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Summary

Compressible inviscid fluid flow is described by Euler equations expressing conservation
of mass, momentum and energy. Euler equations are presented in Eulerian formulation in
the fixed coordinate frame and in Lagrangian formulation in the coordinate frame moving
with the fluid. The direct and indirect Arbitrary Lagrangian Eulerian (ALE) methods are
shortly introduced and the full model for laser plasma is presented. Composite schemes,
consisting in global composition of several steps of the Lax-Wendroff (LW) type dispersive
scheme with one step of diffusive Lax-Friedrichs type scheme, are introduced in 1D and
2D. Direct generalization of 2D LW type scheme to 3D leads to unconditionally unstable
scheme. Modification of this scheme gives a sub-optimally stable scheme. Optimally
stable 3D LW type unsplit scheme is derived from the fully symmetric dimensionally split
scheme.

The PALE (Prague ALE) code has been developed for simulations of laser interaction
with targets. It employs the indirect ALE hydrodynamical method, which computes for
some time in Lagrangian formulation and then smooths the Lagrangian mesh moving
with the fluid and conservatively interpolates (remaps) the conservative quantities from
the Lagrangian mesh to the smoothed one. The hydrodynamics is supplemented by
heat conductivity and laser absorption processes, which are necessary for laser plasma
modeling. All numerical methods employed in the PALE code are summarized with
remapping being covered in more detail. Flux corrected remapping, based on the idea
of flux corrected transport (FCT), is developed for density. Synchronized flux corrected
remapping of density, momentum and energy is presented.

Selected simulations of laser interactions with targets, including the oblique incidence
of laser on a thin foil, the disc flyer target, the foam target and the massive target
irradiated by an annular laser beam, demonstrate the capabilities of the PALE code.
Simulations confirm the necessity to use the computational mesh moving with the plasma
wherever possible and to apply indirect ALE method when the mesh becomes too dis-
torted. Simulations correspond to experiments performed at PALS laser facility and
simulations results are compared with experimental ones.
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Souhrn

Stlačitelné nevazké prouděńı tekutin je popsáno Eulerovými rovnicemi vyjadřuj́ıćımi
zachováńı hmoty, hybnosti a energie. Eulerovy jsou uvedeny v eulerovské formulaci v
pevné souřadné soustavě a v lagrageovské formulaci v souřadné soustavě pohybuj́ıćı se
s tekutinou. Krátce jsou představeny př́ımá a nepř́ımá ALE (Arbitrary Lagrangian Eu-
lerian) metoda a je prezentován úplný model pro laserové plazma. Složená schemata,
skládaj́ıćı se z globálńıho složeńı několika krok̊u disperzńıho schematu Laxova-Wendroffova
(LW) typu s jedńım krokem difuzńıho schematu typu Laxe-Friedrichse, jsou představena
v 1D a 2D. Př́ımé zobecněńı 2D schematu LW typu do 3D vede k bezpodmı́nečně nesta-
bilńımu schematu. Modifikace tohoto schematu dává suboptimálně stabilńı schema. Opti-
málně stabilńı 3D schema LW typu bez rozkladu je odvozeno z plně symetrického schematu
dimenzionálńıho rozkladu.

Kód PALE (Pražské ALE) byl vyvinut pro simulace interakce laseru s terč́ıky. Kód
použ́ıvá nepř́ımou ALE hydrodynamickou metodu, která nějaký čas poč́ıtá v lagrangeovské
formulaci a potom vyhlad́ı lagrangeovskou śı̌tku pohybuj́ıćı se spolu s tekutinou a konzer-
vativně interpoluje (remapuje) konzervativńı veličiny z lagrangeovské śıtě na vyhazenou
śı̌t. Hydrodynamika je doplněna procesy tepelné vodivosti a absorpce laseru, které jsou
nezbytné pro modelováńı laserového plazmatu. Všechny numerické metody použité v
kódu PALE jsou shrnuty a remapováńı je probráno detailněji. Remapováńı korekćı tok̊u,
založené na myšlence FCT (Flux Corrected Transport), je odvozeno pro hustotu. Je
prezentováno synchronńı remapováńı korekćı tok̊u pro hustotu, hybnost a energii.

Vybrané simulace interakce laseru s terč́ıky, zahrnuj́ıćı šikmý dopad laseru na tenkou
fólii, terč́ık s let́ıćım diskem, pěnový terč́ık a masivńı terč́ık ozářený prstencovým laserovým
svazkem, demonstruj́ı schopnosti kódu PALE. Simulace potvrzuj́ı nezbytnost použ́ıt vý-
početńı śı̌tku pohybuj́ıćı se spolu s plazmatem, kdekoli je to možné, a nasadit nepř́ımou
ALE metodu když se śı̌tka stane př́ılǐs deformovanou. Simulace koresponduj́ı s experi-
menty prováděnými na laserovém zař́ızeni PALS a výsledky simulaćı jsou porovnány s
experimentálńımi výsledky.
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terč́ıky

Keywords: Euler equations, difference schemes, stability analysis, Lagrangian methods,
ALE methods, remapping, laser plasma, laser interaction with targets
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1 Introduction

The compressible, inviscid fluid flow is modeled by Euler equations, which are non-linear
conservation laws for mass, momentum and energy. The first two of these equations for
conservation of mass and momentum were written down by Leonhard Euler in 1757 and
Pierre Hugoniot added the conservation law for energy in 1889. These equations are
directly solvable only in a few special cases and numerical methods have to be used to
treat them.

The domain of numerical methods for compressible, inviscid fluid flow, called com-
putational gas dynamics, forms an important part of the wider computational fluid dy-
namics, including also viscous and incompressible fluid flows. As the Euler equations are
non-linear hyperbolic conservation laws, their solution can have discontinuities in form
of shock or contact waves and the numerical methods solving them has to be designed
in a special way to be able to resolve the discontinuities well. The numerical methods
have to ensure that on the shock waves the kinetic energy is dissipated into the internal
energy in agreement with the second law of thermodynamics. The dissipation in numeri-
cal methods is achieved either explicitly through the artificial viscosity or implicitly e.g.
through approximate Riemann solvers. The conservativity of a numerical method usually
guarantees the correct resolution of shock wave speed, which is one of the most important
features of the conservation laws and which has to obey Rankin-Hugoniot condition.

From numerous applications of compressible, inviscid fluid flows, as e.g. in meteorol-
ogy, aerospace engineering or astrophysics, we are interested in their usage for simulations
of laser plasma, forming the base for Inertial Confinement Fusion (ICF). The ICF basic
strategy, to achieve the controlled fusion reaction as a new source of energy, is to use
high power lasers to compress and heat a small amount of the fusion fuel to conditions at
which the fusion can be ignited.

Problems being simulated in laser plasma typically involve areas of compression and
expansion with computational domain changing with time. Such problems are treated bet-
ter by Lagrangian method with computational mesh moving together with the simulated
fluid. For some types of fluid flow, as e.g. shear or vortex flows, the Lagrangian methods
suffer from a serious computational mesh distortion, which can lead to inverted computa-
tional cells and consequently to the failure of the method. This problem can be overcome
by using the indirect ALE method [12], which smooths the distorted Lagrangian mesh
and conservatively interpolates the conservative quantities from the Lagrangian mesh to
the smoothed one.

2 Euler equations for compressible fluid flow

Euler equations for compressible inviscid fluid flow express the conservation of mass,
momentum and energy. There are several form of Euler equations depending on the
choice of coordinates.

