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Summary

There are four basic groups of demanding computations. First
group contains problems with many unknowns (more than million)
which are solved only once. Such problems can be split into smaller sub-
problems which are distributed to processors of a parallel computer and
they are solved independently there. At the end, the original continuity
on subproblem interfaces is enforced. This is the principle of domain
decomposition methods. Their parallelization requires data transfer
among processors, synchronization of operations and load balancing.

Second group contains problems with moderate number of unkno-
wns (tens of thousands) which are solved repeatedly and the order of
solution is not important or it is important only partially. The Monte
Carlo simulations, various optimization tasks or multi-scale analysis,
where a problem defined on the lower level is solved for every finite
element of the upper level can serve as examples. Parallelization of
such computations can lead to the ideal speedup because the master
processor sends and receives only small amount of data. The same
number of operations executed on the slave processors leads to the
ideal load balancing which is another advantage.

Third group contains problems with a moderate number of un-
knowns which are solved repeatedly and the order of solution is im-
portant. As an example can serve a numerical time integration. Par-
allelization of such problems is questionable and negligible speedup is
usually attained.

Fourth group contains problems with many unknowns which should
be solved repeatedly. These are not solvable at this time.

Two domain decomposition methods and two-level analysis of cou-
pled heat and moisture transport in a masonry bridge structure are
described and illustrate the problems of the first and second group
discussed above.
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Souhrn

Existuj́ı čtyři základńı skupiny náročných výpočt̊u. Prvńı skupina
obsahuje problémy s velkým množstv́ım neznámých (v́ıce než milion),
které se řeš́ı jen jednou. Takové problémy lze rozdělit na podproblémy,
které jsou rozmı́stěny na procesory paralelńıho poč́ıtače, kde jsou nezá-
visle zpracovávány. Na závěr se vynut́ı p̊uvodńı spojitost na rozhrańıch
podproblémů. To je princip metod rozložeńı oblasti na podoblasti.
Jejich paralelizace vyžaduje přesuny dat mezi procesory, synchronizaci
výpočtu a vyvážeńı výpočetńı zátěže.

Druhá skupina obsahuje úlohy s přiměřeným počtem neznámých
(deśıtky tiśıc), které jsou ale řešeny opakovaně a na pořad́ı výpočt̊u
nezálež́ı nebo zálež́ı jen částečně. Př́ıkladem jsou výpočty metodou
Monte Carlo, r̊uzné optimalizačńı úlohy nebo v́ıceúrovňové analýzy, ve
kterých se pro všechny konečné prvky vyšš́ı úrovně řeš́ı jeden problém
nižš́ı úrovně. Parallelizace těchto úloh může vést k ideálńımu zrychleńı,
protože se z ř́ıd́ıćıho procesoru (master processor) roześılá a přij́ımá jen
malé množstv́ı dat. Daľśı výhodou je, že se v mnoha př́ıpadech na všech
procesorech zpracovává stejné množstv́ı dat a operaćı, takže je výpočet
dokonale vyvážen.

Třet́ı skupina obsahuje úlohy s přiměřeným počtem neznámých,
které se řeš́ı opakovaně a na pořad́ı zálež́ı. Př́ıkladem může být nu-
merická integrace v čase. Paralelizace těchto úloh je problematická
a obvykle se nedosáhne podstatného zrychleńı.

Čtvrtá skupina pak obsahuje problémy s velkým množstv́ım nezná-
mých, které by měly být řešeny opakovaně. Ty jsou v současné době
prakticky neřešitelné.

Př́ıklad dvou metod rozložeńı oblasti na podoblasti a dvouúrovňový
výpočet sdruženého vedeńı tepla a vlhkosti na zděné mostńı konstrukci
ilustruj́ı problémy prvńı a druhé skupiny úloh popsaných výše.
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1 Introduction

Although hardware is permanently being developed, requirements on
computer power and memory arising from engineering practice exceed
usually its possibility. Single processor computers are definitely unable
to solve large problems. Therefore parallel computers are becoming
very popular and they are used not only in academic institutions but
also in engineering practice.

