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Summary
This script accompanies a short lecture I am presenting within the qualifi-
cation process for full professorship at the Czech Technical University in
Prague, Faculty of Electrical Engineering. I am taking this opportunity as
a challenge to explain the concepts, ideas, and goals of my research field to a
general intelligent audience with elementary background in mathematics and
technology but no special background in the particular disciplines underlying
my work. These disciplines are computational logic, machine learning and
bioinformatics.

The lecture is structured as a story of a quest to design an algorithm which
could solve a particular problem in bioinformatics. The narrative aligns nicely
with the conventional Greek drama pattern [1]. In Chapter 1, the main actors
(logic, machine learning and bioinformatics) are exposed briefly through ex-
amples that illustrate their driving ideas. The actors collide in Chapter 2,
where I show how an important bioinformatics problem in the area of struc-
tural proteomics calls naturally for a machine learning algorithm that encodes
data (protein structures) and working hypotheses in the language of first-order
predicate logic. Such a system learns and reasons on the basis of attributes
of the objects in question but also on the basis of their mutual relationships,
hence the term relational machine learning. Chapter 3 addresses a crisis rest-
ing in the observation that such a synergic system, if built with state-of-the-art
ingredients, just won’t scale up to the complexity of the problem. The two
main culprits for this bad news are identified. In Chapter 4, I review a few
peripeteias in the efforts to combat these two sources of complexity and I
focus on those I took part in. The last Chapter 5 tells how the experience
acquired lead to clarifying the design principles of the method and, finally,
cracking the original challenge.
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Souhrn
Tento materiál doprovázı́ mou krátkou přednášku v rámci profesorského jme-
novacı́ho řı́zenı́ na fakultě elektrotechnické Českého vysokého učenı́ technic-
kého v Praze. Této přı́ležitosti využı́vám jako testu, zda jsem schopen vys-
větlit pojmy, myšlenky a cı́le mého oboru inteligentnı́m posluchačům se zák-
ladnı́mi znalostmi matematiky a techniky, ale bez zvláštnı́ch znalostı́ speciál-
nı́ch disciplı́n, na nichž je má práce založena. Těmito disciplı́nami jsou
výpočetnı́ logika, strojové učenı́ a bioinformatika.

Přednáška je podána jako přı́běh o snaze vyvinout algoritmus, který by
uměl vyřešit konkrétnı́ bioinformatický problém. Vyprávěnı́ se přirozeně
členı́ do klasické osnovy řeckého dramatu [1]. V kapitole 1 se krátce představı́
hlavnı́ postavy (logika, strojové učenı́ a bioinformatika), a to prostřednictvı́m
přı́kladů ilustrujı́cı́ch jejich nosné myšlenky. Ke srážce postav dojde v kapi-
tole 2, kde ukazuji, jak jeden z důležitých bioinformatických problémů z ob-
lasti strukturnı́ proteomiky přirozeně volá po algoritmu strojového učenı́, který
by byl schopen rozumět datům (strukturám bı́lkovin) popsaným jazykem pre-
dikátové logiky prvnı́ho řádu a vytvářet hypotézy ve stejném jazyce. Takový
systém se učı́ a usuzuje na základě vlastnostı́ objektů, ale také na základě vz-
tahů (relacı́) mezi těmito objekty. Odtud plyne termı́n relačnı́ strojové učenı́.
V kapitole 3 dojde ke krizi, neboť se ukáže, že takový synergický systém,
pokud je sestaven z běžných (state of the art) součástı́, nebude schopen řešit
úlohy požadovaných rozměrů. Kapitola objasňuje, jacı́ jsou hlavnı́ dva vinı́ci
tohoto problému. V kapitole 4 zmı́nı́m několik peripetiı́ úsilı́ o překonánı́
těchto přı́čin nezdaru, a zejména se zaměřuji na směry, kterých jsem se účas-
tnil. Závěrečná kapitola 5 vysvětluje, jak zkušenosti z těchto peripetiı́ vedly
k objasněnı́ principů, podle nichž je třeba navrhnout vytouženou metodu,
a konečně i ke zdolánı́ původnı́ho problému.
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analýza dat, prediktivnı́ klasifikace, bioinformatika, molekulárnı́ genomika,
strukturnı́ proteomika, genová exprese, transkripčnı́ faktory
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1 Exposition (Logic, Learning, and Bioinformatics)

The three leads of the story are mathematical logic, machine learning, and
bioinformatics.

Mathematical logic studies the way humans think rationally. To do so, it
first sets grammatical rules by which ‘reasonable’ statements can be formed.
A reasonable statement is one we can interpret; so lorem ipsum is not reason-
able but all men are mortal is, whether or not it is true. One of the famous
kinds of logic is called first-order predicate logic, which would encode the
latter assertion as

∀x man(x)→ mortal(x) (1)

The meaning of the involved symbols is likely obvious. The arrow denotes
implication and is one of several well-known symbols called connectives fur-
ther including the conjunction ∧, disjunction ∨ and negation ¬. The man and
mortal are predicates which stipulate a property of the object in the parenthe-
ses. The object is represented by variable x which is universally quantified
by ∀x; this means that the implication holds for every x. So for some men
are mortal we would have and existential quantifier ∃x instead. The formula
above is of course more cryptic than all men are mortal but much easier to
work with for a computer.

For formulas written in the correct syntax, we are naturally interested
whether they hold true in the real world. Of course, mathematical logic cannot
just tell whether a statement is true in the world unless we describe the world
to it. We have to do this again in a precise formal language. For obvious
reasons, we need to focus only on a particular finite domain, that is, a selected
part of the world which we consider relevant. Probably the simplest way to
describe a domain is to list all the facts that hold in it:

{man(Sokrates),man(Aristotle), activity(philosophy), (2)
mortal(Sokrates),mortal(Aristotle)}

This simple way of describing the domain by a set of all true facts written
again in the predicate syntax we already know, is called a Herbrand interpre-
tation after the French mathematician Jacques Herbrand. Note that any fact
belonging to the domain but not listed in the interpretation is considered false,
so e.g. mortal(philosophy) or activity(Sokrates) are false.

