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Summary
This paper presents and comments selected author’s results in
the theory of quantum structures.

Section 1 gives basic motivation and notions of quantum
structures theory.

Section 2 deals with set representations of orthoposets and
extensions of measures generalizing classical results for Boolean
algebras (Stone [51], Horn and Tarski [20]).

Section 3 is devoted to Boolean orthoposets. Boolean ortho-
posets have a couple of properties close to properties of Boolean
algebras. E.g., concreteness, distributivity of the MacNeille com-
pletion, weak form of distributivity, orthomodularity in case of
finite orthocompleteness, unital set of two-valued states, equiv-
alence of the unitality and order determinacy for a set of two-
valued states.

Section 4 deals with conditions that ensures that a quantum
structure is a Boolean algebra. Author generalizes quite a few
results combining properties of the algebraic structure and of its
state space for orthomodular posets and for effect algebras.

Section 5 treats Kochen–Specker-type constructions of ortho-
modular posets with ‘small’ state spaces.

Section 6 presents various results about classes of effect alge-
bras that generalize both lattice and orthocomplete effect alge-
bras.

Section 7 presents results concerning a characterization of
atomistic effect algebras and a relation of orthoatomisticity to
weak orthocompleteness.

Section 8 deals (including infinite sets) with the associativity
of the partial operation ⊕ and with the distributivity of suprema
and infima with respect to partial operations ⊕ and 	 and vice
versa.
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Souhrn

V této práci jsou uvedeny a komentovány vybrané autorovy
výsledky z teorie kvantových struktur.

Část 1 uvádí základní motivaci a pojmy z oblasti kvantových
struktur.

Část 2 se zabývá množinovými reprezentacemi ortoposetů a
rozšiřováním měr, přičemž zobecňuje klasické výsledky pro Boo-
leovy algebry (Stone [51], Horn a Tarski [20]).

Část 3 je věnována Booleovým ortoposetům, které mají řadu
vlastností blízkých Booleovým algebrám. Například konkrétnost,
distributivitu MacNeillova zúplnění, slabou formu distributivity,
ortomodularitu v případě konečné ortoúplnosti, unitální množinu
dvouhodnotových stavů, ekvivalenci unitality a určení uspořá-
dání pro množinu dvouhodnotových stavů.

Část 4 se zabývá podmínkami, které zajistí, aby kvantová
struktura byla Booleovou algebrou. Autor zobecňuje řadu vý-
sledků vycházejících z vlastností algebraické struktury a z vlast-
ností jejího stavového prostoru pro ortomodulární posety a pro
efektové algebry.

Část 5 pojednává o Kochenových–Speckerových konstrukcích
ortomodulárních posetů s malými stavovými prostory.

Část 6 obsahuje různé výsledky o třídách efektových algeber,
které zobecňují jak svazové tak ortoúplné efektové algebry.

V části 7 jsou zmíněny výsledky týkající se charakterizace
atomistických efektových algeber a vztahu mezi ortoatomisticitou
a slabou ortoúplností v atomických efektových algebrách.

Část 8 se zabývá (včetně nekonečných množin) asociativitou
částečné operace ⊕ a vzájemnou distributivitou suprema a infima
na jedné straně a částečných operací ⊕ a 	 na straně druhé.
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1 Introduction
The origin of quantum structures was derived from the quan-
tum physics formalism where the orthomodular lattice of closed
subspaces of a Hilbert space was used. This enables a nonclas-
sical (non-Boolean) logic with noncompatible elements. The ab-
stract mathematical model interprets events as elements of some
set. The physical state describes probabilities of measuring the
events, i.e., the probability measure on the event structure, which
is identified with the state.

Orthomodular lattices [24] and more general orthomodular
posets [16, 45] are bounded posets (with the least element 0 and
the greatest element 1) described by the properties of the partial
ordering and the orthocomplementation. The crucial role plays
the existence of orthogonal suprema (orthoposets) and the ortho-
modular law that is equivalent to the property that considering
the interval up to a nonzero element we obtain structure of the
same type.

Generalizations of this attempt uses (basically) the axioma-
tization of the partial operation ⊕ of orthogonal suprema (com-
mutative, associative, with unique orthosupplement) such that
the orthomodular law (in new terms) is fulfilled automatically.
This leads to the notion of an orthoalgebra (a⊕ a is defined only
for a = 0) [12] and, more generally, of an effect algebra (a⊕ 1 is
defined only for a = 0) [11, 10]. The latter has a physical inter-
pretation as the set of effects, i.e., positive selfadjoint operators
bounded by the identity on a Hilbert space.