Parallel computers could be sorted out with respect to their mem-
ory. The computers with shared memory are called massively parallel
computers. All processors have access to all data. On the contrary,
a cluster of single-processor computers connected via suitable network
is a parallel computer with distributed memory. Each processor has an
access only to data stored in its memory. If a processor A needs data
stored in memory of processor B, the data has to be sent. The massive
parallel computers are significantly more expensive in comparison with
clusters. The biggest parallel computers at this time are clusters of
multi-processor nodes and the memory is distributed while in nodes is
shared.

Recently, computers with many cores are becoming very popular.
They can be handled similarly to the massive parallel computers with
shared memory. Cloud computing is another possibility for high per-
formance computing. Prediction of which computers will be used in
future is very difficult. It can be demonstrated on quotation of Bell
published in Science in 1992: “Distributed memory machines require
considerable reprogramming of algorithms, so there is skepticism as to
whether they will replace multi-processors with shared memory.” Be-
lytschko in 1997 wrote: “Heterogeneous work-station environments are
increasingly being used for parallel processing by PVM (Parallel Vir-
tual Machine).” At this time, distributed memory machines are used
and communication is organized by MPI (Message Passing Interface).

The progress of parallel computer development could be seen in
Top500 computers in the world. In June 1993, the top computer was
CM-5/1024, Thinking Machines Corporation in Los Alamos National
Laboratory, United States, with 1,024 cores and the power 131 GFlop/s.
In June 2014, the top computers are:

1. The top on the World: National Super Computer Center in Guan-
gzhou, China, Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster,
Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon
Phi 31S1P 3,120,000 cores, 54902.4 TFlop/s, 17,808 kW power
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6. The top in Europe: Swiss National Supercomputing Centre, Swit-
zerland, Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz,
Aries interconnect , NVIDIA K20x Cray Inc. 115,984 cores, 7788
TFlop/s, 2,325 kW power

? The top in Czech Republic: IT4I Ostrava, Czech Republic, ap-
proximately 40,000 processors, 1 Pflop/s1

There are four basic groups of very demanding computational prob-
lems. First group contains problems with many unknowns (degrees of
freedom) which are solved once. As an example could serve large struc-
ture with very detailed finite element mesh. Such problems are split
into subproblems which are distributed to processors of a parallel com-
puter where they are solved independently. At the end, the original
continuity has to be enforced. The approach described is basis of do-
main decomposition methods. Parallelization of such problems requires
communication among processors and several synchronization points.
More details about this group of problems is described in Section 2.

Second group contains problems with moderate number of unkno-
wns which are solved many times. An example of such problem is the
usage of the Monte Carlo simulation where a problem is solved thousand
or even million times. Another example is multi-scale problem where
a single micro-scale problem is solved for every finite element of the
macro-scale problem. Parallelization of such problems is much more
easy because usually few parameters are sent from the master processor
which controls the computation to the slave processors which solve the
problems. Parallelization of a two-scale problem is briefly described in
Section 3.

Third group contains problems with moderate number of unknowns
which are successively solved many times. Typical example of such
problem is time integration. Parallelization of such problems is ques-
tionable and usually does not lead to significant speedup.

Fourth group contains problems with many unknowns (millions of
unknowns) which should be solved many times (thousand or more
times). Unfortunately, these problems cannot be solved at this time.

2 Domain Decomposition Methods

Two methods of domain decomposition are described in this section.
First is the Schur complement method and second is the FETI (Finite

1The computer is not installed now and therefore it is not known the order in
the list of Top500 computers.
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Element Tearing and Interconnecting) method.

