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Summary

In this lecture I give a brief overview of selected theoretical aspects of heat,
moisture, and salts transport in porous building materials on which I have
been working in the Department of Materials Engineering and Chemistry
since 2010. The work was supported significantly by two grants: Cumula-
tive time dependent processes in building materials and constructions (Czech
Science Foundation grant No. P105/12/G059) and Complex system of meth-
ods for controlled design and assessment of functional properties of building
materials (Ministry of Education grant No. MSM: 6840770031).

The initial impulse for my research was a striking controversy: the diffu-
sion coefficient of salts transported through a lime-based plaster, sandstone,
and similar materials turned out to be way too high in comparison with its
value for pure water. The challenge was to suggest suitable experiments to
identify the additional effects causing this behavior and to propose appro-
priate transport models to analyze them.

Two such additional effects could provide the explanation. One is surface
diffusion (see Section 3) and the other is osmosis (see Section 4). Either has
not been studied for building materials in much depth yet. I suggested to ap-
ply one experimental method to analyze each of them: the time-lag method
and the Sherwood–Cruster method, respectively. My colleagues have been
already testing and using the former one, but the results still do not seem to
be quite reliable; the latter method is yet to be performed. I also worked on
a microscopic description of surface diffusion, using my previous experience
from statistical mechanics of lattice gases. We were able to obtain a simple
formula for the surface diffusion coefficient when a first-order phase transi-
tion occurred on the surface (see Section 3). In addition to these efforts, I
suggested to derive formulas for a fast calculation of varying diffusion coef-
ficients by the Boltzmann–Matano method (see Section 5), which is usually
done numerically and may be pretty time consuming. We were successful
and were even able to compare the results when various theoretical profiles
were used to approximate a given experimental profile.
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Souhrn

V této přednášce uvád́ım stručný přehled vybraných teoretických aspekt̊u
přenosu tepla, vlhkosti a soĺı v porézńıch stavebńıch materiálech, na kterých
jsem pracoval na Katedře materiálového inženýrstv́ı a chemie od roku 2010.
Tato práce byla výrazně podpořena dvěma granty: Kumulativńı časově
závislé procesy ve stavebńıch materiálech a konstrukćıch (projekt GAČR
č. P105/12/G059) a Komplexńı systém metod pro ř́ızený návrh a hodno-
ceńı funkčńıch vlastnost́ı stavebńıch materiál̊u (projekt MŠMT č. MSM:
6840770031).

Původńım impulsem pro můj výzkum byl tento zarážej́ıćı rozpor: difúzńı
koeficient soĺı přenášených ve vápenné omı́tce, ṕıskovci a podobných ma-
teriálech se ukázal být mnohem vyšš́ı v porovnáńı s jeho hodnotou pro
čistou vodu. Výzvou bylo doporučit vhodné experimenty na identifikováńı
dodatečných efekt̊u zp̊usobuj́ıćıch toto chováńı a navrhnout př́ıhodné trans-
portńı modely na jejich analýzu.

Dva takové dodatečné efekty by mohly poskytnout vysvětleńı. Jedńım je
povrchová difúze (viz Sekce 3) a druhým je osmóza (viz Sekce 4). Ani jeden
z nich nebyl doposud v př́ıpadě stavebńıch materiál̊u podrobněji studován.
Doporučil jsem aplikovat jednu experimentálńı metodu na analýzu každého
z nich: metodu opožděného času, resp. Sherwood–Crusterovu metodu. Moji
kolegové již testuj́ı a použ́ıvaj́ı prvńı metodu, ale výsledky se zat́ım nezdaj́ı
být celkem spolehlivé; druhá metoda ještě muśı být provedena. Pracoval
jsem také na mikroskopickém popisu povrchové difúze, přičemž jsem použil
své dř́ıvěǰśı zkušenosti ze statistické mechaniky mř́ıžkových plyn̊u. Byli jsme
schopni źıskat vzorec pro povrchový difúzńı koeficient, když na povrchu
docháźı k fázovému přechodu prvńıho druhu (viz Sekce 3). Kromě těchto
snah jsem navrhnul odvodit vzorce umožňuj́ıćı rychlý výpočet měńıćıch se
difúzńıch koeficient̊u pomoćı Boltzmann–Matanovy metody (viz Sekce 5),
který se obvykle provád́ı numericky a je časově dost náročný. Byli jsme
úspěšńı, a dokázali jsme dokonce porovnat výsledky, když se použij́ı r̊uzné
teoretické profily na aproximováńı daného experimentálńıho profilu.
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1 Introduction

Proper understanding of heat, moisture, and salt transport in porous build-
ing materials is crucial for the assessment of their performance and dura-
bility. In fact, moisture and salt can cause serious deterioration and struc-
tural damages to these materials, for example, due to the corrosion of steel
in concrete structures and salt efflorescence. Heat may significantly affect
the materials dimensions and cause length changes responsible for cracks
in concrete structures. Instead of employing destructive methods that ruin
samples, it is convenient to describe the transport by suitable models. This
approach has also the potential to predict future behavior in the long run,
which may require years of investigations if only experimental methods are
applied.