An equivalent structure to the effect algebra is the so-called
D-poset. It is defined using the axiomatization of the partial
operation of the relative complement 	 [29, 10]. The relation
between ⊕ and 	 is given by the equivalence of the following
equalities: a⊕ b = c, a = c	 b, b = c	 a.

States are probability measures. Jauch–Piron states [22, 41]
(motivated by physics) are such states that the set of elements
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evaluated by 1 is downward directed. We usually want to have a
‘large’ set of states, e.g., order determining, i.e., the partial order
on the quantum structure is defined by values of states, or unital,
i.e., every nonzero element has probability 1 for some state.

2 Set representations of orthoposets
Since the Stone representation [51] of Boolean algebras (by means
of clopen subsets of totally disconnected compact Hausdorff topo-
logical spaces) it has been natural to look for a set (or even a
topological) representation of algebraic structures in the sense
that the basic objects of the algebraic structure (elements, rela-
tions, operations) are represented by set-theoretical ones. E.g.,
every Boolean algebra might be represented by a family of subsets
of some underlying set such that the least element corresponds to
the empty set, the greatest element corresponds to the underlying
set, the partial ordering corresponds to the inclusion relation, the
orthocomplementation corresponds to the set-theoretical comple-
ment, the infimum (meet) corresponds to the intersection and the
supremum (join) corresponds to the union.

The representation might be constructed by several equiva-
lent ways. We can use different objects as the elements of the un-
derlying set: ultrafilters, prime ideals, homomorphisms into the
two-element Boolean algebra or two-valued measures. The nat-
ural object in some applications of the theory of orthostructures
(e.g. in the quantum theory) is the two-valued state (two-valued
probability measure).

There need not be an infimum or a supremum of a pair of
elements in orthoposets. Hence, we would like to find a set rep-
resentation of an orthoposet such that the least element corre-
sponds to the empty set, the partial ordering corresponds to the
inclusion relation, the orthocomplementation corresponds to the
set theoretical complementation and the supremum of orthogo-
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nal elements corresponds to the set theoretical union. However,
it is known that the existence of such a representation is equiv-
alent to the existence of an order determining set of two-valued
states (Zierler and Schlessinger [71] for orthomodular posets).
Orthoposets with such property are called concrete. Since there
are orthomodular lattices even without any state (Greechie [14]),
not every orthomodular lattice is concrete.

Thus, it is necessary to give up the latter correspondence
and look for a weaker one. The weakening uses some type of
weak (two-valued) states, i.e., assuming additivity only for some
pairs of orthogonal elements. The supremum of these elements
corresponds to the union of the corresponding representations if
there is an order determining set of such weak states. Instead of
a topological space we obtain a more general closure space [5, 21].

We might consider no additivity at all. It leads to the con-
cept of an M-base and a set representation of every orthoposet
(Marlow [30], Katrnoška [25], Mayet [31]). ‘Better’ representa-
tions were obtained assuming the additivity in case: both ele-
ments belong to the center of the orthomodular poset (Zierler
and Schlessinger [71], Iturrioz [21]), at least one element belongs
to the center of the orthomodular poset (Pták [42], Binder and
Pták [2]), both elements belong to a given Boolean subalgebra
of the orthomodular poset (Tkadlec [53]), at least one element
belongs to the center or both elements belong to a given Boolean
subalgebra of the orthomodular poset (Harding and Pták [19]).

Also, the topological properties of the representation and the
extension of states are studied. A general approach for various
types of weak states in orthoposets was given by Tkadlec [55].

3 Boolean orthoposets
An orthoposet is called Boolean if it fulfills the following con-
dition: a ∧ b = 0 implies a ⊥ b (the reverse implication is al-
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ways valid). Boolean orthoposets are close to Boolean algebras,
e.g., they are concrete [36]. Moreover, lattice [36] or orthocom-
plete [56] Boolean orthoposets are Boolean algebras (a general-
ization of these two statements is presented in Section 4).