2.1 Eulerian formulation

Eulerian formulation assumes static, non-moving coordinate system. The conservation of
mass, momentum and energy is written as

Ut + f(U)x + g(U)y + h(U)z = 0, (1)
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where the subscripts denote partial derivatives and

U =


ρ
ρu
ρv
ρw
ρe

 , f =


ρu
ρu2 + p
ρuv
ρuw
u(ρe+ p)

 , g =


ρv
ρuv
ρv2 + p
ρvw
v(ρe+ p)

 , h =


ρw
ρuw
ρvw
ρw2 + p
w(ρe+ p)

 ,

and where ρ is the density, u, v, w are the components of the fluid velocity in the x, y, z-
directions, e = ε+ 1/2(u2 + v2 +w2) is the specific total energy (i.e. the total energy per
unit of mass), ε is the specific internal energy and p is the pressure. The system is closed
by the equation of state p = p(ρ, ε). For the ideal gas it reads p = (γ − 1)ρε, where γ is
the adiabatic exponent, defined as the ratio of specific heats. For laser plasma one can
use the quotidial equation of state QEOS [41].

2.2 Lagrangian formulation

Lagrangian formulation of the Euler equations assumes coordinate frame moving together
with the fluid. The Euler equations written in Lagrangian coordinates are

ρ
dU

dt
+ div f(U) = 0, (2)

where d/d t = ∂/∂ t+ u · grad with u = (u, v, w) is the total Lagrangian time derivative
including convective terms and

U =

 η
u
e

 , f =

 u
−pI
−pu

 ,

and where η = 1/ρ is the specific volume and I is the unit matrix. The movement
of Lagrangian coordinates is controlled by the ordinary differential equation dx/dt =
u which after discretization describes the movement of the computational mesh. As
the computational mesh is moving with the fluid, the mass of each computational cell
remains constant. Lagrangian formulation suits very well for problems involving large
scale changes of computational domain (changes in volume or shape) and for problems
with moving boundaries (including moving boundary conditions).

For some types of flow, as e.g. shear or vortex flows, one cannot use Lagrangian
formulation for sufficiently long time, as Lagrangian moving mesh after some time becomes
distorted or even tangled. Such types of flow can however be treated by the Arbitrary
Lagrangian Eulerian (ALE) method, introduced shortly in the next section.

2.3 Arbitrary Lagrangian Eulerian (ALE) methods

There are two versions of the ALE method. The first one, so called direct ALE method,
assumes that the computational mesh movement is given (i.e. movement of each node of
the mesh is given) and computes the solution on this moving mesh. The second one, so
called indirect ALE method, first computes on the Lagrangian moving mesh, then either
after several Lagrangian steps or when the moving mesh becomes distorted (quality of the
mesh deteriorate) the rezone and remap stages are invoked. The rezone stage smooths
or untangles the distorted Lagrangian mesh. The remap stage performs conservative
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interpolation of the conserved quantities from the old distorted Lagrangian mesh to the
new rezoned one. After remap the Lagrangian computation can continue. Such approach
allows to follow the motion of the fluid in the Lagrangian sense, while also allows to be used
for above mentioned types of flows (as e.g. shear or vortex) for which pure Lagrangian
approach would fail.

2.4 Model for laser plasma

The simulations of problems involving laser generated plasma often involve large scale
expansion or compression regions, see the expansion of a thin foil irradiated by a laser
beam presented in Section 4.1 where the initial computational domain (a thin foil) vol-
ume grows more than 500 times. Thus for modeling of laser plasma one typically uses
Lagrangian formulation presented in Section 2.2. The system (2) describes pure hydro-
dynamics and its energy equation has to be amended by terms describing two processes
essential for laser plasma: heat conductivity and laser absorption. The full system with
energy equation transformed into non-conservative equation for internal energy reads

1

ρ

dρ

dt
+ div u = 0,

ρ
du

dt
+ grad p = 0, (3)

ρ
dε

dt
+ p div u = div(κ grad T )− div I,

where T = T (ρ, ε) is the temperature, κ the heat conductivity, I the laser energy flux
density (Poynting vector). This system is the basic model which we employ for laser
plasma simulations.

3 Numerical methods

3.1 Composite schemes for Euler formulation

There exist many difference schemes treating Euler equations in Euler formulation on
static computational mesh [50, 24]. Comparison of several best known schemes, including
e.g. PPM and WENO, on 1D and 2D test problems can be found in [36]. Here we deal
with composite schemes, which we have developed in [32, 33].

3.1.1 1D schemes

In 1D the system of Euler equations is written as

Ut + fx(U) = 0

where U is vector of conservative variables and f is the vector of fluxes of these variables.
One of the simplest finite difference schemes for conservation laws is the Lax-Friedrichs
(LF) scheme. Its two step version uses the predictor

U
n+1/2
i+1/2 =

1

2
[Un

i + Un
i+1]− ∆t

2∆x
[f(Un

i+1)− f(Un
i )], (4)

8



to get the solution U
n+1/2
i+1/2 on the dual grid (obtained from the primary grid by shifting

both indexes i and n by 1/2) from the solution Un
i on the primary grid. The LF scheme

is completed by the corrector

Un
i =

1

2
[U

n+1/2
i+1/2 + U

n+1/2
i−1/2 ]− ∆t

2∆x
[f(U

n+1/2
i+1/2 )− f(U

n+1/2
i−1/2 )], (5)

which is the predictor (4) shifted by 1/2 in both indexes i and n and which computes the
solution on the primary grid from that on the dual grid. The LF scheme is first order
accurate and very diffusive. The other well known scheme is Lax-Wendroff (LW) scheme,
which in its two step form uses the LF predictor (4) followed by the corrector

Un+1
i = Un

i −
∆t

∆x
[f(U

n+1/2
i+1/2 )− f(U

n+1/2
i−1/2 )]. (6)

Thanks to the centering the LW scheme is second order accurate, however it produces dis-
persive oscillations behind discontinuities. The numerical LW oscillations can be filtered
out by the diffusive LF scheme, which is a filter consistent with the differential equation.
This idea leads to global composition of LW and LF schemes which we call composite
scheme [32]. Denoting LW the operator of the LW scheme defined by (4), (6) and LF
the operator of the LF scheme defined by (4), (5), the composite scheme is defined by
the global composition of k − 1 operators LW followed by one operator LF , i.e. by the
operator

Sk = LF ◦ LW ◦ · · · ◦ LW ,

so that
Un+k = SkU

n.

This composite scheme is called the LWLFk scheme.
The numerical behavior of the LW, LF and composite schemes is demonstrated in

Fig. 1 presenting numerical solution of a single shock wave propagating to the right. The
LW scheme produces dispersive oscillations, while the diffusive LF scheme smears the
discontinuity over many computational cells. Their combination in the LWLF4 scheme
retains the steep shock resolution of LW while removing almost all its oscillations, keeping
only a small overshoot on the shock wave.

