques
and paradigms. Experience shows that OOA has its considerable limits and
that it has failed in may of its promises in practice ([9])1. New approaches are
being called-for that may have a potential to boost flexibility and reusability
of software systems. It seems that there is no “silver bullet” in the form of
omnipotent approach or paradigm ([7]) and no new revolutionary paradigm is
at stage. The development we may do today lies in combination of existing
paradigms, some of them almost abandoned in spite of their potential. This is

1 When we speak about object-orientation in this paper, we generally mean the pure
object-orientation present e.g. in Smalltalk modelling language that is able to offer
as much benefits as may be principally obtained. For a discussion how static and
hybrid object-orientation spoils the OOA, see e.g. [7]

204

mostly an issue for systems development, however the modelling and prototyping
paradigms are touched as well – models and prototypes paradigm should match
the implementation paradigm.

We present three concepts in this paper that form the necessary foundation
needed to develop a basic business application (BA) system model:

Data abstraction concept – We present a general abstract model for building
data structures in section 2.

Behaviour abstraction concept – We present the concept of behavioural model
based on a dynamic functional approach in section 3.

Architecture concept – We present a concept of multilevel domain-specific lan-
guage approach in section 4.

We discuss each concept separately in each section and their combination for
prototyping a practical task is shown in section 7.

2 Data Abstraction Concept

Generally, we may divide data structures into ([1])

– Primitive (numbers, characters, symbols, . . .),
– Compound

The key data structures for complex models are the structures that aggre-
gate other data structures, usually called data collections. There are three main
classes2 that take many different names:

Sequence type class – List, array, vector, sequence: the order of the elements
is given by some rule (explicit order, alphabetical order, order based on
the time of adding the element, etc.). Equal elements may occur multiple
times. These collections are based on the mathematical term of n-tuple.

Set type class – This collection is based on the set as defined in mathematics.
Each element may be present just once and elements have no order.

Associative type class – Associative map, associative list, dictionary: each ele-
ment has a unique key by which it is identified. There is no order of elements.

Typically, various implementations are available in modelling languages (e.g.
linked list vs. hash list vs. various trees) that differ in their (performance or
memory consumption) characteristics. Various implementations are, however,
not important for modelling and prototyping, moreover they may lead from
the process of abstraction to optimisation too soon and bring unwanted com-
plexity to the design process. As BA are in their nature very complex, we try to
avoid any further sources of complexity in the early stages.

2 The term “class” is used here in its general meaning, not the object-orientation
semantics.

205

Attributes hold the data structures in the OOA. From this view, an object is
an associative map where we access data element using its identifier3. In object-
oriented models operations are encapsulated with the data structures.

3 Behaviour Abstraction Concept: Functional Paradigm

The functional paradigm is one of the “old” paradigms that have been almost
forgotten in the realm of business applications. It used to be a domain of aca-
demic research or artificial intelligence since its beginnings in 1960s until last
few years. However, in recent years (or even months), the functional approach
experiences (a deserved) attention from both the community of professional pro-
grammers and computer scientists. Clean functional approach may offer many
advantages both in the analysis, design and implementation.

3.1 Functional Model

A modelled system may be mathematically formalized as a mapping (function)
from the set of inputs I into the set of outputs O. This provides the so-called
“black-box” view on the system. To get a “white-box” view, it is necessary to
specify the details of how the inputs are transformed to outputs. In the case of
the procedural (or imperative) model, the specification consists of a sequence of
instructions4. In the functional model, the specification consists of functions.
Using a pure functional model provides some substantial advantages over the
procedural model, which will be discussed in this section. The functional model,
however, has its limitations, which will be discussed as well.

The procedural model achieves complex tasks by executing large numbers
of instructions, which sequentially modify a system state until a desired result
is achieved. Functional model achieve the same goal through composing nested
functions, passing the result of one function as a parametre to another. All
the data is handled through function parametres and return values (see Figure 1
compared to Figure 2). Those are so-called pure functions: they depend upon
nothing but their parametres, and they do not perform any side effects, but just
return a value. If we manage to model the system in a purely functional way, we
get the following considerable benefits for implementation [16]:

Easiness to parallelise the algorithm : Since each function is a distinct, encap-
sulated unit, it does not matter if functions are run in the same process or
even on the same machine.

High degree of encapsulation and reusability : Each function is effectively a black
box. Therefore, understanding the inputs and the outputs makes understand-
ing the function. There is no need to know or care about the inner details.

3 Which is explicit in the JSON data format.
4 The object-oriented model is a procedural one in this sense: message sending is

performed in an imperative manner.

206

Fig. 1. Procedural model (taken from [16]).

Fig. 2. Functional model (taken from [16]).

The OO model tries to achieve this through objects, but actually it is impos-
sible to guarantee, because objects have their own state. An object’s type
and method signatures can never tell the whole story: it depends on how
it manages its state and how its methods impact that state. In a complex
system, this quickly grows in complexity and often the advantages of class
encapsulation quickly disappear. Especially when class inheritance is used,
which breaks encapsulation by exposing some implementation details (pro-
tected members, which non-private functions are called by which non-private
functions, etc).

Easiness to reason about : In a purely functional model, the execution tree is
very straightforward. By tracing the function call structure, it is clear what is
happening. In order to understand a procedural, stateful model it is necessary
not only to understand the code, but all of the possible permutations of state
that may exist at any point in time.

207

Easiness to test : Pure functions are very easy to write unit tests for. One of
the most difficult aspects of unit testing is anticipating and accounting for all
the possible combinations of state and execution paths. Pure functions have
well-defined, stateless behaviour that is extremely simple to test. In addi-
tion, data structures used are very simple and easy to construct in the place
they are used without a need for creating mock-up classes and objects im-
plementing given interfaces or instantiating objects and setting their inner
state through series of calls of its methods.

In practice, we are not usually able to model the system as fully pure func-
tional. We need to introduce imperative instructions for the following situations:

– We need to model side effects like disk reading and writing and user interac-
tions.

– We need to model order of operations.
– We need to model time in the system.

These are serious limitations, however in most business systems there is
still much space for purely functional modelling that may be used for
goal-oriented and constraint-based parts of the system. The key point
is to limit the number and size of the parts of the system that have a
procedural nature from the rest, that may be modelled functionally. This
approach maximises the benefits mentioned above while not limiting the
expressive power.

4 Architecture and Decomposition

4.1 Decomposition based on Fundamental Concepts

Decomposition is a famous technique that is used for engineering of complex
systems. It means dividing a system into smaller subsystems in a tree-like man-
ner. Thus complex systems are modelled by composing basic building blocks
into compound structures, which again are composed into more complex ones.
Each paradigm has its own system of building complex structures based on its
fundamental concepts:

Structured model – procedures/functions
Object-oriented model – objects
Logic-based model – rules
Functional model – functions

The decomposition makes it possible to focus just on a necessary level
of detail in each single moment. However this plain decomposition does
not work in practice as effectively as it seems. When a change needs to
be done to a node, generally it brings the need to decompose the whole
subtree again.

208

Unfortunately, a lot of changes happen at higher levels of the tree in the BA
domain (new customer requirements or changes to the requirements), so this fact
may cause intensive restructuring of the whole tree. This results in a non-linear
complexity of performing model changes. Another characteristic of BAs is their
evolution: new features are added over the time. The situation is similar: adding
a new feature usually results in massive rewrites at all the levels of the tree.

Plain decomposition also makes the reusability difficult: it is theoretically
possible to reuse the subtrees, however it is hard to find a subtree that may be
reused, because every subtree was created only with the respect to the specific
parent.

It is necessary to mention that today’s most used approach, a decomposition
into objects in the object-oriented approach accompanied with heavy encapsu-
lation brings considerable problems as is shown e.g. in [2] and [7].

Clean object-oriented approach makes changes and enhancements more
flexible compared to structured decomposition, however its orientation
on protocol and communication brings a considerable overhead.

For example many design patterns [8] try to deal with various problems
trading flexibility in one area for another. Design patterns in the OOA exist
because the only way to do any sort of abstraction in OO systems is to define
communicating and cooperating objects ([7]).

Decomposing problem to object classes implies creating mental model
of objects dividing responsibilities they have. This model is built on
abstractions the classes represent. However, the abstractions are created
rather arbitrarily, especially in the beginning.

As the model changes, the responsibilities of the objects move, interfaces
change and abstractions may become inconsistent with the mental model, mak-
ing the model hard to understand. Refactoring [6] is then a common way to create
change the model to match a new mental model and abstractions that we may
not yet have. Warren Harris, a member of technical staff in the modelling Tech-
nology Department of Hewlett-Packard Laboratories, says to this: “. . . the very
nature of the dynamics of OOP seems to be making these sorts of refactoriza-
tions” [7].

5 Motivation for a Domain-Specific Language Approach

Experience shows that OOA has its considerable limits and that it has failed in
may of its promises in practice ([9]). New approaches are being called-for that
may have a potential to boost flexibility and reusability of software models and
systems. It seems that there is no “silver bullet” in the form of omnipotent ap-
proach or paradigm ([7]) and no new revolutionary paradigm is at stage. The de-
velopment we may do today seems to lie in combination of existing paradigms.
Let us present several motivational statements. Most of them are taken from
[16], [2] and [7].

209

– “The truth of the dynamics/evolutionary situation is that you need all the code
(and models! Note by the author) in front of you so that you can massage it
into the new form you want it to take. ... Minimizing outside dependencies is
a good thing, but doing this at the class level is usually just too fine grained.”
(Warren Harris in [7])

– OO approach encourages a high degree of ceremony and bloat. Simple func-
tionality may require several interdependent classes to make a mental model
match some “story” about the problem. Most of the bulk of a program is not
actual program code, but defining elaborate structures to support it.

– Objects require creating communicating entities, which means that the system
is modelled by building structures rather than by linguistic expression and
description through form, and this often leads to a mismatch of language to
problem domain.

– 16 out of 23 GoF fundamental design patterns [8] for OO languages are natural
primitive constructs in functional languages due to avalability of:
– First-class types (6): Abstract-Factory, Flyweight, Factory-Method, State,

Proxy, Chain-Of-Responsibility
– First-class functions (4): Command, Strategy, Template-Method, Visitor
– Macros (2): Interpreter, Iterator
– Method Combination (2): Mediator, Observer
– Multimethods (1): Builder
– Modules (1): Facade

5.1 Multilevel Domain-Specific Language Approach

A multilevel approach based on DSL [12] (ML-DSL) assumes that we have
a domain-specific language available for modelling the system at each level of
abstraction. Such a language layer is considered the perfect language for formal-
ising a system5.

Using the multilevel domain-specific language approach means that we
use this language at a certain level without having it specified in the lower
level first.

This is the most important difference to the general Domain-Specific Lan-
guage approach, where there is no strict segregation to levels specified. Multiple
levels of the language brings advantages of the decomposition, while maintaining
the expressiveness of the language (which is missing in plain top-down approach).

For ML-DSL we assume that the set of compound data structures consisting
of three classes of data types mentioned in section 2 is available and that there
are functions defined above them that provide the lowest level of the DSL for
manipulating them. They form the leaves of the decomposition tree. For the

5 In OO modelling this approach sometimes leads to the Facade design pattern, how-
ever the flexibility of it is limited in the aspect of malleability and extensibility of
the pattern.

210

functional modelling and programming, they are the primitive functions for ma-
nipulating the basic data structures. Further on, we will call them DSL-FL,
the domain-specific language of functional language.

The complete model should be consistent, i.e. every DSL term should be
either the DSL-FL or it should be defined at some lower level. It is not necessary
to strictly go from top to down as we do in our example below, however in the
end the model should be complete.

6 Rapid Prototyping of Functional Models

We need to choose a suitable language for expressing the functional models.

The Lisp-style functional programming languages are well-prepared for
developing domain-specific languages [16]. The advantage of using a lan-
guage with an interpreter is the possibility to develop prototypes that
may be used for simulations and testing and even for the following im-
plementation of the system.

We use the Clojure programming language ([10], [16], [4]) for such purposes,
which is a new rapidly-developing very pure dynamic functional language that
starts to get a considerable number of fans among programmers both from re-
search and the commercial sector. Its syntax is built on the famous Lisp pro-
gramming language, but it omits some complexity that has been notoriously
causing bad dreams to programmers and on the other hand it adds some power-
ful data structures and abstract concepts not present in Lisp. All core language
functions are side-effect free and immutability “by design” is emphasized over
immutability “by convention” used in other Lisp dialects that did not prove
sufficient.

Clojure is implemented upon the Java virtual machine and the integration
with the Java libraries is almost seamless. The performance is reported to be (or
can be easily made) the same as the hand-written Java code [10]. We decided to
use Clojure for our demonstration because of its transparent syntax and powerful
data structures.

In Clojure the notation for calling the function with arguments is (as in Lisp):

(function-symbol argument1 argument2 ...)

We may specify the transformation performed by a certain (sub)system at
the highest level like

(output (transformation (input *input-data*)))

We will call this DSL level Level 0. We may now specify lower-level lan-
guages. During the prototyping process we will perform iteratively just a few
operations:

– Design the DSL to operate the actual level of abstraction.

211

– Design necessary data structures to hold the data of the actual level.
– Design primitive DSLs to access and manipulate data structures of the actual

level.

7 ML-DSL Prototyping Demonstration

We will present the approach on a simple example of a payments pre-processing
system. The system is expected to perform the following transformation: it takes
lines that represent payment records as input. Each record (line) has the follow-
ing structure:

<Payment code> <Payment amount expression> <Payment type>,

e.g.

Electricity for the main building 12000 1000 Building costs

The payment code specifies the purpose of the payment. It may consist of
small and capital letters and spaces. The payment amount expression in the form
of a sequence of numbers separated by any number of spaces follows. The rest of
the line specifies the payment type (or an account in the accounting terminology).
The goal of the transformation is to sum the amounts for the payments with
the same code and type, thus

Electricity for the main building 1000 13000 Facility costs

Salaries 150000 Staff costs

Electricity for the main building 1000 1500 500 Facility costs

Salaries 2000 2000 Staff costs

should produce:

Electricity for the main building 17000 Facility costs

Salaries 154000 Staff costs

Let us now demonstrate the ML-DSL prototyping of our example by imple-
menting it in Clojure. We will show the implementation of the DSL at each level.
To stay in the picture, the reader may refer to the Figure 3 during the reading.
It depicts each level’s DSL and the relations between the levels.

7.1 Level 0

As mentioned, this level is a trivial one. In our case, we may map the general
concepts of input, transformation and output to our domain to get our level-0
DSL:

(output-payments (aggregate-payments (read-payments *input-data*)))

212

Fig. 3. The ML-DSL structure. Primitive functions are dark grey.

The read-payments function in our prototype will directly read the input
data from a static binding:6

(def *input*

["Electricity for the main building 13000 Facility costs"

"Salaries 150000 Staff costs"

"Electricity for the main building 1000 1500 500 Facility costs"

"Salaries 2000 2000 Staff costs"])

The square brackets denote a Clojure data type vector, which belongs to
the class sequence according to the taxonomy in section 27

7.2 Level −1

We dive one level down and we will use a lower-level DSL for working with
the DSL of the higher level: functions read-payments, aggregate-payments

and output-payments.

6 In the system’s implementation, it would read the data from some data source like
a text file, a database or a network.

7 Actually there is an abstract type called sequence in Clojure that abstracts sequen-
tial types like lists, vectors, strings. However this is a language detail that is not
important for our purpose.

213

On the input, there is a sequence of strings representing payments. The read-
ing function thus needs to perform a transformation on all the elements making
payments out of strings.

(map function sequence)

Clojure map function takes a function and a sequence. Its result is a se-
quence of elements transformed by the function.

Thus we may define the function:

(defn read-payments [lines]

(map payment-from-string lines))

The [lines] expression has the meaning of input parametre to the function.
Let us define the transformation now:

(defn aggregate-payments [payments]

(reduce add-to-category {} payments)))

The processing means to aggregate payments according to their category.
The DSL we need here needs to express the fundamental operation, i.e adding
the payment to an appropriate category. The payments input will be represented
as a sequence of payments. The processing task is solved by aggregating all
payments in the sequence. For this operation we use the Clojure reduce function.

(reduce reduce-function accumulator list)

Reduce takes the starting accumulator and processes the elements of
the list by feeding them to the reduce-function. The reduce-function
takes the accumulator and an item and produces a new version of the ac-
cumulator in each iteration.

We decided to select Clojure map data because it will enable us to locate each
payment category effectively by its key. The map data structure has the following
syntax in Clojure:

{key value key value ...}

Keys and values may be of any type. We provide an empty map {} as the accu-
mulator starting value.

The output function will in the end transform the map into a plain sequence
of aggregated payment categories:

(defn output-payments [payments-map]

(vals payments-map))

It uses the Clojure vals function to extract all values from the map. De-
spite the fact that it is trivial, we may start enjoying the REPL-style rapid
prototyping.

214

REPL stands for “Read”, “Evaluate”, “Print”, “Loop” which is typi-
cal for functional – especially Lisp-like – languages development envi-
ronments. The interpreter continuously reads and evaluates the input,
which makes building functional prototypes feel more responsive and en-
joyable: we may play around with small pieces of code that are easy to
debug and experiment with various ideas very fast.

“When building something thats never been built before, the only way
to get it right is to get it right every step of the way, by repairing any-
thing that is new and broken as soon as its written and by making sure
that nothing that is already ok becomes broken. In writing, this means
proofreading each sentence as soon as its complete, if not sooner. When
a paragraph is done, proofread it.” (Richard P. Gabriel in [7])

More about REPL can be found e.g. in [14].
Let us suppose we have some result in the form

{"cat1" "payment1" "cat2" "payment2"}

We may evaluate output-payments in the REPL8:

=> (output-payments {"cat1" "payment1" "cat2" "payment2"})

["payment1" "payment2"]

Please notice that we still use the most general concept of payment,
ignoring even the simplest notions how it may look like! This is a luxury
of simplicity that is generally impossible in object-oriented / statically
typed environments.

7.3 Level −2

We will implement adding to category required by the upper level now. This
function takes a payments map that consists of payments keys and correspond-
ing payments and returns a new map, where the payment has been added to
the appropriate category. We need two functions for our DSL at this level:
get-payment-category that will provide us a unique key for a payment and
add-payments that will merge two payments into one merging whatever needs
to be merged. From the DSL-FL we will need the operation of getting the value
of the given key from a map and associating a value to the key in the map.

Getting the value of a key is trivial in Clojure: calling the map as a func-
tion with the parametre that is the key.

(map key)

8 We will depict evaluating an expression in the REPL by “=>” and provide the result
of evaluation on the following line.

215

The associating is done with the assoc function:

(assoc map key value)

Thus our function will be:

(defn add-to-category [payments-map payment]

(let [key (get-payment-category payment)]

(assoc payments-map key (add-payments payment (payments-map key)))))

The let form enables to bind expressions to comprehensible names9.
It takes two parametres: a vector with pairs “symbol-expression” and
the body that uses these symbols.

We may test our DSL prototype in practice now. We may invent our own
mock-up data structures that will be accessed by those two functions to develop
and test the functionality of this level. The simplest data structure we may
specify for this purpose is a payment consisting of two values: its category and
its value: e.g. ["cat1" 3000]. We may now write trivial functions for working
with this data structure:

(defn get-payment-category [payment] (first payment))

(defn add-payments [payment1 payment2]

(if (nil? payment2)

payment1

[(first payment1) (+ (second payment1) (second payment2))]))

If payment2 is nil, the result is payment1 unchanged. Otherwise, the result is
a new payment constructed from the code being the first element of payment1
and the sum of payment amounts being the second elements10. These functions
may be immediately defined and tested in the REPL, however we will not do
this, for they are really trivial. These functions will be redefined by real versions
later when we deal with the lower DSL level.

Now we have a complete DSL for this level and we may test it:

=> (add-to-category {"cat1" ["cat1" 3000]} ["cat2" 500])

{"cat2" ["cat2" 500], "cat1" ["cat1" 3000]}

=> (add-to-category

{"cat2" ["cat2" 500], "cat1" ["cat1" 3000]}

["cat2" 50])

{"cat2" ["cat2" 550], "cat1" ["cat1" 3000]}

10 Please notice the Lisp-style prefix notation of addition first the function name, then
the parametres.

216

7.4 Level −3

In this level, we will redefine the functions that are used in the higher-level DSL
using “ideal” lower-level DSL functions:

(defn get-payment-category [payment]

[(get-payment-code payment) (get-payment-type payment)])

(defn add-payments [p1 p2]

(if (nil? p2)

p1

(construct-payment (get-payment-code p1)

(+ (get-payment-amount p1) (get-payment-amount p2))

(get-payment-type p1))))

7.5 Level −3.5

Before dealing with concrete representation of the payment let us implement
the function needed in Level -1 payment-from-string. We abstracted payment
as a sequence individual payment elements, thus we will construct it from a se-
quence:

(defn payment-from-string [string]

(payment-from-sequence (sequence-from-string string)))

payment-from-sequence is trivial: we just need to take 3 first elements from
the sequence:

(defn payment-from-sequence [seq]

(apply construct-payment (take 3 seq)))

Which we may test in the REPL:

=> (payment-from-sequence ["a" 3 "x"])

["a" 3 "x"]

We denoted this level as −3.5 because it has a more local (specific) purpose.

7.6 Level −4

We will implement the DSL used in level -3.

This is the level where we first need to consider the representation of
the data structure of payment. It implies that changing the structure of
payment will not affect levels above −4!

(defn get-payment-code [[code amount type]]

code)

217

(defn get-payment-amount [[code amount type]]

amount)

(defn get-payment-type [[code amount type]]

type)

These functions are analogous to property getters in object-oriented lan-
guages. We used the concept called “destructuring” here, which provides a highly
expressive mechanism [3]. The argument passed to get-payment-* functions is
the payment vector. However, we directly specify its structure in the parametre.
This results in destructuring the elements to the appropriate bindings.

Thus construct-payment will now look like:

(defn construct-payment [code amount type]

[code amount type])

This function is analogous to object constructors in object-oriented languages.

7.7 Level −5

Now we descend into a pure internal level that maps the specific input format
into our higher-level sequence. To make the message of Figure 3 as clear as
possible, we did not depict details of this level into it.

We may implement this level using any approach and apply various
implementation tricks here, because this is the only level that will change
if the input format changes (which we consider very probable). All higher
levels will remain intact.

sequence-from-string may be achieved by the transformation chain
string -> split-to-words -> process-words

and performing merging of mergeable elements, i.e. amounts that should be
summed:

(defn sequence-from-string [string]

(reduce merge-item [] (process-words (split-to-words string))))

Splitting to words may be achieved simply by Clojure re-seq function that
takes a regular expression (denoted as #"exp" in Clojure) and a string and
returns a sequence of successive matches of pattern in string:

(defn split-to-words [string]

(re-seq #"[a-zA-Z_]+|[0-9]+" string))

In REPL this may be tested like:

=> (split-to-words "Electricity for the main building

1000 1500 500 Facility costs")

("Electricity" "for" "the" "main" "building"

"1000" "1500" "500" "Facility" "costs")

218

Processing the words consists of converting each element to a proper type:

(defn process-words [seq-of-strings]

(map typify seq-of-strings))

The typify function should convert numbers to number type and leave strings
intact. We may use a Java class method parseInt of the class Integer to turn
strings into numbers. Java class methods (as well as instance methods) may be
directly called from Clojure, like

=> (Integer/parseInt "4000")

4000

thus allowing us to define the typify function:

(defn typify [argument]

(if (not (nil? (re-matches #"[0-9]+" argument)))

(Integer/parseInt argument)

argument))

The typify function matches the expression against a regular expression
specifying whole positive numbers. If the argument matches the regexp, the parsed
integer is returned, otherwise unchanged argument is returned.