The accuracy of modeling critically depends on several factors. First, it
is the model itself in which heat, water, and salt transport should be cou-
pled (salts can be transported only in the presence of water, and isothermal
conditions are rare in practice). Second, it is the initial and boundary con-
ditions that are specified from an experimental on-site analysis or suitably
adjusted in a laboratory measurement. Finally, it is the precision with which
one can determine the input transport and storage parameters that appear
in the model, because they may strongly depend on the water content, salt
concentration, or temperature. In that case the traditional methods of their
determination (from fitting the model with constant parameters to measured
profiles) cannot be applied. Rather, the parameters are often determined
by inverse methods.

Microscopic modeling is another approach that may significantly con-
tribute to the understanding of mass and heat transport. This is usually a
very complex task, and often very simple models can be only investigated
(so that the corresponding results need not be actually useful in real appli-
cations). Nevertheless, this approach may bring completely new insight into
some problems and, with the help of powerful computer techniques (for ex-
ample, molecular dynamics simulations and density-functional calculations),
even produce interesting practical results.
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In this lecture I shall present my recent results in the transport of mois-
ture, salts, and heat in porous building materials based on both macroscopic
and microscopic models.
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2 Modeling of transport in porous materials

There are various types of models used to describe mass and heat transport
in porous materials. A natural way to model the transport of water is to
use convection as the dominant mechanism. For an unsaturated case the
water flux J = ρv (where ρ is the water density and v is the Darcy velocity)
satisfies the continuity equation for the water mass balance in a porous body.
Neglecting the gravity effects and assuming that water is incompressible, this
equation may be written as [1]

∂w

∂t
= ∇ · [κ(w)∇w]. (2.1)

Here the moisture diffusivity κ describes the liquid water transport and
the volumetric moisture content w is the driving force. This formulation
is appropriate in building physics, and it is equivalent to the formulation
via the water permeability or hydraulic conductivity frequently employed in
soil science, where the driving force is associated with the capillary water
pressure and hydraulic head, respectively [2, 3].

For the transport where water vapor is included diffusion is mostly the
dominant mechanism. In this case the simplest model is the standard dif-
fusion equation, analogous to Eq. (2.1), with the driving force being the
moisture content by mass, u, and the moisture transport described by the
diffusion coefficient, D(u) [1]. Both u and D are sums of water vapor and
liquid water contributions.

In hybrid models both diffusion and convection are combined. A simple
example of this sort can be obtained from the linear theory of mixtures.
Applying the mass balance equation for moisture in which the total flux is
the sum of a diffusion term, −κd(u)∇ρ, and convection term, ρv, the model
may be written as [1]

∂u

∂t
= (1 + u)∇ · [κd(u)∇u] + κd(u) (∇u)2, (2.2)

provided the solid matrix is nondeformable and of constant density.
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A systematic approach to formulate models of transport, especially when
the situation is more complex and heat and/or salts are transferred besides
moisture, is to apply the rules of non-equilibrium thermodynamics [4]. These
imply that a correct identification of the thermodynamic forces, Xi, and
fluxes, J i, in a model of a specific transport problem requires to rewrite
the entropy production rate as a sum of terms of the form J i ·Xi. To do
so, one usually combines the balance equations with thermodynamic laws.
Moreover, the rules imply the presence of various cross effects, such as the
Soret and Dufour phenomena.

A simple example is a model of a diffusive heat and liquid moisture
transport in a porous body under isobaric conditions when phase changes
are neglected. This model may be formulated as [1]

∂c

∂t
= ∇ · (D∇c+ δ∇T ), (2.3)

ρt cp
∂T

∂t
= ∇ · (kc∇c+ λ∗∇T ), (2.4)

where c = (ρ/ρt)w is the moisture mass concentration, T is the thermody-
namic temperature, ρt is the body’s density, and cp is the isobaric specific
heat capacity. Note that the transfer of heat and moisture are coupled in
this model: time changes in the concentration and temperature are induced
by spacial changes in both of them. The direct (c–c and T–T ) effects are
described by the diffusion coefficient D and a generalized thermal conduc-
tivity λ∗, while the cross (c–T and T–c) effects by the Soret and Dufour
coefficients δ and kc.