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88

1
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Figure 1: Density from a single shock wave computed by LW, LF and LWLF4 schemes.
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3.1.2 2D schemes

In [33] we have proposed a new LF and LW type schemes in 2D. For the system (1) in
2D we define the predictor computing the solution on the dual grid from the solution on
the primary grid (see Fig. 2 for primary and dual grids)

U
n+1/2
i+1/2,j+1/2 =

1

4
[Un

i,j + Un
i+1,j + Un

i,j+1 + Un
i+1,j+1]

− ∆t

2∆x
[Fi+1,j+1/2 − Fi,j+1/2]− ∆t

2∆y
[Gi+1/2,j+1 −Gi+1/2,j], (7)

where

Fi+1,j+1/2 =
1

∆t∆y

∫ yj+1

yj

∫ ∆t/2

0

f(Û(xi+1, y, t))dt dy,

and Û(xi+1, y, t) is the solution of the 1D Riemann problem (i.e. Cauchy initial problem

i,j

i+1,j+1

i+1/2,j+1/2i-1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

i,j+1

i+1,j

dual cell

primary cell

Figure 2: Staggered primary and dual grid in 2D, primary grid is shown as solid lines and
dual grid as dashed lines

with initial conditions given by two constant states, one on the left of a given point and
one on the right) with initial conditions

Û(xi+1, y, 0) =

{
Un
i+1,j for y < yj+1/2

Un
i+1,j+1 for y > yj+1/2.

In the same way

Gi+1/2,j+1 =
1

∆t∆x

∫ xi+1

xi

∫ ∆t/2

0

g(Û(x, yj+1, t))dt dx,

and Û(x, yj+1, t) is the solution of the Riemann problem with initial conditions

Û(x, yj+1, 0) =

{
Un
i,j+1 for x < xi+1/2

Un
i+1,j+1 for x > xi+1/2.

The solutions of the Riemann problems is approximated by the 1D LF predictor giving
the numerical fluxes

Fi+1,j+1/2 = f

(
1

2
[Ui+1,j+1 + Ui+1,j]−

∆t

4∆y
[g(Ui+1,j+1)− g(Ui+1,j)]

)
, (8)
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and

Gi+1/2,j+1 = g

(
1

2
[Ui+1,j+1 + Ui,j+1]− ∆t

4∆x
[f(Ui+1,j+1)− f(Ui,j+1)]

)
. (9)

For scalar advection (i.e. (1) in 2D with f(U) = aU, g(U) = bU) the expanded predictor
(7) has coefficients (1± λ)(1± µ) with λ = a∆t/∆x, µ = b∆t/∆y. For max(|λ|, |µ|) ≤ 1
the predictor is a positive scheme, thus it is stable. The 2D LF corrector is defined
similarly like in 1D by shifting all indexes n, i, j by 1/2 in the predictor formula (7). The
two step LF scheme is (as the predictor) optimally stable for scalar advection, i.e. it is
stable for max(|λ|, |µ|) ≤ 1.

The analog of 1D LW, i.e. the second order accurate 2D predictor-corrector scheme,
is defined by the predictor (7) and the corrector

Un+1
i,j = Un

i,j

− ∆t

2∆x
[f(Ui+1/2,j+1/2) + f(Ui+1/2,j−1/2)− f(Ui−1/2,j+1/2)− f(Ui−1/2,j−1/2)](10)

− ∆t

2∆y
[g(Ui+1/2,j+1/2) + g(Ui−1/2,j+1/2)− g(Ui+1/2,j−1/2)− g(Ui−1/2,j−1/2)].

We call this second order method the corrected Lax-Friedrichs (CF) scheme. As in 1D
the composite is

LF ◦ CF ◦ · · · ◦ CF (11)

and is called CFLFk, consisting of k−1 applications of CF followed be one LF. For scalar
advection the CF scheme is optimally stable [33] and also composites are optimally stable.

As the presented composite schemes use the LF sub-step, the composite schemes
are only first order accurate, however their numerical error is much smaller than the
error of pure LF. To overcome this problem we have experimented in [33] with replacing
LF in the composite by component-wise WENO [15] (i.e. WENO without eigenvector
decomposition), however for some problems such a composite scheme is noisier than CFLF
composites. The composite schemes have been used also for the shallow water equations
[35]. The main advantage of composite schemes is their simplicity.

3.1.3 3D schemes

The generalization [34, 33] of the 2D two-step LF and CF schemes gives the predictor

U
n+ 1

2

i+ 1
2
,j+ 1

2
,k+ 1

2

=
1

8
(Un

i,j,k + Un
i+1,j,k + Un

i,j+1,k + Un
i,j,k+1

+Un
i,j+1,k+1 + Un

i+1,j,k+1 + Un
i+1,j+1,k + Un

i+1,j+1,k+1)

− ∆t

2 ∆x

(
f
(
U
n+ 1

4

i+1,j+ 1
2
,k+ 1

2

)
− f

(
U
n+ 1

4

i,j+ 1
2
,k+ 1

2

))
(12)

− ∆t

2 ∆y

(
g
(
U
n+ 1

4

i+ 1
2
,j+1,k+ 1

2

)
− g

(
U
n+ 1

4

i+ 1
2
,j,k+ 1

2

))
− ∆t

2 ∆z

(
h
(
U
n+ 1

4

i+ 1
2
,j+ 1

2
,k+1

)
− h

(
U
n+ 1

4

i+ 1
2
,j+ 1

2
,k

))
.

The values at the center of all faces of the primary cell (having one integer index and
two half shifted indexes) on time level n + 1/4 are computed using the analog of the 2D
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predictor (7)

U
n+ 1

4

i,j+ 1
2
,k+ 1

2

=
1

4
(Un

i,j,k + Un
i,j+1,k + Un

i,j,k+1 + Un
i,j+1,k+1)

− ∆t

4 ∆y

(
g
(
Un+C
i,j+1,k+ 1

2

)
− g

(
Un+C
i,j,k+ 1

2

))
(13)

− ∆t

4 ∆z

(
h
(
Un+C
i,j+ 1

2
,k+1

)
− h

(
Un+C
i,j+ 1

2
,k

))
,

with similar formulas for the other faces. The values at the center of the edges of the
primary cell (having two integer indexes and one half shifted index) on time level n + C
are evaluated by an analog of 1D predictor (4):

Un+C
i+ 1

2
,j,k

=
1

2
(Un

i,j,k + Un
i+1,j,k)− C

∆t

∆x

(
f
(
Un
i+1,j,k

)
− f

(
Un
i,j,k

))
, (14)

with similar formulas for the other edges. Standard generalization of the 2D schemes
to 3D leads to C = 1/6 and uses the values at the center of primary edges on time
level n + 1/6, however later we will vary the value of C to stabilize the second order
scheme. For scalar advection (i.e. (1) with f(U) = aU, g(U) = bU, h(U) = cU) the
expanded predictor (12) (with C = 1/6) has coefficients (1 ± λ)(1 ± µ)(1 ± τ) with
λ = a∆t/∆x, µ = b∆t/∆y, τ = c∆t/∆z. For max(|λ|, |µ|, |τ |) ≤ 1 the predictor is a
positive scheme, thus it is stable. By the same procedure as in 1D and 2D, the LF
corrector uses the same formulas with the indexes i, j, k and n shifted by a one half.
The two step LF scheme is (as the predictor with C = 1/6) optimally stable for scalar
advection, i.e. it is stable for max(|λ|, |µ|, |τ |) ≤ 1.

The CF (corrected Lax-Friedrichs) scheme uses the corrector

Un+1
i,j,k = Un

i,j,k −
∆t

∆x

(
Fi+ 1

2
,j,k − Fi− 1

2
,j,k

)
− ∆t

∆y

(
Gi,j+ 1

2
,k −Gi,j− 1

2
,k

)
(15)

− ∆t

∆z

(
Hi,j,k+ 1

2
−Hi,j,k− 1

2

)
,

where the fluxes at the centers of the edges of the primary cell are defined by simple
averaging

Fi+ 1
2
,j,k =

1

4

(
f
(
U
n+ 1

2

i+ 1
2
,j+ 1

2
,k+ 1

2

)
+ f

(
U
n+ 1

2

i+ 1
2
,j− 1

2
,k+ 1

2

)
+f
(
U
n+ 1

2

i+ 1
2
,j+ 1

2
,k− 1

2

)
+ f

(
U
n+ 1

2

i+ 1
2
,j− 1

2
,k− 1

2

))
,

with similar formulas for the other edges.