A juicy part of mathematical logic comes into play when evaluating the
truth of formulas such as (1) in light of an interpretation. A simple algorithm
can check that (1) is true in the above interpretation just as a human can do
by commonsense. Likewise easily, we see that a statement more general than
(1)

∀x mortal(x) (3)
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i.e., all is mortal is false here due to the observed immortality of philoso-
phy, although the statement could be true in a different interpretation. Any
interpretation which makes a formula true is called a model of that formula.

It does not take much to imagine way more complex formulas where com-
monsense would fall short in judging their truthfulness, and that is just where
the computational power of the computer becomes useful. But an even big-
ger challenge for logic arises when it comes to mutual relationships between
different formulas. We see immediately that Formula 3 is stronger or more
general than Formula 1. It does not matter that the former is in fact false in
our current interpretation, the important thing is that any intepretation that
makes Formula 3 true, i.e. is a model of it, must also be a model of Formula
1.

We capture this relationship graphically in Fig. 1. Sometimes the relation
is phrased so that the top formula entails or implies the bottom one, although
this kind of implication should not be confused with the one denoted by →
and appearing inside formulas. Conversely, the bottom formula is said to be
a consequence of the top one.

How would a computer go about verifying such a logical entailment? One
option suggesting itself is to simply go by the definition, that is, look at every
possible interpretation that is a model of the top formula to see if it is also
a model of the bottom one. When saying ‘every interpretation’ we assume
implicitly that there is only a finite number of them, otherwise the checking
would never end. If we simply fix a finite set of objects symbols such as
Aristotle and the same for predicates such as man then the number of possible
interpretations we can make of them would indeed be finite, though possibly
huge. The crucial problem is, however, that the first-order predicate logic lan-
guage allows—in addition to what we have seen above—to form new objects
out of other objects by using so called function symbols. So while we have
not included Aristotle’s father Nicomachus in our domain, the language can re-
fer to him as fatherof(Aristotle) whenever the vocabulary contains the function
symbol fatherof. And what is more, the very inclusion of a single function
symbol suddenly renders our domain infinite because we can now refer to
Aristotle’s grandfather as fatherof(fatherof(Aristotle)), his great grandfather and
so on! With an infinite domain, we can obviously produce an infinite num-
ber of infinite interpretations and so the brute force approach to entailment
checking is doomed.

This is where logicians came to rescue with algorithms which can do the
job without looking at all possible interpretations. The bottom line of such
algorithms is akin to human rational argumentation. We take the premise and
modify it very slightly according to some editing pattern that is correct in the
sense that whatever it produces is a consequence of the premise. Then we
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∀x mortal(x) Premise

∀x man(x)→ mortal(x) Consequence

Entails

Fig. 1: The premise entails the consequence in the sense that in any world where the
premise is true, the consequence is also true. That is to say, any model of the
premise is also a model of the consequence.

apply a correct editing pattern on the consequence itself and continue doing
so until, hopefully, we arrive to the suspected consequence. What are such
correct editing patterns? For example, from ∀x man(x) we can always draw
the consequence man(sokrates) and this of course applies to any predicate and
its object, not just man and sokrates. A more sophisticated pattern is known as
modus ponens: from (∀x man(x) → mortal(x)) ∧ man(sokrates) one derives
mortal(Sokrates), and that again applies generally, not just for Sokrates and the
predicates man and mortal. For the particular formulas in Fig. 1, yet another
rewriting pattern has to be used and we leave this to the reader’s imagination.

These rewriting steps seem quite easy and understandable. The big ques-
tion is though, which edits should be applied and in which order so that we
reach the bottom formula as soon as possible? And when do we know that
it cannot be achieved this way, i.e. the entailment does not hold? These
questions are tackled by so called proving algorithms which have been under
perpetual development to date.

The adjective proving is apt since the sequence of steps leading to the con-
sequence indeed forms what mathematicians call a proof. In fact, all math-
ematics consists of theorems and their proofs. While the latter are usually
written in natural language for the reader’s convenience, all math could in
principle be encoded as formulas in second-order predicate logic which is
just an extension of her first-order sister we are exposing here. It may feel
somewhat disturbing that the field of logic thus studies how mathematics is
built while itself being a part of mathematics. Probably the only way to deal
with that uncomfortable thought is to get used to it.

We now leave logic for a while to visit the second actor, machine learning.
This is a subfield of artificial intelligence [5] studying how machines (usually
computer programs) can improve their performance by experience. While
this is a very broad definition, a significant part of machine-learning research
boils down to a more narrow and more clearly defined task of classification
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No. sepal length sepal width petal length petal width class
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
. . .
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
. . .

Tab. 1: Part of the Iris data set. This is a textbook example of data from which a
machine-learning algorithm can learn to classify. In this case, a learned classi-
fier would determine the taxonomic classes of flowers (right-most column) from
their dimensions (other columns).

learning. The latter is very easily exemplified by the following toy exercise.
A machine-learning algorithm receives data such as those shown in Table 1,
which describe the sepal and petal dimensions of multiple Iris flowers and
also their taxonomic class. From these specific examples which are called
training data, the algorithm is supposed to discover a general pattern deter-
mining the plant’s class from its dimensions. Here, the data are well fitted for
instance by the following classifier

petal length < 3→ class = setosa (4)
petal length ≥ 3→ class = versicolor

Why do we need such a classifier if we can simply retrieve the class
straight from the table? There are at least two reasons. First, the classifier
is more general than the data table. It can be used for example to classify a
newly discovered plant as long as we can measure its petal length. Second,
the classifier conveys a piece of information which was implicit in the data
and oftentimes it is interesting or useful to obtain such information explicitly.