Merging of the items into an accumulator is implemented in the functional
style:

– If the accumulator is empty, the result is a new list with the item.
– If the last element of the accumulator is string and the item is a string, then

the last element of the accumulator is replaced by concatenation of this ele-
ment, the space and the item.

– If the last element of the accumulator is number and the item is a number,
then the last element of the accumulator is replaced by the sum of the this
element and the item.

– Otherwise just append the item to the accumulator without any processing.

We provide the complete code together with “test-cases” in comments (de-
noted by “;;”):

(defn merge-item [accu item]

(cond

;; (merge-item [] "b") -> ["b"]

(empty? accu) [item]

;; (merge-item ["a"] "b") -> ["a b"]

(and (string? (last accu)) (string? item))

(conj (pop accu) (str (last accu) " " item))

;; (merge-item [9] 3) -> [12]

(and (number? (last accu)) (number? item))

(conj (pop accu) (+ (last accu) item))

;; (merge-item [9] "b") -> [9 "b"]

:else (conj accu item)))

219

This is relatively a little bit more complex piece of an algorithm. We omit
the detailed explanation of the Clojure DSL-FL used here, we present it here
to emphasise the fact that this processing resides in the lowest level, so its
complexity is hidden to higher levels and may be safely fine-tuned and optimised
as needed.

8 Discussion

The presented prototype solution consists mostly of the so-called “one liners”,
i.e. very short functions that can be easily comprehended, debuged and easily
reused.

By combing the ML-DSL approach with the functional concepts, we may
achieve the following qualities of a prototype:

– The prototype is easy to read and comprehend: Lower levels work with ab-
stract terms without knowing anything about the underlying data structure.

– Side-effect-free blocks have much simpler lexically-bound context easier to
isolate and comprehend.

– The prototype is easy to debug: we build simple blocks upon each other; side-
effect free blocks can be tested without complicated set-up of the environment
state and interacting objects (as in the object-oriented approach) and for
the same input it gives the same output.

– The prototype achieves flexibility with the respect to input data structures
changes: if this happens, we just modify the few functions at a given level that
access the data structure. All the higher-level functions will remain intact.

One of the greatest benefits of the ML-DSL stated in section 4 is elimination
of redesign of subtrees due to low-level format change or new feature implemen-
tation. We may demonstrate this situation on our example by updating the input
format to support “+” as a word that can be interpreted either as adding two
surrounding numbers or as a part of a string. Although this requirement makes
the input format more vague as “+” can appear in different context (as a word
or as an operator), this change would require just an incremental update of
the code in the lowest level:

We will change split-to-words to detect the + character as a word charac-
ter:

(defn split-to-words [string]

(re-seq #"[a-zA-Z_+]+|[0-9]+" string))

and we will enhance the merge-item function by a new condition branch11:

(and

(number? item)

11 The Clojure DSL-FL allows any number of predicates as arguments to the and

function

220

(= "+" (last accu))

(not (empty? (pop accu)))

(number? (last (pop accu))))

(conj (pop (pop accu)) (+ (last (pop accu)) item))

All higher levels will remain intact as they work with abstract DSL indepen-
dent on input data structure.

9 Summary and Conclusions

Functional analysis, design and programming of business applications offers an
interesting alternative to the object-oriented approach. Its simple and yet power-
ful paradigm based on pure functions provides considerable benefits in situations
where we do not need to model states, time-based behaviour and side effects like
user inputs and outputs. The benefits may be achieved also by mere separation
of the functional and procedural parts of the system.

The combination of functional approach, expressive data structures and a
suitable syntax is a basis of the presented Multilevel Domain-Specific Language
(ML-DSL) approach to modelling and prototyping. This approach is based on
decomposition of the system model into layers of domain-specific languages,
where each layer may be used without knowing the details of the lower layers.
This makes possible to build expressive descriptions of systems and algorithms
independently on the underlying data structures. Moreover, changes made to
the lower levels do not affect the higher levels, which contributes to prototypes’
flexibility. Thus this approach may be also recommended for use together with
Agile methodologies, where flexible management of deliverables is needed [13].

The ML-DLS approach was demonstrated on a case-study of a simple
payments-processing system. A ML-DSL prototype implementation was shown
using the Clojure programming language that offers a Lisp-style effective syn-
tax on the Java platform together with powerful data types and other modern
features. The benefits of using the REPL (Read-Eval-Print-Loop) environment
were also demonstrated: a live, responsive development where pieces of the DSL
may be tested and demonstrated before building more complex prototypes.

When the Clojure programming language is selected also as an implementa-
tion language12 a very effective modelling-prototyping-implementation develop-
ment cycle is achieved, where semantic gaps between the phases almost vanish.

Modelling a system using the expressive ML-DSL approach provides a very
precise system model (or directly a working prototype), but it takes quite a
lot of effort and skills and it may be thus recommended to analysts skilled in
abstraction and formal notations. Moreover, the functional approach takes a lot
of practice and “unlearning” for those trained exclusively in procedural thinking,
which is today still the majority of analysts and programmers.

12 In spite of its syntax and paradigm quite unusual for today’s programmers, Clojure
starts to be used in enterprise-grade programming, see e.g.[11]

221

Acknowledgements

This contribution was elaborated with a support of grant no. 201011130035
of Grant Agency of The Faculty of Economics and Management of the Czech
University of Life Sciences in Prague.

References

1. A.V. Aho, J.D. Ullman, J.E. Hopcroft, “Data Structures and Algorithms”, Addison
Wesley (1983).

2. M. Ben-Ari, “Objects Never? Well, Hardly Ever!”, In: Communications of
the ACM, vol. 53, no. 09, pp. 32-35, ACM (2010).

3. M. Fogus, Clojure Mini-Languages,
http://blog.fogus.me/2010/03/23/clojures-mini-languages (2010).

4. M. Fogus, Ch. Houser, “The Joy of Clojure: Thinking the Clojure Way”, Manning
Publications (2010).

5. E. Gamma, R. Helm, et al., “Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley Professional (1994)

6. M. Fowler, K. Beck, “Refactoring: Improving the Design of Existing Code”,
Addison-Wesley Professional (1999).

7. R. Gabriel, “Objects have failed: Notes for a Debate”,
http://www.dreamsongs.com/NewFiles/ObjectsHaveFailed.pdf (2002).

8. E. Gamma, R. Helm, et al., “Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley Professional (1994).

9. I. Hadar, U. Leron, “How intuitive is object-oriented design?”, In: Communications
of the ACM, vol. 51, no. 5, pp. 41-46, ACM (2008).

10. S. Halloway, “Programming Clojure”, Pragmatic Bookshelf (2009).
11. S. Halloway, “Clojure in the Field”,

http://www.infoq.com/presentations/Clojure-in-the-Field (2010).
12. M. Mernik, J. Heering, and A.M. Sloane, “When and How to Develop Domain-

Specific Languages”, In: ACM Computing Surveys, vol. 37, no. 4, pp. 316-344,
ACM (2005).

13. Molhanec, M. “Towards an Agile Project Management in Product Design”. In
32ND INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOL-
OGY, 682-685. International Spring Seminar on Electronics Technology, ISSE.
ISBN 978-1-4244-4260-7 (2009).

14. P. Norvig, “Paradigms of Artificial Intelligence modelling: Case Studies in Com-
mon Lisp”, Morgan Kaufmann (1991).

15. S.M. Ralph et al., “Principles of Information Systems, Sixth Edition”, Thomson
Learning (2003).

16. L. VanderHart, S. Sierra, “Practical Clojure”, Apress (2010).

222

Chapter 19

Analysing Functional Paradigm
Concepts: The JavaScript Case

[218] Janeček, L.; Pergl, R. Analysing Functional Paradigm Concepts: The JavaScript
Case. In Recent Advances in Information Systems and Technologies, Advances in In-
telligent Systems and Computing, Springer, Cham, Apr. 2017, ISBN 978-3-319-56534-7,
pp. 882–891.

223

Analysing Functional Paradigm Concepts

The JavaScript Case

Lukáš Janeček, Robert Pergl

Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic,

{janeclu1,perglr}@fit.cvut.cz

Abstract. Hundreds of programming languages are available today and
new ones are still emerging. Nevertheless, they are founded in several
(old) paradigms. Knowing the essence of paradigms helps to orient one-
self in this Babylon, which is challenging especially for the growing com-
munity of programmers with no computer science background. In this
paper we focus on functional paradigm, which has a raising attention
both in new languages (like Clojure and ClojureScript) and a growing
support in traditional languages (like C++ and Java). We do not discuss
why this happens here, but we focus on analysing fundamental concepts
in the functional paradigm and functional programming languages. We
describe them and divide them into two categories: key principles and
additional principles. Next, we apply this conceptual framework to anal-
yse the ES5 and ES6 versions of JavaScript. We conclude that ES6 is a
good step towards functional principles support. Also, the presented con-
ceptual framework may be used for similar analyses of other languages.

Keywords: functional programming, lambda calculus, JavaScript, EC-
MAScript 5, ECMAScript 6

1 Introduction and Motivation

There is an astounding number of programming languages available. For exam-
ple, in the Wikipedia, there is a list more than 700 programming languages
[1]. New ones emerge almost every year [1]. However, they are based on a
few programming paradigms, being the imperative (or procedural) paradigm,
the object-oriented paradigm, logic-based (or rule-based) and the functional
paradigm (or applicative) [2]. Programming languages are based on one or more
of the paradigms, which they embrace in their own style. There is a growing
number of non-professional programmers, e.g. scientists from various fields, who
lack the formal computer science education. This Babylon of languages becomes
very confusing for them. In this paper we focus on the functional paradigm,
which is very old, at the same, it gains popularity nowadays: new languages
emerge (like Clojure [3]) and other languages adopt its concepts (C++, Java)
[4], while the functional paradigm is strongly rooted in most of the today’s main-
stream languages, as well (Python, C#, F#, Ruby, Smalltalk and others). This

224

situation is in a strong contrast to awareness of the programmers, where most
of them remain with traditional Fortran-style programming (iteration, if-then-
else). Our goal is to present the key concepts in the functional paradigm to help
programmers see the essence in programming languages.

2 Methodology

We identify key principles from the literature and explain them. We denote the
principles by identifiers for easy referencing. We demonstrate their implementa-
tion in the popular JavaScript language – the ES5 and ES6 versions of the lan-
guage. The result are specific conclusions about the functional principles support
in JavaScript, as well as a general conceptual framework that can be similarly
used for analysing other functional programming languages and languages with
functional features. We do not dive deeply into explaining the benefits of using
these concepts, nor discussion of their appropriateness for various situations.
This discussion may be found in the references provided.

3 Key Principles of Functional Programming

The formal foundation of functional programming is the Lambda calculus, also
written as λ-calculus. It was formulated by mathematician Alonzo Church in
the 1930s as part of an investigation into the foundations of mathematics [5].
The Lambda calculus provides a simple semantics for computation, enabling
properties of computation to be studied formally. We do not discuss these for-
mal aspects of the Lambda calculus here, but we focus on the programming
perspective.

The most fundamental principle is the notion of first-class functions (P1).
It is an essence of functional programming that functions are first-class citi-
zens that may be manipulated as data. Since functions are considered values
in their own right, it is natural for them to appear as arguments or results of
other functions. Functions that takes other functions as arguments or that re-
turn functions as results are said to be higher order, and we refer to them as
“functionals” to distinguish them from ordinary functions [6]. Functions may be
named or anonymous, which corresponds to the notion of a Lambda function.
Higher-order functions can be used for example in functors, where functionals
are mapped over a structure, which provides a “better” alternative to iteration
[7].

The referential transparency (P2) states that function call can be re-
placed by its return value (obtained by calling the function with the same argu-
ments). It makes the order and count of execution irrelevant. This can be done
with so-called pure functions. This means that function can not impose side ef-
fects, like a mathematical function. An example of a side effect is printing out
some message, waiting for an input, sending something through the network,
or only accessing some variable outside the function scope (for example global

225

variable or variable from parent scope). This poses severe limitations, however
abiding the referential transparency has the following benefits [8]:

– Purely functions are remarkably easy to parallelize.
– Pure functions lead to a high degree of code encapsulation and reusability.
– They are easier to reason about.
– Pure functions are very easy to write unit tests for.

The referential transparency is tightly bound with the immutability of
variables and values (P3). This means, that if we assign a value to some
variable, we cannot reassign it. This variable will hold this value until the pro-
gram stops. From this perspective, variables are more like identifiers for data
values, than slots for some changing data. In some languages (like Haskell: [9]),
immutability is strictly embedded in the language. However, in languages with
imperative features, the situation is more complicated and immutability must
be explicitly managed. It can be achieved in several dimensions. The first step
is disabling reassigning another value to an already assigned variable. This is
usually achieved by a keyword (const, val, final, etc.). The effect is that we
cannot assign a new value to this variable, but we still can change the value it-
self. For example, when we define immutable (or constant) variable named user1

and value of this user1 will be the user with name “George”, we can not set
user1 to another user later, but we still can change the name of “George” to
“John”. Of course, this problem does not hold for values like integers or strings,
just the compound types. The solution of this problem is to define immutable
variables transitively. In this case, user object will have all properties defined as
constants, so we can not change its name to “John”. In case that user contains
another compound object as its property, this object have to be also immutable
(contains only immutable properties). This leads us to a question of standard
libraries. To support immutability, types defined in libraries must be immutable
and functions in these libraries must support operations with immutable struc-
tures. These functions have to return a new object with updated values instead
of changing the existing object. For example, a sort function is not allowed to
change array to sorted array, but it has to leave the original array untouched
and return a new sorted array.

A closure (P4) is simply a pairing of a function with its environment: the
bound variables that it can see [10]. It means, that function can access values
from the enclosing block (lexical scope). More specifically, not from the context
in which they are called, but from the context in which are defined. Closures are
used for making the code more clear and readable. They also provide encapsu-
lation (like private members in the traditional object-oriented programming).

A recursion (P5) is used in functional programming instead of loops. It is
a situation when a function calls itself. There is a special type of recursion called
tail-recursion. A tail-recursive clause is a recursive clause of the form

p : −q1, .., qn, p,
where n ≥ 0, i.e. the last the last call in the body is a recursive call to itself. It
is well known that tail-recursion can be replaced by iteration. This is because

226

there are no more calls after the tail-recursive one, which means that its binding
environment can, with a bit of care, be discarded and the space reused [11]. Thus,
if a compiler supports tail recursion optimisation, it solves the stack overflow risk
of recursion in case of tail recursion.

3.1 Additional properties

Apart from the fundamental principles, we identified the following additional
principles. Some of them also appear in other paradigms, like object-oriented
programming or logic programming.

Lazy evaluation (P6) is a situation when a value of an expression is not
calculated in the moment of declaration, but it is delayed until needed; It may
also happen that the value is not evaluated ever [9]. The lazy evaluation is
typically bound to pure functions, as side effects complicate the situation by
the possibility that they may not be evaluated [12]. Lazy evaluation does not
make much difference for atomic values, apart from possible small optimisation.
However, their importance is substantial for collections. Lazy collections (usually
lists) are a very common pattern for solving problems in functional style. They
bring a possibility to work with virtually infinite streams by evaluating just the
portions that are accessed [13], [14], [15].

Currying (P7) is another important additional principle of functional pro-
gramming. Currying is a technique of transforming a function of multiple argu-
ments into evaluating a sequence of functions, each taking one argument [16]. In
fact, currying is the default mechanism in the Lambda calculus, while multiple-
argument functions are technically just a “syntactic sugar”. The same is true
for the Haskell programming language, while most of other languages default to
multiple arguments and use currying mostly to achieve partially applied func-
tions. It is a situation when we pass fewer arguments to a function that the
function expects [10]. It is a powerful abstraction mechanism enabling creation
of specialised versions of functions. [10]

Pattern matching (P8) is a well-known concept not limited to the func-
tional programming. Pattern matching provides the means to inspect and de-
compose nested data structures in a single statement [17]. Using this construct,
a programmer can define different behaviour of a function based on distinct val-
ues and data structures without writing if-then-else constructs, which makes it
a device of polymorphism.

Polymorphism (P9) [18] is a powerful abstraction principle, again not
only limited to functional programming, it is also one of corner stones of object-
oriented programming). Polymorphic functions are functions whose operands
(actual parameters) can be of more than one single type. Polymorphic types are
types whose operations are applicable to values of more than one single type
[19].

To sum up, a proper functional programming language should implement the
concept of functions as first class values, support closures, immutable variables
and pure referential-transparent functions. Recursion is generally supported in

227

all today’s languages including the imperative ones, however tail recursion opti-
misation is a welcome asset from the implementation perspective.

4 FP Analysis of JavaScript

Let us now explain how the identified principles are embodied in the JavaScript
language (JS), arguably the most important language of the web [20]. JavaScript
is designed as a dynamically typed scripting language. The current widely used
edition is the ECMAScript 5th Edition (ES5)[21] and a new standard EC-
MAScript 6th edition (ES6) is available [22]. ES6 contains more direct support
for functional programming constructs, but it is not fully supported in the cur-
rent web browsers (in November 2016). The current adoption status may be
checked in [23]. Currently, the code in ES6 for browsers is usually translated
into the ES5 code for compatibility reasons.

4.1 ES5

ES5 is a shortcut for EcmaScript 5 from 2009 JavaScript standard [21]. In
JavaScript, functions are first-class objects and can be assigned to variables,
passed as function arguments or returned as a function result. Anonymous
(Lambda) functions are supported in form of:

f unc t i on (arguments , . . .) { re turn ;}

We may conclude that principle (P1): first-class functions is supported in JS.
Functors are supported with arrays, but there is a small amount of standard
functions based on them. They can be supported using libraries like Lodash [24]
or Underscore [25].

Principle (P2): referential transparency is not guaranteed nor managed, as
functions are not required to be pure and also (P3): immutability is not di-
rectly supported. There is no syntax for specifying immutable variables and no
functions or objects from standard library that would provide support for im-
mutability. So when we write:

var a = [5 , 2 , 4 , 3] ;
a . s o r t () ;
c on so l e . l og (a) ; // [2 , 3 , 4 , 5]

The value of variable a will be [2, 3, 4, 5]. So the function sort sorts the
original array instead of returning the sorted array as its return value and letting
the original array unchanged. (In fact, this function returns the sorted array as
a return value, nevertheless it sorts the original array anyway.) The only way,
how to declare a (local) variable is using the keyword var1, and variables can
be reassigned. For example, this is a valid code:

1 A variable can be also declared without the var keyword, which makes the variable
global.

228

var a = 10 ;
a = 20 ;
conso l e . l og (a) // 20

There is immutable support for properties in objects:

var obj = {} ;
Object . de f ineProper ty (obj , ’ key ’ , {

c o n f i g u r a b l e : f a l s e ,
wr i t ab l e : f a l s e ,
va lue : ’ some data ’

}) ;

When the writable attribute for a property is set to false, any attempt to
change the value of the property fails [21].

Object obj now contains property key with value some data. This property
can not be changed (writable: false) or deleted (configurable: false). The
second option is freezing an existing object:

var obj = {key : ’ va lue 1 ’}
conso l e . l og (obj . key) // value 1
obj . key = ’ value 2 ’
conso l e . l og (obj . key) // value 2
Object . f r e e z e (obj)
conso l e . l og (obj . key) // value 2
obj . key = ’ value 3 ’
conso l e . l og (obj . key) // value 2

Because of standard functions which mutate data, most of the code in JS
is not referential transparent – (P2) is not supported. There is a possibility
to mitigate this situation by using libraries providing basic support for im-
mutable structures and functions manipulating these structures (for example
immutable.js [26]).

Functions are scope for variables. Objects may be created from JavaScript
functions. Properties of these objects can be accessed using closures. Because
these properties can be also changed, using closures breaks the referential trans-
parency – If we invoke closure C, then change a variable that is used in this
closure and then invoke C for the second time, the result of this closure may be
different.

Nevertheless, closures (P4) are present and provide a powerful mechanism,
which is leveraged in introducing the concept of modules, which is missing in
the language. Modules are implemented in the AMD library ([27]) by enclosing
the exported functions in another function, thus forming a closure and providing
encapsulation.

Principle (P5): recursion may be used in JS, however tail call optimization is
not present. Functions that recurse very deeply can fail by exhausting the return
stack [20].

229

As for the additional principles, (P6): lazy values are not supported, (P7):
currying is not supported in the language, but it can be achieved indirectly [28]
or using libraries [29]). (P8): pattern matching is not present.

(P9): Polymorphism is supported by a prototype inheritance [30] in a rather
object-oriented fashion. Polymorphism in JavaScript deserves a deeper explana-
tion, which is out of scope of this paper.

To sum up, we can say, that ES5 supports first-class functions, but it lacks
other properties of functional programming. Some of them can be simulated indi-
rectly or using libraries. Functional style is not idiomatic in standard JavaScript,
but a number of libraries and projects leveraging them seems to be rising.

4.2 ES6

ES6 is the new (2015) JavaScript standard and it is backward compatible. It
brings several improvements, which are explained e.g. in [31]. Let us discuss the
changes related to the functional principles here.

The first improvement is a more elegant syntax for anonymous (Lambda)
functions: the //arrow functions//. The code:

evens . map(func t i on (v) { re turn v + 1 })

can be shorten to

evens . map(v => v + 1)

So we may say that ES6 syntactically supports (P1) better than ES5. Also, by
using arrow functions, one can achieve a more expressive closure syntax (P4).
Also, ES6 changes scoping of this from function scope to lexical scope. This
change allows a direct closure code – we do not have to save this reference as
in ES5. Instead of

var s e l f = t h i s
t h i s . nums . forEach (func t i on (v) {

i f (v % 5 === 0)
s e l f . f i v e s . push (v)

})

it is now possible to write [32]:

t h i s . nums . forEach ((v) => {
i f (v % 5 === 0)

t h i s . f i v e s . push (v)
})

ES6 also improves the support for immutability. In the language, there are
now two new keywords for creating variables. Keyword let creates mutable
variable but scoped lexical (instead of the functional scoped var keyword). Using
const one can create a constant. The ES6 const keyword is used to declare read-
only variables, i.e. the variables whose value cannot be reassigned [31]. So (P3)

230

is supported, but not required. Immutable variable means that nothing else can
be assigned to this variable, but properties of this object still can be changed.

ES6 also adds collections and new functions for immutable operations: find(),
map(), reduce() do not change the original collection. This strongly supports
referential transparent code (P3).