When the transport of salts (or chemical compounds in general) occurs,
diffusion models are usually employed. They are based on Fick’s law ac-
cording to which the mass flux of a salt is proportional to the gradient of
the salt mass concentration, Jdiff

s = −Ds∇cs, where Ds is the salt diffusion
coefficient. This simple picture may require several improvements. One is
the fact that salts can move through a porous body only in the presence of
water. Thus, besides the diffusive part, the total salt flux must contain a
convective part, Jconv

s = ρtcsvdrift, leading to the coupling of water and salt
transports. Another improvement is needed when the salt species are not
electrically neutral. Then electrical interactions must be considered, adding
a part Jel

s ∝ ∇φ to the total flux that is proportional to the gradient of
an electric potential (expressed mostly by the Nernst–Planck equation). An
improvement due to possible chemical reactions that cause the production
of salts may be also needed. This is implemented via a suitable source term
in the balance equations. As a result, rather complex models of coupled
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water, salts, and heat transport through porous bodies may arise.
To illustrate the point, let us mention the sophisticated model of Konior-

czyk and Gawin [5] that consists of as many as five balance equations. One
is for the mass balance of liquid water and vapor, one for the mass balance
of a salt dissolved in the fluid phase, one for the mass balance of dry air,
one for the enthalpy of the porous body, and one for its linear momentum.
Using computer simulations, this model has been quite successfully applied
to the investigation of practical problems related to the moisture and heat
transport in building materials containing salt. These included capillary
suction by sandstone, osmosis in cement mortar, influence of salt on drying
of a building element [5], or salt crystallization in a brick wall [6].

Of course, when trying to understand a specific problem, it is desirable
to employ a model that is as simple as possible but, at the same time, plau-
sible to capture the main aspects of the problem. Still, even simple models
may require the use of computer simulations to be solved. However, good
care must be taken not to oversimplify the situation, because the ‘standard’
simple models that are widely used can lead to controversial results. An
example may be a coupled water and chloride transport in a lime plaster
studied in [7, 8]. For water saturated samples the values of the chloride dif-
fusion coefficient were found to be very close to the value of the coefficient in
pure water (of order 10−9 m2s−1). It is therefore possible to conclude that
a simple diffusion mechanism was dominant for the chloride transport. On
the other hand, for the penetration of chloride solution into dry samples,
the diffusion coefficient was found to be about three orders of magnitude
higher than for water saturated samples. This sudden acceleration of the
chloride transport suggest that additional effects must be present, such as
surface diffusion and osmosis [7,8]. It is primarily the study of these effects
that I shall discuss in this lecture.
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3 Surface diffusion

Besides the usual bulk diffusion in pores, particles can migrate across a
porous material along the pores surface. Bulk diffusion is driven by a con-
centration gradient of the migrating particles, and there is no interaction
between the particles and the inner walls of the pores (except, perhaps, col-
lisions). However, particles may adsorb on these walls and diffuse on the
surface while being adsorbed (i.e., while being within the potential field of
adsorption). This particle migration is called surface diffusion (see Fig. 3.1)
and can be experimentally observed and probed by nuclear magnetic res-
onance methods [9, 10]. It can significantly contribute to the total mass
transfer rate in porous materials both in gas-solid and liquid-solid adsorp-
tion systems. For example, in reversed-phase liquid chromatography sys-
tems, the bulk diffusivity is about one order less than the total diffusivity,
so that more than 90 % of the particles migrate by surface diffusion [11,12].

Surface diffusion is complicated by a complex nature of the interactions
between the adsorbate particles and the surface atoms as well as by the com-
plexity of the surface. The lateral interactions—those between the diffusing
particles themselves—must be also taken into account. As usual, there are
two approaches to study surface diffusion: experimental and theoretical. Let
us briefly discuss both.

SOLID SKELETON

Surface diffusion

Molecular diffusion

BULK PHASE

Potential field

of adsorption<

Figure 3.1: An illustration of surface and molecular diffusions.
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SOLID SKELETON
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Molecular diffusion
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Figure 3.2: An illustration of surface diffusion as an activated process. The periodic energy
barrier is depicted by a dotted line, and the activation energy Eac is indicated.

3.1 Experimental investigation

In the experimental approach the surface diffusion coefficient, Ds, is ob-
tained from measurements as a function of the involved parameters (the
surface concentration and temperature) for a given solid material. Clearly,
such results are limited to the given system and may not be extensible to
other systems. Still, some kinetic theory must be proposed to explain these
results. Various theories of this sort have been proposed, and they may be
split into three categories [13,14].

First, theories based on hopping models in which the migrating particles
are viewed as hopping between distinct, energetically favorable adsorption
sites on the surface. Thus, surface diffusion is viewed as an activated type of
a mass transfer process: if an adsorbed particle acquires a sufficient energy,
called the activation energy, Eac, it can get over the energy barrier between
adsorption sites and jump to a neighboring site (see Fig. 3.2). Hopping
models are appropriate when at most one layer of adsorbed particles is
formed.