In the Iris example, the learning samples are organized nicely as rows in
a table whose columns correspond to attributes. This form is referred to as
the attribute-value representation of data and, while probably the most often
in practice, it is certainly not the only one used in machine learning. In many
domains, learning examples can be represented more naturally by structures
that just do not fit well in a table. We will visit such a domain in the next
section.

Similarly, the forms of learned classifiers are also very diverse, depending
on the machine-learning algorithm applied. To give just one example of a
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possible alternative to the two simple rules in (4), consider the equations

setosa =29.99− 9.96 · petallength− 5.71 · petalwidth (5)
versicolor =− 6.15 + 1.67 · sepallength + 0.82 · sepalwidth

− 0.74 · petallength− 1.28 · petalwidth

How is this a classifier? One simply does the math on the right-hand sides,
plugging in the dimensions of the classified plant. If the setosa equation yields
number larger than the versicolor equation, we predict the setosa class, other-
wise we predict versicolor.

One of the big challenges of machine-learning research is to determine
which kinds of classifiers are good for which data. Intuitively, the kind of
classifier shown in (4) has less ‘freedom’ than the one in (5). Learning the
former one essentially means we just pick a single critical attribute and tune a
threshold value for it. In the latter, we have much more room for tuning as any
attribute can be involved on the right-hand side with an arbitrary coefficient.
If follows naturally that the latter classifier type will have a better chance of
fitting the input data. That is to say, one can ‘fiddle’ with the coefficients until
the predictions agree perfectly with the known classes. But is that always a
good thing?

It turns out that too much perfection on the training data, if achieved at
the price of an overly complex classifier, often results in poor generalization,
i.e. low accuracy on data not used for the tuning. While this phenomenon
known as overfitting has an air of paradox, it does have a convincing sta-
tistical explanation in machine-learning theory. Its more intuitive counterpart
characterized by the other extreme, i.e. inadequate fit on training data is called
(surprise!) underfitting. So in a way, the mentioned question which kind of
classifier for which data can be viewed as the art of balancing between under-
fitting and overfitting, if we abstract from technical aspects such as that some
kinds of classifiers can only be applied on some data types (e.g. numeric).

A little while ago we said ‘fiddle with the coefficient until the predictions
agree.’ This is obviously much easier to say than to do. Indeed, the second big
question in machine learning is how to adapt a classifier to the training data.
This may mean more than just tuning the numeric parameters in equations
such as (5). Many machine-learning algorithms also work out automatically
the very structure of classifiers while respecting some prescribed constraints.
It is beyond the scope of this lecture to explain how all this is done but it will
come at little surprise that learning algorithms usually take the trial-and-error
way, probing a vast number of parameter values or candidate structures until
one works satisfactorily on the training data. In so doing, a more intelligent
learning algorithm will make more informed guesses guided by the errors
made so far.
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Finally, we jump from machine learning over to our last field of inter-
est, which is bioinformatics. In a broad view, bioinformatics deals with algo-
rithms for processing biological data. In a narrower yet more widely accepted
view which we also adhere to, bioinformatics is concerned with biological
data only at the molecular level such as DNA sequences or protein structures.
On the other hand, processing of ECG signals or brain images for instance,
would not be considered bioinformatics. Is this division not artificial? What
changes so abruptly between data on the molecular and, say, organ level? In-
terestingly, biology is split in a similar way as physics. In the macro-world,
i.e. in the scales accessible to our senses, the laws of physic are determin-
istic and crisp (arbitrarily accurate) following the Newtonian paradigm. But
when it comes to the molecular and finer levels, quantum physics kicks in
and things become stochastic. Biology seems to follow exactly the reverse
pattern. Structures and processes observed on the organ and organism levels
can hardly be described through deterministic rules and measurements are al-
most never crisp. On the other hand, processes inside the cells tend to follow
crisp rules and the structures that take part in these processes can usually be
described using a finite discrete alphabet. So the biological micro world bears
traits very natural for symbolic computer processing (thus earning the suffix
‘informatics’) and indeed differs from macro-biological data processing.

Let us visit this cellular micro world to see what these main structures and
processes are, with a special focus on the genomic aspects. It is well known
that the hereditary information prescribing the construction of an organism is
stored in a deoxyribonucleic acid (DNA). Eucaryotes (organisms with cells
more complex than bacteria) store one copy of the same DNA content in the
nucleus of each of its cells. From the information-theoretic viewpoint, the
DNA is a sequence of symbols drawn from a 4-symbol alphabet. In humans,
it is about 3.109 symbols long. The symbols are called bases and physically
they are represented by the respective molecules guanin, cytosin, thymin and
uracil. Most of the time, the DNA in fact consists of two parallel sequences
(strands, follow the left panel in Fig. 2) of the said length, which are however
complementary in that a symbol at a position of one strand uniquely deter-
mines the symbol at the same position of the other strand. This parallelism
serves DNA-replication purposes in processes such as cell multiplication.

One of the most important areas where computer science helped biologists
is sequencing, that is the reading of the content of polymers such as the DNA.
A prime example of sequencing was the Human Genome project concluded
in 2003, which lasted 10 years and determined the string of bases forming
the entire DNA of a single human. No laboratory equipment exists able to
read such a long polymer in one shot. Instead, the experimenters have to cut
multiple copies of the same DNA into tiny fragments (10s to 100s of bases)
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Fig. 2: Left: The flow of information from DNA to proteins often referred to as the central
dogma of molecular biology. In this talk we are not interested in the processes
of reverse transcription or RNA replication. Right: An simple scheme of a gene
expression regulatory network. (From Wikimedia Commons)

which can be read. As a result they are left with an immense number of
(mutually overlapping) substrings. And now the job is handed over to the
computer scientist who is asked to reconstruct the most likely original string
from the fragments. This problem is probably the oldest and also the founding
problem of bioinformatics.