The von Neumann stability analysis of the CF scheme with C = 1/6 for scalar advec-
tion uses the Fourier transformation uijk = ūeı(iα+jβ+kγ). The package FIDE [26] of the
computer algebra system Reduce [11] evaluated the amplification factor of the scheme as

|f |2 = 1 + 4A
λµτ tan(α/2) tan(β/2) tan(γ/2)D + AB

D2
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where

A = λ tan(α/2) + µ tan(β/2) + τ tan(γ/2)

B =
1∑
j=0

1∑
k=0

1∑
m=0

tan2j(α/2) tan2k(β/2) tan2m(γ/2)(λ2jµ2kτ 2m − 1)

D = (tan(α/2)2 + 1)(tan(β/2)2 + 1)(tan(γ/2)2 + 1)

The von Neumann stability condition of the scheme is ∀α∀β∀γ|f | ≤ 1. This formula is
to complicated to be analyzed algebraically. However the analysis can be completed for
a special case µ = τ = λ, γ = π/2 for which the amplification factor is

|f |2 = 1 +
fn

(tan(α/2)2 + 1)2(tan(β/2)2 + 1)2

where

fn = [[(t2at
2
b + t2a + t2b + λ2t2at

2
b)λ

4 − (2t2at
2
b + 2t2a + 2t2b + 1)](ta + tb + 1)

+(2t3at
3
b + 2t3atb + t3a + t2atb + t2a + 2tat

3
b + tat

2
b + 2tatb + ta + t3b

+t2b + tb + 1)λ2](ta + tb + 1)λ2

ta = tan(α/2)

tb = tan(β/2)

The quantifier elimination1 program QEPCAD [13] has proved that the logical formula

∀ta ∀tb fn ≤ 0

is equivalent to the formula λ = 0. This shows that for the special case τ = µ = λ 6= 0
and γ = π/2 the absolute value of the amplification factor is greater than one and so the
scheme is unstable. Numerical sampling of the amplification factor has shown that it is
unstable for all non-zero values of λ, µ, τ . Note that also in [25] some 3D discretizations
are unconditionally unstable.

The composite schemes CFLFk in 3D are constructed as in 2D (11) and consist of
k − 1 CF steps and one LF step. The composite schemes are sub-optimally stable [33].

The modified equation approach revealed that the instability of CF (with the predictor
(12)-(14) with C = 1/6 and the corrector (15)) is caused by terms Uxxyz, Uxyyz, Uxyzz in

1The quantifier elimination (QE) is the procedure which transforms the formula

Q1x1 ∈ R, Q2x2 ∈ R, · · · , Qkxk ∈ R, F (x1, · · · , xm),

where m ≥ k, Qi, i = 1, · · · , k are quantifiers either ∀ (for all) or ∃ (there exists) and F is an arbi-
trary logical combination of polynomial equations or inequalities in the real variables x1, · · · , xm, into
the equivalent formula which does not contain any quantifier and contains only non-quantified variables
xk+1, · · · , xm and is again a logical combination of polynomial equations and inequalities. In [48] Tarski
has proved that QE is possible and in [49] he gave the algorithm for doing QE, however, the complexity
of the algorithm was prohibitive. In [7] Collins presented a new method for QE by the cylindrical alge-
braic decomposition (CAD) with double exponential complexity. Based on this Hong [13] developed the
program QEPCAD (Quantifier Elimination by Partial Cylindrical Algebraic Decomposition) which incor-
porates many important improvements of the original CAD algorithm. We have developed a methodology
for using QE for stability analysis [14], which includes not only the stability of difference schemes, but
also stability of ordinary differential equations, well-posed analysis of partial differential equations and
stability of boundary conditions and their numerical approximations.
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the modified equation computed by the FIDE [26] package. These terms come from the
flux terms of the form f(g(h(u))) (with arbitrary ordered f, g, h). This has lead us to
variations of the constant C. The predictor with C = 0 has for scalar advection the
coefficients (1 ± λ)(1 ± µ)(1 ± τ) ± λµτ , which do not include the term λµτ which is
related to stability. With C = 0 the amplification factor of the CF scheme is

|FCF |2 = 1 + 4
(λta + µtb + τtc)

2

(1 + t2a)
2(1 + t2b)

2(1 + t2c)
2

[
(λtaµtb + λtaτtc + µtbτtc)

2

+λ2t2a + µ2t2b + τ 2t2c − (1 + t2a)(1 + t2b)(1 + t2c) + 1
]
,

where ta = tan(α/2), tb = tan(β/2), tc = tan(γ/2). This is again too complicated to be
analyzed analytically. However for the special case λ = µ = τ the von Neumann stability
condition is equivalent to

∀ta, tb, tc λ4(tatb + tatc + tbtc)
2 + λ2(t2a + t2b + t2c) + 1− (1 + t2a)(1 + t2b)(1 + t2c) ≤ 0

and the quantifier elimination program QEPCAD [13] has proved that this is equivalent
to 27λ8 − 18λ4 + 4λ2 − 1 ≤ 0 [34]. The numerical sampling results in the stability
region plotted in Fig. 3. We can conclude that the stability region includes the cube
max(|λ|, |µ|, |τ |) < 0.8545 where λ = 0.8545 is the only positive real root of the above
polynomial.
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Figure 3: Stability region of 3D CF scheme with C = 0. Stability region is below the
plotted surface in the λ, µ, τ space.

3.1.4 Optimally stable 3D schemes based on dimensional splitting

Here we will develop optimally stable, second order accurate scheme based on the 1D
LW scheme and dimensional splitting [22]. The 1D LW scheme (4), (6) defines the 1D
difference operator Un+1 = Lx(Un) in x (or corresponding index i) direction. In the same
way we define the 1D operators Ly and Lz in y and z (or corresponding indexes j and k)
directions. Now the simplest 3D non-symmetric dimensionally-split scheme is given by

Un+1
i,j,k = Lx Ly Lz Un

i,j,k.

This scheme is simple, fast and optimally stable, however it is not symmetric.
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There are 6 different products of the operators Lx, Ly, and Lz in 3D, so to make a
symmetric scheme, we average all these combinations:

Un+1
i,j,k =

1

6
(Lx Ly Lz + Lx Lz Ly + Ly Lx Lz (16)

+Ly Lz Lx + Lz Lx Ly + Lz Ly Lx)(Un
i,j,k).