Second, theories based on hydrodynamic models in which the diffusion
of adsorbed particles is due to the viscous motion of the liquid film inside
the porous medium. These models are not used very often because a hydro-
dynamic flow appears only when at least a few layers of adsorbed particles
are formed.

Third, theories based on Fickian models in which surface diffusion is
treated as the flow in excess of bulk diffusion. If the two flows are indepen-
dent, the total flux becomes the sum

J t = J b + Js, (3.1)

and the surface diffusion flux Js is obtained as the total diffusion flux minus
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the diffusion flux of a non-adsorbing fluid. This method underestimates the
bulk flux and overestimates the surface flux because the path ‘desorption →
bulk diffusion → re-adsorption’ is neglected.

At present it is sometimes difficult to place a given kinetic model in only
one of the above three categories, because it may take into account two or
more dominant mechanisms of surface diffusion.

The basic experimental approach to evaluate the surface diffusivity is
to measure a physical quantity that is sufficiently sensitive to the surface
diffusivity. Then the latter along with its dependence on the temperature
and/or concentration follow when the model is tested against experimental
data.

From the practical point of view, the surface diffusion flux is related to
the gradient of the surface concentration by the Fickian equation

Js = −Ds∇cs, (3.2)

where cs is the surface concentration of the transported particles. The sur-
face diffusivity Ds may strongly depend on cs and T as well as on the
interaction between the adsorbate and the solid surface and the structure
of the solid surface. Even though Eq. (3.2) often correctly describes the
surface diffusion flux, the fundamental question is the exact functional form
of Ds. In fact, it is the dependence of Ds on many parameters that makes
the study of surface diffusion very complicated.

In [15] we compared four experimental methods from which the surface
diffusivity can be obtained from an appropriate analysis of measured data.
We concluded that the time-lag method is most convenient of them, be-
cause its kinetic model is easy to solve numerically and the separation of
Ds from the bulk diffusivity, Db, is more reliable. In this method a sample
is situated between two chambers, one of which (the upstream chamber) is
filled with an adsorbate particles and the other (the downstream chamber)
is initially isolated from the sample and is empty. The upstream chamber is,
at an initial time, opened and the diffusion of adsorbate particles through
the sample begins. For some time, the amount, Q, permeating out of the
sample to the downstream chamber is negligible because the particles are
accumulated in the sample. However, after most of the adsorbed sites inside
the sample are equilibrated, Q starts rising until it reaches a linear asymp-
tote, Q(t) ≈ S∞(t − tlag) (see Figs. 3.3 and 3.4). In a Q vs. t plot, the
asymptote intersects the time axis at a time, tlag, called the lag time, that
represents the time required for the particles to spend its life within the
sample. The time lag is a function of the operating conditions and kinetic
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Figure 3.3: A scheme of an experimental set-up for the time-lag method.

parameters, including the bulk and surface diffusivities. Thus, obtaining
time lag experimentally allows one to determine these diffusivities.

The kinetic model corresponding to the time-lag method is based on the
following assumptions. First, the system is isothermal (T = const). This is
not a serious restriction and can be easily achieved experimentally. Second,
the adsorbed particles are in a local equilibrium with bulk particles in pores
so that an adsorption isotherm equation, cs = g(cb), is applicable. It is then
necessary to measure the adsorption isotherm for a given material and use
a suitable isotherm equation that fits the data (such as the Langmuir or
BET equation) or a numerical approximation of the data. Third, the mass
transport is given by the bulk diffusion flux, J b, and surface diffusion flux,
Js, that are in the direction of the sample coordinate z (see Figs. 3.3 and
3.4). In experiment this is arranged by isolating the four faces of the sample
parallel with the z direction. If cb is not high (no capillary condensate flow
occurs), then the total mass concentration and total mass flux are

ct = εcb + (1− ε)cs, J t = εJ b + (1− ε)Js, (3.3)

where
J b = −Db∇cb, Js = −Ds∇cs, (3.4)

and 0 < ε < 1 is the fraction of the pore volume in which transported
particles are beyond the influence of the adsorption field. Finally, Db and ε
are constants, cb and cs depend only on z and time t, and Ds(cs) satisfies the
Darken expression Ds = Ds0(∂ ln cb/∂ ln cs) = Ds0(cs/g

′(cb) cb) (here Ds0 is
the surface diffusivity at zero loading).
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Figure 3.4: The plots the permeating amount vs. time obtained from a numerical solution
of the model, Eq. (3.5) (adapted from Fig. 7(a) in [15]). The sensitivity of the curves to a
change in Ds0 is illustrated by using three values of Ds0. The corresponding values of tlag
are found at the intersections of the linear asymptotes with the horizontal axis (indicated
by dashed lines).