The DNA contains distinguishable regions known as genes (about 20
thousand genes in human DNA). A gene contains the prescription for building
a protein, a complex molecule made of so called amino acids, that performs
important tasks in the cell. The building process is called gene expression.
A gene is first transcribed into a ribonucleic acid (RNA), which also is a
4-symbol alphabet just as the DNA and serves for passing the information
content from the cellular nucleus to the cytoplasm, which is the area bounded
by the cellular membrane, outside the nucleus and other organelles. Here, the
RNA is finally translated into the protein using rather simple translation rules
we will return to shortly.

Nowadays, a technology called DNA microarrays is available that can
measure the rate of expression of very many genes, even the entire genome, at
the same time. It is tempting to use these microarrays to measure the genome-
wide expression in, say, a few samples of a cancerous tissue and the same for
a heathly one. Genes that are expressed only in the cancerous ones would
then be the prime suspects as possible causes of the cancer. Moreover, one
can create a table such as Tab. 1, in which the flower dimensions would be
replaced by the expression rates of genes (corresponding to columns) and the
class attribute would carry the status of the tissue. Then a machine-learning
algorithm can be used to learn a classifier distinguising cancerous tissues ac-
cording to the gene expressions. And indeed, the computational analysis of
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gene expression data is one of the most popular challenges of current bioin-
formatics.

We know already that gene expression means the construction of a pro-
tein according the gene’s content. But how can we describe a protein from
the bioinformatics viewpoint? We consider two perspectives. In a primary
structure perspective, a protein is also a sequence of symbols, just like DNA,
expect these are drawn from a different alphabet that has about 20 symbols
which correspond to various amino acids. From an expressed gene, a pro-
tein primary structure is formed by following the gene’s sequence; each three
consecutive DNA bases (commonly called a codon) determine which residue
to attach to the protein under construction. Since 34 = 81 > 20, multi-
ple codons may map to a single amino acid. Codons mapping to the same
amino acid usually have similar base sequence and this contributes to resis-
tance against translation errors.

From a higher-order structure perspective (secondary, ternary, and qua-
ternary structures are distinguished in biology but here we treat them col-
lectively) a protein folds into a spatial form uniquely defined by its primary
structure and determining the protein’s physiological function; a protein may
act as a building block, be an enzyme which catalyzes reactions in the cell,
and so on. In effect, the genes expressed into proteins in a tissue determine
the structure and function of the tissue up to external influences.

We have seen so far that the gene’s content determines uniquely the pri-
mary sequential structure of corresponding protein, and that in turn deter-
mines (up to marginal exceptions) its higher-order spatial structure. So in
principle we should be able to predict the entire protein’s shape knowing the
content of its coding gene. Unfortunately, this is so far possible only in the-
ory as the computations involved are daunting, and the task remains one of
the exemplary hard problems of bioinformatics.

The crucial role of the protein’s spatial structure for its function and prop-
erties is emphasized by the hyperbole biology is applied geometry. The role of
the geometry is visible nicely in Fig. 3 which shows two small molecules (so
called ligands) that happen to ‘dock’ into pockets on the surface of a protein
that are just complementary to their respective shapes. If the pockets were
not so compatible in shape, the ligands would bounce. But when docked,
they usually change the shape of the protein and in turn change its function
within the cell. For example, the shape change may ‘activate’ the protein in
that it becomes able to bind to yet another molecule, for example the DNA.
So this ligand-docking can be seen as ON/OFF switching, where the switch
is specific in that it controls only those proteins, which have a compatible
docking pocket. One significant facet of bioinformatics addresses exactly the
docking problem, where the main goal is to predict whether and where the
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Fig. 3: Left: A computer simulation of the binding (‘docking’) of two ligands (small
molecules shown as wire-models) into a protein (large grey body). The dock-
ing is possible only if the ligand’s shape matches perfectly one of the protein’s
surface pockets. (From biochemlabsolutions.com)

docking will occur, given the structure of the protein and the ligand.
Cell functioning depends on which genes get expressed in what situations.

The expression of genes is controlled by proteins known as transcription fac-
tors (TF). As we have learned above, an activated TF is able to physically
bind to DNA. More specifically, it binds to a region called the promoter region
(PR) of a gene, located in the vicinity of that gene. This binding is specific in
that each TF binds to the PR’s of certain target genes only, although multiple
TF’s can bind to a single gene’s PR. A TF may catalyze the expression of a
gene by ‘dragging-and-dropping’ it to the transcription machinery, or inhibit
it by merely binding to the gene’s PR and thus blocking the access of any
catalyzing TF. Through TF’s, a cell is thus able to react to external stimuli
mediated by the ligand molecules which enter the cell through its membrane
from the outside and activate the appropriate TF’s.

Since TF’s are themselves proteins, they are also regulated by other TF’s
or even by themselves. This gives rise to an extremely complex network of
regulatory interactions including omnipresent feedback loops (see the right
panel of Fig. 2). Consequently, the concentrations of proteins in a cell can
be seen as a state-space vector in a mass-dimensional non-linear dynamic
system. Steady states of the cell have been shown to correspond to attrac-
tors in this system, and their transitions are a result of external perturbations
combined with intrinsic stochastic fluctuations. Modeling and simulation of
such networks and predicting their reactions to external perturbations is also
at heart of present-day bioinformatics.
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2 Collision (Learning bioinformatics concepts in logic)

We opened the previous chapter by showing how mathematical logic simu-
lates human rational reasoning. The reasoning consisted of drawing correct
consequences from premises, that is, inferring special cases from a general
pattern. This kind of reasoning is often called deductive. Then we visited
machine learning which also mimics human reasoning but quite in the re-
verse way: given some specific examples (remember the Iris plants and their
classes) we inferred a general pattern (a classification rule). As opposed to
deductive inference, the specific-to-general reasoning employed in learning is
termed inductive. But could we not reason inductively in logic as well? This
is a tantalizing thought since if this was possible, we would harness the so-
phisticated logical language for encoding observations about the world and at
the same time we would be able to learn hypotheses from these observations
by inductive reasoning.