A support for tail call optimization has been added, which facilitates the
usability of recursion (P5). A tail position call must either release any transient
internal resources associated with the currently executing function execution
context before invoking the target function or reuse those resources in support
of the target function [22].

ES6 supports generators, which are essentially lazy collections. One can define
an iterable sequence with generator function and the control flow can be paused
and resumed, in order to produce a sequence of values (either finite or infinite).
But this is not enough to support laziness (P6). This provides only a type of
lazy collection, but there is still missing lazy function invocation or lazy values.

Currying (P7) is still not part of the language, the situation remains the
same as with ES5: it is achievable using libraries.

As for the additional principles, ES6 introduced the destructuring assign-
ment :

var l i s t = [1 , 2 , 3]
var [a , , b] = l i s t
[b , a] = [a , b]

It is essentially (P8): pattern matching, but just in a limited fashion, as it
can not be used to create polymorphic functions based on destructuring.

The model of (P9): polymorphism has not changed in ES6.

5 Conclusions

It may be an interesting observation that JavaScript in spite of its C-like syntax
offers many fundamental functional programming principles in its heart and a
lot can be achieved by libraries. Programmers may thus leverage a good portion
of functional power and elegance in this popular language. ES6 is obviously
a step towards better functional principles support. JavaScript is one of the
languages, which is getting closer to purely functional languages. The following
table summarizes concepts and their support in languages.

231

Property ES5 ES6

First-class functions (P1) + ++

Referential transparency (P2) – -

The immutability of variables and values (P3) -* +

Closures (P4) + ++

Recursion (P5) + ++

Lazy evaluation (P6) – -

Currying (P7) -* -*

Pattern matching (P8) – -

Polymorphism (P9) + +

* can be reached using libraries.

As for the future work, the presented conceptual framework may be used
to analyse other programming languages from the functional programming per-
spective.

References

1. “List of programming languages,” Nov. 2016, page Version ID:
750948731. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
List of programming languages&oldid=750948731

2. S. Kedar, Programming Paradigms And Methodology. Technical Publications, Jan.
2008, google-Books-ID: gvm9TPE96t4C.

3. “Clojure.” [Online]. Available: http://clojure.org/
4. R. Warburton, Java 8 Lambdas: Pragmatic Functional Programming. ”O’Reilly

Media, Inc.”, Mar. 2014, google-Books-ID: qKUdAwAAQBAJ.
5. Computer Science. PediaPress, google-Books-ID: Yte2cXVES9EC.
6. G. Cousineau and M. Mauny, The Functional Approach to Programming. Cam-

bridge University Press, Oct. 1998, google-Books-ID: vccmAAAAQBAJ.
7. J. Hughes, “Why Functional Programming Matters,” The Computer Journal,

vol. 32, no. 2, pp. 98–107, Jan. 1989.
8. L. VanderHart and S. Sierra, Practical Clojure, 1st ed. Apress, Jun. 2010, 00000.
9. R. Bird, Thinking Functionally with Haskell. Cambridge University Press, Oct.

2014, google-Books-ID: B4RxBAAAQBAJ.
10. B. O’Sullivan, J. Goerzen, and D. B. Stewart, Real World Haskell: Code You Can

Believe In. ”O’Reilly Media, Inc.”, Nov. 2008, google-Books-ID: nh0okI1a1sQC.
11. J.-P. Jouannaud, Functional Programming Languages and Computer Architecture:

Proceedings, Nancy, France, September 16-19, 1985. Springer Science & Business
Media, Sep. 1985.

12. R. Pickering and K. Eason, Beginning F# 4.0. Apress, May 2016, google-Books-
ID: puQgDAAAQBAJ.

13. K. Koval, Swift High Performance. Packt Publishing Ltd, Nov. 2015, google-
Books-ID: VfioCwAAQBAJ.

232

14. K. Ballou, Learning Elixir. Packt Publishing Ltd, Jan. 2016, google-Books-ID:
ogUcDAAAQBAJ.

15. A. Alexander, Scala Cookbook: Recipes for Object-Oriented and Func-
tional Programming. ”O’Reilly Media, Inc.”, Aug. 2013, google-Books-ID:
BSo2AAAAQBAJ.

16. L. Borges, Clojure Reactive Programming. Packt Publishing Ltd, Mar. 2015,
google-Books-ID: 1tePBwAAQBAJ.

17. F. Geller, R. Hirschfeld, and G. Bracha, Pattern Matching for an Object-oriented
and Dynamically Typed Programming Language. Universittsverlag Potsdam, 2010,
google-Books-ID: 2gM 93yaz kC.

18. Z. Hu, J. Hughes, and M. Wang, “How functional programming mattered,” Na-
tional Science Review, vol. 2, no. 3, pp. 349–370, Sep. 2015, 00000.

19. P. W. Luca Cardelli, “On Understanding Types, Data Abstraction, and
Polymorphism,” Dec. 1985. [Online]. Available: http://lucacardelli.name/Papers/
OnUnderstanding.A4.pdf

20. D. Crockford, JavaScript: The Good Parts: The Good Parts. ”O’Reilly Media,
Inc.”, May 2008, google-Books-ID: PXa2bby0oQ0C.

21. “ECMAScript Language Specification,” Dec. 2009. [Online]. Avail-
able: http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/
ECMA-262%205th%20edition%20December%202009.pdf

22. “ECMAScript 2016 Language Specification,” Jun. 2016. [Online]. Available:
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

23. “ECMAScript 6 compatibility table,” Nov. 2016. [Online]. Available: http:
//kangax.github.io/compat-table/es6/

24. “Lodash.” [Online]. Available: https://lodash.com/
25. “Underscore.js.” [Online]. Available: http://underscorejs.org/
26. “Immutable.js.” [Online]. Available: https://facebook.github.io/immutable-js/
27. “amdjs/amdjs-api.” [Online]. Available: https://github.com/amdjs/amdjs-api
28. “A Beginner’s Guide to Currying in Functional JavaScript,” Oct. 2015. [Online].

Available: https://www.sitepoint.com/currying-in-functional-javascript/
29. “Ramda Documentation.” [Online]. Available: http://ramdajs.com/
30. M. E. Daggett, Expert JavaScript. Apress, Nov. 2013, google-Books-ID: Hpo-

QAwAAQBAJ.
31. N. Prusty, Learning ECMAScript 6. Packt Publishing Ltd, Aug. 2015, google-

Books-ID: 9O13CgAAQBAJ.
32. “ECMAScript 6: New Features: Overview and Comparison.” [Online]. Available:

http://es6-features.org/#Lexicalthis

233

Chapter 20

OpenCASE — A Tool for
Ontology-Centred Conceptual Modelling

[222] Pergl, R.; Tůma, J. OpenCASE - A tool for ontology-centred conceptual modelling.
Lecture Notes in Business Information Processing, volume 112 LNBIP, 2012: pp. 511–518.

235

OpenCASE– A Tool for Ontology-Centred
Conceptual Modelling

Robert Pergl and Jakub Tůma

Department of Information Engineering,
Faculty of Economics and Management,

Czech University of Life Sciences,
Prague, Czech Republic

pergl@pef.czu.cz, jtuma@pef.czu.cz

Abstract. OpenCASE, an original CASE tool supporting conceptual
modelling is presented in this paper. The CASE tool has been devel-
oped during the research focused on the ontology-centred conceptual
modelling. It provides a strong emphasis on terms and their relations
while supporting standard notations (now BORM, other notations are
planned). The tool has an open plug-in-based architecture founded on
the Eclipse platform, which makes the tool modular and extensible. The
knowledge base of the models may be accessed via an API and thus used
to implement verifications, various calculations (statistics), to transform
models to outputs (reports) and to make inner transformations (e.g. nor-
malisation). The architecture of the tool is briefly mentioned as well.

Key words: CASE Tool, Eclipse platform, conceptual modelling, onto-
logical analysis, BORM method

1 Introduction

This contribution addresses the discussion of the importance of diligent onto-
logical analysis during the enterprise IS modelling presented in [13], where the
author explains the importance of ensuring the consistency between various
models (and inside each model) and concludes (besides others) the need of a
“quality CASE tool support”.

In this paper, we would like to present our advancements in designing and
implementing a CASE tool to support ontology-centred modelling: OpenCASE.
OpenCASE [12] is a CASE tool designed to support the research in the field
of conceptual modelling and ontologies. It is built upon the Eclipse framework
[8] and it utilizes many of its advanced possibilities (see section 4). Right now,
we have implemented the BORM method’s Business Architecture Diagrams and
Object Relation Diagrams ([7],[1], [10]) as a proof-of-concept of ontology-centred
modelling and OpenCASE’s philosophy and design1.

1 Apologies for the readers: due to lack of space in this short paper, we do not provide
a BORM introduction here.

236

2 Goal and Methodology

The goal of the contribution is to present OpenCASE, an original ontology-centred
CASE tool. We present the philosophy behind the tool, its practical utilisation
and its architecture.

3 Ontology-Centred Modelling

3.1 Entities vs. Elements

To deal with ontology generally means to deal with terms and their relations2.
Conceptual modelling using the ontology-centred approach thus needs to fully
support tracking of distinct terms and their relations throughout the models.
This practically means a transition from visually-centred to the ontology-centred
CASE tools architecture. We may find notions of this approach in some CASE
and Meta-CASE tool like Craft.CASE [3], MetaEdit+ [11] and others, however
we were focused on total concept purity in separating the Domain Layer and
the Domain Model Layer while maintaining the relation between the elements
(Figure 13).

Fig. 1. Layered architecture of ontologies (taken from [13])

We implemented the concept of ontologically equivalent elements introduced
in[13]:

2 A more thorough introduction to ontologies and their relation to conceptual mod-
elling and the BORM methodology may be found in our original paper [13].

3 The layered architecture of ontologies has already been published in its rudimentary
form numerus times over the past 30 years, see e.g. [4].

237

Definition 1. We say that the model element x is ontologically equivalent to
the model element y if and only if there exist relations representationOf(x, t)
and representationOf(y, t), where t is an element of the CMoD4.

We implemented this concept by strictly discerning the domain entities and
model’s elements. An “entity” represents a domain object in the M0 layer in
Figure 1, while the “element” is an object in the M1 layer, being a particular
instance of the M2 layer element. Practically, let us suppose we deal with a
Customer entity being modelled by a Participant Customer graphically repre-
sented according to the BORM methodology as a rectangle with a solid border
and pale blue filling, which is an instance of the Participant concept.

There is a relation 1:N between entities and elements: each entity (layer M0)
may be represented by several elements (layer M1): a Customer may play its role
in several diagrams, thus being represented by a visual element in each, while
being the same entity’s representationOf . There is a screenshot in Figure 2
showing the OpenCASE’s support for tracking entities with respect to elements.
The left panel shows all the entities. If we unfold an entity, we see all its elements.
In Figure 2 there are 3 participant elements that represent entity Customer5.
When we click an element, its full path is revealed in the status line. Double-
clicking an element takes us to the appropriate diagram and selects the element.

Fig. 2. Entities and Elements in OpenCASE

Tracking the entities is a concept that enables us to:

4 CMoD = Concept Map of Domain . . . a graph of domain terms and their relations.
5 Generally, there may be various element types representing one entity, e.g. there

may be as well a data class Customer that would describe customer’s attributes.

238

Ensure elements’ consistency – Elements usually take the name of their en-
tity, so renaming an entity automatically renames all the attached elements.
Thus if we have an element Customer participating in several diagrams and
we change its entity’s name to Client, all the attached elements get au-
tomatically renamed. In case we do not want an element to automatically
take its entity’s name – this may be the situation in multilingual diagrams
or languages that use inflection – we may disable the implication “entity
name → element name” (option Entity ID as label, red ellipse on the
right in Figure 2). We need to rename the element by hand, however with
the comfort of having the list of all elements that are representationOf the
entity.

Facilitate impact analysis – When some change occurs to a domain entity,
we may easily track the impact to the model, i.e. the elements in the model
that may need attention due to the change.

Use the model knowledge base – Elements represent some information we
have about the entity – its roles and relations in the domain. We may de-
sign and run reports, statistics, optimizations and reasoning based on this
knowledge. OpenCASE provides a full API to this model knowledge base – see
subsection 3.4.

3.2 Business Properties

Another concept of ontology-centred modelling implemented in OpenCASE are
business properties. Inspired by the success of this concept in the Craft.CASE
tool [3], we implemented a sort of meta-modelling layer enabling to specify cus-
tom domain (business) properties. Compared to Craft.CASE we did not limit
business properties just to classes of elements (Participant, State, Activity, . . .),
but we made possible to attach a business property to an element (thus having
just one instance) or to an element class (thus having several instances) – Fig-
ure 3. Because diagrams are elements as well, they may have business properties
orthogonally assigned, too (the author, version, etc.).

3.3 Internal Knowledge Base

The tool is database-centred, i.e. it maintains an internal knowledge base con-
taining of functions, scenarios, diagrams, entities, elements together with their
graphical properties. Internally, they form nodes of a graph structure and their
relations are represented as edges, thus various graph algorithms may be ap-
plied on the knowledge base [17]. Graph traversals and graph transformations
are probably the most useful and enable to implement operations like

– Listings, like all input/output flows from/to a participant.
– Calculation of metrics (like numbers of states and activities in participants)

that may be used for complexity estimations [16], [15].
– Calculation of statistics, e.g. about dataflows and communications (which par-

ticipants communicate the most/least, above/below average, etc.).

239

Fig. 3. Element Properties and Element Class Properties in OpenCASE

– Semantics checks: there is a starting state in every participant, at least one
final state6, . . .

– Conceptual normalisations [9].
– Any further custom reporting / calculations / processing

3.4 Model API

We see diagrams as a convenient way how to specify the model and visualize the
model to a business user, however the true power lies in its underlying knowl-
edge base. We designed OpenCASE to transparently reveal its API (Application
Programming Interface) of the model’s structure. Using this API, a program-
mer may iterate through the model’s elements and entities, make verifications,
perform various calculations (statistics), transform them to some sort of output
(reports) and make inner transformations (e.g. normalisation).

The API is self-documented in the form of UML Class diagrams thanks to
the Ecore framework (see section 4). An example of the OR diagram metamodel
is in Figure 4.

4 OpenCASE Implementation

OpenCASE is implemented entirely in the Java programming language utilizing
the Eclipse Platform and various modelling frameworks from the Eclipse Mod-
eling Project (EMP). The Eclipse Rich Client Platform (RCP) offers a very
powerful foundation since it provides an extensible component system and a
platform for creating complex applications with rich user interfaces.

6 According to the BORM method, there may be exceptions to these rules, see [7] for
more details.

240

Due to lack of space in this short paper, we do not provide an overview of the
RCP platform. The reader may read about it on the Internet or in the literature
– we highly recommend [2], [5], [8], [14].

The core of the OpenCASE project is the OpenCASE written as an RCP appli-
cation. There are 10 essential plug-ins constituting the core of the application
called OpenCASE Workbench. The workbench is just the user interface without
any diagram editing capabilities. Diagram manipulation is performed by the
remaining plug-ins.

Each feature has a core plug-in having an ID with no suffix, e.g., org.opencase.diagrams.
Such a plug-in is almost entirely generated from an Ecore model and it imple-
ments the basic behaviour of the modelled domain. An example of Ecore model
is in Figure 4.

Fig. 4. A part of Ecore model of BORM’s Object Relationship Diagram

Currently, there are several plug-ins being developed, compiled and deployed
in separation from the core of OpenCASE. Thanks to Eclipse plug-in system such
components can be installed right into the running OpenCASE from an archive or
internet update site.

5 Summary, Conclusions and Future Work

OpenCASE is an attempt to bring the ontology-centred modelling into everyday
life and profit from research achievements while at the same time to provide
an open platform for further research. That provided a challenge to implement
theoretical results into suitable software implementation and to build a user-
friendly tool with features like keyboard shortcuts, complete undo, aligning and
distribution of graphical elements, batch operations, etc.

We put a high focus to implement the whole ontology chain, i.e.

241

1. Input – How to input the terms and their relations in synergy with a concrete
notation. We addressed this issue by separating the identity (entity) from its
representation (element) – subsection 3.1

2. Processing – How to access the ontology and manipulate it by transformations
and various algorithms (verifications, normalizations, optimizations, etc.).
We built an application programming interface (API) to access the model’s
knowledge base. The API architecture is documented by UML (Ecore) dia-
grams7 – subsection 3.4.

3. Output – How to export the ontological knowledge contained in the model.
Exporters plug-ins handle this task. Exporter plug-ins are implemented as
Eclipse plug-ins and they may be implemented to perform an export to
various human-readable formats (TXT, HTML, LaTeX, ODT, PDF, . . .)
or formats suitable for machine processing (CSV, XML, JSON, OWL, . . .),
or it may perform the export directly into relational database or reveal the
knowledge base as a service (SOAP, REST).

At the time of writing this contribution, the modelling core is completely im-
plemented, being further fine-tuned and improved. As for the plug-ins, several
output plug-ins are developed (TXT, HTML, LaTeX). We are also working on
implementing models simulations and support for optimizations. A huge step
toward the holistic ontology-centred conceptual modelling will be implementing
other types of diagrams, especially data-structure diagrams (UML Class Dia-
grams and OntoUML, [6]) and providing a means to make ontologic relations to
the process diagrams.

Acknowledgements. ***

References

1. Brozek J., Merunka V., Merunkova I.: Organization Modeling and Simulation Using
BORM Approach. In: Lecture Notes in Business Information Processing, vol. 63,
pp.27-40 (2010)

2. Clayberg E., Rubel D.: Eclipse Plug-ins. Addison-Wesley Professional (2008)
3. Craft.CASE Tool, http://www.craftcase.com
4. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering and Ontology

Development (2nd Edition), Springer (2009).
5. Gronback R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional (2009)
6. Guizzardi G.: Ontological Foundations for Structural Conceptual Models. Telem-

atica Instituut Fundamental Research Series No. 15 (2005)
7. Knott, R.P., Merunka, V., Polák, J.: The BORM methodology: a third-generation

fully object-oriented methodology. In: Knowledge-Based Systems, vol. 16, no. 2,
pp. 77-89 (2003)

7 Actually, as was explained, the situation is opposite: the internal structures are
generated from the Ecore diagrams, which makes a powerful mechanism to main-
tain specification-implementation consistency. Nevertheless, this is irrelevant for the
API’s user.

242

8. McAffer J., Lemieux J.-M., Aniszczyk Ch.: Eclipse Rich Client Platform: Design-
ing, Coding, and Packaging Java Applications. Addison-Wesley Professional (2005)

9. Molhanec, M.: Some Reasoning Behind Conceptual Normalisation. In: Information
Systems Development Information Systems Development, pp. 517-525, Springer
Science+Business Media, Berlin (2011)

10. Molhanec, M., Merunka, V.: BORM: Agile Modelling for Business Intelligence In:
Business Intelligence and Agile Methodologies for Knowledge-Based Organizations:
Cross-Disciplinary Applications. Hershey, Pennsylvania: IGI Global, pp. 120-130
(2011)

11. MetaEdit+, http://www.metacase.com/cases/borm.html
12. OpenCASE Tool, http://www.opencase.net (in construction)
13. Pergl R.: Supporting Enterprise IS Modelling using Ontological Analysis. In: Lec-

ture Notes in Business Information Processing, vol. 88, no. 1, pp. 130-144, Springer,
Heidelberg (2011)

14. Steinberg D., Budinsky F., Paternostro M.: EMF: Eclipse Modeling Framework.
Addison-Wesley Professional (2008)

15. Struska Z., Merunka V.: BORM points – New concept proposal of complexity es-
timation method. In: ICEIS 2007: PROCEEDINGS OF THE NINTH INTERNA-
TIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS: IN-
FORMATION SYSTEMS ANALYSIS AND SPECIFICATION, 9th International
Conference on Enterprise Information Systems (ICEIS 2007), Funchal, PORTU-
GAL, JUN 12-16, 2007, pp. 580-586 (2007)

16. Struska Z., Pergl R.: BORM-points: Introduction and Results of Practical Test-
ing. In: ENTERPRISE INFORMATION SYSTEMS, Lecture Notes in Business
Information Processing, vol. 24, pp. 590-599 (2009)

17. Valiente G.: Algorithms on Trees and Graphs. Springer (2010)

243

Chapter 21

BORM-II and UML as Accessibility
Process in Knowledge and Business

Modelling

[223] Merunka, V.; Pergl, R.; Tůma, J. BORM-II and UML as Accessibility Process in
Knowledge and Business Modelling. In New Trends in Networking, Computing, E-learning,
Systems Sciences, and Engineering, number 312 in Lecture Notes in Electrical Engineering,
Springer International Publishing, 2015, ISBN 978-3-319-06763-6, pp. 1–6.

245

1

Abstract—This paper presents two systems and knowledge

modelling techniques that may be used as a tool to coordinate the

communication between researchers and users from the

agriculture problem domain. The paper is focused on th eusage of

a general approach UML (Unified Modelling Language) and an

innovative approach BORM-II (Bussiness Object Relation

Modelling, second generation) as communication standards

within research projects. The first part of this paper describes the

framework, laying out the main aspects of both notations,

metamodel and theoretical background as well as their

advantages and disadvantages. The paper analyses practical

examples from agriculture, rural and organization modelling

domains. These innovation processes in both approaches are

aplied on the same business process description and evaluetes the

impact on researchers and users of research. The main part is

focused on the transformation model to model based on BORM-

II. The transformation is in line with UML and SBVR (Semantics

of Business Vocabulary and Rules) standards from OMG (Object

Management Group). My predecessor worked on model

transformation BORM to UML. This work follows Petr Šplíchals

work and goes further. This transformation will be composed into

a modelling tool and willl be based on approach HOT (High

Order Transformation). The objective of this research is to

achieve documentation output like SBVR, and bridge the gap

between business people (users) and designers (researchers) of

information systems (IS). The paper concludes that the gap

between IS designers (software engineers) and domain experts

can be bridged by automated transformation of previously

mentioned models. The main goal is to achieve a documentation

output similar to SBVR, and ICT Accesibility for business people.

Index Terms—Business Process and Knowledge Modelling,

ICT Accessibility, Unified Modelling Language, Business Object

Relation Modelling, Model Transformation, Tool, Semantics of

Business Vocabulary and Rules

 Manuscript received November 11, 2013. This work was supported in

part by internal grant agency ČZU v Praze IGA number 20121059, Metody

automatizovaných transformací modelů v informačních systémech.

 V. Merunka, J. Tůma are with Department of Information Engineering,

 FEM, Czech University of Life Sciences Prague, Kamycka 129, 165 21

Prague 6 Suchdol (e-mail: merunka, jtuma@pef.czu.cz).

 R. Pergl is with Department of Information Engineering, FEM, Czech

 University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6

Suchdol (e-mail: pergl@pef.czu.cz).

I. INTRODUCTION

THIS paper presents two system and knowledge

modelling techniques that may be used as a tool to coordinate

the communication between researchers and users from the

agriculture problem domain. The paper is focused on the use

of a general approach UML (Unified Modelling Language) [2]

and an innovative approach BORM-II (Business Object

Relation Modelling, second generation) as communication

standards within research projects.