2.1 The Schur Complement Method

The Schur complement method is also called the static condensation
method, the method of sub-structuring or the primal domain decom-
position method. The Schur complement method is clearly based on
the Schur complements and this notation is used especially by math-
ematicians. Engineers often call it the condensation method or the
method of sub-structuring. The method of sub-structuring was used
many decades ago when the RAM of computers was extremely small.
The decomposition of the structure into smaller substructures is native
in engineering design and therefore was also employed in numerical sim-
ulation. Elimination (condensation) of internal unknowns (degrees of
freedom) is also a very popular technique among engineers. Both fea-
tures are common to the Schur complement method. The last notation,
the primal domain decomposition method, is connected with the fact
that only original unknowns are considered during computation and
the concept has a special reason when dual unknowns are used such as
in the FETI methods. The Schur complement method is described in
many books and papers from the engineering point of view [20, 21] or
from the mathematical point of view [2, 25, 29].

The following system of equations can be obtained from the finite
element method applied to problem decomposed into m subdomains
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m

K
[bi]
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2 . . . K [bi]

m K [bb]




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d[i]
m

d[b]
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m

f [b]


(1)

where d
[i]
j , j ∈ {1, 2, . . . ,m} are the vectors of unknowns defined inside

the j-th subdomain, d[b] is the vector of unknowns on the subdomain

boundaries, f
[i]
j , j ∈ {1, 2, . . . ,m} are the vectors of right hand sides

defined inside the j-th subdomain, f [b] is the vector of right hand side
on the subdomain boundaries. The superscript i denotes an internal
quantity while b stands for a boundary one. Clearly, ib and bi denotes
coupling between internal and boundary quantities. The number of
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equations collected in the j-th block is denoted by n
[i]
j . The number of

equations collected in the last block is denoted by n[b]. If the number
of all rows in the system (1) is n, the following simple relationship is
valid

n = n[b] +

m∑
j=1

n
[i]
j (2)

The diagonal blocks can be written as K
[ii]
j ∈ Rn

[i]
j ×n

[i]
j , while the

vectors d
[i]
j and f

[i]
j are from Rn

[i]
j and the off-diagonal blocks K

[ib]
j are

from Rn
[i]
j ×n

[b]

. If all diagonal blocks K
[ii]
1 to K [ii]

m are nonsingular,
particular blocks of the vector of unknowns d can be expressed in the
form

d
[i]
j =

(
K

[ii]
j

)−1 (
f

[i]
j −K

[ib]
j d[b]

)
. (3)

Then the substitution of equation (3) into the last equation of (1) gives
a new system
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(4)

where the matrix K̃
[bb]

is in the form

K̃
[bb]

= K [bb] −K [bi]
j

(
K

[ii]
j

)−1

K
[ib]
j (5)

and the vector f̃
[b]

has the form

f̃
[b]

= f [b] −K [bi]
j

(
K

[ii]
j

)−1

f
[i]
j (6)

The j-th matrix equation is missing in (4). After repeating this process
for each row of (1) except the last one, the reduced system of equations
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becomes K [bb] −
m∑
j=1

K
[bi]
j

(
K

[ii]
j

)−1

K
[ib]
j

d[b] =

= f [b] −
m∑
j=1

K
[bi]
j

(
K

[ii]
j

)−1

f
[i]
j (7)

where d[b] ∈ Rn[b]

is the vector of unknowns. The matrix of the sys-

tem (7) is from the set Rn
[b]×n[b]

. The original system of equations
contains n unknowns while the reduced system (7) contains only n[b]

unknowns. This reduction of unknowns is an important feature of the
Schur complement method. When the vector d[b] is computed, all vec-

tors of internal unknowns d
[i]
j are established from equation (3).

The system of equations (7) is also called the coarse grid problem
because only unknowns defined on the boundaries are used. Each sub-
domain could be assumed to be one super-element and the coarse grid
is assumed to be created by those super-elements.