This scheme is second-order accurate, symmetric and optimally stable, however it is a
dimensionally split scheme and we would like to develop a non-split scheme. To get the
conservation form

Un+1
i,j,k = Un

i,j,k −
∆t

∆x

(
F
n+ 1

2

i+ 1
2
,j,k
− F n+ 1

2

i− 1
2
,j,k

)
− ∆t

∆y

(
G
n+ 1

2

i,j+ 1
2
,k
−Gn+ 1

2

i,j− 1
2
,k

)
(17)

− ∆t

∆z

(
H
n+ 1

2

i,j,k+ 1
2

−Hn+ 1
2

i,j,k− 1
2

)
.

of 3D scheme (16), we use linear transformations of the type (f(A)+f(B))/2→ f ((A+B)/2)
to collect all terms with the same flux at the same point, e.g. for the point (n+ 1

2
, i+ 1

2
, j, k)

we get F
n+ 1

2

i+ 1
2
,j,k

:

f−1(F
n+ 1

2

i+ 1
2
,j,k

) =
1

2
(Un

i+1,j,k + Un
i,j,k)

− ∆t

6 ∆z
(h

n+ 1
2

i+1,j,k+ 1
2

− hn+ 1
2

i+1,j,k− 1
2

)− ∆t

6 ∆z
(h

n+ 1
2

i,j,k+ 1
2

− hn+ 1
2

i,j,k− 1
2

)

− ∆t

6 ∆y
(g
n+ 1

2

i+1,j+ 1
2
,k
− gn+ 1

2

i+1,j− 1
2
,k

)− ∆t

6 ∆y
(g
n+ 1

2

i,j+ 1
2
,k
− gn+ 1

2

i,j− 1
2
,k

)

− ∆t

12 ∆z
(Ĥ

n+ 1
2

i+1,j,k+ 1
2

− Ĥn+ 1
2

i+1,j,k− 1
2

)− ∆t

12 ∆z
(Ĥ

n+ 1
2

i,j,k+ 1
2

− Ĥn+ 1
2

i,j,k− 1
2

)

− ∆t

12 ∆y
(Ĝ

n+ 1
2

i+1,j+ 1
2
,k
− Ĝn+ 1

2

i+1,j− 1
2
,k

)− ∆t

12 ∆y
(Ĝ

n+ 1
2

i,j+ 1
2
,k
− Ĝn+ 1

2

i,j− 1
2
,k

) (18)

− ∆t

2 ∆x

(
f [Un

i+1,j,k

− ∆t

3 ∆y
(g
n+ 1

2

i+1,j+ 1
2
,k
− gn+ 1

2

i+1,j− 1
2
,k

)− ∆t

3 ∆z
(h

n+ 1
2

i+1,j,k+ 1
2

− hn+ 1
2

i+1,j,k− 1
2

)

− ∆t

6 ∆z
(Ĥ

n+ 1
2

i+1,j,k+ 1
2

− Ĥn+ 1
2

i+1,j,k− 1
2

)− ∆t

6 ∆y
(Ĝ

n+ 1
2

i+1,j+ 1
2
,k
− Ĝn+ 1

2

i+1,j− 1
2

, k)]

−f [Un
i,j,k

− ∆t

3 ∆y
(g
n+ 1

2

i,j+ 1
2
,k
− gn+ 1

2

i,j− 1
2
,k

)− ∆t

3 ∆z
(h

n+ 1
2

i,j,k+ 1
2

− hn+ 1
2

i,j,k− 1
2

)

− ∆t

6 ∆z
(Ĥ

n+ 1
2

i,j,k+ 1
2

− Ĥn+ 1
2

i,j,k− 1
2

)− ∆t

6 ∆y
(Ĝ

n+ 1
2

i,j+ 1
2
,k
− Ĝ

n+ 1
2

i,j− 1
2
,k

)]
)

,
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where

Ĥ
n+ 1

2

i,j,k+ 1
2

= h

(
1

2
(Un

i,j,k+1 + Un
i,j,k)−

∆t

2 ∆y
(g
n+ 1

2

i,j+ 1
2
,k+1
− gn+ 1

2

i,j− 1
2
,k+1

)

− ∆t

2 ∆y
(g
n+ 1

2

i,j+ 1
2
,k
− gn+ 1

2

i,j− 1
2
,k

) (19)

− ∆t

2 ∆z
[h(Un

i,j,k+1 −
∆t

∆y
(g
n+ 1

2

i,j+ 1
2
,k+1
− gn+ 1

2

i,j− 1
2
,k+1

))

−h(Un
i,j,k −

∆t

∆y
(g
n+ 1

2

i,j+ 1
2
,k
− gn+ 1

2

i,j− 1
2
,k

))]

)
,

and in the same way

Ĝ
n+ 1

2

i,j+ 1
2
,k

= g

(
1

2
(Un

i,j+1,k + uni,j,k)−
∆t

2 ∆z
(h

n+ 1
2

i,j+1,k+ 1
2

− hn+ 1
2

i,j+1,k− 1
2

)

− ∆t

2 ∆z
(h

n+ 1
2

i,j,k+ 1
2

− hn+ 1
2

i,j,k− 1
2

) (20)

− ∆t

2 ∆y
[g(Un

i+1,j,k −
∆t

2 ∆z
(h

n+ 1
2

i,j+1,k+ 1
2

− hn+ 1
2

i,j+1,k− 1
2

))

−g(Un
i,j,k −

∆t

2 ∆z
(h

n+ 1
2

i,j,k+ 1
2

− hn+ 1
2

i,j,k− 1
2

))]

)
.

Here the fluxes g
n+1/2
i,j+1/2,k, h

n+1/2
i,j,k+1/2 are the flux values at predicted solutions g

n+1/2
i,j+1/2,k =

g(U
n+1/2
i,j+1/2,k), h

n+1/2
i,j,k+1/2 = h(U

n+1/2
i,j,k+1/2), where the predicted solutions U

n+1/2
i,j+1/2,k, U

n+1/2
i,j,k+1/2 are

obtained by the analogs of 1D predictor (4) in y and z (or corresponding indexes j and
k) directions.

Similar expressions for the other numerical fluxes G
n+1/2
i,j+1/2,k and H

n+1/2
i,j,k+1/2 has been

derived. The 3D dimensional splitting based scheme is then defined by (17). It is the
non-split, symmetric, 2-nd order accurate and optimally stable scheme [22].

3.2 Indirect ALE method

We have developed the 2D ALE code PALE (Prague ALE) [27] for laser plasma simula-
tions. Here we start to describe numerical methods used in this code for the hydrody-
namics part, i.e. the left hand side of the equations, of the model (3) for laser plasma.

3.2.1 Lagrangian methods

The PALE code employs the staggered Lagrangian discretization method which defines
kinematic variables (position and velocity) in mesh nodes and thermodynamic variables
(density, internal energy, pressure, temperature) in the mesh cells. We use the logically
orthogonal quadrilateral mesh. Each quadrilateral cell is divided into four quadrilateral
sub-cells having vertexes in mesh nodes, centers of the cells and mid-points of the edges.
Density is discretized also on the sub-cells. The staggered compatible method [4] uses
forces acting on the mesh nodes which determine the nodes velocity. Basic force is the
pressure force originating in pressure gradient. The sub-zonal pressure force [5] reflects
the difference between cell and sub-cell pressures and is designed to prevent the hourglass
mesh motion inverting quadrilateral cells. The last force is the artificial viscosity force
(using either edge viscosity [6] or tensor viscosity [3]) which is adding necessary dissipation
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to the shock waves to be able to numerically resolve them. The compatible method uses
the internal energy equation from (3) which is not in conservative form. However the
discretization is done in a compatible way which guarantees conservation of the total
energy. Shortly each force performs work which is accounted in the appropriate internal
energy update. The forces are acting from sub-cells surrounding the node to the node,
while internal energy is discretized in cells, so the internal energy update in the cell
includes the work of the forces from the four sub-cells which belong to the cell. To show
that the method conserves the total energy, one needs to rearrange the sum over the nodes
(including the change of kinetic energy) into sum over cells (including the work done by
the forces from four cub-cells).