A. BORM

Business Object Relationship Modelling [6], [11] is a

object-oriented software engineering methodology, which has

proven to be very effective in the development of business

information and knowledge systems. Its effectiveness is

achieved by unified and simple method for presenting all

aspects of relevant model. The BORM methodology makes

extensive use of business process modelling [5]. BORM was

designed as a method covering all phases of software

development. BORM focuses mainly on the first phases of the

project also known as business analysis. BORM uses only

limited, easily comprehensible group of concepts for every

life-cycle phase. This makes it easier to understand even for

the first-time users with almost no knowledge of business

analysis.

Another fact that makes the BORM methodology more

expressive is that it doesnt need the division to static and

dynamic views of the model and therefore does not bring a

need of creation of different diagrams with a different view

points. BORM introduces the following types of diagrams:

• Business architecture diagram

• Object relationship diagram

• Class diagram

BORM represents every concept with the same symbols

in the data structure, the communication or other diagrams.

For visual presentation of the information BORM uses simple

diagrams that contain only a necessary number of concepts and

symbols. These concepts and symbols cover most of the needs

for the initial description of the model and its processes. The

following symbols belong to the symbols used in the initial

description:

BORM-II and UML as accessibility process in

knowledge and business modelling

Vojtěch Merunka, Robert Pergl, Jakub Tůma

246

2

• Participant an object representing the stakeholder in-

volved in one of the modelled processes, which is recog-

nised during the analysis.

• State sequential changes of the participants in time are

described by these states.

• Association data-orientated relation between the partic-

ipants.

• Activity represents an atomic step of the behaviour of

the object recognised during the analysis.

• Communication represents the data flow and dependen-

cies between the activities. Bidirectional data flow may

be present during the communication.

• Transition connects the state-activity-state and represents

changes of the states through activities.

• Condition expresses constraint that holds for the com-

munication or activity, [6].

B. UML

The Unified Modelling Language (UML) is a standard-

ised notation for specifying object-oriented software systems

(Booch et al, 1999), (OMG, 1999), (Rumbaugh et al, 1999). A

UML model is a set of diagrams describing and documenting

the structure, behaviour and usage of a software system. UML

is used to model all kinds of software systems, including

concurrent and embedded systems. There are commercial

modelling tools available on the market to help the designer

in creating the UML models and these tools can also generate

program code from some diagrams of the model. UML is

an expressive and rich language, their models must still be

verified, since a model may contain unexpected behaviours

from the designer.

II. MATERIALS AND METHODS

A. Goal

The goal of this contribution is to present an approach

for flexible modelling of business processes both at the

management and operations level. The approach consists of

combining a suitable modelling method and developing an

original software tool to support it, as well as to perform

automated model transformations.

The goal presented another view-point of this research is

achieving documentation output like SBVR, [9], and

bridge the gap between business people (users) and designers

(researchers) of information systems (IS) [15].

B. Methodology

• 1. First we set requirements for a suitable management-

level business process model and operation-level business

process model (BPM).

• 2. We describe how the selected modelling method and

the OpenCASE support these requirements.

• 3. We present a case study to illustrate the results.

Requirements for Management-Level and Operation-Level

BPM For our purpose, let’s define the management level is

focused on the process orchestration, specifically:

• 1. terminology,

• 2. the logic of processes,

• 3. the relations of processes (transition, decomposition, ,

• 4. communications between participants,

• 5. optimisation of the overall process.

For the management level, the language of the model needs

to support the mentioned aspects. This is why usually a

combination of graphical and textual language is used.

The management level BPM specifies terms and their rela-

tions that are consequently manipulated in different ways:

• They need to be verified for correctness.

• They need to be communicated.

• They are used for reasoning.

• Various reports and statistics need to be calculated.

• They are often changed (they evolve).

This is why the management-level BPM needs to be sort of

knowledge base, not just a set of diagrams (graphical objects). By
the operational level here, we mean concrete process par-

ticipants (staff, systems) performing the specified processes.

For this level, we specify the following requirements on the

operation model:

• The language of the model is close to the language of

the participant.

• The model is accurate.

• The model contains just necessary details to perform the

operations.

• The model is up to date and consistent with the

management-level model.

As systems participants provide quite a different category

(being software and thus computer science and software en-

gineering methods apply here), we will consider just human

participants (staff) here. Staff at the operation level are not

supposed to be interested in the big picture they just need

accurate instructions for performing their tasks, i.e. the man-

agement needs to answer their questions:

• What are the steps I should follow to successfully com-

plete a task?

• How should I make decisions and select correct ap-

proach?

• What are the inputs that I will get? From whom, how and

when?

• What are the outputs that I should produce? To whom

shall I handle them, how and when?

For operation levels, usually textual operation manuals are

used, as operation-level staff is not supposed to prefer abstract

notations.

III. RESULTS AND DISCUSSION

The case study demonstrates the transformation from the

management-level business process model into the operation-

level business process model. As we specified in requirements,

the operation-level model should be textual and tailored for

each participant. This is where we utilize the OpenCASE

247

3

the knowledge base and API and generate HTML page for

each participant. HTML documentation output is like SBVR,

[9]. This is achieved by selecting the Project -

Generate Report menu item in OpenCASE. Generation is

based on publication [13] and this transformation

is composed of a modelling tool and based on approach HOT

(High Order Trasformation) published by [3].

The case study deals with the process of suspicious iden-

tification method (MPI) used in criminalistic. Just a part of

the process is presented here due to space limitations. The

case study is focused on collecting suspicious samples and

their analysis. The process covers a collection of suspicious

samples. The case study was written with cooperation of the

Faculty of Agrobiology, Food and Natural Resources, namely

we would like to thank Ing. Petr Vlasak from Canine Behavior

Research Center. Here we will use just a simplified version to

demonstrate the concepts presented in the paper.

The MPI process is carried out by cooperation between

four participants: Regional institution Distribution, Territorial

criminal technician, Regional institution Analysis and Inspec-

tor. The whole case study is shown in figure 1 and in detail

(Figure 6-9).

Fig. 1. Case study management process model in BORM: Partial Phase of

MPI.

Fig. 2. Operation model (manual) for participant Regional Institution Dis-

tribution.

Fig. 3. Operation model (manual) for participant Territorial Criminal Tech-

nician.

248

4

Fig. 4. Operation model (manual) for participant Regional Institution Analy
sis.

Fig. 5. Operation model (manual) for participant Investigator.

Fig. 6. Case study management process model in BORM: Partial Phase of

MPI, detail of distribution.

The exporter then traverses through the inner diagram structure.

The HTML operation manuals are generated for each participant

(Figure 2-5).

Fig. 7. Case study management process model in BORM: Partial Phase of

MPI, detail of analysis.

249

5

Fig. 8. Case study management process model in BORM: Partial Phase of

MPI, detail of technician.

Fig. 9. Case study management process model in BORM: Partial Phase of

MPI, detail of investigator.

IV. CONCLUSION

In this paper we presented our solution that supports busi-

ness process engineering. It is a combination of a suitable

method and notation (BORM) supported by a software tool

(OpenCASE).

The key aspect of the solution is that the modelled process

is not just a diagram, but a whole knowledge base that may be

used in operations, reporting, decision making and other areas.

We presented one of its possibilities: automatic generation of

operations manuals. Other possibilities include:

• Listings, like all input/output flows from/to a participant.

• Calculation of metrics (like numbers of states and ac-

tivities in participants) that may be used for complexity

estimations [16], [14].

• Calculation of statistics, e.g. about data flows and

communications (which participants communicate the

most/least, above/below average, etc.).

• Semantics checks: there is a starting state in every par-

ticipant, at least one final state3,

• Conceptual normalization [7].

• Any further custom reporting / calculations / processing

These areas provide many topics both for practice and

research. The OpenCASE is implemented using open ar-

chitecture based on Eclipse plugins, which makes it easily

extensible and thus provides a platform for further studies.

Apart from this, it is already a stable tool for effective drawing

of BORM and their management.

Future work statistical research of developed methods in

practice is planned.

ACKNOWLEDGMENT

Many thanks to my supervisor Vojtěch Merunka and to

250

6

the team group leader Robert Pergl for a lot hints and mental

support. This paper documents summarise previous and future

developing process of disertation thesis. This article was

realized with support of internal grant agency ČZU v Praze,

IGA project number 20121059, Metody automatizovaných

Transformací modelů v informačních systémech. I would like

to thank proof readers Sarah Marlena, Angela Bilbilovska and

Juraj Kardoš.

REFERENCES

[1] H. Kopka and P.W. Daly, A Guide to LATEX, 3rd edition Harlow,

England: Addison-Wesley, 1999.

[2] Booch, G., Rumbaugh, J., and Jacobson, I. . (1999) The Unified

Modelling Language User Guide. Addison-Wesley.

[3] Brambilla, M., Fraternali, P. and Tisi, M., A Transformation Framework

to Bridge Domain Specific Languages to MDA. MoDELS Workshops

2008: pp. 167-180.

[4] Gronback, R., C. (2009) Eclipse Modelling Project: A Domain Specific

Language (DSL) Toolkit. Addison-Wesley Professional.

[5] R. Knott, V. Merunka, J. Polák, Process Modelling for Object Oriented

Analysis, In Proceedings of Fourth International Conference on

Requirements Engineering, IEEE ACM, Chicago 2000.

[6] R. Knott, V. Merunka, J. Polák, (2006) Chapter 15: The BORM

Method: A Third Generation Object-Oriented Methodology. In: Liu, L.,

Roussey B. (eds) Management of the Object-Oriented Development

Process. Pp. 337-360. IGI Publishing, [s.1.], ISBN 9781591406044.

[7] M. Molhanec, (2011) Some Reasoning Behind Conceptual

Normalisation. In: Inforamtion Systems Development Information

Systems Development, Springer Science+Business Media, Berlin, pp.

517-525.

[8] OMG Unified Language Specification (draft). Version 1.3 alpha R5,

March 1999, available at

http://www.rational.com/uml/resources/documentation/media/OMG-

UML-1_3-Alpha5-PDF.zip.

[9] OMG: Semantics of Business Vocabulary and Rules (SBVR)

Specification, v 1.0 (formal/08-01-02), 2008.

[10] OMG: UML 2.1.1 Superstructure Specification, OMG Adopted

Specification (formal/07-02-03), 2007.

[11] J. Polák, V. Merunka, A. Carda (2003) Umění systémového návrhu:

objektově orientovaná tvorba informačních system pomocí původní

metody BORM. Grada, Prague, ISBN 80-247-0424-2..

[12] J. Rumbaugh, J. Jacobson, G. Booch, (1999) The Unified Modelling

Language Reference Manual. Addison-Wesley.

[13] P. Splichal, R. Pergl, M. Pícka (2011) “BORM Model Transformation”,

P. Šplíchal (2011) Model Transformation, Agrarian perspectives

proceeding of the 20th International Scientific Conference, Prague, pp.

423-430..

[14] Z. Struska, V. Merunka (2007) BORM points New concept proposal of

complexity estimation method. In: ICEIS 2007: Proceedings of the ninth

international conference on enterprise information systems: information

systems analysis and specification, 9th International Conference on

Enterprise Information Systems (ICEIS 2007), Funchal, Portugal, JUN

12-16, 2007, pp. 580-586.

[15] J. Cabot, R. Pau and R. Raventos, (2009), From UML/OCL to SBVR

specifications: A challenging transformation, Information Systems 35

(2010), pp 417-440.

[16] Z. Struska, R. Pergl, (2009). BORM-points: Introduction and Results of

Practical Testing. In: Enterprise Information Systems, Lecture Notes in

Business Information Processing, vol.24, pp. 590-599.

View publication statsView publication stats

251

Chapter 22

The OpenPonk Modeling Platform

[224] Uhnák, P.; Pergl, R. The OpenPonk Modeling Platform. In Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies, IWST’16, New York,
NY, USA: ACM, 2016, ISBN 978-1-4503-4524-8, pp. 14:1–14:11.

253

The OpenPonk modeling platform

Peter Uhnák
Department of Software Engineering

Faculty of Information Technology
Czech Technical University in Prague

Czech Republic
uhnakpet@fit.cvut.cz

Robert Pergl
Department of Software Engineering

Faculty of Information Technology
Czech Technical University in Prague

Czech Republic
perglr@fit.cvut.cz

ABSTRACT
In this paper we present OpenPonk: a free, open-source,
simple to use platform for developing tools for conceptual
modeling: diagramming, DSLs, and algorithms operating
on the models and diagrams, such as automatic layouting,
model transformations, validations, etc.

This project differentiates itself from the current efforts by
providing completely free and open-source live development
environment, which is simple to learn, use, and extend.

There are already several plugins and extensions that bring
several notations and algorithms, some of which are pre-
sented in this paper, alongside the overview of the core of
the platform, and how they integrate with each other. We
also present a comprehensive project case study utilizing
OpenPonk.

CCS Concepts
•Software and its engineering → Integrated and vi-
sual development environments; •Human-centered
computing→Visualization systems and tools; •Computing
methodologies → Modeling methodologies;

Keywords
OpenPonk, modeling, visualizations, Pharo, DynaCASE, Roas-
sal, UML, BORM

1. INTRODUCTION
In this paper we present OpenPonk (formerly known as

DynaCASE) – an emerging modeling platform implemented
in the live environment Pharo[2].

In all engineering endeavours, engineers utilize various
types of diagrams that help them analyze and design their
complex systems; civil engineers use CAD tools, software en-
gineers use IDEs and CASE tools, and enterprise engineers
use CABE tools. Also there are many research groups that
focus on research in some of the aspects of these tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWST’16 August 22-26th 2016, Prague, Czech Republic.
c© 2016 ACM. ISBN 978-1-4503-4524-8. . . $15.00

DOI: http://dx.doi.org/10.1145/2991041.2991055

Development of such tools is very demanding, because a
lot of effort has to be invested into creating the founda-
tion of the tool such as graphical visualization, interaction
of graphical objects, persistence, layouting, and general user
interface. To do these projects in high quality requires big
budgets and teams. However, there are often small or mid-
sized research groups and individual practitioners who have
an idea that they would like to implement, whether their
own modeling notation, specific algorithms, model trans-
formations, simulations, etc. If they attempt to implement
their tool from the scratch, the resulting product ends up of-
ten subpar and isolated from other tools, consequently not
used in the end by a larger audience, thus wasting the ideas
and invested resources. Additionally, resources that should
have been invested into the research itself have to be wasted
on reimplementing solved problems.

This is why we started the OpenPonk platform. We want
to give designers of tools a platform which solves recurring
tasks mentioned above, so they may focus on the core of
their needs.

Our aim is not to replace or compete with existing industry-
standard solutions for standardized notations, such as UML
and Enterprise Architect, although there is some overlap of
functionality. The main focus is to provide platform for tool
building for the long tail of non-standard custom models and
algorithms for both research and business.

The core of our tool and current extensions are available
as open-source under the MIT license1.

1.1 Goals and objectives of the paper
The purpose of this paper is to present the current state of

OpenPonk. In the first part, we present a high-level overview
of the core architecture and design behind OpenPonk. In the
second part we overview the general approach and architec-
ture of user-provided plugins, and how they connect to the
core. In the third part, we present several plugins and ex-
tensions that we currently provide: simulating finite-state
automata, modeling business entities using BORM, describ-
ing models with custom DSLs, and live model manipulation
powered by MetaLinks. In the fourth part we present a use
case study of using OpenPonk as a foundation for existing
research efforts and the support for UML Class Diagrams
with round-trip engineering for CORMAS. Finally, we dis-
cuss related solutions that are currently available.

2. ARCHITECTURE AND DESIGN
1https://openponk.github.io

254

In this section we present the core architecture of the sys-
tem and high level view of the Plugin Architecture, which is
explained in greater detail in the following section.

2.1 Terminology note
We further refer to the foundation of the platform as the

core, and to user-supplied models, notations, and compo-
nents as plugins.

Figures or visual elements are entities drawn on canvas,
usually representing a particular model element.

Finally, we use the term user to refer to user-developer,
i.e. a person that is using our platform as a basis to create or
extend a plugin/model/notation. For a user that is simply
using our platform and its extensions as a tool, we will use
the term tool-user.

2.2 Connections between models, view, and con-
trollers

OpenPonk is foremost a meta-modeling platform. Our
aim is to provide the foundation for building modeling tools
for creating and operating on a wide range of models, espe-
cially models that have a direct visual representation – nota-
tion. To represent the model and manipulate it through the
notation, we in principle follow the model-view-controller
(MVC) design [19], however due to possible model limita-
tions we limit the direct interaction between the model and
view and use controllers instead, as depicted in Figure 1.

Figure 1: MVC design with limited communication
between model and view

2.2.1 Model
The model is the most straightforward part, as it describes

mere meta-models such as UML meta-model, BORM meta-
model or Finite-State Automata meta-model.

2.2.2 View
The primary2 view visualizes the notation of the meta-

model. We have chosen Roassal visualization engine[1]. Roas-
sal is a vector-based engine providing a support for a wide
range of needs, such as chart and graph drawings, map vi-
sualizations, etc. It is also used by the Moose reengineering
platform [13] for system complexity visualizations.

Importantly for us, Roassal provides a lower-level API
for creating elementary shapes (e.g. ellipse, rectangle, line)
and interactions (e.g. moving elements, resizing elements,

2Later we introduce secondary views, such as tree-views.

zooming) that can be combined by the implementer to cre-
ate appropriate notation elements. Furthermore, the core of
Roassal is extensible. We created a range of new elements
and interactions, many of which were contributed back to
Roassal itself.

2.2.3 Controllers
Controllers are responsible for interpreting user-triggered

signals coming from the view (adding a new figure, renaming
an element, etc.) and for propagating updates to and from
the model (meta-model instance). In the original MVC de-
sign[19], the view is directly observing the changes in the
model and adopting them. We have diverged from this ap-
proach to handle non-observable models and to limit to the
logic complexity in the view.

A lot of complex logic is hidden in the core controllers,
thus simplifying the logic of the user-supplied ones.

2.2.4 Other components
The created models are organized in so-called projects. A

project is a set of models and diagrams that are opened and
stored together. The primary use case of projects is grouping
together models describing various aspects of the modeled
system.

OpenPonk additionally provides a set of prepared GUI
components, and visual extensions that can enhance the pro-
duced tool.

3. PLUGIN ARCHITECTURE
The concrete meta-models and their notations are devel-

oped as so-called plugins by inheriting general classes of the
core. Such plugins are independent of each other and can
be distributed separately.

Figure 2: Plugin description classes

Basic properties of every plugin are described in a sub-
class of Plugin class as shown in Figure 2. At the moment,
specifying only essential properties is necessary: the name
of the plugin, the containment (top-level) meta-model class
(i.e. the model that represents the whole diagram), and a
controller class for the containment model. Optionally, the
user can specify an icon (used in various places of the GUI),
version of the plugin, and serializer used for file-system per-
sistence.

255

3.1 Model creation
The meta-model infrastructure is the backbone of a plu-

gin, and all other components3 revolve around it. One of
our requirements for the platform is the ability for the users
to use their models. This means not only standard models
such as UML, but also custom models developed by the user
to address their specific business requirements.

A meta-model typically consists of a set of implemented
classes that represent subjects from the modeled domain.
Figure 3 shows an example model of a Finite-State Au-
tomata (FSM) meta-model.

Figure 3: Example Finite-State Automata meta-
model

Integrating models that have been developed indepen-
dently of our tool however presents an integration challenge,
as the model may inhibit some more advanced properties of
the platform. More precisely, many components, e.g. the
notation visualization in particular, require a mechanism
through which changes in the model can be observed so that
they can be updated accordingly. As we noted earlier, to
address this need we delegate where possible the burden of
updates to the controllers. Such an approach does inhibit
some parts of the platform, as updates must go through the
controller (using command pattern or through direct calls),
or the user must explicitly inform the controller that changes
to the model have been made. For the standard approach
where the user creates and manipulates the model through
the provided utilities (e.g. palette, canvas, form editor) this
does not present a problem, as the interactions are automat-
ically wrapped.

We use this approach for our UML plugin that utilizes
the FAMIX[7] meta-model as the basis for the meta-model.
Although we have extended the FAMIX infrastructure with
additional classes required for UML, we have not modified
the model itself; in fact neither was FAMIX created with our
tool in mind, nor does it provide sufficient mechanisms for
observing changes. Despite this, we were able to successfully
create a diagramming plugin as the platform is powerful
enough to handle the problems properly.

3e.g. visualization, simulation

Naturally, if the model does provide the necessary mecha-
nism, not only can the implementation be simplified as some
burden is removed from the controllers, but additional pos-
sibilities open up.

3.2 Creating visual elements
Meta-models that we are particularly interested in have

an accompanying visual diagram notation.

Figure 4: Composition of visual elements

In Figure 4 we can see a UML Class composed from sev-
eral primitive shapes as prescribed by UML Diagram Inter-
change[14].

The creation of the visual element is stored in the appro-
priate controller in the#createFigure method. The only
requirement of the method is that the returned object un-
derstands renderIn: aRoassalView. That way, the method
can both directly use Roassal API and return a Roassal el-
ement [Figure 5], or add an intermediate layer [Figure 6].

Figure 5: Returning Roassal elements/shapes

When the model changes, the figure typically has to reflect
the new properties of it. The view however is not completely
redrawn when an update is required, instead only the con-
cerned parts are updated. To tell the platform what and
how should be updated, the user implements a #refreshFig-
ure method in the accompanying controller. In this method
updates such as changing text content, colors, adding and
removing subelements, etc. can occur. The #refreshFig-
ure is automatically called by the platform after a model
change was detected, this can either be a result of the plat-
form observing changes in the model (if possible), or when
the model was modified through one of the platform’s edit-
ing interfaces. With this approach the user does not need
to concern themselves when an update should occur.

In addition, if the model provides sufficient observation
granularity, the figure can directly observe the model and
update accordingly.

256

Figure 6: Using an intermediate layer

3.3 Controllers
Controllers are the glue between the model and views.

The most common approach is to have a controller for each
model element (e.g. a Method and a MethodController, Clas-
sifier and a ClassifierController, etc.). Depending on
the appropriate granularity, additional responsibility may
be taken (e.g. MethodController also handling Parameter

model elements).
Apart from responsibility of creating the view described

in the previous sections, two more UI-related interfaces are
provided:

1. Each model element has typically a different set of
properties that are modified by the tool-user. There-
fore, each controller is free to override the buildEd-

itor: method and to specify a custom Form con-
sisting of the appropriate form elements (e.g. input
text, droplist, checkbox), and the binding between the
model and the form elements. This form automatically
opens when the tool-users selects a model element.

2. Each diagram (notation) is usually accompanied by a
different palette. The responsibility of the Diagram
Controller (the master controller for the diagram) is
to implement the palette specification [Figure 7]. The
platform will then handle the actual creation of the
appropriate objects when the tool-user selects one of
the items and interacts with the canvas.