Returning to Fig. 1, induction would mean going against the direction
of the arrow, i.e. inferring the general statement from the more specific one.
There is an obvious catch though: while going down the arrow is correct (any
consequence of a true premise is also true), going up against the arrow may
not be correct. The example in Fig. 1 shows this convincingly as the top
formula just happens to be incorrect, at least in the interpretation (2). But
potential incorrectness is simply at heart of any inductive reasoning even out-
side logic. Note that for the classification patterns (4) or (5) induced from the
specific examples in Tab. 1, we had no guarantee either that these patterns
were generally correct even if they had been consistent with these specific ex-
amples. However, we tend to believe the more in the validity of the patterns
the more examples they are consistent with. So, the justification of induc-
tion is merely quantitative. Indeed, entire theories exist that formalize such
justifications on statistical grounds.

In Fig. 4 we show formulas connected by arrows, each representing an
entailment relation. So this is like in Fig. 1 except we involved more formulas
and their relationships. The underlined formulas contain specific observations
which translate to natural language as statements such as whenever Plato is a
man, he is mortal. Expressing the observation this way seems overly cumber-
some: why don’t we just say Plato is mortal? While the latter would be true in
the example world described by interpretation (2), it might not be true in dif-
ferent worlds where Plato would be e.g. the name of an immortal biographic
book. So we do need the seemingly redundant condition in the observation
formulas. The graph now makes it clear that multiple such observations (two
more philosophers along Plato) have a joint possible cause all men are mor-
tal, which could rightfully be termed a hypothesis. We could make an even
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∀x mortal(x)

∀x man(x)→ mortal(x)

((((((((
mortal(philosophy)

man(Sokrates)→ mortal(Sokrates)

man(Plato)→ mortal(Plato)

man(Aristotle)→ mortal(Aristotle)

Fig. 4: Graph of entailment relationships among statements. The goal of induction is to
find a hypothesis that entails all statements known to be true (underlined) but no
statement known to be false (struck-out).

bolder step and generalize towards the top hypothesis all is mortal. The latter
would be also supported by the three mortal philosophers so it seems we have
an equally good justification for it. However, the top hypothesis entails the
specific fact philosophy is mortal which we know not to be true and thus the
fact contradicts and invalidates the hypothesis.

To summarize, the process of logical induction assumes that, to begin
with, we have a set of examples which are true statements (underlined in Fig.
4) called positive examples, and another set of statements which are known
not to be true (struck-out in the figure) called negative examples. To goal is to
find a joint generalization of the positive examples which does not contradict
the negative ones.

There is a prominent analogy with the machine-learning world: the two
categories of examples (positive, negative) correspond to the two classes (se-
tosa, versicolor) in the data shown in Tab. 1, and the sought hypothesis cor-
respond to the classifier (4) or (5). But the machine-learning context also
gives us an important lesson we should translate back into the logical world.
In particular, we noted that perfect consistency on the training examples, if
achieved at the price of a very complex hypothesis, tends to result in overfit-
ting, that is, poor performance on future examples. So the more reasonable
goal is to find a formula which entails sufficiently many positive examples and
sufficiently few negative ones. And it is mainly statistics that determines what
is sufficient in which conditions.

All in all, induction in logic may be framed by the equation
induction = logical generalization + statistical justification

How is the marriage of logic and machine learning relevant to bioinfor-
matics? A great way to demonstrate this is a task of protein classification.
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We have already learned that a protein is a sequence of amino acids which
folds into a complex spatial form such as that shown in Fig. 3. We also know
that protein functions are determined exactly by this fine geometrical con-
formation. One protein function we have elaborated already was the ability
to bind to the DNA, which is a necessary condition for the protein to act as
a transcription factor. But what exactly makes a protein able to bind to the
DNA? One way to answer this would be to start from ‘first principles’, i.e.
all relevant biochemical laws and the composition and form of the DNA, and
infer deductively the conformation and properties of molecules in the protein
required to enable the binding. Currently, this approach is simply impossible
due to our limited knowledge of biochemistry and also due to limited avail-
able computational power.

A more viable option lends itself: collect a sufficiently large sample of
DNA-binding and non-DNA-binding proteins, determine their spatial confor-
mation, and have a machine-learning algorithms discover what properties or
what parts of the protein are responsible for the DNA-binding ability. More
precisely, the learning algorithm receives the protein conformation descrip-
tions as examples of the positive (DNA-binding) and negative (others) classes
and will learn a classifier to discriminate between these classes. A simple
machine-learning exercise, right? Wrong.

We would face a problem straight from the beginning. A standard machine-
learning algorithm will assume that input data are stored just like in the Iris
example, that is, as rows in a table such as Tab. 1. But how on Earth do we fit
the protein spatial shape into a row of values? In principle we could have three
columns per one amino acid, corresponding to their x, y, z coordinates. We
could even add more columns for amino acid properties such as hydrophobic-
ity, polarity, etc. But this approach is lame at least for two reasons. First, the
number of columns is obviously the same in all rows but different proteins
contain a different number of amino acids. Second, it would be just arbitrary
to choose which amino acid belongs to which column. A classifier that would
work well for one possible cast would not work for a different one.

Logic, however, gives us a language to describe the protein examples that
is much more elegant than the tabular representation. To express that a par-
ticular protein binds to the DNA as a result of its conformation is just like
expressing that Sokrates is mortal as a result of being a man, except more
complex:

binds(protein1)←amino(protein1, a1) ∧ type(a1, histidine)∧ (6)
amino(protein1, a2) ∧ type(a2, lysine)

∧ distance(a1, a2, 10) ∧ . . .