For the Lagrangian stage of the indirect ALE method one can also use composite
schemes [45, 30, 31] or cell centered methods [39, 38], which have attracted recently much
attention.

3.2.2 Lagrangian mesh rezoning

Mesh rezoning is the process which improves the geometric quality of the distorted La-
grangian mesh without changing its connectivity. The geometric quality of the mesh is
bad when some internal angles of its cells are either too small, i.e. close to zero, or too
big, i.e. close to 180◦ or greater than 180◦ (internal angle of the cell can be greater than
180◦ for non-convex cells). The mesh resulting from the Lagrangian step can be of low
quality, e.g. when Lagrangian mesh, moving with the fluid, is being stretched by shear
or vortex flow, and smoothing process changes the mesh in a way to improve its quality.
The Winslow smoothing method [53] is one of the simplest smoothing methods. For a
logically rectangular mesh the new positions of the mesh nodes are computed (with a
possible iteration over l starting at the Lagrangian mesh) by

Xl+1
i,j =

1

2 (αl + γl)

(
αl (Xl

i,j+1 + Xl
i,j−1) + γl (Xl

i+1,j + Xl
i−1,j)

−1

2
βl (Xl

i+1,j+1 −Xl
i−1,j+1 + Xl

i−1,j−1 −Xl
i+1,j−1)

)
,

where the coefficients αl = x2
ξ + y2

ξ , β
l = xξ xη + yξ yη, γ

l = x2
η + y2

η, and (ξ, η) are
logical coordinates ξi = i/nx, ηj = j/ny for i = 1, . . . , nx and j = 1, . . . , ny for a mesh
with nx × ny nodes. The derivatives xξ, xη are approximated by the central differences
(xξ)i,j ≈ (xi+1,j − xi−1,j)/(2 ∆ξ), (xη)i,j ≈ (xi,j+1 − xi,j−1)/(2 ∆η) and similarly for y.

Other smoothing methods include the condition number smoothing [18] or the Refer-
ence Jacobian Method [19]. Usually one requires that each node during the rezone does
not move out of the set of all old cells having this node as their vertex. For logically
rectangular mesh this guarantees that each new cell is included inside the 3× 3 patch of
the old cells (see Fig. 4) and the remapping process described in the next section can be
local.

If the distorted Lagrangian mesh is tangled, i.e. some of its cells are inverted (the
cell becomes inverted when during the movement of its nodes, some node crosses some
edge of the cell), then one either needs to use untangling (see e.g. [51]) or go back one
Lagrangian time step to situation when the Lagrangian mesh has not been tangled and
smooth this mesh.
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3.2.3 Remapping

After rezoning of the Lagrangian distorted mesh we have a new, smoother, better mesh,
however the hydrodynamical quantities are defined on the old Lagrangian mesh. To use
the new mesh we have to interpolate these quantities from the old to the new mesh. As we
are dealing with conservation laws, we conservatively interpolate the conserved quantities.
The conservative interpolation of the discrete conserved quantities from the old mesh to
the new one is called remapping.

Typically the remapping stage is divided into two steps: reconstruction and integra-
tion. First, the remapped conservative quantity, e.g. density ρ, is reconstructed from
the discrete values by a piecewise linear function on each old cell, e.g. with the Barth-
Jespersen limiter [1]. The reconstructed density in the old cell c′ is given by the linear
function

ρc′(x, y) = ρc′ + (ρx)c′(x− xc′) + (ρy)c′(y − yc′), (21)

(where (xc′ , yc′) is the centroid of the cell c′). The piecewise linear global reconstruction
is given by

ρg(x, y) = ρc′(x, y) for (x, y) ∈ c′ (22)

and the mass of the new cell c̃ (a tilde accent denotes objects related to the new mesh) is

m̃c =

∫
c̃

ρg(x, y)dV =
∑
c′∈C(c)

mc̃c′ =
∑
c′∈C(c)

∫
I c̃
c′

ρc′(x, y)dV , (23)

where mc̃c′ is the mass of the intersection I c̃c′ = c̃ ∩ c′ of the new cell c̃ with the old cell
c′ and C(c) is the set of all old cells neighboring the old cell c (both edge and corner
neighbors, so that for the logically rectangular mesh the set C(c) includes the whole 3× 3
patch of the old cells). An example of logically rectangular mesh, where the new cell
c̃i,j = [P̃i,j, P̃i+1,j, P̃i+1,j+1, P̃i,j+1] intersects with all nine (3 × 3 patch) old cells ck,l, k =
i− 1, i, i+ 1, l = j − 1, j, j + 1 is presented in Fig. 4(a). The mass mc̃c′ of the intersection
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Figure 4: Old (dashed) and new (solid segments) mesh with intersection regions for the
exact integration (a) and swept regions for the approximate integration (b).

I c̃c′ is now given by

mc̃c′ = ρc′

∫
I c̃
c′

dV +(ρx)c′

(∫
I c̃
c′

x dV − xc′
∫

I c̃
c′

dV

)
(24)

+(ρy)c′

(∫
I c̃
c′

y dV − yc′
∫

I c̃
c′

dV

)
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where the integrals over the polygonal intersection are transformed using Green’s theorem
into integrals over the edges of the intersection and computed analytically. Now the
remapped density on the new cell c̃ is ρc̃ = m̃c/Vc̃, where Vc̃ =

∫
c̃
dV is the volume of

the new cell c̃. This exact integration of reconstruction (22) is computationally rather
expensive because it requires finding all cell intersections.

The approximate integration over swept regions [21], which are the regions swept by
the cell edges moving from the old mesh to the new position in the new mesh (see Fig. 4
(b)), is much faster. The mass of the four swept regions has similar form as (24) with the
intersection I c̃c′ replaced by the swept region.

The same remapping procedure is applied to the other conservative quantities, namely
to density of momenta ρu, ρv and total energy ρe. In both intersection and swept region
method the masses (24) of intersections or swept regions can be interpreted as remap
fluxes and the remapping formula can be written in a conservative flux form.

Even when the slopes in the reconstruction (21) are limited the remapping can intro-
duce new local extrema (origin of numerical oscillations) into the remapped values. To
remove such a new local extrema one can use a repair procedure [46, 37] which conser-
vatively redistributes conserved quantities in such a way that the remapping does not
introduce any new local extrema. The repair is a post-processing adhoc correction. Bet-
ter treatment, based on flux corrected transport (FCT) and called flux corrected remap,
which guarantees that new local extrema are not introduced, is presented in the next
section.

3.2.4 Flux corrected remapping of density

The flux corrected remapping [52] applies the idea of flux corrected transport [2, 54, 23, 43]
to remapping. We assume that the continuous rezone strategy is employed, meaning that
each new cell c̃ is contained in the union of the old cells c′ ∈ C(c). Based on this assumption
we require that the value of the remapped density, ρ̃c, has to be in the bounds given by
density values on the old cells c′ ∈ C(c)

ρmin
c ≤ ρ̃c ≤ ρmax

c , ρmin
c = min

c′∈C(c)
(ρc′) , ρmax

c = max
c′∈C(c)

(ρc′) . (25)

The mass of the new cell c̃ (23) can be written in the flux form (see e.g. [40])

m̃c = mc +
∑

c′∈C(c),c′ 6=c

Fm
c,c′ , (26)

where

Fm
c,c′ = −Fm

c′,c , (27)

are mass remapping fluxes.
We assume that we have two different set of fluxes. The low order fluxes Fm,L

c,c′ pro-

duce remapped density satisfying the bounds (25). The high order fluxes Fm,H
c,c′ produce

remapped density which is more accurate in smooth regions, however might violate the
bounds (25), typically around discontinuities. We construct the mass flux as a linear
combination of the low order and high order fluxes

Fm
c,c′ = Fm,L

c,c′ + Cm
c,c′ dF

m
c,c′ , dFm

c,c′ = −dFm
c′,c = Fm,H

c,c′ − F
m,L
c,c′ , (28)
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where

0 ≤ Cm
c,c′ = Cm

c′,c ≤ 1

are some coefficients to be constructed. The fluxes dFm
c,c′ are called anti-diffusive fluxes.