The resulting time-lag model follows from the overall mass balance equa-
tion and may be written as

G(cb(z, t))
∂cb(z, t)

∂t
=

∂

∂z

[
H(cb(z, t))

∂cb(z, t)

∂z

]
(3.5)

with

G(cb) ≡ ε+ (1− ε)g′(cb), H(cb) ≡ εDb + (1− ε)Ds0
g(cb)

cb
, (3.6)

where the prime indicates the derivative. Measuring or estimating ε and Db

independently, the only fitting parameter is Ds0. The initial condition reads
cb(z, 0) = 0 (the sample contains no adsorption particles at the beginning).
One boundary condition is cb(0, t) = c0 (a constant supply of adsorbent
from the inlet side of the sample) and the other one may be chosen as
the Dirichlet condition ∂cb(L, t)/∂z = const (the constant is to be taken
from experimental data). It is not necessary to solve the mass balance
equation (3.5) to obtain the time lag. Indeed, the approach of Frisch [16]
applied to the model yields the formula [17]

tlag = L2

∫ c0
cL

H(ξ)
( ∫ c0

ξ H(c) dc
)( ∫ ξ

0 G(c) dc
)
dξ( ∫ c0

cL
H(c) dc

)3 , (3.7)
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where c0 and cL are the steady-state concentrations at z = 0 and z = L,
respectively. As soon as the isotherm equation is known, the time lag may
be readily evaluated from this formula, yielding an explicit relationship of
the time lag to the surface diffusivity. Therefore, experimental data on tlag
provide a straightforward way of obtaining Ds.

3.2 Theoretical investigation

The theoretical approach requires the ‘complete’ knowledge of the surface
structure and a detailed understanding of the interactions between the sur-
face atoms and the diffusing particles as well as the interactions between
the diffusing particles themselves (lateral interactions). Given such knowl-
edge, approximate dynamical methods (often Monte Carlo and molecular
dynamics simulations) are used to study the mobility of particles in the
close neighborhood of the surface atoms [18, 19]. Although this approach
is more fundamental and can be used as a predictive tool, the complete
knowledge of real surfaces is usually not available. In addition, solving the
problem even by the approximate methods is often a very complex task.

A very popular way to simulate surface diffusion is to employ lattice-
gas models. In these models the migration of adparticles is given by the
potential relief of the substrate surface: most of the time the adparticles
stay at fixed positions (sites) where the relief attains its minima, but from
time to time they perform random jumps to the adjacent vacant sites (see
Fig. 3.2 and 3.5). Assuming the jumps to be instant, the states of the system
of adparticles are represented by occupation numbers (one number for each
site), like in a lattice gas. Although this description is rather oversimplifying,
it should possess the key aspects of the diffusion and, moreover, it can be
treated by a number of statistical mechanical methods, such as the mean-
field, real-space renormalization group, and computer simulation techniques
[18].

We contributed to this line of investigation by determining rigorous ex-
pression for the surface diffusivity Dc, using the Borgs–Kotecký theory of
first-order phase transitions [20]. Near such a transition, where two phases
coexist, the surface concentration (coverage) exhibits a sharp jump between
two values, θ1 and θ2. We showed [21] that the diffusion coefficient behave
as the sum of two hyperbolas,

Dc ≈
A1

N |θ − θ1|
+

A2

N |θ − θ2|
, (3.8)

where N is the number of adparticles in the system. This behavior rapidly
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Figure 3.5: (a) Particles of an idealized hexagonal metallic surface with three particles
adsorbed onto the surface. (b) The surface with the adsorption positions indicated (black
spheres). (c) Two-dimensional representation of the adsorption positions forms a triangu-
lar lattice (surface particles are indicated by circles).
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Figure 3.6: The coverage dependence of the logarithm of the surface diffusion coefficient
(relative to the diffusion coefficient of noninteracting particles D0) in the region of (a) the
fully vacant phase, (b) phase coexistence, (c) the fully occupied phase for N = 30 × 40,
εb = −5εt/3, and εt = 4kBT . The dashed lines correspond to the two-phase region
(Eq. (3.8)), dotted lines to single-phase regions, and the full lines to crossover regions.
The values ∆ = N−3/4 and y = −1.2× 10−11.

changes as the system goes to either of the single-phase regimes. The
crossover behavior (between the two-phase and single-phase regimes) is de-
scribed by rather complex formulas.