It is clear from equation (3) that only two appropriate blocks of

the matrix K are involved in computation of the blocks d
[i]
j . In other

words, particular blocks d
[i]
j are expressed independently of other parts

of the vector of unknowns except the last block d[b] which depends on
all blocks of the system. The aim of the method is to minimize n[b]

which results in an efficient solution of equation (7).
The reduced system of equations can be solved by a direct or an

iterative method. The choice of a solution method depends on many
factors which are not strict. If the Schur complements are small and
the number of subdomains and therefore the number of processors is
also small, the direct method can be applied very efficiently. In this
case, only small amounts of data (condensed matrices and vectors) are
sent between slaves and the master and the reduced system is placed
in the RAM on the master processor. No communication is necessary
during solution of the reduced problem and when boundary unknowns
are evaluated, only a small amount of data is sent from the master to
the slaves.

In the case of iterative methods, there are two basic possibilities.
The first one is based on the similar strategy to the previous one, that
is the condensed matrices and vectors are sent from slaves to the master
processor, the matrix of the reduced system is assembled in the RAM
and the sequential iterative algorithm is used to solve the system. Once
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again, no communication is required during solution and at the end
the evaluated boundary unknowns are sent from the master to the
slaves. Reduction of communication is an advantage but there is also
a disadvantage which lies in the fact that only the master processor is
working during solution while all the slaves are inactive.

The second possibility is more appealing and is based on distributed
computation. In this case the condensed matrices are not sent from
slaves to the master and the iterative method capitalises on the fact
that only the matrix-vector multiplication is necessary for solution. The
master processor manages the computation. It sends appropriate parts
of a vector which should be multiplied by a matrix of the reduced system
to slaves where multiplication is computed with the condensed matrices.
After that, slaves send the results obtained to the master processor
where particular contributions are added into the global vector. During
this algorithm small amounts of data are sent among the processors
but on the contrary to the previously described strategy, all processors
are active. The second approach of the iterative solution of the reduced
system of equations is suitable for large problems because the matrix of
the reduced system is not assembled on the master processor. Therefore
the size of the RAM on the master is not a restrictive factor.

Figure 1 shows a three-dimensional finite element mesh generated
on a reactor vessel. The mesh is decomposed into 20 submeshes and
an analysis could be solved on 20 processors.

2.2 FETI Method

The FETI method was introduced in [10] in 1991. The original method
was extended to the fourth-order static and dynamic plate bending
problems in reference [7] and to shell problems in reference [6]. Special
attention is devoted to the continuity conditions at the substructure
corners and it leads to a two level FETI method.

Convergence and scalability are analysed in reference [8] which also
contains discussion on the optimal and computationally efficient pre-
conditioners. In this reference, a closed connection with the balancing
domain decomposition method introduced in [19] is mentioned. Papers
[24] and [23] are devoted to preconditioners of the FETI method for
heterogenous mechanics problems and constrained problems.

Application of the FETI method to large scale linear and geomet-
rically non-linear structural analysis problems is described in [9]. Se-
lection of one or two level FETI methods is studied. Attention is also
devoted to particular components of the method and to handling of
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Figure 1: Mesh of a reactor vessel decomposed into 20 subdomains.
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singularities. Reference [1] describes scalability of the FETI method on
1,000 processors and application to highly heterogeneous problems. A
problem with more than 5.5 million of degrees of freedom is presented.

Papers [3], [5] are devoted to the contact problems which are de-
scribed by variational inequalities. Application of the FETI method to
analysis of composite materials are studied in [4], [15], [16], [12], [14].

The derivation of the basic equations will be shown on mechanical
problem and can be completed with the help of a energy functional of
an elastic solid body which has the following form

Π(u) =
1

2

∫
Ω

(ε(x))
T
D(x)ε(x)dΩ−

∫
Ω

(u(x))T b(x)dΩ

−
∫

Γt

(u(x))T t(x)dΓt (8)

where the integrals are taken over the whole domain. ε is the strain
vector, D is the stiffness matrix of material, u is the vector of dis-
placements, b is the vector of body forces and t is the vector of surface
traction. Energy is a scalar quantity and therefore it can be computed
as the sum of several contributions. This is a suitable property in
connection with domain decomposition methods because the original
domain (elastic body) is decomposed into several smaller subdomains,
in case of the FETI method in non-overlapping subdomains. The en-
ergy functional of the body decomposed into m subdomains has the
form