3.3.1 Connecting elements and live validation

Figure 7: Palette specification

Models elements, and their visual representations rarely
live by their own. Instead, they are connected through ref-
erences or compositions. The connection is accommodated
by four functions implemented in the controllers: #canBe-
SourceFor:, #canBeTargetFor:, #addAsSourceFor:, #addAs-
TargetFor:; the full signature being receivingController For:
aNewController*.

The purpose of the #canBeFor:* methods is to decide
whether the receiving controller accepts the argument, if
they return false, the connection cannot proceed and the
#addAsFor:* methods will not be called.

The #addAsFor:* methods contain the behavior associ-
ated with connecting the elements. For containers only
#TargetFor:* is required. If, however, the created element
is a binary association (typically an edge), the first (source)
controller will implement the #SourceFor:* methods, and
the second (target) controller the #TargetFor:* methods.

In addition, the platform automatically uses the result of
#canBeFor:* to display visual feedback on top of the visual
element, such as green or red overlay if the element can or
cannot be connected [Figure 8].

Figure 8: A communication can end in an activity
(oval shape), but not in a state (rectangle shape) in
BORM

Figure 9 shows that StateController can only be a target
for a transition originating from an activity, whilst Activ-

ityController can be also a target for a communication
from an activity from a different participant (owner).

What may be unusual is that this validation does not fully
rely on the model, instead the checks are made against the

257

Figure 9: Code describing live validation

controllers. We have chosen this approach, as during more
complex creation not all information may be available in
the model, and the new model element is typically not yet
connected with the present model, that is, sometimes we
cannot decide whether an element can be connected only
after it has been already connected. Thus complex meta-
model structures can force the user to create only a partially
valid model.

But the purpose of the live validation is not to always have
fully valid model, instead it is a quick and cheap4 to prevent
common errors, similarly to a code editor warning a user
of a missing semicolon or invalid syntax. For a full model
validation, the user is free to implement a more powerful
validation checker operating on the full model, as may be
seen in Figure 10 for the case of an OntoUML validation
editor[10].

4. EXTENSIONS AND NOTATIONS
We design the platform to be extensible and usable in

different contexts and scenarios. To illustrate the wide pos-
sibilities, we present several quite different extensions that
have been developed on top of the platform.

4.1 Model editing and live scripting
There are two principal ways in which a tool-user can

modify meta-model instances. The first one is through the
editors and tools provided by OpenPonk. This approach
is common to majority of modeling tools (whether imple-
mented in Java, C++, JavaScript, or Pharo). The popular-
ity of this stems mainly from its ease-of-use, as the user is
guided and hand-held by the tool’s graphical interface, so
the user does not accidentally corrupt the model. Moreover,
the user does not need to be completely familiar with the
actual meta-model implementation.

The second way is the ability to programatically manip-
ulate the model, which offers interesting possibilities. Ad-

4Requires no extra effort from the tool-user.

vanced modeling tools built in non-live environments (such
as Java) address this by providing a special manipulation
language that enables the user to query and manipulate
the model, such as the Epsilon Object Language[5] for the
Eclipse platform. There are, however, major downsides to
this approach: implementing such a query language requires
additional engineering effort on the part of the tool devel-
oper, while learning the query language requires additional
effort on the part of the tool user. Furthermore, the lan-
guage can be limiting in its capabilities and its usability, as
without proper tooling support, aiding the user in creating,
debugging, and working with the language may be limited.

We have mitigated this problem by choosing the Pharo
live programming environment[2]. Pharo can be compared
to a programming language, IDE, and an operating system
rolled into one. In this platform, both the (tool-)user and the
developer have direct access to objects in the system. This
means that instead of using a specially crafted language,
the user can directly use the Pharo language with all the
powerful tools and support available in Pharo for regular
development.

Naturally, in some contexts, providing an alternative way
and a specific manipulation language may be beneficial, how-
ever by choosing Pharo we already have a powerful language
applicable for all meta-models without any extra engineering
effort required.

4.2 Observing model changes with MetaLinks
As we noted earlier, to be able to directly manipulate the

meta-model instances and to be able to immediately see the
changes in the diagram, the meta-model code base has to
offer an API through which changes can be observed. Do-
ing so, however, requires modification of the code, which
in some cases may either not be possible, or it may intro-
duce unreasonable overhead (e.g. from performance point of
view).

To address this issue, one can make use of MetaLinks [4].
MetaLinks are a recent addition to Pharo that allows in-
stalling additional behavior to methods5 without modifying
the code itself. Therefore one can define code extensions
that would announce changes to the model, and those ex-
tensions would be then installed to the methods on demand,
without affecting the original code base. As the MetaLink’s
interface is very low level, we have developed an open-source
toolkit that would simplify the most common use cases, by
the name of MetaLinks-Toolkit6. Albeit this toolkit is still
in its early stage, one can utilize it to ease the MetaLinks
integration. Figure 11 shows a code installing observations
to a code base. After the installation, when the specified at-
tributes have been modified, the objects fire announcement
instances that can be observed. We have experimentally
used this toolkit on our BORM meta-model, however our
aim is to provide such augmentations for the FAMIX meta-
model.

4.3 Simulating Finite-State Automata
In this section, we demonstrate an unanticipated integra-

tion of a finite-state automata simulator (FSA).
When an integration is anticipated, an API can be imple-

mented that properly handles the needs and abstractions for

5To individual nodes of the method’s abstract syntax tree.
6Available online: https://github.com/peteruhnak/metalinks-
toolkit

258

Figure 10: Full model validation of OntoUML diagrams

Figure 11: Installing MetaLinks-based observations

the to-be-integrated tool. Handling all possible cases, how-
ever, requires many layers of abstraction, which not only
have to be implemented on the platform-side, but, more
importantly, every time a user wishes to create an exten-
sion. Thus, apart from solving the inherent complexity of
the problem, the user is forced to address incidental com-
plexity of the platform, as well.

Figure 12: Simulator accessing different parts of the
editor

The FSA simulator uses direct read-only access to the
model and read/write access to the view. The model is used
to compute the next step of the simulation, but no changes
to the model are required. On the other hand, to visualize
the progress through the simulation, the simulator directly
modifies the view. It asks a diagram controller (responsible
for managing the view) for an appropriate view element for
the currently active node or edge and then changes the vi-
sualization (Figure 12) through the low-level Roassal API,
or with the aid of existing OpenPonk-Roassal extensions.

259

In such an approach, both the FSA editor7 and the Open-
Ponk platform are unaware of a third-party tool accessing
their parts, therefore no explicit action is required of them
(i.e. providing a special API).

Naturally, this approach requires the third-party tool to
properly clean up after themselves, as the platform does not
know what changes were made and what changes should be
reverted.

Although such a third-party tool may inadvertently break
the model or the view, we consider such risk acceptable, as
this approach shortcuts otherwise complex implementation
to bare essentials, which we find especially valuable for re-
search and experimenting with and prototyping emerging
ideas, which is one of the core aims OpenPonk. A more
sophisticated and robust solution can always be introduced
later.

4.4 DSLs for BORM and Class Diagrams
Although the tool-user creates a model primarily through

the diagramming interface, there are other ways to create
the model: importing from a different tool (via an exchange
format such as XMI), transforming from other representa-
tion (reengineering source code), manually creating the re-
quired classes (via a programmable API), using a domain-
specific language and possibly others. Choosing the best
way is heavily context-dependent, therefore many tools will
provide multiple options for the user.

To address this need, we have introduced a domain-specific
language for two of our meta-models: BORM[9] and UML
Class Diagrams[14].

Even though both models have visual notations, some
users may prefer to describe their model using text, and
possibly only adjust the layout of the resulting visualization.
This is not a new approach and many tools provide this func-
tionality, such as PlantUML[18]. Unfortunately, they often
stop at the production of the visualization and there is no
real model behind it, which the user can manipulate, trans-
form, validate, etc. Our aim is to provide a DSL for model
creation, not just visualization creation.

For the implementation of our DSLs we have chosen Pe-
titParser[20]. PetitParser enables an easy creation of com-
posable grammars by describing the grammar directly with
Smalltalk code in a regex-like syntax.

For the need of editing the model via a DSL, we have in-
troduced a DSL editor to the OpenPonk core. This editor
is directly connected with the currently opened Workbench
Editor, and the user can modify the model through it; sav-
ing the text in the editor updates the model, and refreshing
the editor produces the textual representation of the model,
as seen in Figure 13. The DSL editor synergizes with the
classical diagramming interface, as the user can arbitrar-
ily switch between them. As describing a model with text
lacks certain diagram information, most notably the layout
position, we have introduced a set of layouting algorithms
to OpenPonk[16] that are automatically applied to the dia-
gram; thus the user always sees a readable diagram instead
of a stack of overlapping elements.

7The plugin(s) implementing the FSA meta-model and the
notation.

5. PRACTICAL CASE STUDY: UML ROUND-
TRIP ENGINEERING FOR ABM PLAT-
FORM CORMAS

As our aim is to provide a platform for tool building, here
we present a case study where OpenPonk was successfully
used.

In collaboration with Cirad RU Green – a research group
focused on addressing the needs of environmental research
and sustainable agriculture – we have developed a UML
Class Diagram Editor with round-trip engineering support
for CORMAS agent-based modeling (ABM) platform[3] as
a plugin for OpenPonk[17].

The users of CORMAS follow the participatory modeling
(PM) approach in which the users (also known as stakehold-
ers) collaborate on analyzing, creating, and implementing
the domain model and the implementation solution.

For CORMAS, the stakeholders consist primarily of re-
searchers and experts in the target domain; both, however,
being seldom experienced programmers.

This presents a real challenge, as even though they are
capable of creating the necessary models (the stakeholders
pass a UML modeling course), they do not posses the suf-
ficient programming knowledge and experience to correctly
implement the model. For this reason, we have incorpo-
rated a support for round-trip engineering into our UML
Class Diagram Editor. The objective is not to fully auto-
mate the process, but to aid with one of the challenging
parts – creating the class structure from the model and vice
versa.

The user can create the necessary model expressed in the
UML notation with the diagram editor; for the needs of
CORMAS we focus on a subset of UML notation typically
used in class diagrams – classes, attributes, methods, asso-
ciations, generalizations. The generator generates the nec-
essary classes and methods in Pharo Smalltalk from the cre-
ated model. Because the CORMAS platform is implemented
in the VisualWorks Smalltalk (VW), we use the Smalltalk
Interchange File Format8 to exchange the source code be-
tween VisualWorks and Pharo, although direct code gener-
ation for VW has also been considered. For associations, we
have chosen a straight-forward approach of providing acces-
sors and add/remove methods9, so that update on one side
automatically updates the opposite sides. Other approaches
have been researched [6]. These adhere more closely to the
UML specifications, especially on maintaining visibility and
multiplicity constraints of the associations; we found them
needlessly complex in the context of the CORMAS platform,
however for general-purpose forward engineering they may
be suitable.

One of the important implemented features is the ability
to reverse-engineer a model. In an ideal Model-Driven De-
velopment (MDD) scenario, only models are ever being ma-
nipulated and the code is always fully generated [11]. This,
however, requires a very powerful modeling platform that
is capable of describing every aspect of the software with
models, which we currently do not provide. If there are
modifications to the source code being made, the develop-
ers start to create discrepancies between the code and the
model. It is possible to manually update the model each

8SIF. Available online: https://github.com/peteruhnak/sif/blob/master/docs.md
9Add/remove methods are used for collection-based associ-
ations – association ends with multiplicities > 1

260

Figure 13: DSL editor on a BORM model

Figure 14: Example model

Figure 15: Classes and methods generated from the
model

261

time the code has been made, that however poses the risk
of complete abandonment of the original model if the dis-
crepancies pile up beyond a threshold. Instead, we allow the
developer to regenerate the model directly from the code.

Providing a generic reverse-engineering support is a chal-
lenging task, especially in dynamic languages, as the real
types and constraints are known only during runtime, and
reverse engineering certain constructs – associations in par-
ticular – may not be possible at all. As the models for
CORMAS are not generic and therefore we can constrain the
problem, we have provided an alternative solution. During
the source code generation we add additional information
to the source code — namely we add pragma annotations
to the generated methods. They add meta-information that
would be otherwise lost, as there is conceptual gap between
the model and the code. With such approach during the
reverse-engineering, we can reuse this meta-information to
aid with the regenerated model. By putting the meta-model
information directly alongside the related code, we also lower
the probability of introducing discrepancies, as a developer
modifying the code will be more likely to also update the
meta-information because it is already part of the modified
code.

Figure 16: A generated method with additional
meta-information stored in a pragma

6. GRAPHICAL USER INTERFACE
The graphical user interface of the application is imple-

mented using the Spec[22] framework.
Figure 17 shows the composition of GUI elements. The

top-level window of the OpenPonk application is a Work-
bench. A workbench is always tied to a single project and
has the responsibility of containing other parts of the GUI.

For each model in the project, an Editor can be opened
within the workbench. The workbench organizes the editors
in tabs, therefore several editors/tabs can be opened at once,
although only one can be visible at a time.

The editor contains subwindows necessary for the dis-
play and manipulation of the model’s notation – the Canvas
(Roassal View) showing the visualization itself, a Palette
providing a set of buttons for adding new items to the can-
vas, and an extensible bottom toolbar providing some ma-
nipulation buttons with easy access to the tool-user. Most
of the GUI windows provide an API through which the user
can manipulate them and describe their content.

Navigator : a tree-like view that visualizes the instances
of meta-model elements in the project associated with the
workbench; Form: a form editor for the currently selected
meta-model instance capable of modifying its various prop-

erties; and finally a top toolbar that can be extended by
plugins.

6.1 Connecting with plugins
Every window that is a part of the Workbench can be

modified in some way by a plugin. Each window provides
its own API appropriate to the situation.

The Navigator will ask the plugin’s definition file about
the structure of the model and how the model should be
properly displayed, this consists primarily of specifying how
to access the child nodes, element names, and icons as shown
in Figure 18.

Both the Workbench menu (the toolbar in the top part of
the Workbench), and Editor menu (underneath the canvas)
can be extended. To extend any of the menus, a pragma10

has to be added to a class-side method. OpenPonk will scan
for methods containing the pragmas and call the methods
when appropriate, as displaying the menu extensions can be
restricted only show only if an editor of a particular plugin is
selected. By choosing a pragma to implement this behavior,
we have added extra flexibility as not only the plugin itself
can customize the menus (the most common use case), but
also any extra (or third-party) utility, without interfering
with the plugin itself (e.g. a simulator window adding “Open
simulator” button).

7. RELATED WORK
Several related works exist; we split them into three groups

and address each individually: (i) stand-alone tools and en-
vironments, (ii) Eclipse-based tools, and (iii) Eclipse itself.
The first group contains stand-alone tools and environments
that do not rely on any outside solution. MetaEdit+ and
Enterprise Architect are typical representants of this group.

Enterprise Architect (EA)[21] offers an industry-grade MDA
solution for UML and UML-based models (such as BPMN).
EA provides support for the complete development life-cycle
including requirements engineering, modeling, source code
generation, round-trip engineering, testing, and more. While
OpenPonk has been created with similar use-cases in mind,
we provide it for free, as open-source, and platform inde-
pendent (EA supports only Windows). By choosing Pharo
live environment, OpenPonk can also offer significantly more
interactive options.

MetaCASE[12] provides a solution for designing custom
domain-specific languages (concepts, rules, notations, code
generators) with its MetaEdit+ Workbench aimed at expert
developers, and a MetaEdit+ Modeler aimed at model users.
The same comments hold as for EA.

The second group of tools includes a wide spectrum of
modeling tools such as Modelio, Papyrus, OpenCABE (our
original BORM tool[15]). These tools are created on the
Eclipse platform through its Graphical Modeling Project
(GMP), which includes Graphical Modeling Framework (GMF)
and Graphical Editing Framwork (GEF) [8]. Such tools usu-
ally focus on a single model family and they are limited in
their meta-modeling abilities.

Finally, the Eclipse platform itself (alongside its GMF and
GEF frameworks) provides a strong foundation for modeling
and meta-modeling tools – that is not only the development
of the models themselves, but also the creation of additional

10Pragma is a method annotation that can be located in the
system via reflectivity.

262

Figure 17: GUI overview

Figure 18: Specification of Navigator for BORM

tools and extensions operating on the models. Our Open-
CABE[15] tool used for BORM modeling has been devel-
oped in Eclipse, so we have a very strong experience in this
area. Eclipse platform is a very complex artefact with a
steep learning curve. However, this would not be critical if
the big investment in the development pays off in the form
of resulting flexibility and ease of enhancements. Unfortu-
nately, in our experience, it is not the case. On the contrary,
the bigger the platform code base, the harder is to extend
it with additional models, visualizations, simulations and
other algorithms. After 6 years of development, we were
not able to give the platform to students to easily imple-
ment their conceptual modeling ideas. With OpenPonk, we
already had several successful student projects. As for the
reason of this situation, we blame the incidental complex-
ity of the Eclipse platform. As a more in-depth analysis is
out of scope of this paper, let us just put a hypothesis that
this incidental complexity comes from the limited dynamic

and reflective possibilities of the Java platform; on the other
hand, live, dynamic possibilities of Pharo enabled us to sig-
nificantly limit the code base to the inherent complexity of
the problem.

8. SUMMARY, CONCLUSION AND FUTURE
WORK

OpenPonk project is the flagship of our research group, as
we deal with various conceptual modeling notations, making
models and performing algorithms on them. The project was
initiated because of the lack of suitable free, open-source,
simple, and extensible platform. The architecture of Open-
Ponk has been inspired by our extensive experience with the
Eclipse platform. We took the best architectural ideas and
stripped off the fat and gore by implementing it using the
Pharo live programming environment.

The platform has been designed as highly modular – a
minimal core extended by plugins and extensions. We have
been also very keen about separation of concerns – model,
view and controller are separated and various options for
acquiring models are open: drawing diagrams, importing
from an interchange file, reverse-engineering source code,
DSL parsing, and other. The separation of concerns enables
existing meta-models to be enhanced and used in OpenPonk
without modifying their code.

OpenPonk stands for “dynamic”: the meta-model and
model development is highly interactive thanks to the live
nature of Pharo. Querying and manipulating models on-
the-fly is “for free”.

OpenPonk is still in an early stage in many aspects. How-
ever, several quite diverse projects were successfully imple-
mented using the platform, which demonstrate the possibili-
ties. Several bachelor and master students were already able
to acquire a working knowledge of OpenPonk and implement
their ideas. This is very encouraging for us, as our ultimate
goal is to offer a playground that will be loved by students,
researchers and practitioners. With every new project, the

263

platform matures and offers more for everybody. The adop-
tion by community is very important in this point and it will
direct the future development. The development of the core
itself focuses on providing a stable minimalistic, yet power-
ful, foundation for tools building via plugins development.

As for the current endeavours, we cooperate with ForMetis
Enterprise Engineers, a Dutch consulting and development
company, to implement simulations and validations for en-
terprise engineering models and we are in a close contact
with INRIA Lille Nord Europe and the University of Antwerp,
who are interested in cooperation.

9. ACKNOWLEDGMENTS
Currently, the development of OpenPonk is sponsored by

ForMetis Consultants11, our Dutch industrial partner. The
development of the round-trip engineering support and par-
tially the UML Class Editor for ABM CORMAS has been
financed by RU Green CIRAD12. The development of the
MetaLinks Toolkit has been sponsored by Synectique13 and
ESUG through their mobility support program14.

10. REFERENCES
[1] Alexandre Bergel. Agile Visualization. 2016.

[2] A. Bergel, D. Cassou, S. Ducasse, J. Laval, and
J. Bergel. Deep into Pharo. Square Bracket, [S.l], 2013.

[3] P. Bommel, N. Becu, C. Le Page, and F. Bousquet.
Cormas, an Agent-Based simulation platform for
coupling human decisions with computerized
dynamics. 2015.
https://agritrop.cirad.fr/576753/2/CormasforIsaga2015.pdf.

[4] M. Denker. Sub-method Structural and Behavioral
Reflection. PhD thesis, University of Bern, 2008.

[5] Dimitris Kolovos, Louis Rose, Antonio
Garcia-Dominguez, and Richard Paige. The Epsilon
Book, volume 20. 2016.

[6] Dominik Gessenharter. Implementing UML
associations in Java: a slim code pattern for a complex
modeling concept. In Proceedings of the Workshop on
Relationships and Associations in Object-Oriented
Languages, RAOOL ’09, pages 17–24, New York, NY,
USA, 2009. ACM. 00008.

[7] S. Ducasse, N. Anquetil, M. U. Bhatti, A. C. Hora,
J. Laval, and T. Girba. MSE and FAMIX 3.0: an
interexchange format and source code model family.
2011.

[8] Eclipse. Graphical Modeling Project. 2016.

[9] Martin Podloucký and Robert Pergl. Towards Formal
Foundations for BORM ORD Validation and
Simulation. pages 315–322. SCITEPRESS - Science
and and Technology Publications, 2014.

[10] Matúš Vološin. Vizualizace instanćı OntoUML
model̊u. Diplomová práca. Praha: České vysoké účeńı
technické v Praze, Fakulta informačńıch technologíı,
2016.

[11] S. J. Mellor and M. J. Balcer. Executable UML: a
foundation for model-driven architecture.

11http://formetis.nl/
12http://ur-green.cirad.fr/
13http://synectique.eu/index.php
14http://esug.org/wiki/pier/Promotion/Mobility

Addison-Wesley, Boston ; San Francisco ; New York,
2002.

[12] MetaCase. MetaEdit+, 2016.

[13] O. Nierstrasz, S. Ducasse, and T. GÇŘrba. The story
of Moose: an agile reengineering environment. ACM
SIGSOFT Software Engineering Notes, 30(5):1–10,
2005.

[14] OMG. OMG Unified Modeling Language (UML) 2.5,
Mar. 2015.

[15] R. Pergl and J. Tůma. OpenCASE âĂŞ a tool for
ontology-centred conceptual modelling. In Advanced
Information Systems Engineering Workshops, pages
511–518. Springer, 2012.

[16] Peter Uhnák. Layouting of Diagrams in the
DynaCASE Tool. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information
Technology, 2016.

[17] Peter Uhnák and Pierre Bommel. Facilitating the
Design of ABM and the Code Generation to Promote
Participatory Modelling. 2016.

[18] PlantUML. PlantUML Language Reference Guide,
2016.

[19] S. T. Pope and G. E. Krasner. A Cookbook for Using
Model-View-Controller User Interface Pradigm in
Smalltalk-80. 1988.

[20] L. Renggli, S. Ducasse, T. GÃőrba, and O. Nierstrasz.
Practical dynamic grammars for dynamic languages.
In 4th Workshop on Dynamic Languages and
Applications (DYLA 2010), 2010.

[21] Sparx Systems. Enterprise Architect, 2016.

[22] B. Van Ryseghem, S. Ducasse, and J. Fabry. Seamless
composition and reuse of customizable user interfaces
with Spec. Science of Computer Programming,
96:34–51, 2014.

264

Part III

References

265

Bibliography

[1] Alexander, C. Notes on the Synthesis of Form. Harvard University Press, 1964, ISBN
978-0-674-62751-2.