As an example, we considered a model in which particles could be ad-
sorbed on a solid surface only at sites forming a regular triangular lattice.
Each lattice site was either vacant or occupied. The lateral interactions
were assumed to be between a pair of nearest-neighbor adparticles (with an
energy εb) and a triple of nearest-neighbor adparticles (with an energy εt).
The model can have four possible phases: fully vacant, fully occupied, and
two phases with a partial occupancy 1/3 and 2/3 (in which one sublattice
of the triangular lattice is occupied/vacant). For the transition between the
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fully vacant and fully occupied phase with εt repulsive and εb attractive the
dependence of Dc on the coverage is plotted in Fig. 3.6. Our other works
on this topic was published in [22–25].
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4 Osmosis

A porous material may act as a semipermeable membrane that allows the
migration of a solvent (usually water) and restricts the passage of solute
molecules (salts) or ions (see Fig. 4.1). This transport of water, when a
fluid flows from the region with a low solute concentration (a high fluid
chemical potential) to the region with its high concentration (a low fluid
chemical potential), is called osmosis [26]. The flow increases the fluid pres-
sure in the latter region (see Fig. 4.2) and decreases it in the former one.
These pressure changes lead to a countering hydraulic flow, until the two
opposing flows cancel each other and equilibrium is reached. The develop-
ment of overpressures and high salinities due to osmotic effects may be of
significant concern in many applications. In fact, in the past decade or so the
transport of species through porous media by coupled effects, and by osmo-
sis in particular, has attracted much attention in geophysics, environmental
sciences, civil engineering, or petroleum industry.

Osmosis can be caused not only by a concentration gradient (chemical
osmosis) but also by gradients in the electric potential (electro-osmosis)
or temperature (thermo-osmosis). In fact, an electric potential difference
can force a fluid to flow into or out of the material. In addition, under a
temperature gradient, a fluid may flow from hot to cold region or vice versa,
depending on the entropy difference between the fluid inside the material and

DΠ �Ρg=h

cs
- cs

+
< cs

- cs
+

=

osmosis

Figure 4.1: A schematic representation of chemical osmosis. A porous material (in the
center) that can act as a semipermeable membrane permits the passage of the solvent (the
small disks) but not of the solute (the large disks). The hydrostatic pressure increases in
the compartment of higher solute concentration until the osmotic pressure ∆π = ρgh is
reached and the solvent concentrations in both compartments equalize.

19



0 5 10 15 20 25

0

1

2

3

4

5

Time HhL

Pr
es

su
re
Hk

Pa
L

Figure 4.2: A typical time evolution of the fluid pressure in a chemical osmosis experiment
in a high concentration region (adapted from [9]). The initial increase is caused by the
osmotic flow into the region, while the final decline by diffusion out of the region. The
maximal pressure value is equal to σ∆π.

outside it. For example, water in a hydrophilic material can be considered
to have a relatively ordered state compared to water existing outside the
material, leading to a water flow from the cold side to the hot one. On the
other hand, for hydrophobic materials water usually flows in the opposite
direction. In addition, the membrane behavior is sometimes due to pore
dimensions (steric hindrance, i.e., if the solute molecule is greater than the
pore size) or, say, electric fields that block ions from entering the pores,
while water and non-charged solutes are freely admitted to the material.

The studies of osmosis mostly focus on the behavior of clays or similar
materials, but porous building materials have been only rarely investigated.
This is rather surprising because their microscopic properties may be very
similar to clays and osmotic phenomena should be expected to play a sig-
nificant role in the transport of solutes through them. If these are not taken
into account, serious inaccuracies may arise in modeling and interpretation
of the transport. On the other hand, the membrane behavior need not be
relevant in all applications. Therefore, each application must be given its
own consideration.

The ability of a material to act as an osmotic membrane is quantitatively
characterized by the osmotic efficiency (also called the reflection coefficient),
σ. Its value ranges between two extremes: 0 for a non-permselective material
and 1 for a material with the perfect or ideal membrane behavior. It is not
rare that rcan attain rather high values, about 0.75, or be even close to
1. Direct experimental evidence for osmosis was provided for materials like
clays and zeolite-clays, cement mortar, or silica-zirconia [26].
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Figure 4.3: A scheme of the apparatus used by Sherwood and Craster. Both the reservoirs
have the same volume, Vd, and the capillaries cross sections Ac.

Sherwood and Craster [27] proposed a low-pressure device from which
the Darcy permeability κ, salt diffusivity Ds, and osmotic efficiency σ can
be determined. Namely, a sample is placed between two reservoirs with the
same salt solutions of different initial concentrations (see Fig. 4.3). A cap-
illary of the crosssectional area Ac is inserted into either reservoir to detect
volume changes of the fluid. The differences ∆p and ∆xs in the pressure and
salt mole fraction between the two reservoirs (i.e., across the membrane) are
monitored as functions of time. Using a theoretical model that considers
only the hydraulic and chemical-osmosis effects, the dependences may be
written in terms of decaying exponentials

∆p(t) = a1(e
−a2t − e−a3t), ∆xs(t) = ∆x0se

−a3t, (4.1)

where ai are specific functions of κ, Ds, and σ, and ∆x0s is the salt mole
fraction at an initial time. Upon fitting experimental data on ∆p(t) and
∆xs(t) with these theoretical functions, one can determine κ, Ds, and σ.