Π(u) =

m∑
j=1

(
1

2

∫
Ωj

(ε(x))
T
D(x)ε(x)dΩj −

∫
Ωj

(u(x))T b(x)dΩj

)

−
m∑
j=1

∫
Γt
j

(u(x))T t(x)dΓtj +

m∑
j=1

∫
Γi
j

[u(x)]µ(x)dΓij (9)

The j-th subdomain is denoted by Ωj , the boundary of the j-th subdo-
main is denoted by Γj . Each boundary Γj is the union of two parts, Γij
and Γej . The external part of the boundary, Γej , is defined as Γej = Γ∩Γj
and the internal part, Γij , is the remaining part, therefore Γij = Γj−Γej .
The internal parts of the subdomains boundaries are formed after de-
composition of the original domain into subdomains. The union of Ω̄j
gives the original domain Ω̄ and the union of the external parts of the
boundaries Γej gives the boundary of the original domain Γ. Γtj denotes
for the parts of the boundary of the j-th subdomain with a prescribed
traction.
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A new term in the energy functional occurs after the decomposition
of the original body into several smaller subdomains. It is the last term
where the Lagrange multipliers µ(x) were defined. These multipliers
enforce the continuity among subdomains. The discontinuity of the
vector of displacements, u(x), is denoted by [u(x)]. The Lagrange
multipliers are defined only on the boundaries Γij which were created
by the decomposition.

The discretized form of the energy functional (9), where the approx-
imation by the finite element method was used, has the form

Π =

m∑
j=1

1

2

∫
Ωj

dTj B
T
j DBjdjdΩj −

m∑
j=1

∫
Ωj

dTj

(
N

[d]
j

)T
N

[b]
j b̄jdΩj

−
m∑
j=1

∫
Γt
j

dTj

(
N

[d]
j

)T
N

[t]
j t̄jdΓtj +

m∑
j=1

λTEjdj (10)

where Ej denotes the assembling matrices, λ is the vector of Lagrange
multipliers, dj is the vector of nodal displacements on the j-th subdo-

main, N
[d]
j and N

[b]
j are the matrices of shape functions, Bj are the

strain-displacement matrices, b̄j are the vectors of nodal volume forces
and t̄j are the vectors of nodal surface traction.

The last term of the functional (10) plays an important role because
it enforces the compatibility of displacements by utilizing Lagrange
multipliers.

There are m+ 1 unknown vectors d1,d2, ...,dm,λ in the functional
(10). The extreme value of the original energy functional (8) is reached
at the stationary point of (10) which can be obtained by solving the
following system of equations

For j = 1, 2, ...,m

∂Π

∂dj
=

∫
Ωj

BT
j DBjdjdΩj −

∫
Ωj

(
N

[d]
j

)T
N

[b]
j b̄jdΩj

−
∫

Γt
j

(
N

[d]
j

)T
N

[t]
j t̄jdΓtj + ETj λ = 0 (11)

∂Π

∂λ
=

m∑
j=1

Ejdj = 0 (12)

With the usual notation

Kj =

∫
Ωj

BT
j DBjdΩj (13)
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for the stiffness matrix and

f j =

∫
Ωj

(
N

[d]
j

)T
N

[b]
j b̄jdΩj +

m∑
j=1

∫
Γt
j

(
N

[d]
j

)T
N

[t]
j t̄jdΓtj (14)

for the load vector, the system of equations has then the form

For j = 1, ...,m Kjdj = f j − ETj λ (15)

m∑
j=1

Ejdj = 0 (16)

From the physical point of view, equations (15) are equilibrium con-
ditions on particular subdomains and equation (16) is a compatibility
condition.