The shown part of the description only mentions the presence of two amino
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acids (a1,a2) in the protein, their type (histidine and lysine) and their mutual
distance but a much longer formula would of course be needed to describe
the protein in full. Note that in contrary to the previous examples of logi-
cal formulas, we write the implication right-to-left, which is just for better
readability. Also note that we now work with predicates which have multiple
arguments, such as distance(a1, a2, 10). Such a predicate asserts a property
of a tuple of objects rather than a single one, which is just like saying that
it asserts a particular relationship among the tuple. Here, the relationship is
the mutual distance (here 10, say the units are Angstroms) between the two
amino acids represented as a1 and a2. Again, this is in contrast with the tab-
ular representation (Tab. 1) where properties (numbers) are assigned to indi-
vidual objects (dimension variables) but mutual properties are not expressed.
In summary, the logical language also allows us to reason on the basis of re-
lations and hence the name relational machine learning included in the title
of this lecture.

Once we have overcome the representation problem, all that is left to do is
to collect a sufficient number of positive examples such as (6) and analogical
negative ones, and then find a suitable hypothesis by searching an entailment
graph similar to that in Fig. 4 we used in the philosophers’ domain. So we
seem bound to happy ending.

3 Crisis (Too slow, too crisp)

But the road is thorny as the computations involved in induction contain two
difficult problems.

Remind that induction can informally be viewed as search in an entail-
ment graph such as that in Fig. 4. That, however, acquires gigantic sizes for
real-life induction tasks. Indeed, if we replace the simple observations which
are underlined in Fig. 4 by observations such as (6), the number of possible
generalizations will become huge. This is obvious if one realizes that e.g.
dropping a single condition such as type(a1, histidine) (these fragments of for-
mulas are called literals) in Formula (6) yields a possible generalization of the
formula. And there are many literals to choose from; a real description of a
protein would involve hundreds to thousands of literals. Besides, the number
of example formulas forming the ‘bottom’ of the graph has to be much larger
than shown in Fig. 4. This is dictated by machine-learning statistics as we
remarked a while ago: to attain a reliable hypothesis, it has to be supported
by a significant number of supporting specific observations. So in summary,
the first big pitfall on the road is the complexity of the combinatorial search
in the entailment graph.

The second big pitfall comes in disguise and is all the more pressing. Be-
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fore we even think of searching an entailment graph, we need to know where
the edges are, that is, which formulas entail which other formulas. In the first
chapter we learned that entailment between two given formulas cannot be
verified by brute force, i.e. by checking validity of formulas in all Herbrand
intepretations (possible worlds). We also learned that algorithms exist which,
in principle, can determine the entailment by constructing a logical proof of
it. However, such algorithms are not always successful in that they may fail
to find such a proof even if the entailment does hold. Interestingly, this is
not due to some design flaws of the algorithms that would be rectified in the
future. In fact, the entailment relationship between two formulas is in general
undecidable, which means that no algorithm exists which would say yes or
no correctly for any pair of formulas in finite time. Again, it does not just
mean that no-one has yet invented such an algorithm, it means that no-one
will be able to do so even in the future. Admittedly, this problem is somewhat
theoretical as this undecidability only takes place if the logical vocabulary
involves function symbols (remember from the first chapter that these render
the discourse domain infinite). Looking at Formula (6), we do not seem to
need any function symbols to describe a protein. Still, entailment checking
remains a very complex subproblem of logical learning.

The two problems we just considered pertain to complexity and they
limit the scalability of logic-based algorithms towards serious real-life learn-
ing problems. Another, more practical trouble arises when confronting the
logic-based algorithm with real-life data, and that trouble is due to the crisp
symbolic nature of the algorithm. The problem shows quite clearly with the
protein classification problem we have considered. Assume for a while the
simplistic idea that proteins bind to DNA whenever they contain a lysin and
a histidine (two specific kinds of amino acids) in the mutual distance of 10.5
Angstroms. We would therefore expect the learning algorithm to produce the
hypothesis

∀x binds(x)←amino(x, y) ∧ type(y, histidine)∧ (7)
amino(x,w) ∧ type(w, lysine)

∧ distance(y, w, 10.5) ∧ . . .

Now the trouble is that the positive example (6) would not support this hy-
pothesis, i.e. would not be entailed by it. The only reason for that is that the
number 10 in the example and the number 10.5 in the hypothesis are sim-
ply different symbols, although they seem to us very close, say well within
the range of measurement errors. Conventional predicate logic does not have
means to project disparities in the arguments of literals into ‘fuzzy’ levels of
entailment such as ‘almost entails,’ let alone to interpret such disparities in
light of statistical distributions of measurement errors.
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4 Peripeteia (Trade-offs, middle-grounds, hacks)

Induction in predicate logic has been studied for over thirty years (interest-
ingly, mainly in Europe and Japan, less so in the United States) and the field
was established under the title inductive logic programming [4]. Why pro-
gramming? Computer programs written in the programming language called
Prolog are in fact logical formulas and the execution of such a program is re-
ally proving the entailment of a user-supplied query formula by the program
formula. As non-orthodox as it seems, any conventional computer program,
i.e. a series of commands with conditional branching and looping, has its
counterpart in Prolog. Now, inductive logic programming frames the sce-
nario in which the user supplies examples of the program’s behavior, that is,
a set of query formulas which should be entailed by the program formula and
a set of those which should not be entailed, and the inductive system automat-
ically finds a suitable program formula. This is exactly the same scenario as
we considered in Chapter 2 except the target hypothesis is viewed as a Prolog
program and the search process is viewed as automatic programming.

The emphasis on the programming aspect did not last long in the devel-
opments of inductive logic programming. This is mainly becuase writing
non-trivial computer programs in Prolog simply will not do without function
symbols. As we have seen already, these make the entailment relation unde-
cidable, and even if decidability is achieved through some ad-hoc constraints,
the goal of automatic induction of full-fledged programs remains too complex
and overambitious. So the inductive logic programming community shifted
quite early the attention to the machine-learning classification scenarios we
have already illustrated. And over the tens of years, numerous strategies have
been proposed to tackle the critical problems outlined in the previous chapter.
Here I want to explain a few examples of these but I mainly focus on those I
have contributed to myself.