We want to find Cm
c,c′ such that resulting fluxes satisfy the bounds (25) and are as close

as possible to high-order fluxes in some sense.
By (28) the equation (26) for new mass can be rewritten as

m̃c = m̃L
c +

∑
c′

Cm
c,c′ dF

m
c,c′ , m̃L

c = mc +
∑
c′

Fm,L
c,c′ . (29)

From here further on, the summation over c′ means summation over c′ ∈ C(c), c′ 6= c as
in (26). Defining mmin

c = ρmin
c Vc,m

max
c = ρmax

c Vc with Vc being the volume of the old cell
c, the bounds (25) can be written as

mmin
c − m̃L

c ≤
∑
c′

Cm
c,c′ dF

m
c,c′ ≤ mmax

c − m̃L
c . (30)

We have assumed that the low-order fluxes satisfy the bounds mmin
c −m̃L

c ≤ 0 ≤ mmax
c −m̃L

c

and thus the constraints (30) can always be satisfied by choosing all Cm
c,c′ = 0. The

differences in (30) are usually denoted by

Qm,max
c = mmax

c − m̃L
c ≥ 0, Qm,min

c = mmin
c − m̃L

c ≤ 0.

We first consider the right-hand inequality in (30)∑
c′

Cm
c,c′ dF

m
c,c′ ≤ Qm,max

c . (31)

The sum on the left-hand side of this inequality can be divided into two sums according
to the sign of dFm

c,c′ and bounded by the first sum, since the second one is negative:∑
c′

Cm
c,c′ dF

m
c,c′ =

∑
dFm
c,c′>0

Cm
c,c′ dF

m
c,c′ +

∑
dFm
c,c′<0

Cm
c,c′ dF

m
c,c′ ≤

∑
dFm
c,c′>0

Cm
c,c′ dF

m
c,c′ . (32)

Clearly the inequality ∑
dFm
c,c′>0

Cm
c,c′ dF

m
c,c′ ≤ Qm,max

c (33)

implies (31). Now we define

Pm,+
c :=

∑
dFm
c,c′>0

dFm
c,c′ ≥ 0 (34)

and consider the special case Pm,+
c = 0. This means than the sums in (34) and (33) are

empty as all anti-diffusive fluxes dFm
c,c′ are non-positive dFm

c,c′ ≤ 0 and the inequality (31)
is satisfied as Cm

c,c′ ≥ 0, dFm
c,c′ ≤ 0 and Qm,max

c ≥ 0. Now assuming Pm,+
c > 0 we rewrite

(33) as ∑
dFm
c,c′>0

Cm
c,c′ dF

m
c,c′ ≤ Dm,+

c Pm,+
c , (35)
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where

Dm,+
c = Qm,max

c /Pm,+
c . (36)

If we introduce the definition (34) of Pm,+
c into (35) and move Dm,+

c inside the sum we
get ∑

dFm
c,c′>0

Cm
c,c′ dF

m
c,c′ ≤

∑
dFm
c,c′>0

Dm,+
c dFm

c,c′ , (37)

which is satisfied if

Cm
c,c′ ≤ Dm,+

c for each c′ for which dFm
c,c′ > 0. (38)

This is the final constraint on Cm
c,c′ for the interface of the cells c and c′ coming from the

upper density-mass bound in the cell c.
For the lower density-mass bound, i.e. for the left inequality in (30), we proceed in

the same way. We define

Pm,−
c =

∑
dFm
c,c′<0

dFm
c,c′ ≤ 0. (39)

For Pm,−
c = 0 the lower bound is satisfied and for Pm,−

c < 0 we define

Dm,−
c = Qm,min

c /Pm,−
c . (40)

The final constraint on Cm
c,c′ for the interface of the cells c and c′ coming from the density-

mass lower bound in the cell c is

Cm
c,c′ ≤ Dm,−

c for each c′ for which dFm
c,c′ < 0. (41)

So for the coefficient Cm
c,c′ on the interface of the cells c and c′ we activate either

the constraint (38) or the constraint (41) depending on the sign of dFm
c,c′ . The activated

constraint guarantees that the bounds (25) are satisfied in the cell c. However we need
to satisfy these bounds also in the other cell c′ sharing this interface. If dFm

c,c′ > 0, then
dFm

c′,c = −dFm
c,c′ < 0 and the corresponding coefficient Cm

c,c′ = Cm
c′,c has to satisfy the

constraint (38) coming from the upper bound in the cell c and the constraint (41) coming
from the lower bound in the cell c′:

Cm
c,c′ ≤ Dm,+

c , Cm
c,c′ ≤ Dm,−

c′ .

Now if we choose

Cm
c,c′ = min

(
Dm,+
c , Dm,−

c′ , 1
)

for dFm
c,c′ > 0, (42)

and in the same way for dFm
c,c′ < 0

Cm
c,c′ = min

(
Dm,−
c , Dm,+

c′ , 1
)

for dFm
c,c′ < 0 , (43)

then the density bounds (25) are satisfied for both cells c and c′. This gives us a simple
procedure to compute the coefficients Cm

c,c′ in the formulas (28) such that the density
bounds (25) are satisfied, and the resulting mass fluxes are in general more accurate than
the low-order fluxes.
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3.2.5 Synchronized flux corrected remapping of density, momentum and en-
ergy

The other conservative quantities being remapped are momentum and total energy. The
mass mc, momentum µc and total energy Ec of the old mesh cell c are given by mc =∫
c
ρ dV , µc =

∫
c
ρu dV , Ec =

∫
c
ρe dV and define the mean values of velocity and internal

energy in the old mesh cell c as uc = µc/mc, εc = Ei/mi−u2
c/2. We write the remapping

of momentum and energy in the flux form

µ̃c = µc +
∑

c′∈C(c),c′ 6=c

Fµ
c,c′ , Ẽc = Ec +

∑
c′∈C(c),c′ 6=c

FE
c,c′

and require that the remapped values preserve bounds in velocity and internal energy:

umin
c ≤ ũc = µ̃c/m̃c ≤ umax

c , εmin
c ≤ ε̃c = Ẽc/m̃c − ũ2

c/2 ≤ εmax
c ,

where

umin
c = min

c′∈C(c)
uc′ , εmin

c = min
c′∈C(c)

εc′ ,

umax
c = max

c′∈C(c)
uc′ , εmax

c = max( max
c′∈C(c)

εc′ , ε̃
L
c ),

and ε̃Lc = ẼL
c /m̃

L
c − 1/2 (µ̃Lc /m̃

L
c )2 is the low order internal energy with m̃L

c , µ̃
L
c , Ẽ

L
c com-

puted with low order fluxes. The low order internal energy has to be included in the upper
internal energy bound to guarantee that the low order approximation stays in bounds.