The solution of equations (15) and (16) is not straightforward be-
cause of the singularity of the matrices Kj . As described above, the
original domain is split into independent subdomains. The continuity
on the boundaries is enforced by the Lagrange multipliers. The inde-
pendence of the subdomains leads to singularity, if there are not enough
supports on the subdomain. Instead of the matrices K−1

j which gen-

erally do not exist, the pseudo-inverse matrix, K+, which is defined
as

KK+K = K (17)

has to be used.
A matrix Kj ∈ Rnj×nj will be considered singular. This means

that there are linearly dependent rows in the matrix. It is therefore
possible to rewrite the matrix in the form

Kj =

 K
[nn]
j K

[ns]
j

K
[sn]
j K

[ss]
j

 (18)

where the block K
[nn]
j is nonsingular. The pseudo-inverse matrix to

the matrix (18) has the form

K+
j =

(
(K

[nn]
j )−1 0

0 0

)
(19)

15



The possible singularity of the matrices Kj , must be taken into
account when solving the system (11). The necessary condition for
solvability is (

f j − ETj λ
)
⊥ kerKj (20)

where kerKj stands for the kernel of the matrix. The kernel is a set
which is defined as

kerKj = {x ∈ Rnj : Kjx = 0} (21)

More details can be found in reference [11]. The displacement vector
can be written with the defined pseudo-inverse matrix and condition
(20) as

dj = K+
j

(
f j − ETj λ

)
+Rjαj (22)

where the matrix Rj contains in columns the rigid body motions of
the subdomain. From a mathematical point of view, the matrix Rj

contains the basis vectors of the kernel of the matrix Kj . The vector
αj contains the coefficients of linear combinations. After combining
relations (22) and (16) the following equation is obtained

m∑
j=1

EjK+
j E

T
j λ =

m∑
j=1

(
EjK+

j f j + EjRjαj
)

(23)

The solvability conditions (20) may be expressed in the form

For j = 1, ...,m : RT
j

(
f j − ETj λ

)
= 0 (24)

For the subsequent analysis the following quantities will be defined

F =

m∑
j=1

EjK+
j E

T
j (25)

G = (−E1R1,−E2R2, ...,−EmRm) (26)

g =

m∑
j=1

EjK+
j f j (27)
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eT =
(

(−RT
1 f1)T , (−RT

2 f2)T , ..., (−RT
mfm)T

)
(28)

and

αT =
(
αT1 ,α

T
2 , ...,α

T
m

)
(29)

The vector g is usually in the literature denoted as d which denotes the
vector of displacements in this book. The resulting system of equations
can be written with quantities from the equations (25), (26), (27), (28)
and (29) as (

F G

GT 0

)(
λ
α

)
=

(
g
e

)
(30)

The solution of equation (30) will be obtained by the modified conjugate
gradient method. The original conjugate gradient method must be
modified because of the presence of the additional condition. When
the resulting vector of Lagrange multipliers λ is obtained, it is possible
to compute the vector of coefficients of the linear combination α from
the equation

Fλ+Gα = g (31)

The matrixG is not a square matrix that means that the inverse matrix
does not exist. After multiplying relation (31) from the left by GT , the
invertible matrix GTG will be on the left hand side. The vector of α
coefficients is expressed as

α =
(
GTG

)−1

GT (g − Fλ) (32)

All the necessary data are now available for computing the resulting
displacements. The displacement vector is the sum of two parts, the
first contribution is the vector based on the solution of the coarse prob-
lem

d
[∞]
j = K+

j

(
f j − ETj λ

)
(33)

and the second vector is created by the linear combination of the rigid
body motions

d
[ker]
j = Rjαj (34)

For sufficiently supported subdomains the vector d
[ker]
j is equal to the

zero vector. The resulting displacement can be written in the form

dj = d
[∞]
j + d

[ker]
j (35)
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3 Multi-scale problem

The coupled heat and moisture transport in extremely heterogeneous
material like masonry is hardly solvable even with modern computers.
The reason is that there are relatively small mortar layers in comparison
with bricks which enforce a very dense finite element mesh. Therefore,
only details of structures can be solved.