[2] Centre for Conceptual Modelling and Implementation. Centre for Conceptual Mo-
delling and Implementation (CCMi): Research Group’s Web Pages. Available from:
https://ccmi.fit.cvut.cz

[3] Mylopoulos, J. Conceptual Modelling and Telos. In Conceptual Modeling, Databases,
and Case: An Integrated View of Information Systems Development, 1992.

[4] Ullmann, S. Semantics: an introduction to the science of meaning. Barnes & Noble,
Dec. 1978, ISBN 978-0-06-497076-1.

[5] Baldinger, K. Semantic Theory: Towards a Modern Semantics. New York: Palgrave
Macmillan, Sept. 1980, ISBN 978-0-312-71258-7.

[6] Ogden, C. K.; Richards, I. A. Meaning Of Meaning. San Diego: Mariner Books, first
edition, June 1989, ISBN 978-0-15-658446-3.

[7] Guizzardi, G. Ontological Foundations for Structural Conceptual Models, volume 015.
Enschede: University of Twente, 2005, ISBN 90-75176-81-3.

[8] Stamper, R. Information in business and administrative systems. New York: Wiley,
1973, ISBN 978-0-471-82045-1.

[9] Mesarović, M. D.; Macko, D.; Takahara, Y. Theory of Hierarchical, Multilevel, Sys-
tems. Academic Press, 1970.

[10] Henderson-Sellers, B. On the Mathematics of Modelling, Metamodelling, Ontologies
and Modelling Languages. Springer, Aug. 2012, ISBN 978-3-642-29825-7.

[11] Kelly, S.; Tolvanen, J.-P. Visual domain-specific modelling: Benefits and experi-
ences of using metaCASE tools. In International Workshop on Model Engineering,
at ECOOP, volume 2000, Citeseer, 2000.

267

https://ccmi.fit.cvut.cz

[12] Gray, J.; Rossi, M.; Tolvanen, J.-P. Preface. Journal of Visual Languages & Com-
puting, volume 15, no. 3, 2004: pp. 207 – 209, ISSN 1045-926X.

[13] Fowler, M. Domain-Specific Languages. Upper Saddle River, NJ: Addison-Wesley
Professional, first edition, Oct. 2010, ISBN 978-0-321-71294-3.

[14] Verdonck, M.; Gailly, F.; de Cesare, S.; et al. Ontology-driven conceptual modeling:
systematic literature mapping and review. Applied Ontology, volume 10, no. 3-4, Jan.
2015: pp. 197–227, ISSN 1570-5838, doi:10.3233/AO-150154.

[15] Smith, B.; Welty, C. Ontology—towards a New Synthesis. In Proceedings of the
International Conference on Formal Ontology in Information Systems - Volume 2001,
FOIS ’01, New York, NY, USA: ACM, 2001, ISBN 978-1-58113-377-6, pp. .3–.9, doi:
10.1145/505168.505201.

[16] Wolff, C. Philosophia prima, sive ontologia. Francofurti & Lipsiæ, prostat in Officina
libraria Rengeriana, 1736. Available from: http://archive.org/details/bub_gb_

1HsPAAAAQAAJ

[17] Stefik, M.; Conway, L. Towards the principled engineering of knowledge. AI
Magazine, volume 3, no. 3, 1982: p. 4.

[18] Brachman, R. J.; Schmolze, J. G. An overview of the KL-ONE knowledge repres-
entation system. In Readings in Artificial Intelligence and Databases, Elsevier, 1988,
pp. 207–230.

[19] Studer, R.; Benjamins, V. R.; Fensel, D.; et al. Knowledge engineering: principles
and methods. Data and knowledge engineering, volume 25, no. 1, 1998: pp. 161–198.

[20] Jardine, D. A. The ANSI/SPARC DBMS Model; Proceedings of the Second Share
Working Conference on Data Base Management Systems, Montreal, Canada, April
26-30, 1976. Elsevier Science Inc., 1977.

[21] Chen, P. P.-S. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems (TODS), volume 1, no. 1, 1976: pp. 9–36.

[22] Gašević, D.; Kaviani, N.; Milanović, M. Ontologies and software engineering. In
Handbook on Ontologies, Springer, 2009, pp. 593–615.

[23] Calero, C.; Ruiz, F.; Piattini, M. Ontologies for software engineering and software
technology. Springer Science & Business Media, 2006.

[24] Siricharoen, W. V. Ontologies and Software Engineering. In International Conference
on Computational Science, Springer, 2007, pp. 1155–1161.

[25] Uschold, M.; King, M.; Moralee, S.; et al. The enterprise ontology. The knowledge
engineering review, volume 13, no. 1, 1998: pp. 31–89.

268

http://archive.org/details/bub_gb_1HsPAAAAQAAJ
http://archive.org/details/bub_gb_1HsPAAAAQAAJ

[26] Dietz, J. L. G. Enterprise Ontology - Understanding the Essence of Organizational
Operation. In Enterprise Information Systems VII, Dordrecht: Springer Netherlands,
2006, ISBN 978-1-4020-5323-8, pp. 19–30.

[27] Guarino, N.; Oberle, D.; Staab, S. What is an ontology? In Handbook on ontologies,
Springer, 2009, pp. 1–17.

[28] Uschold, M.; Gruninger, M. Ontologies and semantics for seamless connectivity. ACM
SIGMod Record, volume 33, no. 4, 2004: pp. 58–64.

[29] Collier, A. Critical Realism: An Introduction to Roy Bhaskar’s Philosophy. London;
New York: Verso, Apr. 1994, ISBN 978-0-86091-602-4.

[30] Guizzardi, G.; Halpin, T. Ontological Foundations for Conceptual Modelling. Appl.
Ontol., volume 3, no. 1-2, Jan. 2008: pp. 1–12, ISSN 1570-5838.

[31] Mealy, G. H. Another Look at Data. In Proceedings of the November 14-16, 1967,
Fall Joint Computer Conference, AFIPS ’67 (Fall), New York, NY, USA: ACM, 1967,
pp. 525–534, doi:10.1145/1465611.1465682.

[32] Kent, W.; Hoberman, S. Data and Reality: A Timeless Perspective on Perceiving
and Managing Information in Our Imprecise World, 3rd Edition. Westfield, N.J.:
Technics Publications, LLC, third edition edition, Feb. 2012, ISBN 978-1-935504-21-
4.

[33] Weber, R. Ontological foundations of information systems. no. 4, Melbourne, Vic:
Coopers & Lybrand and the Accounting Association of Australia and New Zealand,
1997.

[34] Heller, B.; Herre, H. Ontological Categories in GOL. Axiomathes, volume 14, no. 1,
Mar. 2004: pp. 57–76, ISSN 1122-1151, 1572-8390, doi:10.1023/B:AXIO.0000006788.
44025.49.

[35] Gangemi, A.; Guarino, N.; Masolo, C.; et al. Sweetening Ontologies with DOLCE. In
Knowledge Engineering and Knowledge Management: Ontologies and the Semantic
Web, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, Oct. 2002,
ISBN 978-3-540-44268-4 978-3-540-45810-4, pp. 166–181, doi:10.1007/3-540-45810-7
18.

[36] Guizzardi, G.; Herre, H.; Wagner, G. On the general ontological foundations of
conceptual modeling. In International Conference on Conceptual Modeling, Springer,
2002, pp. 65–78.

[37] Guizzardi, G.; Herre, H.; Wagner, G. Towards Ontological Foundations for UML
Conceptual Models. In On the Move to Meaningful Internet Systems 2002: CoopIS,
DOA, and ODBASE, number 2519 in Lecture Notes in Computer Science, Springer

269

Berlin Heidelberg, Oct. 2002, ISBN 978-3-540-00106-5 978-3-540-36124-4, pp. 1100–
1117.

[38] Guizzardi, G.; Wagner, G.; Guarino, N.; et al. An ontologically well-founded profile
for UML conceptual models. In International Conference on Advanced Information
Systems Engineering, Springer, 2004, pp. 112–126.

[39] Guizzardi, G.; Wagner, G. Conceptual simulation modeling with Onto-UML. In Pro-
ceedings of the Winter Simulation Conference, Winter Simulation Conference, 2012,
p. 5.

[40] Guizzardi, G. Logical, ontological and cognitive aspects of object types and cross-
world identity with applications to the theory of conceptual spaces. In Applications
of Conceptual Spaces, Springer, 2015, pp. 165–186.

[41] Guizzardi, G. Modal Aspects of Object Types and Part-Whole Relations and the
de re/de dicto Distinction. In International Conference on Advanced Information
Systems Engineering, Springer, 2007, pp. 5–20.

[42] Guizzardi, G. The Problem of Transitivity of Part-Whole Relations in Conceptual
Modeling Revisited. In Proccedings of 21st International Conference on Advanced
Information Systems Engineering (CAISE’09), Amsterdam, The Netherlands, 2009.

[43] Guizzardi, G. On the Representation of Quantities and Their Parts in Conceptual
Modeling. In Proceedings of the 2010 Conference on Formal Ontology in Information
Systems, Amsterdam, The Netherlands, The Netherlands: IOS Press, 2010, ISBN
978-1-60750-534-1, pp. 103–116.

[44] Guizzardi, G. Ontological Foundations for Conceptual Part-Whole Relations: The
Case of Collectives and Their Parts. In Advanced Information Systems Engineering,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, June 2011, ISBN
978-3-642-21639-8 978-3-642-21640-4, pp. 138–153, doi:10.1007/978-3-642-21640-4
12.

[45] Guizzardi, G.; Wagner, G.; Herre, H. On the foundations of uml as an ontology
representation language. In International Conference on Knowledge Engineering and
Knowledge Management, Springer, 2004, pp. 47–62.

[46] Guizzardi, G.; Masolo, C.; Borgo, S. In the Defense of a Trope-Based Ontology
for Conceptual Modeling: An Example with the Foundations of Attributes, Weak
Entities and Datatypes, 25th Intl. In Conf. on Conceptual Modeling, Berlin, 2006.

[47] Guizzardi, G.; Zamborlini, V. Using a trope-based foundational ontology for bridging
different areas of concern in ontology-driven conceptual modeling. Science of Com-
puter Programming, volume 96, 2014: pp. 417–443.

270

[48] Albuquerque, A.; Guizzardi, G. An ontological foundation for conceptual modeling
datatypes based on semantic reference spaces. In Research Challenges in Information
Science (RCIS), 2013 IEEE Seventh International Conference on, IEEE, 2013, pp.
1–12.

[49] Guizzardi, G.; Wagner, G. What’s in a relationship: an ontological analysis. In
International Conference on Conceptual Modeling, Springer, 2008, pp. 83–97.

[50] Costal, D.; Gómez, C.; Guizzardi, G. Formal semantics and ontological analysis for
understanding subsetting, specialization and redefinition of associations in UML. In
International Conference on Conceptual Modeling, Springer, 2011, pp. 189–203.

[51] Guarino, N.; Guizzardi, G. “We Need to Discuss the Relationship”: Revisiting Re-
lationships as Modeling Constructs. In Advanced Information Systems Engineering,
Springer, 2015, pp. 279–294.

[52] Guizzardi, G. Agent Roles, Qua Individuals and the Counting Problem. In Soft-
ware Engineering for Multi-Agent Systems IV, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, May 2005, ISBN 978-3-540-33580-1 978-3-540-33583-2,
pp. 143–160, doi:10.1007/11738817 9.

[53] Masolo, C.; Guizzardi, G.; Vieu, L.; et al. Relational roles and qua-individuals. AAAI
Fall Symposium - Technical Report, Jan. 2005.

[54] Guizzardi, G.; Wagner, G.; Falbo, R. d. A.; et al. Towards Ontological Foundations
for the Conceptual Modeling of Events. In Conceptual Modeling, number 8217 in
Lecture Notes in Computer Science, Springer Berlin Heidelberg, Jan. 2013, ISBN
978-3-642-41923-2 978-3-642-41924-9, pp. 327–341.

[55] Guizzardi, G.; de Almeida Falbo, R.; Guizzardi, R. S. Grounding Software Domain
Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE Soft-
ware Process Ontology. In CIbSE, 2008, pp. 127–140.

[56] Guizzardi, R. S.; Guizzardi, G. Ontology-based transformation framework from
TROPOS to AORML. Social modeling for requirements engineering, 2010: pp. 547–
570.

[57] Falbo, R. d. A.; Quirino, G. K.; Nardi, J. C.; et al. An Ontology Pattern Language
for Service Modeling. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing, volume 2016, Pisa, Italy: ACM, Jan. 2016, ISBN 978-1-4503-3739-7, pp.
321–326, doi:10.1145/2851613.2851840.

[58] Griffo, C.; Almeida, J. P. A.; Guizzardi, G. Towards a legal core ontology based on
Alexy’s theory of fundamental rights. In Multilingual Workshop on Artificial Intelli-
gence and Law, ICAIL, 2015.

271

[59] Barcellos, M. P.; de Almeida Falbo, R.; Frauches, V. Towards a Measurement Onto-
logy Pattern Language. In ONTO. COM/ODISE@ FOIS, 2014.

[60] Guizzardi, G.; Wagner, G.; Almeida, J. P. A.; et al. Towards ontological foundations
for conceptual modeling: The unified foundational ontology (UFO) story. Applied
Ontology, volume 10, no. 3-4, Jan. 2015: pp. 259–271, ISSN 1570-5838, doi:10.3233/
AO-150157.

[61] Vejrazkova, Z.; Meshkat, A. Translating DEMO Models into Petri Net. In Enterprise
and Organizational Modeling and Simulation, volume 153, Springer Verlag Heidel-
berg, 2013, ISBN 978-3-642-41637-8.

[62] OMG. Unified Modeling Language, version 2.5.1. Dec. 2017. Available from: https:
//www.omg.org/spec/UML/2.5.1

[63] Arlow, J.; Neustadt, I. UML 2.0 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition). Addison-Wesley Professional, 2005, ISBN 0-321-
32127-8.

[64] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Professional, third edition, Sept. 2003, ISBN 0-321-19368-7.

[65] Fuentes-Fernández, L.; Vallecillo-Moreno, A. An introduction to UML profiles. UML
and Model Engineering, volume 2, 2004: pp. 6–13.

[66] OMG. System Modeling Language, version 1.5. May 2017. Available from: https:

//www.omg.org/spec/SysML/1.5/

[67] Benevides, A. B. A Model-based Graphical Editor for Supporting the Creation, Veri-
fication and Validation of OntoUML Conceptual Models. Master’s thesis, UNIVER-
SIDADE FEDERAL DO ESPÍRITO SANTO, May 2010.

[68] Barbier, F.; Henderson-Sellers, B.; Le Parc-Lacayrelle, A.; et al. Formalization of the
Whole-Part relationship in the Unified Modeling Language. IEEE Transactions on
Software Engineering, volume 29, no. 5, May 2003: pp. 459–470, ISSN 0098-5589,
doi:10.1109/TSE.2003.1199074.

[69] Krogstie, J. UML and the Unified Process. Hershey, PA, USA: IGI Global, 2003,
ISBN 978-1-931777-44-5, pp. 1–22.

[70] Guizzardi, G. Representing Collectives and Their Members in UML Conceptual Mod-
els: An Ontological Analysis. In Advances in Conceptual Modeling – Applications
and Challenges, number 6413 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg, Jan. 2010, ISBN 978-3-642-16384-5 978-3-642-16385-2, pp. 265–274.

[71] OMG. Object Constraint Language, version 2.4. Feb. 2014. Available from: https:

//www.omg.org/spec/OCL/2.4/

272

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/OCL/2.4/
https://www.omg.org/spec/OCL/2.4/

[72] Richters, M.; Gogolla, M. OCL: Syntax, Semantics, and Tools. In Object Modeling
with the OCL, The Rationale Behind the Object Constraint Language, London, UK,
UK: Springer-Verlag, 2002, ISBN 978-3-540-43169-5, pp. 42–68.

[73] Cabot, J.; Teniente, E. Transformation techniques for OCL constraints. Science of
Computer Programming, volume 68, no. 3, Oct. 2007: pp. 179–195, ISSN 0167-6423,
doi:10.1016/j.scico.2007.05.001.

[74] Documents Associated with Business Process Model and Notation (BPMN) Version
2.0. Jan. 2015. Available from: http://www.omg.org/spec/BPMN/2.0/

[75] OMG. BPMN 2.0 by Example. 2010. Available from: https://www.omg.org/

cgi-bin/doc?dtc/10-06-02

[76] Silver, B. BPMN Method and Style, 2nd Edition, with BPMN Implementer’s Guide:
A structured approach for business process modeling and implementation using
BPMN 2.0. Cody-Cassidy Press, Oct. 2011, ISBN 0-9823681-1-9.

[77] Guizzardi, G.; Wagner, G. Can BPMN be used for making simulation models? Lec-
ture Notes in Business Information Processing, volume 88 LNBIP, 2011: pp. 100–115.

[78] Dietz, J. L. G.; Hoogervorst, J. A. P.; Albani, A.; et al. The discipline of enter-
prise engineering. International Journal of Organisational Design and Engineering,
volume 3, no. 1, 2013: pp. 86–114.

[79] Hevner, A. A Three Cycle View of Design Science Research. Scandinavian Journal
of Information Systems, volume 19, no. 2, Jan. 2007.

[80] Dietz, J.; Hoogervorst, J. Enterprise Engineering Theories. Available from: https:

//www.researchgate.net/project/Enterprise-Engineering-Theories

[81] March, S. T.; Smith, G. F. Design and natural science research on information tech-
nology. Decision Support Systems, volume 15, no. 4, Dec. 1995: pp. 251–266, ISSN
0167-9236, doi:10.1016/0167-9236(94)00041-2.

[82] Hevner, A. R.; March, S. T.; Park, J.; et al. Design Science in Information Systems
Research. MIS Q., volume 28, no. 1, Mar. 2004: pp. 75–105, ISSN 0276-7783.

[83] Simon, H. A. The Sciences of the Artificial - 3rd Edition. Cambridge, Mass: The
MIT Press, third edition, Oct. 1996, ISBN 978-0-262-69191-8.

[84] Dietz, J. L. G.; Hoogervorst, J. A. P. A critical investigation of TOGAF - based
on the enterprise engineering theory and practice. In Advances in Enterprise En-
gineering V, Lecture Notes in Business Information Processing, Springer, Berlin,
Heidelberg, May 2011, ISBN 978-3-642-21057-0 978-3-642-21058-7, pp. 76–90, doi:
10.1007/978-3-642-21058-7 6.

273

http://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/cgi-bin/doc?dtc/10-06-02
https://www.omg.org/cgi-bin/doc?dtc/10-06-02
https://www.researchgate.net/project/Enterprise-Engineering-Theories
https://www.researchgate.net/project/Enterprise-Engineering-Theories

[85] Ettema, R.; Dietz, J. L. G. ArchiMate and DEMO – Mates to Date? In Advances in
Enterprise Engineering III, volume 34, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, ISBN 978-3-642-01914-2 978-3-642-01915-9, pp. 172–186.

[86] Wieringa, R. J. Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, ISBN 978-3-662-
43838-1 978-3-662-43839-8.

[87] Op ’t Land, M.; Dietz, J. L. G. Benefits of Enterprise Ontology in Governing Complex
Enterprise Transformations. In Advances in Enterprise Engineering VI, volume 110,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, ISBN 978-3-642-29902-5 978-
3-642-29903-2, pp. 77–92.

[88] Dietz, J. L. G. Architecture: building strategy into design. The Hague, The Nether-
lands: Academic Service, 2008, ISBN 978-90-12-58086-1.

[89] Terlouw, L. I.; Albani, A. An Enterprise Ontology-Based Approach to Service Spe-
cification. IEEE Transactions on Services Computing, volume 6, no. 1, 2013: pp.
89–101, ISSN 1939-1374, doi:10.1109/TSC.2011.38.

[90] Kervel, S. J. V.; Hintzen, J.; van Meeuwen, T.; et al. A professional case management
system in production, modeled and implemented using DEMO. In Complementary
proceedings of the 8th Workshop on Transformation & Engineering of Enterprises
(TEE 2014), and the 1st International Workshop on Capability-oriented Business
Informatics (CoBI 2014), volume 1182, Geneva, Switzerland: Technical University
of Aachen, July 2014, ISBN 1613-0073.

[91] Guerreiro, S.; van Kervel, S. J. H.; Vasconcelos, A.; et al. Executing Enterprise
Dynamic Systems Control with the Demo Processor: The Business Transactions
Transition Space Validation. In Knowledge and Technologies in Innovative Inform-
ation Systems, volume 129, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
ISBN 978-3-642-33243-2 978-3-642-33244-9, pp. 97–112.

[92] Van Kervel, S.; Dietz, J.; Hintzen, J.; et al. Enterprise Ontology driven software
engineering. In ICSOFT 2012 - Proceedings of the 7th International Conference on
Software Paradigm Trends, 2012, pp. 205–210.

[93] CIAO! Enterprise Engineering Network. CIAO! Enterprise Engineering Network web
portal. Available from: http://ciaonetwork.org/

[94] Aalst, W. v. d. Process Mining: Data Science in Action. Berlin Heidelberg: Springer-
Verlag, second edition, 2016, ISBN 978-3-662-49850-7.

[95] Knott, R.; Merunka, V.; Polak, J. The BORM methodology: a third-generation fully
object-oriented methodology. Knowledge-Based Systems, volume 16, no. 2, Mar. 2003:
pp. 77–89, ISSN 09507051, doi:10.1016/S0950-7051(02)00075-8.

274

http://ciaonetwork.org/

[96] Struska, Z.; Merunka, V. BORM points - New concept proposal of complexity estim-
ation method. In ICEIS 2007 Proceedings, Portugal: INSTICC-INST, 2007, ISBN
978-972-8865-90-0, pp. 580–586.

[97] Brožek, J.; Merunka, V.; Merunková, I. Organization modeling and simulation us-
ing BORM approach, Lecture Notes in Business Information Processing, volume 63
LNBIP. 2010.

[98] Merunka, V.; Merunková, I. Role of OBA Approach in Object-Oriented Process Mo-
delling and Simulation. In Enterprise and Organizational Modeling and Simulation,
number 153 in Lecture Notes in Business Information Processing, Springer Berlin
Heidelberg, 2013, ISBN 978-3-642-41637-8 978-3-642-41638-5, pp. 74–84.

[99] Knott, R.; Merunka, V.; Polak, J. Process modeling for object oriented analysis using
BORM Object Behavioral Analysis. In 4th International Conference on Requirements
engineering, 2000. Proceedings, 2000, pp. 7 –16, doi:10.1109/ICRE.2000.855566.

[100] Merunka, V.; Nouza, O.; Brožek, J. Automated Model Transformations Using the
C.C Language. In Advances in Enterprise Engineering I, Lecture Notes in Business
Information Processing, volume 10, Springer Berlin Heidelberg, 2008, ISBN 978-3-
540-68643-9, pp. 137–151.

[101] Frank, U. Multi-perspective enterprise modeling (MEMO) conceptual framework and
modeling languages. IEEE Comput. Soc, 2002, ISBN 978-0-7695-1435-2, pp. 1258–
1267, doi:10.1109/HICSS.2002.993989.