The author proved that the MacNeille completion of a
Boolean orthoposet is a Boolean algebra [55] and that Boolean
orthoposets are almost distributive in the sense that the equality
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) is true whenever the expressions in
parentheses and at least one side of this equality exist [52]. The
latter result generalizes the result of Klukowski [27] (he, more-
over, assumed the orthomodularity and the existence of the right
side of the equation). Analogous results might be found in [16,
Lemma 3.7] (for an orthomodular poset with additional assump-
tions about the compatibility and that the right side of the
equation exists) and in [45, Proposition 1.3.10] (for orthomod-
ular lattices with additional assumptions about compatibility
and that the left side of the equation exists). Consequently, a
Boolean orthoposet with existing (finite) orthogonal suprema is
orthomodular.

The author gave a characterization of Boolean orthoposets
by means of two-valued states [54] as orthoposets with a unital
set of two-valued states such that every unital set of two-valued
states is order determining. Also, he proved that an orthoposet is
Boolean if it has an order determining set of two-valued Jauch–
Piron states while the reverse implication is not true in general
(giving an example of a Boolean orthomodular poset without any
two-valued Jauch–Piron state) but it is true for atomic ortho-
posets. Moreover, there are concrete orthomodular posets with
a unital set of two-valued states that are not Boolean.
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4 Central elements
Central elements are elements that are compatible with all el-
ements, i.e., they ‘cuts’ other elements additivelly. The set of
central elements (the center) of an effect algebra forms a Boolean
subalgebra, an effect algebra is a Boolean algebra if and only if
every its element is central, an effect algebra can be decomposed
into a product of effect algebras using a central element (and its
orthosupplement) [15].

An important question in the axiomatics of quantum struc-
tures is the question whether the conditions imposed on the struc-
ture implies that the structure is a Boolean algebra (a classical
system). In other words, we cannot combine such properties to
obtain a proper quantum (nonclassical) structure.

Quite a few results of this type appeared for orthomodular
posets combining a property of the orthomodular poset (lattice
or orthocomplete or Jauch–Piron with a countable unital set of
two-valued states) and a property of its state space (e.g., order
determining / unital / weakly unital set of two-valued Jauch–
Piron / subadditive / weakly subadditive states). In particular,
the state space of a Boolean orthoposet has a suitable property.

Some of these results, e.g., the results of Dvurečenskij,
Klukowski, Länger, Majerník, Müller, Navara, Pták, Pulman-
nová or Tkadlec [26, 36, 52, 34, 34, 48, 33, 47, 46, 56, 9, 57,
35] published during the years 1975–1997 were generalized by
Tkadlec [58] using the introduced maximality property (every
pair of elements has a maximal lower bound) and the weak
distributivity (a ∧ b = a ∧ b′ = 0 implies a = 0).

It is more complicated to prove that the maximality property
and the weak distributivity is a consequence of properties used in
the papers mentioned above than the proof of the theorem “Ev-
ery weakly distributive orthomodular poset with the maximality
property is a Boolean algebra.” itself. The proof of the theorem
might be illustrated using the set representation mentioned in
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Section 2):

a a′

b

b− c
(b− c)− d

c

d

a, b
c ≤ a, b maximal
b− c (orthomodularity)
d ≤ a′, b− c maximal
(b− c)− d (orthomodularity)(
(b− c)−d

)
∧a =

(
(b− c)−d

)
∧

a′ = 0 (maximality of c, d)
(b− c)− d = 0 (weak distrib.)
(b− c) = d
b = c∨d, a = c∨(a−c) . . . a↔ b

The result was generalized for effect algebras by Tkadlec [62]
giving a characterization of central elements. Consequences for
atomic effect algebras were presented by Tkadlec [63] and for
residuated orthomodular lattices by Tkadlec and Turunen [69].

Other results stating when a quantum structure is a Boolean
algebra are presented in author’s papers [59] (for concrete or-
thomodular posets generalizing some results of Müller, Pták or
Tkadlec [34, 44]) and [64] (for atomic sequential effect algebras
generalizing some results of Gudder and Greechie [18]). The lat-
ter was generalized by Caragheorgheopol and Tkadlec [4] to effect
algebras with compression bases [17].

5 Kochen–Specker-type constructions
Kochen and Specker [28] constructed an example of an ortho-
modular poset without any two-valued state using subspaces of
a three-dimensional Hilbert space. They depicted their example
by the so-called orthogonality diagram. Svozil and Tkadlec [20]
used simpler Greechie diagrams [14] to present examples of or-
thomodular posets realizable in a three-dimensional Hilbert space
with a ‘small’ (empty, not unital, not separating, not order de-
termining) set of two-valued states. Also, the realizability of
Greechie orthomodular posets was discussed. Several examples
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of Greechie diagrams and dual Greechie diagrams of such con-
structions of other authors (Schütte, Peres, Conway and Kochen,
Mermin or Bub [7, 39, 40, 32, 3]) were presented in this and
subsequent author’s papers [60, 61].