In order to solve the whole structures, multi-scale techniques are
usually used. The classical first order homogenization in a spatial
domain in the framework of the two-step multi-scale computational
scheme was proposed in [27]. This technique is based on a meso or
micro-scale problems and a macro-scale problem. Whether the micro
or meso-scale level is used depends on the characteristic size of the rep-
resentative volumes which describe the real complicated geometry. In
masonry structures, the representative volume contains several bricks
and adjacent mortar layers and therefore the meso-scale level is used.
The macro-scale problem describes the problem solved by relatively
coarse mesh because homogenized material parameters are obtained
from meso-scale level. The multi-scale technique sends the actual val-
ues from the macro-scale level problem to the meso-scale problem where
the appropriate material parameters are obtained and sent back to the
macro-scale problem.

It is evident that the multi-scale method is very demanding be-
cause a meso-scale problem has to be solved for each macro-scale finite
element. If the number of macro-scale finite elements is in thousands
only, the solution of meso-scale problems is very demanding even if each
meso-scale problem contains only hundreds of degrees of freedom. The
multi-scale problems are ideal for parallelization because the meso-scale
problems are completely independent and only reasonable amount of
data has to be sent between the macro-scale problem and the meso-scale
problems.

The coupled heat and moisture transport is described by the Künzel
material model which was introduced in 1995 in reference [18] and mod-
ified in [30]. The Künzel model is based on the temperature and relative
humidity which have to satisfy the mass and heat balance equations in
the form of partial differential equations. The mass balance equation
has the form

∂ρv
∂ϕ

∂ϕ

∂t
= div

(
(Dφ + δpps)gradϕ+ δpϕ

dps
dT

gradT

)
(36)
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and the heat balance equation has the form

∂H

∂T

∂T

∂t
= div

(
(λ+ Lvδpϕ

dps
dT

)gradT + Lvδppsgradϕ

)
(37)

where T is the temperature (K), ϕ is the relative humidity (-), Lv is
the latent heat of evaporation (J/kg), Dϕ is the liquid water transport
coefficient (kg/m/s), λ is the thermal conductivity (W/m/K), ps is the
partial pressure of saturated water vapour in the air (Pa), δp water
vapour permeability (kg/m/s/Pa), H is the enthalpy density (J/m3).

System of partial differential equations (36-37) is solved by the finite
element method. Let N denote the number of nodes in the macro-scale
problem and n denote the number of nodes in meso-scale problem.
The balance equations (36-37) on the macro-scale level after space dis-
cretization have the form

Cḋ+Kd = f (38)

where C is the capacity matrix (2N, 2N), K is the conductivity matrix
(2N, 2N), d is the vector of nodal unknowns (2N) and f is the vector
of the right hand side assembled from boundary conditions. First order
homogenization applied to the balance equations (36-37) leads to the
system of algebraic equations on the meso-scale level in the matrix-
vector form(

KTT KTϕ

KϕT Kϕϕ

)(
ū∗T
ū∗ϕ

)
= −

(
LTTT LTTϕ
LTϕT LTϕϕ

)(
∇T (x)
∇ϕ(x)

)
, (39)

where the right hand side is assembled from the gradients of the macro-
scale variables. The matrices KTT , KTϕ, KϕT and Kϕϕ have n rows

and n columns while the matrices LTTT , LTTϕ, LTϕT and LTϕϕ have n
rows and 3 columns. ū∗T and ū∗ϕ are the vectors of temperature and
moisture fluctuations on the meso-scale problem.

The multi-scale analysis assumes each macroscopic integration point
be connected with a certain mesoscopic problem represented by an
appropriate periodic unit cell. The solution of a meso-scale problem
then provides instantaneous effective data needed on the macro-scale.
Such an analysis is particularly suitable for a parallel computing be-
cause the amount of transferred data is small. In this regard, the
master-slave strategy can be efficiently exploited [28]. To that end, the
macro-problem is assigned to the master processor while the solution
at the meso-scale is carried out on slave processors. At each time step
the current temperature and moisture together with the increments of
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Figure 2: Two-dimensional model: macro and meso scale problems.