[102] Frank, U. Multilevel Modeling: Toward a New Paradigm of Conceptual Mod-
eling and Information Systems Design. Business & Information Systems Engin-
eering, volume 6, no. 6, 2014: pp. 319–337, ISSN 2363-7005, 1867-0202, doi:
10.1007/s12599-014-0350-4.

[103] Henderson-Sellers, B.; Gonzalez-Perez, C. The rationale of powertype-based
metamodelling to underpin software development methodologies. In Proceedings of
the 2nd Asia-Pacific conference on Conceptual modelling-Volume 43, Australian
Computer Society, Inc., 2005, pp. 7–16.

[104] Gonzalez-Perez, C.; Henderson-Sellers, B. A powertype-based metamodelling frame-
work. Software & Systems Modeling, volume 5, no. 1, 2006: pp. 72–90.

[105] Guizzardi, G.; Almeida, J. P. A.; Guarino, N.; et al. Towards an Ontological Analysis
of Powertypes. Jan. 2015.

[106] Carvalho, V. A.; Almeida, J. P. A.; Fonseca, C. M.; et al. Extending the Foundations
of Ontology-Based Conceptual Modeling with a Multi-level Theory. In Conceptual
Modeling, Lecture Notes in Computer Science, Springer, Cham, Oct. 2015, ISBN 978-
3-319-25263-6 978-3-319-25264-3, pp. 119–133, doi:10.1007/978-3-319-25264-3 9.

275

[107] Carvalho, V. A.; Almeida, J. P. A.; Guizzardi, G. Using a Well-Founded Multi-level
Theory to Support the Analysis and Representation of the Powertype Pattern in
Conceptual Modeling. In Advanced Information Systems Engineering, volume 9694,
Cham: Springer International Publishing, 2016, ISBN 978-3-319-39695-8 978-3-319-
39696-5, pp. 309–324, doi:10.1007/978-3-319-39696-5 19.

[108] Carvalho, V. A.; Almeida, J. P. A.; Fonseca, C. M.; et al. Multi-level Ontology-based
Conceptual Modeling. Data Knowl. Eng., volume 109, no. C, May 2017: pp. 3–24,
ISSN 0169-023X, doi:10.1016/j.datak.2017.03.002.

[109] Carvalho, V. A.; Almeida, J. P. Toward a Well-founded Theory for Multi-level Con-
ceptual Modeling. Softw. Syst. Model., volume 17, no. 1, Feb. 2018: pp. 205–231,
ISSN 1619-1366, doi:10.1007/s10270-016-0538-9.

[110] Clark, T.; Sammut, P.; Willans, J. S. Applied Metamodelling: A Foundation for Lan-
guage Driven Development (Third Edition). CoRR, volume abs/1505.00149, 2015.

[111] Clark, T.; Sammut, P.; Willans, J. S. Super-Languages: Developing Languages and
Applications with XMF (Second Edition). CoRR, volume abs/1506.03363, 2015.

[112] Bock, A.; Frank, U. Multi-perspective Enterprise Modeling—Conceptual Founda-
tion and Implementation with ADOxx. In Domain-Specific Conceptual Modeling,
Springer, Cham, 2016, ISBN 978-3-319-39416-9 978-3-319-39417-6, pp. 241–267.

[113] Schmidt, D. C. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, volume 39, no. 2, 2006: p. 25.

[114] Sitiol, A. CASE technology. In Student Conference on Research and Development,
2002. SCOReD 2002, 2002, pp. 54–57, doi:10.1109/SCORED.2002.1033053.

[115] Kleppe, A.; Warmer, J.; Bast, W. MDA Explained: The Model Driven Architecture:
Practice and Promise. Boston: Addison-Wesley Professional, first edition, May 2003,
ISBN 978-0-321-19442-8.

[116] OMG. MDA Guide Revision 2.0. 2014. Available from: http://www.omg.org/

cgi-bin/doc?ormsc

[117] Rybola, Z. Towards OntoUML for Software Engineering: Transformation of On-
toUML into Relational Databases. Ph.D., Czech Technical University in Prague,
Prague, Czech Republic, Aug. 2017.

[118] Richta, K.; Rybola, Z. Transformation of Relationships from UML/OCL to SQL.
In ITAT 2011: Zborńık pŕıspevkov prezentovaných na konferencii ITAT, volume 11,
Terchová, Slovakia: University of P. J. Šafárik, Košice, Slovakia, Sept. 2011, ISBN
978-80-89557-01-1.

276

http://www.omg.org/cgi-bin/doc?ormsc
http://www.omg.org/cgi-bin/doc?ormsc

[119] Rybola, Z. Constraint for Multiplicities of Binary Relationships. In POSTER 2011,
volume 15, Prague, Czech Republic: Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, May 2011, ISBN 978-80-01-04806-1.

[120] Rybola, Z.; Richta, K. Transformation of Special Multiplicity Constraints - Compar-
ison of Possible Realizations. In FedCSIS 2012, Wroclaw, Poland, Sept. 2012.

[121] Rybola, Z.; Richta, K. Using OCL in Model Validation According to Stereotypes. In
DATESO 2012, volume 12, Žernov, Rovensko pod Troskami, Czech Republic, Apr.
2012, ISBN 978-80-7378-171-2, pp. 93–102.

[122] Rybola, Z.; Richta, K. Validation of stereotypes’ usage in UML class model by gener-
ated OCL constraints. In Information Technologies - Applications and Theory 2012,
Bielanské Tatry, Slovakia: Technical University of Košice, Sept. 2012, ISBN 978-80-
971144-1-1, pp. 25–32.

[123] Kervel, S. J. H. v. Ontology driven Enterprise Information Systems Engineering.
dissertation thesis, Technische Universiteit Delft, Netherlands, 2012.

[124] Guerreiro, S.; Van Kervel, S.; Babkin, E. Towards devising an architectural frame-
work for enterprise operating systems. In ICSOFT 2013 - Proceedings of the 8th
International Joint Conference on Software Technologies, 2013, pp. 578–585.

[125] Victor, B. Explorable explanations. 2011. Available from: http://worrydream.com/
ExplorableExplanations

[126] Victor, B. Inventing on principle. 2012. Available from: https://www.youtube.com/
watch?v=PUv66718DII

[127] Victor, B. Learnable programming: Designing a programming system for
understanding programs. 2012. Available from: http://worrydream.com/

LearnableProgramming

[128] Victor, B. Media for Thinking the Unthinkable. 2013. Available from: http:

//worrydream.com/MediaForThinkingTheUnthinkable/

[129] Jason Gilman. Proto REPL, a New Clojure Development and Visualization Tool.
2016. Available from: https://www.youtube.com/watch?v=buPPGxOnBnk

[130] Victor, B. The Future of Programming. 2013. Available from: https://vimeo.com/
71278954

[131] Chikofsky, E.; Cross, J. Reverse engineering and design recovery: a taxonomy. IEEE
Software, volume 7, no. 1, Jan. 1990: pp. 13–17, ISSN 0740-7459, doi:10.1109/52.
43044.

277

http://worrydream.com/ExplorableExplanations
http://worrydream.com/ExplorableExplanations
https://www.youtube.com/watch?v=PUv66718DII
https://www.youtube.com/watch?v=PUv66718DII
http://worrydream. com/LearnableProgramming
http://worrydream. com/LearnableProgramming
http://worrydream.com/MediaForThinkingTheUnthinkable/
http://worrydream.com/MediaForThinkingTheUnthinkable/
https://www.youtube.com/watch?v=buPPGxOnBnk
https://vimeo.com/71278954
https://vimeo.com/71278954

[132] Dit, B.; Revelle, M.; Gethers, M.; et al. Feature location in source code: a taxonomy
and survey: FEATURE LOCATION IN SOURCE CODE: A TAXONOMY AND
SURVEY. Journal of Software: Evolution and Process, volume 25, no. 1, Jan. 2013:
pp. 53–95, ISSN 20477473, doi:10.1002/smr.567.

[133] Lau, K.-K.; Arshad, R. A Concise Classification of Reverse Engineering Approaches
for Software Product Lines. In International Journal On Advances in Software, 2016.

[134] Ducasse, S.; Lanza, M.; Tichelaar, S. Moose: an extensible language-independent en-
vironment for reengineering object-oriented systems. In Proceedings of the Second In-
ternational Symposium on Constructing Software Engineering Tools (CoSET 2000),
volume 4, 2000.

[135] Bergel, A. Agile Visualization. lulu.com, 2016, ISBN 978-1-365-31409-4.

[136] Girba, T. The Moose Book. online: Feenk, 2018. Available from: http://www.

themoosebook.org/

[137] Mannaert, H.; Verelst, J. Normalized Systems—Re-creating Information Technology
Based on Laws for Software Evolvability. Kermt, Belgium: Koppa, 2009.

[138] Mannaert, H.; Verelst, J.; De Bruyn, P. Normalized systems theory: from foundations
for evolvable software toward a general theory for evolvable design. 2016, ISBN 978-
90-77160-09-1.

[139] Herwig Mannaert; Jan Verelst; Kris Ven. Towards evolvable software architectures
based on systems theoretic stability. Jan. 2011.

[140] Mannaert, H.; De Bruyn, P.; Verelst, J. Exploring entropy in software systems:
towards a precise definition and design rules. In Proceedings of the Seventh Inter-
national Conference on Systems (ICONS), Saint Gilles, Reunion Island, 2012, pp.
93–99.

[141] Mannaert, H.; Verelst, J.; Ven, K. The transformation of requirements into software
primitives: Studying evolvability based on systems theoretic stability. Science of
Computer Programming, volume 76, no. 12, 2011: pp. 1210–1222, doi:10.1016/j.
scico.2010.11.009.

[142] Van Nuffel, D.; Mannaert, H.; De Backer, C.; et al. Towards a deterministic business
process modelling method based on normalized systems theory. International Journal
on Advances in Software, volume 3, no. 1 & 2, 2010, ISSN 1942-2636.

[143] De Bruyn, P.; Mannaert, H. On the generalization of normalized systems concepts
to the analysis and design of modules in systems and enterprise engineering. Inter-
national Journal on Advances in Systems and Measurements, volume 5, no. 3& 4,
2012: pp. 216–232.

278

http://www.themoosebook.org/
http://www.themoosebook.org/

[144] De Bruyn, P.; Dierckx, G.; Mannaert, H. Aligning the normalized systems theorems
with existing heuristic software engineering knowledge. In Proceedings of the Sev-
enth International Conference of Software Engineering Advances (ICSEA), Lisbon,
Portugal, 2012, pp. 85–89.

[145] De Bruyn, P.; Huysmans, P.; Mannaert, H.; et al. Understanding Entropy Generation
during the Execution of Business Process Instantiations: An Illustration from Cost
Accounting. In Advances in Enterprise Engineering VII, Lecture Notes in Business
Information Processing, volume 146, Springer Berlin Heidelberg, 2013, ISBN 978-3-
642-38116-4, pp. 103–117.

[146] Verelst, J.; Silva, A. R.; Mannaert, H.; et al. Identifying Combinatorial Effects in
Requirements Engineering. In Advances in Enterprise Engineering VII, Lecture Notes
in Business Information Processing, Springer, Berlin, Heidelberg, May 2013, ISBN
978-3-642-38116-4, pp. 88–102, doi:10.1007/978-3-642-38117-1 7.

[147] McIlroy, M. D. Mass-produced software components. Proc. NATO Conf. on Software
Engineering, Garmisch, Germany, 1968.

[148] Lidwell, W.; Holden, K.; Butler, J. Universal Principles of Design, Revised and
Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal,
Make Better Design Decisions, and Teach through Design. Beverly, Mass: Rockport
Publishers, second edition, revised and updated edition edition, Jan. 2010, ISBN
978-1-59253-587-3.

[149] Oorts, G.; Mannaert, H.; Bruyn, P. D.; et al. On the Evolvable and Traceable Design
of (Under)graduate Education Programs. In Advances in Enterprise Engineering X,
Lecture Notes in Business Information Processing, Springer, Cham, May 2016, ISBN
978-3-319-39566-1 978-3-319-39567-8, pp. 86–100, doi:10.1007/978-3-319-39567-8 6.

[150] Centre for Conceptual Modelling and Implementation. OntoUML.org. Available
from: https://ontouml.org

[151] Bruyn, P. D.; Huysmans, P.; Mannaert, H. Tailoring an Analysis Approach for De-
veloping Evolvable Software Systems: Experiences from Three Case Studies. In 2016
IEEE 18th Conference on Business Informatics (CBI), volume 01, Aug. 2016, pp.
208–217, doi:10.1109/CBI.2016.31.

[152] International Organization for Standardization. ISO/IEC/IEEE 24765:2010 - Sys-
tems and software engineering – Vocabulary. 2010. Available from: https://www.

iso.org/standard/50518.html

[153] Kay, A. C. The early history of Smalltalk. SIGPLAN Not., volume 28, no. 3, Mar.
1993: pp. 69–95, ISSN 0362-1340, doi:10.1145/155360.155364.

[154] Kay, A. Dr. Alan Kay on the Meaning of “Object-Oriented Programming”. July
2003. Available from: http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

279

https://ontouml.org
https://www.iso.org/standard/50518.html
https://www.iso.org/standard/50518.html
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

[155] Goldberg, A.; Robson, D. Smalltalk 80: The Language. Addison-Wesley Professional,
first edition, Jan. 1989, ISBN 0-201-13688-0.

[156] Meyer, B. Eiffel the language Prentice Hall object-oriented series. Prentice hall Upper
Saddle River, NJ, USA, 1992.

[157] Eng, R. K. Syntax on a Post Card. Nov. 2017. Available from: https://medium.

com/@richardeng/syntax-on-a-post-card-cb6d85fabf88

[158] Pharo. Available from: http://www.pharo.org

[159] Chis, A.; Gı̂rba, T.; Nierstrasz, O. The Moldable Inspector: a framework for domain-
specific object inspection. In Proceedings of International Workshop on Smalltalk
Technologies (IWST 2014), 2014.

[160] Chiş, A.; Nierstrasz, O.; Syrel, A.; et al. The Moldable Inspector. In 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!), Onward! 2015, New York, NY, USA: ACM,
2015, ISBN 978-1-4503-3688-8, pp. 44–60, doi:10.1145/2814228.2814234.

[161] Chiş, A.; Nierstrasz, O.; Gı̂rba, T. Towards moldable development tools. In Proceed-
ings of the 6th Workshop on Evaluation and Usability of Programming Languages
and Tools, ACM, 2015, pp. 25–26.

[162] Chiş, A.; Gı̂rba, T.; Nierstrasz, O. The Moldable Debugger: A Framework for Devel-
oping Domain-Specific Debuggers. In Software Language Engineering, Lecture Notes
in Computer Science, Springer, Cham, Sept. 2014, ISBN 978-3-319-11244-2 978-3-
319-11245-9, pp. 102–121, doi:10.1007/978-3-319-11245-9 6.

[163] Pharo Consortium. Available from: http://consortium.pharo.org/web

[164] Hughes, J. Why Functional Programming Matters. The Computer Journal,
volume 32, no. 2, Jan. 1989: pp. 98–107, ISSN 0010-4620, 1460-2067, doi:10.1093/
comjnl/32.2.98.

[165] Hu, Z.; Hughes, J.; Wang, M. How functional programming mattered. National
Science Review, volume 2, no. 3, Sept. 2015: pp. 349–370, ISSN 2095-5138, 2053-
714X, doi:10.1093/nsr/nwv042.

[166] Halloway, S. Programming Clojure. Pragmatic Bookshelf, first edition, June 2009,
ISBN 1-934356-33-6.

[167] VanderHart, L.; Sierra, S. Practical Clojure. Apress, first edition, June 2010, ISBN
1-4302-7231-7.

[168] Fogus, M.; Houser, C. The joy of Clojure. Manning Publications, 2011.

280

https://medium.com/@richardeng/syntax-on-a-post-card-cb6d85fabf88
https://medium.com/@richardeng/syntax-on-a-post-card-cb6d85fabf88
http://www.pharo.org
http://consortium.pharo.org/web

[169] Lipovača, M. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch
Press, 2011, ISBN 978-1-59327-283-8.

[170] O’Sullivan, B.; Goerzen, J.; Stewart, D. B. Real World Haskell: Code You Can
Believe In. ”O’Reilly Media, Inc.”, Nov. 2008, ISBN 978-0-596-55430-9.

[171] Bird, R. Thinking Functionally with Haskell. Cambridge University Press, Oct. 2014,
ISBN 978-1-107-08720-0.

[172] Abelson, H.; Sussman, G. J.; Sussman, J. Structure and Interpretation of Computer
Programs - 2nd Edition. The MIT Press, second edition edition edition, Sept. 1996,
ISBN 978-0-262-51087-5.

[173] Atencio, L. Functional Programming in JavaScript. Manning, 2016.

[174] Gamma, E.; Helm, R.; Johnson, R.; et al. Design Patterns: Elements of Reusable
Object-Oriented Software (Adobe Reader). Pearson Education, Oct. 1994, ISBN 978-
0-321-70069-8.

[175] Thatte, S. Quasi-static typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM, 1989, pp. 367–381.

[176] Abadi, M.; Cardelli, L.; Pierce, B.; et al. Dynamic typing in a statically typed
language. ACM transactions on programming languages and systems (TOPLAS),
volume 13, no. 2, 1991: pp. 237–268.

[177] Meijer, E.; Drayton, P. Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. OOPSLA, 2004.

[178] Czaplicki, E.; Chong, S. Asynchronous functional reactive programming for GUIs.
In ACM SIGPLAN Notices, volume 48, ACM, 2013, pp. 411–422.

[179] Pattnaik, K.; Mishra, B. S. P. Introduction to big data analysis. In Techniques and
Environments for Big Data Analysis, Springer, 2016, pp. 1–20.

[180] Cooper, E.; Lindley, S.; Wadler, P.; et al. Links: Web programming without tiers. In
Formal Methods for Components and Objects, Springer, 2007, pp. 266–296.

[181] Enterprise Architect. Available from: http://sparxsystems.com/products/ea/

[182] Visual Paradigm. Available from: https://www.visual-paradigm.com

[183] Smith, H.; Fingar, P. Business process management: the third wave, volume 1.
Meghan-Kiffer Press Tampa, 2003.

[184] Aalst, W. M. P. v. d.; Hee, K. v. v. Workflow Management: Models, Methods, and
Systems. Cambridge, Mass.: The MIT Press, Jan. 2004, ISBN 978-0-262-72046-5.

281

http://sparxsystems.com/products/ea/
https://www.visual-paradigm.com

[185] Karagiannis, D.; Kühn, H. Metamodelling platforms. In EC-Web, volume 2455, 2002,
p. 182.

[186] Uhnák, P.; Bommel, P. Facilitating the design of ABM and the code generation
to promote participatory modelling. In Environmental modelling and software for
supporting a sustainable future, 2016.

[187] Hunt, A.; Thomas, D. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Professional, first edition, Oct. 1999, ISBN 0-201-61622-X.

282

Relevant Publications Authored and
Co-Authored

[188] Jǐŕı Vańıček; Martin Paṕık; Robert Pergl; et al. Mathematical foundations of com-
puter science. Kernberg Publishing s.r.o., 2008, ISBN 978-80-87168-06-6.

[189] Michaël Verdonck; Frederik Gailly; Giancarlo Guizzardi; et al. Comparing traditional
conceptual modeling with ontology-driven conceptual modeling: an empirical study.
Information Systems, volume (submitted for review), 2018.

[190] Podloucký, M.; Pergl, R. Towards Formal Foundations for BORM ORD Validation
and Simulation. In Proceedings of the 16th International Conference on Enterprise
Information Systems, SCITEPRESS - Science and and Technology Publications,
2014, ISBN 978-989-758-027-7 978-989-758-028-4 978-989-758-029-1, pp. 315–322,
doi:10.5220/0004897603150322.

[191] Robert Pergl; Lucie Houdová; Miloš Fetter. Marrow Donor Registry Simulator. 2017.
Available from: https://ccmi.fit.cvut.cz/mdr-simulator

[192] Podloucký, M.; Pergl, R.; Kroha, P. Revisiting the BORM OR Diagram Composition
Pattern. In Enterprise and Organizational Modeling and Simulation, Lecture Notes
in Business Information Processing, volume 231, Stockholm: Springer, 2015, pp.
102–113, doi:10.1007/2F978-3-319-24626-0 8.

[193] Ṕıcka, M.; Pergl, R. Gradual Modeling of Information System - Model of Method
Expressed as Transitions Between Concepts. In ICEIS 2006 - Proceedings of the
Eighth International Conference on Enterprise Information Systems: Databases and
Information Systems Integration, Paphos, Cyprus, May 23-27, 2006, 2006, ISBN
978-972-8865-41-2, pp. 538–541. Available from: 5

[194] Pergl, R.; Sales, T. P.; Rybola, Z. Instance-Level Modelling and Simulation
Revisited. In Enterprise and Organizational Modeling and Simulation, Valencia,

283

https://ccmi.fit.cvut.cz/mdr-simulator
5

Spain: Springer, June 2013, ISBN 978-3-642-41637-8, pp. 85 – 100, doi:10.1007/
978-3-642-41638-5 6.

[195] Náplava, P.; Pergl, R. Empirical Study of Applying the DEMO Method for Improving
BPMN Process Models in Academic Environment. In 2015 IEEE 17th Conference
on Business Informatics, volume 2, July 2015, pp. 18–26, doi:10.1109/CBI.2015.12.

[196] Mráz, O.; Náplava, P.; Pergl, R.; et al. Converting DEMO PSI Transaction Pattern
into BPMN: A Complete Method. In Advances in Enterprise Engineering XI: 7th
Enterprise Engineering Working Conference, EEWC 2017, Antwerp, Belgium, May
8-12, 2017, Proceedings, Cham: Springer International Publishing, 2017, ISBN 978-
3-319-57955-9, pp. 85–98.

[197] Dudok, E.; Guerreiro, S.; Babkin, E.; et al. Enterprise Operational Analysis Using
DEMO and the Enterprise Operating System. In Advances in Enterprise Engineer-
ing IX, number 211 in Lecture Notes in Business Information Processing, Springer
International Publishing, June 2015, ISBN 978-3-319-19296-3 978-3-319-19297-0, pp.
3–18.

[198] Hornáčková, B.; Skotnica, M.; Pergl, R. Exploring a Role of Blockchain Smart Con-
tracts in Enterprise Engineering. In Advances in Enterprise Engineering XII: 8th En-
terprise Engineering Working Conference, EEWC 2018, Luxembourg, Luxembourg,
Proceedings, Cham: Springer International Publishing, 2018.

[199] Struska, Z.; Pergl, R. BORM-points: Introduction and Results of Practical Test-
ing. In Lecture Notes in Business Information Processing, volume 24, Milan, Italy:
Springer Berlin Heidelberg, 2009, pp. 590–599.

[200] Podloucký, M.; Pergl, R. The Prefix Machine – a Formal Foundation for the BORM
OR Diagrams Validation and Simulation. In Enterprise and Organizational Modeling
and Simulation, volume 191, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
ISBN 978-3-662-44859-5 978-3-662-44860-1, pp. 113–131.