An obvious hack to prevent the explosion of the search graph in Fig. 4
simply drops all formulas over a certain size and considers only the small
simple ones. Indeed, restriction to small formulas (typically up to 10 literals)
is present in many implemented systems and is supported by an ‘Occam’s ra-
zor’ kind of argument: we prefer simpler hypotheses over the more complex
ones. However convincing, such argumentation will not help in tasks neces-
sarily complex examples giving rise to complex hypotheses. An example of
such a task is the protein classification problem we have been concerned with;
to describe a protein by a formula such as (6), we need hundreds to thousands
of literals! That is just beyond the reach of conventional systems of inductive
logic programming.

As an example of a more sensitive strategy to accelerate the search in
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the entailment graph, we will look at a research stream which I was part of
and which explored randomized local search strategies [9]. The conventional,
non-randomized strategy to search a graph as in Fig. 4 visits a formula (node
in the graph) and if it is not acceptable then it moves on to one of its neighbors.
It also keeps track of the visited formulas so that none of them is explored
twice. This is essentially the trial-and-error approach we mentioned in the
first chapter. Here, each error (unacceptable formula) gives us a clue on where
to go next. For example, if we first try the top formula in Fig. 4, it turns
out over-general as it entails a negative example. So whichever formula we
try next, we know it should not be a formula even more general than the
current one. A randomized local-search version of the strategy work just
like the conventional one except for one change. If an acceptable formula is
not found within constant time (or constant number of nodes explored), we
simply abandon the entire search neighborhood and jump over to a completely
different random node of the graph and start the local exploration again.

So the design of the randomized algorithm is simple and not all that amus-
ing. What is more interesting are the reasons why it outperformed the conven-
tional algorithms in most of our experiments. Intuitively, the random jumps
seem appropriate for very large graphs. In these, the conventional neighbor-
to-neighbor searcher will necessarily remain stuck in a relatively tiny region
of it. Here, the random jumps prevent the algorithm from this unjustified
bias towards a particular small region of the graph. A more mathematically
founded argument for the superior performance of the randomized version
follows a statistical consideration. Consider an experiment in which the con-
ventional algorithm is run very many times and each time we measure the
run time spent until a good formula was found. Interestingly, the statistical
distribution of such run times follows a power-law, which is popularly known
in economics as the distribution of people’s incomes follows this law as well.
For the run-time distributions, the power law means there is a significant pro-
portion of very quick (‘lucky’) runs but also a high proportion of extremely
long ones. The mean run time is then also very high (in some of the theoreti-
cal power-law distributions, they are even infinite). This is in contrast with a
more usual normal (exponential) distribution where the extremely long runs
would also have an extremely small probability and the mean run-time would
be smaller. Interestingly, the randomized restarted strategy turns the origi-
nally power-law run-time distribution into an exponential one and thus the
mean run-time is reduced.

Unfortunately, the gains achieved by randomized search were far from
sufficient to work efficiently with the protein description such as (6). Part of
the reason is that the randomized search strategy does not change anything
about the second source of complexity we explained in the previous chapter,
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that is the complexity of verifying whether a candidate formula entails an ex-
ample formula. Naturally, this complexity is also aggravated if the formulas
in question become large. This source of complexity is indeed an important
factor since the entailment verification is embedded in the graph search and
is permanently iterated in it. Again, a popular hack is in place that miti-
gates this problem somewhat. Normally, the entailment relation is confirmed
by constructing a proof, as we explained in the first chapter. Many induc-
tive logic programming algorithms do not create such a proof, instead they
just compare the two formulas in question to see if one of them syntactically
subsumes the other. We do not need to bother with the exact details of sub-
sumption, the important points are that the subsumption check does not need
to construct a proof, and whenever a formula subsumes another one, it also
entails it. However, the reverse way is not always true: a formula may entail
another one without subsuming it syntactically. So subsumption is only an
aproximation of entailment but usually is faster to check. The speed gains are
not dramatic though, subsumption checking still belongs among hard prob-
lems known in computer science as NP-complete. Furthermore, subsumption
is only applicable to a restricted form of formulas (so called clauses) although
this restriction is usually not overly limiting in practice; in fact all the formu-
las we have seen so far were clauses. Also in the case of subsumption, we
were able to implement randomized variants which lead to certain speed-ups
of subsumption checking [2], although again not sufficient to handle formulas
with hundreds or thousands of literals.

It is interesting to mention one more approach that deals with the prob-
lems we identified in the last chapter, by finding a middle-ground between
the principles of inductive logic programming on one hand, and conventional
machine learning as was illustrated through the Iris classification example on
the other hand. Put differently, the approach aims to convert the task of learn-
ing a logical formula into a dual task of standard machine learning. Recall
that the latter assumes training samples organized as rows in a table such as
Tab. 1. We have already argued why the structural descriptions of proteins
just cannot fit naturally in such a flat table. Well, that was not entirely true.
Imagine that in the protein case, the table’s attributes (column) would corre-
spond to some structural features expressed in our familiar logical language.
For example, one column could correspond to the feature of containing a pair
of lysine and hystidine in the mutual distance of 10 Anstroms, so it would be
encoded as the conjunction of the five literals right of the arrow in (7). Each
protein (row) which has this feature would have a “Yes” in that columns and
other protein would have a “No” there. We can generate a large number of
such features as long as they are relatively small and thus it is tractable to
check whether they occur in the sample proteins (this is usually done by the
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subsumption algorithm) and thus whether we should fill in a “YES” or “NO”
in the appropriate cell in the table.

As a result, we have a tabular description of the training data which can
be presented to one of a plethora of fast machine-learning algorithms. The
latter could e.g. learn a classifier resembling our familiar Iris classifier (4):

f2 = Yes ∧ f3 = Yes→ class = binding

This rule conditions the binding function on the presence of the two prede-
fined features f2 and f3. We can view the combination of the two (or generally
a number of) features as one more complex feature. Thus, in principle the
feature-based approach allows us to discover complex causes while eliminat-
ing the daunting search for a complex formula as in Fig. 4. Note, however,
what we are trading off in this approach. The part of learning outsourced to
the standard machine learning algorithm (i.e. the composition of simpler fea-
tures into complexes) no longer accounts for any structural relationships be-
tween these features. So the rule above will apply whenever the two features
are present in the protein, no matter what their mutual position is, whether
they overlap, etc.