6 Classes of effect algebras
There are various important classes of effect algebras.

Ovchinnikov [38] introduced weakly orthocomplete orthomod-
ular posets (every orthogonal sum either has the sum or no
minimal majorant) as a common generalization of orthocomplete
orthomodular posets and orthomodular lattices and showed
that they are disjunctive. Weak orthocompleteness is useful in
the study of orthoatomisticity and disjunctivity might be used
to characterize atomisticity (see Section 7). De Simone and
Navara [8] introduced a stronger property denoted by W+ (the
set of majorants of every orthogonal set is downward directed).

Tkadlec [58] introduced the class of orthomodular posets with
the maximality property (every pair of elements has a maximal
lower bound) as another common generalization of orthocomplete
orthomodular posets and orthomodular lattices (lately for effect
algebras) and showed various consequences of this property (see
Section 4).

Tkadlec [66] introduced a stronger property denoted by CU
(the set of upper bounds of every chain is downward directed)
and showed that both lattice and orthocomplete effect algebras
have this property. Moreover, he proved at this paper that a
unital set of Jauch–Piron states on an effect algebra with the
maximality property is strongly order determining and that a
Jauch–Piron effect algebra with a countable unital set of states
is an orthomodular lattice.

Author’s papers [67, 68] show that weak orthocompleteness
and the maximality property are incomparable in general as well
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as their strengthenings (properties W+ and CU) but there are
some relations (in particular, properties W+ and CU are equiv-
alent in separable Archimedean effect algebras) and they share
common properties: the property W+ is a common generaliza-
tion of the orthocompleteness and the lattice property; an ortho-
modular poset with the maximality property is disjunctive.

7 Atomic effect algebras
Atoms are minimal nonzero elements. An effect algebra is atomic
if every its nonzero element dominates an atom, atomistic if every
its element is a supremum of a set of atoms, and orthoatomistic
if every its element is a sum of atoms.

Obviously, every orthoatomistic and every atomistic effect
algebra is atomic, every orthoatomistic orthomodular poset is
atomistic. Moreover, every atomic orthomodular lattice is atom-
istic (see, e.g., [45]).

Atomic orthomodular posets need not be atomistic (Greechie
[13]), atomistic orthomodular posets need not be orthoatomistic
(Ovchinnikov [38]) and orthoatomistic effect algebras need not
be atomistic (Foulis, Greechie and Rüttimann [12]).

Author’s papers [63, 64, 4] studying centrality in atomic effect
algebras has been already mentioned in Section 4. It is also
proved that every lattice effect algebra determined by atoms is
atomistic [64].

A characterization of atomistic effect algebras as disjunc-
tive atomic effect algebras was given in author’s paper [65].
Moreover, it is proved there that every weakly orthocomplete
Archimedean effect algebra is orthoatomistic. This generalizes
results of Ovchinnikov [38] (stated for weakly orthocomplete
atomic orthomodular posets), Foulis and Bennett [11] (stated
for chain-finite effect algebras), and Riečanová [50] (stated for
lattice Archimedean atomic effect algebras).
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8 Distributivity and associativity
Boolean algebras are distributive, i.e., a∧(b∨c) = (a∧b)∨(a∧c).
The orthomodular law is a special case of the distributivity using
the equation for b ≤ a and c = b′. In general, suprema and infima
need not exist, especially if we consider infinite sets. A result for
Boolean orthoposets has been already mentioned in Section 3.

The distributivity-like properties of suprema and infima (pos-
sibly infinite) with respect to partial operations ⊕ and 	 and
vice versa were studied by Bennett and Foulis [1] in the context
of effect algebras (sometime assuming that they form a lattice)
and by Chovanec and Kôpka [6] in the context of D-posets (for
two-element sets assuming that the D-posets form a lattice). A
unified overview of generalizations of these results is presented in
author’s paper [70].

A “large associativity” (also for infinite number of elements)
of the partial operation ⊕ was studied by Riečanová [49] in the
context of abelian RI-posets for complete lattices and by Ji [23]
for orthocomplete effect algebras. The already mentioned pa-
per [70] presents a generalization of these results for effect alge-
bras.
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