[201] Petr Špĺıchal; Robert Pergl; Marek Ṕıcka. BORM model transformation. Systémová
integrace, volume 18, no. 2, 2011, ISSN 1210-9479.

[202] Pergl, R.; Sales, T. P.; Rybola, Z. Towards OntoUML for Software Engineering: From
Domain Ontology to Implementation Model. In Proceedings of MEDI 2013, volume
3rd, Amantea, Italy: Springer, Sept. 2013, ISBN 978-3-642-41365-0, pp. 249–263,
doi:10.1007/978-3-642-41366-7.

[203] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Introduction to
the Transformation of OntoUML into Relational Databases. In Enterprise and Or-
ganizational Modeling and Simulation, LNBIP, Ljubljana, Slovenia: Springer, June
2016, ISBN 978-3-319-49453-1, doi:10.1007/978-3-319-49454-8 5.

284

[204] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Transformation
of Rigid Sortal Types into Relational Databases. In Proceedings of {FedCSIS} 2016,
ACSIS, volume 8, Gdańsk, Poland: IEEE, Sept. 2016, ISBN 978-83-60810-90-3, pp.
1581–1591, doi:10.15439/2016F250.

[205] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Transforma-
tion of Kinds and Subkinds into Relational Databases. Computer Science and In-
formation Systems, volume 14, no. 3, 2017: pp. 913–937, ISSN 1820-0214, doi:
10.2298/CSIS170109035R.

[206] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Transformation
of Anti-Rigid Sortal Types into Relational Databases. In Model and Data Engineer-
ing, LNCS, Aguadulce, Almeŕıa, Spain: Springer, Sept. 2016, ISBN 978-3-319-45546-
4, pp. 1–15, doi:10.1007/978-3-319-45547-1 1.

[207] Zdeněk Rybola; Robert Pergl. Transformation of Kinds and Subkinds into Relational
Databases: A Running Example. Technical Report TR-FIT-2017, Czech Technical
University in Prague, 2017.

[208] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Optimizing Kinds
and Subkinds Transformed into Relational Databases. In Enterprise and Organiza-
tional Modeling and Simulation, Tallinn, Estonia, Nov. 2018.

[209] Dvořák, O.; Pergl, R.; Kroha, P. Confirmation Engine Design Based on PSI
Theory. In 17th IEEE Conference on Business Informatics, Workshop on Cross-
organizational and Crosscompany BPM (XOC-BPM) Lisbon, 2015.

[210] Skotnica, M.; Kervel, S. J. H. v.; Pergl, R. Towards the Ontological Foundations for
the Software Executable DEMO Action and Fact Models. In Advances in Enterprise
Engineering X, Funchal, Madeira: Springer International Publishing, May 2016, pp.
151–165, doi:10.1007/978-3-319-39567-8 10.

[211] Skotnica, M.; van Kervel, S. J. H.; Pergl, R. A DEMO Machine - A Formal Found-
ation for Execution of DEMO Models. In Advances in Enterprise Engineering XI:
7th Enterprise Engineering Working Conference, EEWC 2017, Antwerp, Belgium,
May 8-12, 2017, Proceedings, Cham: Springer International Publishing, 2017, ISBN
978-3-319-57955-9, pp. 18–32.

[212] Uhnák, P.; Pergl, R. Ad-hoc Runtime Object Structure Visualizations with
MetaLinks. In Proceedings of the 12th Edition of the International Workshop on
Smalltalk Technologies, IWST ’17, New York, NY, USA: ACM, 2017, ISBN 978-1-
4503-5554-4, pp. 7:1–7:10, doi:10.1145/3139903.3139912.

[213] Dvořák, O.; Pergl, R.; Kroha, P. Affordance-driven Software Assembling. In Ad-
vances in Enterprise Engineering XII: 8th Enterprise Engineering Working Confer-
ence, EEWC 2018, Luxembourg, Luxembourg, Proceedings, Cham: Springer Interna-
tional Publishing, 2018.

285

[214] Dvořák, O.; Pergl, R.; Kroha, P. Tackling the Flexibility-Usability Trade-off in
Component-Based Software Development. In Recent Advances in Information Sys-
tems and Technologies, Advances in Intelligent Systems and Computing, Springer,
Cham, Apr. 2017, ISBN 978-3-319-56534-7 978-3-319-56535-4, pp. 861–871, doi:
10.1007/978-3-319-56535-4 84.

[215] Suchánek, M.; Pergl, R. Evolvable Documents – an Initial Conceptualization. Bar-
celona, ES: IARIA, Feb. 2018, ISBN 978-1-61208-612-5, pp. 39 – 44.

[216] Nedvedova, K.; Pergl, R. Information Support Systems for Cultural Heritage Pro-
tection Against Flooding. In 25th International Cipa Symposium 2015, volume 40-5,
Gottingen: Copernicus Gesellschaft Mbh, 2015, pp. 343–346.

[217] Blizničenko, J.; Papoulias, N.; Pergl, R.; et al. Towards Modularity in Live Visual
Modeling: A Case Study with OpenPonk and Kendrick. In Proceedings of the 12th
Edition of the International Workshop on Smalltalk Technologies, IWST ’17, New
York, NY, USA: ACM, 2017, ISBN 978-1-4503-5554-4, pp. 3:1–3:10, doi:10.1145/
3139903.3139908.

[218] Janeček, L.; Pergl, R. Analysing Functional Paradigm Concepts: The JavaScript
Case. In Recent Advances in Information Systems and Technologies, Advances in
Intelligent Systems and Computing, Springer, Cham, Apr. 2017, ISBN 978-3-319-
56534-7 978-3-319-56535-4, pp. 882–891, doi:10.1007/978-3-319-56535-4 86.

[219] Pergl, R. Modelling and prototyping of business applications based on multilevel
domain-specific language. Lecture Notes in Business Information Processing, volume
88 LNBIP, 2011: pp. 173–191.

[220] Suchánek, M.; Pergl, R.; Hooft, R.; et al. Data Stewardship Wizard (poster). Berlin,
Germany, June 2018, doi:10.7490/f1000research.1115594.1. Available from: https:

//www.elixir-europe.org/events/elixir-all-hands-2018

[221] Pergl, R. Supporting enterprise IS modelling using ontological analysis. Lecture Notes
in Business Information Processing, volume 88 LNBIP, 2011: pp. 130–144.

[222] Pergl, R.; Tůma, J. OpenCASE - A tool for ontology-centred conceptual modelling.
Lecture Notes in Business Information Processing, volume 112 LNBIP, 2012: pp.
511–518.

[223] Merunka, V.; Pergl, R.; Tůma, J. BORM-II and UML as Accessibility Process in
Knowledge and Business Modelling. In New Trends in Networking, Computing, E-
learning, Systems Sciences, and Engineering, number 312 in Lecture Notes in Elec-
trical Engineering, Springer International Publishing, 2015, ISBN 978-3-319-06763-6
978-3-319-06764-3, pp. 1–6.

286

https://www.elixir-europe.org/events/elixir-all-hands-2018
https://www.elixir-europe.org/events/elixir-all-hands-2018

[224] Uhnák, P.; Pergl, R. The OpenPonk Modeling Platform. In Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies, IWST’16, New
York, NY, USA: ACM, 2016, ISBN 978-1-4503-4524-8, pp. 14:1–14:11, doi:10.1145/
2991041.2991055.

287

Relevant Supervised Bachelor’s and
Master’s Theses

[225] Král, O. Ontological Analysis of ICT Project Change Management. bachelor’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, 2018.
Available from: https://dspace.cvut.cz/handle/10467/77477

[226] Svoboda, J. OpenPonk: an Implementation of a Parser and Interpreter of OCL.
bachelor’s thesis, Czech Technical University in Prague, Faculty of Information Tech-
nology, 2018. Available from: https://dspace.cvut.cz/handle/10467/76663

[227] Kovář, M. Survey of Conceptual Modelling Utilisation in Companies. bachelor’s
thesis, Czech Technical University in Prague, Faculty of Information Technology,
2015. Available from: https://dspace.cvut.cz/handle/10467/63185

[228] Moravec, L. Ontological Analysis of the CTU Data Warehouse. Master’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, May 2016. Avail-
able from: https://dspace.cvut.cz/handle/10467/65120

[229] Žmoĺık, J. Optimization of Manufacturing Process in Enterprise. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, June 2015.
Available from: https://dspace.cvut.cz/handle/10467/63004

[230] Žďára, A. DEMO Diagrams Visualisation for Managers. Master’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, June 2015. Available
from: https://dspace.cvut.cz/handle/10467/63001

[231] Larionova, V. Discrete Simulation for the BORM Method in the OpenCABE Tool.
bachelor’s thesis, Czech Technical University in Prague, Faculty of Information Tech-
nology, June 2015. Available from: https://dspace.cvut.cz/handle/10467/63143

[232] Vološin, M. Transformation of OntoUML into Smalltalk. bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, 2014.

289

https://dspace.cvut.cz/handle/10467/77477
https://dspace.cvut.cz/handle/10467/76663
https://dspace.cvut.cz/handle/10467/63185
https://dspace.cvut.cz/handle/10467/65120
https://dspace.cvut.cz/handle/10467/63004
https://dspace.cvut.cz/handle/10467/63001
https://dspace.cvut.cz/handle/10467/63143

[233] Homola, D. Model-Driven Engineering Approach for OntoUML. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, 2016.
Available from: https://dspace.cvut.cz/handle/10467/65132

[234] Skotnica, M. Implementation of a module supporting the AM model in the Formetis
DEMO Processor. bachelor’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2014. Available from: https://dspace.cvut.cz/handle/

10467/25079

[235] Skotnica, M. Towards the Foundations of Fact and Rules Ontology for Discrete Sys-
tems. Master’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, 2016.

[236] Suchánek, M. Conceptual Modelling Support for the Haskell Programming Language.
Master’s thesis, Czech Technical University in Prague, Faculty of Information Tech-
nology, May 2017. Available from: https://dspace.cvut.cz/handle/10467/69146

[237] Larionova, V. Reverse Engineering of Legacy Software Code for Normalized Systems
Exanders. Master’s thesis, Czech Technical University in Prague, Faculty of Inform-
ation Technology, 2018.

[238] Kolař́ık, V. Applying OntoUML for stuctural definitons of normalized systems ex-
panders. bachelor’s thesis, Czech Technical University in Prague, Faculty of Inform-
ation Technology, June 2014. Available from: https://dspace.cvut.cz/handle/

10467/24458

[239] Uhnák, P. Developing Normalized Systems Conceptual Modeler. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, June 2018.
Available from: https://dspace.cvut.cz/handle/10467/76365

[240] Balda, M. A System for Matching Offers and Inquiries Based on the Pure Object-
Oriented Paradigm. Master’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2015. Available from: https://dspace.cvut.cz/handle/

10467/63025

[241] Blizničenko, J. Live Visualization of Epidemiological Models. Master’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, June 2017. Avail-
able from: https://dspace.cvut.cz/handle/10467/73230

[242] Tvrz, T. The Groovy language as an alternative for business applications develop-
ment. bachelor’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, June 2014. Available from: https://dspace.cvut.cz/handle/10467/

25080

[243] Ševč́ık, J. Web application using functional approach. bachelor’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, 2014. Available from:
https://dspace.cvut.cz/handle/10467/24475

290

https://dspace.cvut.cz/handle/10467/65132
https://dspace.cvut.cz/handle/10467/25079
https://dspace.cvut.cz/handle/10467/25079
https://dspace.cvut.cz/handle/10467/69146
https://dspace.cvut.cz/handle/10467/24458
https://dspace.cvut.cz/handle/10467/24458
https://dspace.cvut.cz/handle/10467/76365
https://dspace.cvut.cz/handle/10467/63025
https://dspace.cvut.cz/handle/10467/63025
https://dspace.cvut.cz/handle/10467/73230
https://dspace.cvut.cz/handle/10467/25080
https://dspace.cvut.cz/handle/10467/25080
https://dspace.cvut.cz/handle/10467/24475

[244] Altman, O. Study of Utilising ClojureScript Technology in a Developer Company.
bachelor’s thesis, Czech Technical University in Prague, Faculty of Information Tech-
nology, 2015. Available from: https://dspace.cvut.cz/handle/10467/63160

[245] Luxemburk, J. Functional Programming for Web Frontend. bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, May 2017. Avail-
able from: https://dspace.cvut.cz/handle/10467/69598

[246] Podloucký, M. Automated GUI Generation for functional data structures. Master’s
thesis, Charles University, 2012. Available from: https://is.cuni.cz/webapps/

zzp/detail/107904/

[247] Knaisl, V. Migration Tool for Data Stewardship Knowledge Model. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, Jan. 2018.
Available from: https://dspace.cvut.cz/handle/10467/73973

[248] Slifka, J. Data Stewardship Portal: Webový Frontend. Master’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, Jan. 2018. Available
from: https://dspace.cvut.cz/handle/10467/73980

[249] Balda, M. Portal for BORM processes optimization. bachelor’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, June 2013. Available
from: https://dspace.cvut.cz/handle/10467/17752

[250] Zyková, A. BORM process machine. bachelor’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, 2014. Available from: https://dspace.
cvut.cz/handle/10467/24435

[251] Lanský, R. Messaging and Task Management Application Based on the PSI Theory.
Master’s thesis, Czech Technical University in Prague, Faculty of Information Tech-
nology, Feb. 2017. Available from: https://dspace.cvut.cz/handle/10467/69103

[252] Uhnák, P. Layouting of Diagrams in the DynaCASE Tool. bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, 2016. Available
from: https://dspace.cvut.cz/handle/10467/63194

[253] Bambas, J. Validation of Process Diagrams in BORM Method. bachelor’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, June 2015.
Available from: https://dspace.cvut.cz/handle/10467/62916

[254] Valášek, J. Generating reports from BORM process diagrams. bachelor’s thesis, Czech
Technical University in Prague, June 2015. Available from: https://dspace.cvut.
cz/handle/10467/63173

[255] Blizničenko, J. Simulation and Visualisation Support for the DynaCASE Tool. bach-
elor’s thesis, Czech Technical University in Prague, Faculty of Information Techno-
logy, June 2015. Available from: https://dspace.cvut.cz/handle/10467/63136

291

https://dspace.cvut.cz/handle/10467/63160
https://dspace.cvut.cz/handle/10467/69598
https://is.cuni.cz/webapps/zzp/detail/107904/
https://is.cuni.cz/webapps/zzp/detail/107904/
https://dspace.cvut.cz/handle/10467/73973
https://dspace.cvut.cz/handle/10467/73980
https://dspace.cvut.cz/handle/10467/17752
https://dspace.cvut.cz/handle/10467/24435
https://dspace.cvut.cz/handle/10467/24435
https://dspace.cvut.cz/handle/10467/69103
https://dspace.cvut.cz/handle/10467/63194
https://dspace.cvut.cz/handle/10467/62916
https://dspace.cvut.cz/handle/10467/63173
https://dspace.cvut.cz/handle/10467/63173
https://dspace.cvut.cz/handle/10467/63136

[256] Turoň, J. Enhancing the DynaCASE Platform for Enterprise Engineering. Master’s
thesis, Czech Technical University in Prague, Faculty of Information Technology,
2016.

[257] Anisimov, B. Support of BPMN Standard on OpenPonk Platform. bachelor’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, June 2018.
Available from: https://dspace.cvut.cz/handle/10467/76633

[258] Vološin, M. OntoUML Models Instance Visualisation. Master’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, May 2016. Available
from: https://dspace.cvut.cz/handle/10467/65114

292

https://dspace.cvut.cz/handle/10467/76633
https://dspace.cvut.cz/handle/10467/65114

Relevant Reviewed Bachelor’s and
Master’s Theses

[259] Hakala, M. Concepts of IT Architecture Building. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2015.

[260] Kozlov, A. Specification of Cloud Computing Resources Based on Ontological Descrip-
tion. Master’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, June 2018. Available from: https://dspace.cvut.cz/handle/10467/

76423

[261] Homola, D. Comparison of a data model analysis using OntoUML and UML. bach-
elor’s thesis, Czech Technical University in Prague, Faculty of Information Techno-
logy, June 2014. Available from: https://dspace.cvut.cz/handle/10467/24536

[262] Cimpl, L. Ways of Business Process Modelling Notations Comparison. bachelor’s
thesis, Czech Technical University in Prague, Faculty of Information Technology,
2016. Available from: https://dspace.cvut.cz/handle/10467/62774

[263] Posoldová, A. DEMO to BPMN Transformation Ways. bachelor’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, May 2017. Available
from: https://dspace.cvut.cz/handle/10467/70169

[264] Heller, S. Usage of DEMO Methods for BPMN Models Creation. Master’s thesis,
Czech Technical University in Prague. Computing and Information Centre., 2016.
Available from: http://hdl.handle.net/10467/62776

[265] Jirovský, V. Conceptual Analsis of of Data Domains of Study and Teaching Quality
Evaluation Agendas with Respect to Data Cleanness. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2015.

293

https://dspace.cvut.cz/handle/10467/76423
https://dspace.cvut.cz/handle/10467/76423
https://dspace.cvut.cz/handle/10467/24536
https://dspace.cvut.cz/handle/10467/62774
https://dspace.cvut.cz/handle/10467/70169
http://hdl.handle.net/10467/62776

[266] Mráz, O. DEMO Principles Possibilities for Improving BPMN Models Quality. Mas-
ter’s thesis, Czech Technical University in Prague, Faculty of Information Technology,
2016.

[267] Nymsa, P. Mobile Enterprise Architecture Process Analytic Tool Based on the DEMO
Methodology. bachelor’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, June 2018. Available from: https://dspace.cvut.cz/

handle/10467/77482

[268] Janeček, L. Study of choice of a database platform for realization of normalized
software systems. Master’s thesis, Czech Technical University in Prague, Faculty
of Information Technology, June 2015. Available from: https://dspace.cvut.cz/

handle/10467/62995

[269] Fibichr, J. Leveraging Toolkits in BPM Application Development. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology, June 2013.
Available from: https://dspace.cvut.cz/handle/10467/16304

[270] Jeĺınková, K. Comparison of Process Application Operation in IBM BPM and Activiti
BPMS. bachelor’s thesis, Czech Technical University in Prague, Faculty of Inform-
ation Technology, June 2014. Available from: https://dspace.cvut.cz/handle/

10467/24516

[271] Šimon, V. Comparison of process application development and operation in IBM BPM
and Open Source BPMS. bachelor’s thesis, Czech Technical University in Prague,
Faculty of Information Technology, June 2014. Available from: https://dspace.

cvut.cz/handle/10467/24504

[272] Lanský, R. Components for the ”SZZ” Process System. bachelor’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, June 2013. Available
from: https://dspace.cvut.cz/handle/10467/17853

[273] Maxa, O. Implementation of process analysis of BORM OR diagrams. bachelor’s
thesis, Charles University, 2015. Available from: https://is.cuni.cz/webapps/

zzp/detail/143406/

[274] Buša, R. Designing WYSIWYG Web Forms. bachelor’s thesis, Czech Technical Uni-
versity in Prague, Faculty of Information Technology, June 2018. Available from:
https://dspace.cvut.cz/handle/10467/77488

294

https://dspace.cvut.cz/handle/10467/77482
https://dspace.cvut.cz/handle/10467/77482
https://dspace.cvut.cz/handle/10467/62995
https://dspace.cvut.cz/handle/10467/62995
https://dspace.cvut.cz/handle/10467/16304
https://dspace.cvut.cz/handle/10467/24516
https://dspace.cvut.cz/handle/10467/24516
https://dspace.cvut.cz/handle/10467/24504
https://dspace.cvut.cz/handle/10467/24504
https://dspace.cvut.cz/handle/10467/17853
https://is.cuni.cz/webapps/zzp/detail/143406/
https://is.cuni.cz/webapps/zzp/detail/143406/
https://dspace.cvut.cz/handle/10467/77488

	Foreword of the Author
	Structure of the Thesis
	Introduction
	Conceptualisation
	Introduction
	Formal Foundations
	Modelling
	Ontologies
	UFO and OntoUML
	Our Contribution and Applications

	Behaviour Conceptualisation
	Our Contribution and Applications

	Conceptual Modelling Notations
	UML and OCL
	BPMN

	Enterprise Engineering
	The Discipline of Enterprise Engineering
	Enterprise Engineering Theories
	The DEMO Methodology
	Methodological Foundations of Enterprise Engineering
	DEMO Principles
	DEMO Diagrams
	Our Contribution and Applications

	Business Object Relation Modelling
	The Object-Oriented Paradigm Alignment
	BORM Object Behaviour Analysis
	Process models in OBA
	Our Contribution and Applications

	MEMO

	The Relation of Conceptualisation and Implementation
	The Relation of Conceptual Ontological Models and Their Implementation
	Model-Driven Engineering
	Model Execution

	Conceptualisation in Implementation
	Interactive Development
	Reverse Engineering
	Our Contribution and Applications

	Evolvability and Normalized Systems
	Introduction
	Principles
	Elements
	Applications and Research
	Our Contribution and Applications
	Component Software Systems Design
	Conceptual Modelling of Precise Technical Systems
	Evolvability of Documents
	Applying the Functional Paradigm for the Normalized Systems Expanders
	Normalized Systems Conceptual Modeller

	Software Implementation
	The Discipline of Software Engineering
	The Object-Oriented Paradigm
	Pharo
	Our Contribution and Applications

	The Functional Paradigm
	Theoretical Foundations
	Practical Relevance
	Interactive Development
	Challenges of FP in Software Engineering
	Our Contribution and Applications

	Tooling
	Computer-Aided Engineering Tools
	Execution Tools
	Business Process Management Tools
	Workflow Management Systems
	Our Contribution and Applications

	A Conceptual Modelling Platform
	Our Contribution and Applications: OpenCASE/OpenCABE
	Our Contribution and Applications: DynaCASE/OpenPonk

	Final Thoughts

	Chapters
	Supporting Enterprise IS Modelling using Ontological Analysis
	Instance-Level Modelling and Simulation Revisited
	Towards OntoUML for Software Engineering: From Domain Ontology to Implementation Model
	Towards Formal Foundations for BORM ORD Validation and Simulation
	The Prefix Machine — a Formal Foundation for the BORM OR Diagrams Validation and Simulation
	Revisiting the BORM OR Diagram Composition Pattern
	Empirical Study of Applying the DEMO Method for Improving BPMN Process Models in Academic Environment
	Converting DEMO PSI Transaction Pattern into BPMN: A Complete Method
	Modelling and Prototyping of Business Applications Based on Multilevel Domain-Specific Language
	Analysing Functional Paradigm Concepts: The JavaScript Case
	OpenCASE — A Tool for Ontology-Centred Conceptual Modelling
	BORM-II and UML as Accessibility Process in Knowledge and Business Modelling
	The OpenPonk Modeling Platform

	References
	Bibliography
	Relevant Publications Authored and Co-Authored
	Relevant Supervised Bachelor's and Master's Theses
	Relevant Reviewed Bachelor's and Master's Theses