The feature-based approach outlined is termed quite cryptically propo-
sitionalization [8] as it converts the original predicate-logic descriptions of
data into a table of simple Yes/No propositions. We have seen it is not a mag-
ical cure since we pay a price for the efficiency gained, in particular we lose
some expressiveness of classification. To add to the credit side though, note
that propositionalization can partially rectify also the crispness problem we
have commented on at the end of the previous chapter. This is because the of
Yes/No values in the produced table can be as well replaced by the respec-
tive numerical 0/1 values. Then a machine-learning algorithm can be used to
produce a classifier such as (5) where these feature values would be weighted
by real coefficients. So if one feature is significant yet less important than
another feature, the learning algorithm can reflect this naturally by a suitable
choice of the coefficients.

I have participated in research in propositionalization and its applications
in bioinformatics tasks beyond proteomics. For example, relational features
proved very useful to capture automatically discovered groups of co-regulated
genes [7].

5 Catharsis (Structural tractability)

Experience gained with the hacks outlined in the previous chapter was valu-
able. Randomized local search reduced run-times of learning significantly
but not just enough to learn from data as complex as the protein descrip-
tions. Propositionalization using small tractable features had an even more
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Cyc l i c Acy c l i c T r e e - l i k e

Fig. 5: Examples of hypergraphs, each showing the structure of a clause. “Edges” (the
closed curves) correspond to predicate symbols in the clause. Nodes corre-
spond to variables or object names. A predicate-edge encompasses all nodes
representing the predicate’s arguments. A single variable or object name may
be inside multiple edges as it may occur as an argument in multiple predicates.

dramatic impact on run-times but it traded off what we wanted to maintain,
i.e. the ability to express large structural motifs.

These peripeteias made us realize more clearly what ingredients will prob-
ably lead to the design of an algorithm that would succeed with such complex
data. We realized that the language we use to express formulas would need to
be restricted for sakes of efficiency but clearly we cannot just limit ourselves
to small formulas as this would be a dead end in tasks such as the protein clas-
sification problem. Instead, we took inspiration in the structural tractability
approach known in other fields of computer science. In general, the approach
aims to identify some contraints on the graphical structure of the involved ob-
jects, which if satisfied, enable to work with these objects efficiently. In our
case, the objects are formulas and their structures can be presented as graphs.
We have already seen a graph in Fig. 4 in which nodes are formulas and edges
represent entailment relations. This time, however, we mean a graph depict-
ing the structure of a single formula, and we focus only on the special case of
formulas called clauses (remind from the preceeding chapter that all the for-
mula examples so far were in fact clauses) and we also assume there are no
function symbols. In the clause graph, edges correspond to predicate symbols
appearing in the clause and nodes represent the arguments in the parentheses,
be it variables of the concrete names of objects. The situation is trickier now
because a predicate corresponding to an edge may have an arbitrary number
of arguments. This means that an edge will no longer be an arrow connecting
two nodes but rather a closed curve encompassing a set of nodes. Graphs
with such exotic nodes are called hypergraphs and three examples of them
are shown in Fig. 5.
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A popular subclass of standard graphs are so called trees which are con-
nected (there are no groups of nodes isolated from the rest of the graph) and
have no loops. Fig. 4 is a nice example of a tree. It is well known that
many computational problems on graphs become much easier when all the
graphs in question are trees. For hypergraphs, we can also distinguish trees
(Fig. 5, right-most) although their visual character is less intuitive. The im-
portant point is, however, that for clauses whose hypergraphs are trees, we
were able to design a learning algorithm [3] that combats successfully both
of the crucial complexity sources we are concerned with. That is, it efficiently
verifies entailment and it also efficiently searches for a good clause. The en-
tailment relation is approximated via subsumption in the same way we have
already elaborated. However, as a result of the assumptions of the algorithm
(function-free tree-like clauses), subsumption in fact becomes equivalent to
entailment. The search for a good clause differs from the standard neighbor-
to-neighbor search we are familiar with already. It is rather based on pro-
gressive composition of smaller blocks (‘subclauses’) into larger blocks, and
their combination into still larger blocks, and so on. In follow-up research,
we (well, mainly my Ph.D. student Ondřej Kuželka) were able to relax the as-
sumption of tree-likeness towards a softer constraint of bounded tree-width,
which is a concept out of the scope of this lecture.

With this fancy algorithm, we were finally able to work efficiently with
protein descriptions translating to very large yet tree-like clauses. As a cherry
on top, we implemented this approach within the propositionalization frame-
work. This means that the algorithm does not produce a single classifier
formula but rather a large number of (possibly complex) clauses expressing
structural features of the protein. A nice property is that all these features are
guaranteed to be ‘relevant’ in a statistical sense; for example, each of them
is found in significantly more samples of one class (binding proteins) and in
significantly fewer samples of the other class (non-binding). Then a conven-
tional machine-learning algorithm is employed to explore yet more complex
combinations of these base features. As we have remarked earlier, such a
combination need not be just a crisp logical conjunction, it may be a finer
feature ‘ensemble’ where features are e.g. weighted according to their relia-
bility. This is an additional benefit of the two-stage procedure consisting of
propositionalization and subsequent attribute-value learning.

And only with this arsenal of methods, we succeeded in learning to clas-
sify DNA-binding proteins with accuracy matching the best state-of-the-art
methods [6]. Unlike in these methods, based on long-tuned hand-crafted
physico-chemical features, our approach discovers such features automati-
cally and represents them in a way straightforwardly interpretable as protein
structural motifs.
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