A simple example of a macroscopic model of chemical osmosis based on
non-equilibrium thermodynamics that was used to predict the evolution of
pressure and salinity in a clay membrane was proposed by Bader and Kooi
[28]. The mass balance equations were the sourceless continuity equations
for isothermal liquid and solute transport in a porous medium,

∂(nρf )

∂t
+∇ · (ρfJ t) = 0,

∂(ncs)

∂t
+∇ · Js = 0, (4.2)

where n is the porosity and ρf is the fluid (solution) density. The total
(solution) and salt mass fluxes are given as

J t = −κ

µ

[
∇p−σνRTρf∇

( cs
ρf

)]
, Js = (1−σ)csJ t−Ds(1−σ)∇cs, (4.3)
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where µ (kg m−1s−1) is the dynamic viscosity of the fluid and ν is the
dissociation coefficient. Note that for σ = 0 the two flux expressions in
Eq. (4.3) reduce to Darcy’s law and to Fick’s law for solute transport by
advection and diffusion, respectively. On the other hand, for σ = 1 there is
no solute transport, while solution transport may be significant due to both
hydraulic and osmotic gradients. The pressure evolution for this model
calculated numerically for a 1D flow through a 1-cm thick membrane with
σ = 0.1, k = 10−8m2, D = 10−9m2s−1, and n = 0.3 is shown in Fig. 4.2.

It should be noted that further insight into osmotic phenomena can be
provided at the microscopic level by applying computer simulations.

22



5 Boltzmann–Matano method

Besides using an appropriate model of salt transport (necessarily coupled
with moisture transport) with appropriate initial and boundary conditions,
the accuracy of results depends critically on the precision with which one can
determine the input transport and storage parameters in the model. The
reason is that the input parameters may be strongly varying with the water
content, salt concentration, or temperature. Varying input parameters are
usually determined by inverse methods, and one such convenient inverse
approach is the Boltzmann-Matano method [29, 30]. It is applicable for
1D transport and uses experimental data on the water content and salt
concentration profiles.

When an inverse analysis is applied, the results are usually calculated
numerically. Sometimes this approach may be quite laborious and not al-
ways reliable and, thus, verified by back-calculation of the original data.
Moreover, the results are given just in a discrete format and may require
final smoothing [31]. A great nuisance is also that the whole numerical pro-
cedure must be performed separately for each experiment. On the other
hand, in an analytical approach these drawbacks are avoided and the re-
sults are obtained very fast. In such an approach the experimental data are
approximated by analytical curves from which the resulting formulas are
derived [32–34]. Here we shall illustrate such an analytical approach for the
diffusion-advection model of Bear and Bachmat [35] that is able to describe
a coupled water and salt transport.

This model takes into account salt dispersion in the liquid phase, the
influence of moisture flow on salt transport, and the effect of bound salt
on pore walls. It has been used to study, for instance, damage assessment
of historical sandstone buildings and sculptures [36] and chloride transport
in a lime plaster [8]. Analytical solutions to the model were obtained only
in specific cases [37]. The input material parameters in the model are the
moisture diffusivity κ in dependence on the volumetric moisture content
w, salt diffusion coefficient D in dependence on the mass concentration Cf
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of free salt in water, and the salt binding isotherm, i.e., the dependence
of the concentration Cb of bound salt on the free salt concentration Cf .
The measurable quantities are actually w, the total chloride concentration
C = wCf + Cb, and the binding isotherm Cb = Cb(Cf ). However, these
three readily yield the free salt concentration Cf .

In the 1D case the model may be rewritten as [8]

∂C

∂t
=

∂

∂x

[
wD(Cf )

∂Cf

∂x
+ Cfκ(w)

∂w

∂x

]
,

∂w

∂t
=

∂

∂x

[
κ(w)

∂w

∂x

]
.

(5.1)

The initial and boundary conditions may be chosen as

C(0, t) = C0, C(∞, t) = 0, C(x, 0) = 0,

w(0, t) = w0, w(∞, t) = 0, w(x, 0) = 0,
(5.2)

where C0 and w0 are positive constants, which corresponds to an initially
dry sample.