Figure 3: Two-dimensional model: distribution of the temperature and
moisture.
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Figure 4: Three-dimensional model: macro-level problem.

their gradients at a given macroscopic integration point are passed to
the slave processor (imposed onto the associated periodic cell), which,
upon completing the small scale analysis, sends the homogenized data
(effective conductivities, averaged storage terms and fluxes) back to the
master processor.

If the meso-scale problems are large enough, the ideal solution is
to assign one meso-problem to one slave processor. Clearly, even for
very small macro-problems with a few thousands of finite elements,
the hardware requirements would be in such a case excessive. On the
other hand, if the meso-problems are relatively small, i.e. they contain
small number of finite elements, the corresponding analysis might be
even shorter than the data transfer between the processors. Then,
the computational time associated with the data transfer between the
master processor and many slave processors may grow excessively. It is
worth mentioning that this time consists of two contributions. The first
one represents the latency time (the processors make connection) which
is independent of the amount of transferred data whilst the second
contribution clearly depends on the amount of data being transferred.
For small meso-problems it is therefore reasonable to assign several of
them to a single slave processor. The master processor then sends a
larger package of data from many macroscopic integration points at
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Processor No. 1 2 3 4 5 6
No. of meso-problems 1218 1748 1046 1052 1214 1210

Processor No. 7 8 9 10 11 12
No. of meso-problems 1052 1054 1046 1052 1054 1048

Table 1: Decomposition of the macro-problem into sub-domains.

the same time to each slave processor so that the latency time does not
play a crucial role. This approach was adopted hereinafter.

Coupled heat and moisture transport in Charles bridge in Prague,
Czech Republic, was solved. The meso-scale problem is depicted in
Figure 2. The number of elements in the two meso-problems amounts
to 265 (160 nodes) for SEPUC 1 and to 414 (239 nodes) for SEPUC 2,
respectively. Similarly to the macro-problem, the meso-problems have
to account for the material heterogeneity. Clearly, the ideal speedup
and load balancing are obtained when the decomposition of the macro-
problem reflects the meso-problem meshes. However, this is consider-
ably more difficult when compared to the classical mesh decomposition.

The finite element mesh used at the macro-level is evident from
Figure 2 featuring 7, 081 nodes and 13, 794 triangular elements with
a single integration point thus amounting to the solution of 13, 794
meso-problems at each macroscopic time step. This figure also shows
decomposition of the macro-problem into 12 slave processors. The num-
bers of elements in individual sub-domains being equal to the number
of meso-problems handled by the assigned slave processor are listed in
Table 1. It should be noted that the assumed decomposition of the
macro-problem is not ideal. In comparison with domain decomposition
methods, the macro-problem has to be split with respect to the hetero-
geneity of the material resulting in the variation of number of elements
in individual sub-domains between 1046 and 1748.

The actual analysis was performed on a cluster built at our depart-
ment. Each node of the cluster is a single processor personal computer
Dell Optiplex GX620 equipped with 3.54 GB of RAM. The processors
are Intel Pentium with the frequency 3.4 GHz. The cluster is based
on Debian linux 5.0 and 32-bit architecture. Each time step took 2.08
minute.

Figure 3 contains distribution of the temperature and relative hu-
midity on the meso-scale problems. Generalization of the model to
three dimensions is visible in Figure 4.
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4 Conclusions

Two different examples of application of parallel computers in engineer-
ing computations were described. The parallel computers are necessary
for solution of extremely large problems which are not manageable on a
single processor computer. As an example can serve a problem reported
in [13], where 314,505,600 unknowns are solved by the FETI method
on 4,800 cores. On the other hand, problems with moderate number
of unknowns which are solved many times can be found in multi-scale
problems [26], optimization problems [22], stochastic problems solved
by the Monte Carlo or similar method, fuzzy set problems solved by
α-cut methods [17]. They are also very demanding and application of
a parallel computer can lead to the ideal speedup.

Acknowledgement

The author thank to colleagues Tomáš Koudelka, Tomáš Krejč́ı, Michal
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