The model can be subject to an inverse analysis, in particular to (an
extension of) the Boltzmann-Matano method, using the Boltzmann variable
η = x/

√
t. The final formulas read [8, 36]

κ(η) =
I1(η)

2w′(η)
, D(η) = −

Cf (η) I1(η)

2w(η)C ′
f (η)

+
I2(η)

2w(η)C ′
f (η)

(5.3)

with

I1(η) ≡
∫ ∞

η
η∗w′(η∗)dη∗, I2(η) ≡

∫ ∞

η
η∗C ′(η∗)dη∗, (5.4)

where the primes indicate derivatives with respect to η. When the moisture
and total salt concentration profiles w(x, t) and C(x, t) are obtained from
experiment, they may be easily expressed as η profiles w(η), C(η), and
Cf (η). Using these three profiles, one can calculate η dependences of the
moisture diffusivity κ and salt diffusion coefficient D from Eq. (5.3). The
plots of κ vs. w and of D vs. Cf follow from the plots of κ(η) vs. w(η) and
D(η) vs. Cf (η) in which η varies over its whole range of values.

Rather than using numerical calculations, this procedure can work also
when suitable analytical formulas are used to approximate the three input
profiles. For S-shaped profiles the complementary error function, erfc, can
be used,

w(η) ≈ h1 erfc
[√π

2
a1(η − η1)

]
, (5.5)
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C(η) ≈ h2 erfc
[√π

2
a2(η − η2)

]
, (5.6)

and

Cf (η) ≈ h3 erfc
[√π

2
a3(η − η3)

]
. (5.7)

The constants hj , aj , and ηj are fitting parameters obtained for a given
set of experimental data. The error function was originally proposed by
Hall [32]. The results for the plots of κ vs. w and of D vs. Cf can be
obtained analytically as [32]

κ(w) ≈ 1

πa21
+

η1
2a1

ywe
E2

w , (5.8)

where E = erfc−1(w/h1) is an inverse to the complementary error function,
and [38]

D(Cf ) ≈
h2
a2

(
1

πa2
e−M2

2 + η2
2 erfcM2

)
− Cf

(
1

πa2
e−M2

1 + η1
2 erfcM1)

a3h3 erfcM1 e−F 2 . (5.9)

Here F = erfc−1(Cf/h3) and Mi = (ai/a3)F + (
√
π/2)ai(η3 − ηi) with

i = 1, 2.
Let us illustrate the method for an experiment in which a coupled mois-

ture and chloride transport was studied in a sandstone. In the dry state
the sandstone had the bulk density 1776 kg m3, matrix density 2531 kg m3,
and total open porosity 0.297. In the experiment dry prismatic samples of
dimensions 20 × 40 × 160 mm were exposed by their 20 × 40 mm face to
a penetrating 1 M NaCl solution. The solution had the concentration 37 g
of Cl−/l and the bulk density 1041 kg m3. The lateral sides of the samples
were vapor-proof insulated to make the chloride solution transport practi-
cally one-dimensional. The moisture and chloride concentration profiles are
shown in Fig. 5.1. The chloride binding isotherm Cb = Cb(Cf ) is almost
linear for Cf up to 13 kg m3 with a slope K = 10.78. The profile of the free
chlorides is therefore given as Cf (η) = C(η)/[w(η) +K] (see Fig. 5.1(c)).

The least-square fits of the erfc model profiles to the experimental ones
are also plotted in Fig. 5.1. They are in reasonably good agreement with the
data. The dependences of the moisture diffusivity on the moisture content
and of the chloride diffusion coefficient on the free chloride concentration
profile, as they follow from Eqs. (5.8) and (5.9) are plotted in Fig. 5.2.
The dependence D(Cf ) diverges both at low and high concentrations. This
is just a consequence of our choice of the model erfc profiles that tend to
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Figure 5.1: The profile of (a) the moisture content, (b) the total chloride concentration,
and (c) obtained experimentally (circles) and their approximations by the erfc model
profiles (curves).
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Figure 5.2: (a) The moisture dependence of the moisture diffusivity. (b) The concentration
dependence of the chloride diffusion coefficient.

their maximal and minimal values at a Gaussian rate. At intermediate
concentrations, however, various model profiles should yield practically the
same results, provided they approximate the experimental data accurately.
Therefore, for most concentrations D plotted in Fig. 5.2(b) is to be accurate,
and the presented approach is a fast and reliable way for its estimation. Note
that the values of D are three or four orders of magnitude higher than for
free chloride ions in water, in agreement with other studies [8].

We carried out a comparison of several formulas for determining the
concentration dependence of diffusion coefficients by the Boltzmann-Matano
method in [39]. The formulas were expressed in terms of the Gauss error
function, hyperbolic tangent, exponential, and inverse tangent, and the cor-
responding formulas for the diffusion coefficient were calculated. We demon-
strated that even very similar profiles could lead to rather different diffusion
coefficients, especially at low concentrations. Using two examples of dif-
ferent diffusion processes, we showed that the results can be employed to
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rapidly calculate diffusion coefficients. In addition, it was shown that a finite
diffusion coefficient at low concentrations only occurs if the corresponding
concentration profile decays at a Gaussian rate or faster.
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