As with density we assume than we have low order momentum and energy fluxes
Fµ,L
c,c′ , F

E,L
c,c′ satisfying the bounds and more accurate high order fluxes Fµ,H

c,c′ , F
E,H
c,c′ . We

construct the flux corrected fluxes as linear combination of the low order and high order
fluxes:

Fµ
c,c′ = Fµ,L

c,c′ + Cµ
c,c′ dFµ

c,c′ , dFµ
c,c′ = −dFµ

c′,c = Fµ,H
c,c′ − Fµ,L

c,c′ ,

FE
c,c′ = FE,L

c,c′ + CE
c,c′ dF

E
c,c′ , dFE

c,c′ = −dFE
c′,c = FE,H

c,c′ − F
E,L
c,c′ ,

where

0 ≤ Cµ
c,c′ = Cµ

c′,c ≤ 1, 0 ≤ CE
c,c′ = CE

c′,c ≤ 1,

are some coefficients to be constructed. Note, that to keep the direction of velocity, the
momentum limiter coefficient Cµ

c,c′ remains scalar.
Let us first look at simultaneous remapping of density and momentum satisfying the

bounds in density and velocity. The density limiter coefficient Cm
c,c′ has to satisfy con-

straints derived in the previous section from density bounds. When the remapped values
of mass and momentum are substituted into the velocity bounds one obtains inequali-
ties which depend linearly on the limiter coefficients Cm

c,c′ and Cµ
c,c′ . An extension of the

derivation performed in the previous section for the density results in the constraints

Cµ
c,c′ dF

µ
c,c′ − u

max
c Cm

c,c′ dF
m
c,c′ ≤ Qµ,max

c

P µ,max,+
c

max(Ψc,µ,max
c,c′ ,0) ,

Cµ
c,c′ dF

µ
c,c′ − u

min
c Cm

c,c′ dF
m
c,c′ ≥ Qµ,min

c

P µ,min,−
c

min(Ψc,µ,min
c,c′ ,0) .
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where

Qµ,max
c = umax

c m̃L
c − µ̃Lc ≥ 0,

Qµ,min
c = umin

c m̃L
c − µ̃Lc ≤ 0,

Ψc,µ,max
c,c′ = dF µ

c,c′ − u
max
c dFm

c,c′ ,

Ψc,µ,min
c,c′ = dF µ

c,c′ − u
min
c dFm

c,c′ ,

P µ,max,+
c =

∑
Ψc,µ,max

c,c′ ©>0

Ψc,µ,max
c,c′ ≥ 0,

P µ,min,−
c =

∑
Ψc,µ,min

c,c′ ©<0

Ψc,µ,min
c,c′ ≤ 0,

and where the relation operators ©>, ©<, in the sums defining P ′s mean, that the ζ
component of the sum (i.e. P ζ) includes only c′ for which corresponding component
(Ψc,c′)ζ has given sign. All other vector vector operations and relations are performed
component by component. These constraints are derived in [28] and guarantee that the
velocity bounds are satisfied in the cell c. Similar constraints are derived for the cell
c′. Together with the constraints (42) or (43) for Cm

c,c′ derived from the density bounds,
all these linear constraints define a convex polygon in the (Cm

c,c′ , C
µ
c,c′) plane which is an

admissible set of all (Cm
c,c′ , C

µ
c,c′) for which density and velocity bounds are satisfied. The

optimal choice of the limiting coefficients Cm
c,c′ , C

µ
c,c′ from the admissible set is in [28]

achieved by minimization of a function which tries to keep the solution close to the high
order method.

Generalization of the outlined flux corrected remap strategy to the case of remapping
density, momentum and energy with bounds in density, velocity and internal energy has
been developed in [29]. The internal energy bounds result in non-linear constraints in
the limiting coefficients Cm

c,c′ , C
µ
c,c′ , C

E
c,c′ and the constrained minimization problem gives

us the values of the limiting coefficients. Results of selected cyclic remapping numerical
tests of the developed methods, together with comparison of the results with results of
[43], are presented in [28, 29].

3.3 Heat conductivity

The parabolic part of the energy equation from the system (3) is treated separately by
splitting from the hyperbolic part of the whole system (3). The spatial discretization of
the heat conductivity term div(κgradT ) is performed by the mimetic method developed in
[44] for logically rectangular, quadrilateral meshes and generalized in [9] to unstructured
triangular meshes.

The basic idea of the mimetic method is that the discrete operators of divergence and
gradient should satisfy the discrete analogs of integral identities for divergence and gra-
dient, namely the divergence Green formula and the Gauss theorem. The Gauss theorem
can be restated in a way expressing that gradient is the adjoint operator of divergence
in inner products of scalar and vector functions. The mimetic method discretizes the
temperature inside each cell and the heat flux w = −κ grad T at the mid-points of each
edge by its projection on the normal to the edge. This discretization of vector heat flux
guarantees the continuity of normal flux through each edge. The discrete divergence is
derived in a standard way from the discrete analog of the divergence Green formula on
a computational cell. On the spaces of discrete scalar (temperature) and vector (heat
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flux) functions (defined on the mesh), the discrete analogs of the inner products of scalar
and vector functions (defined on the continuum computational domain) are defined. Now
the discrete gradient is constructed as the adjoint (in the discrete inner products on the
computational mesh) of the discrete divergence. Neumann boundary conditions are nat-
urally included in the method through the inner products. Such discretization works well
for distorted meshes appearing quite often in Lagrangian hydrodynamics and it allows
discontinuous diffusion coefficient. Implicit temporal discretization allows to use the hy-
drodynamics time step also for the heat conductivity step. The scheme results in a linear
system with a symmetric, positive definite matrix. The conjugate gradient method, pre-
conditioned by the altered direction implicit method, is applied as an effective iterative
solver for this system.

The classical Spitzer-Harm plasma heat conductivity [47] is employed. This heat
conductivity is non-linear in temperature and can produce non-linear heat waves, which
appear often in the laser plasma. To be able to resolve well the non-linear heat wave a
non-linear transformation, which moves the non-linearity from the heat conductivity to
the time derivative coefficient, is applied.

For laser plasma the computed heat fluxes are often physically unrealistic, too high.
Such heat fluxes cannot be carried by available electrons carrying most of the heat en-
ergy. Direct decrease of the heat flux magnitude (where needed) leads to oscillations and
checker board patterns in temperature, thus the heat flux limiting has to be performed
differently. In the regions where the unlimited heat flux violates the physical limits the
heat conductivity is decreased by the ratio of the unlimited flux magnitude and the heat
flux limit. The heat equation it then solved again with the updated heat conductivity.

3.4 Laser absorption

Laser absorption in plasma is modeled by the term div I in the internal energy equation
from the system (3). An important notion for the laser absorption is a critical density.
The critical density defines the critical surface which is the isosurface of electron density
being equal to the critical density. The laser can propagate only in the regions of plasma
with electron density less than the critical density. Typically most of the laser energy
is absorbed around the critical surface. Laser absorption on the critical surface assumes
that laser propagates without damping and refraction till the critical surface where it is
absorbed.

Ray tracing is a more complicated method for the laser absorption modeling. The
laser beam is split into many laser rays carrying initially appropriate energy depending
on the radius. Propagating of each ray is computed (traced) independently. Inside a cell
through which the ray propagates it does not change direction and deposits a part of
its energy into plasma internal energy by inverse bremsstrahlung. On the cell edge the
ray refracts according to Snell law with refraction plane being orthogonal to the electron
density gradient. A special case is a full reflection near the critical surface when the ray
on the edge reflects back.

Laser beam has cylindrical symmetry and most simulated problems are cylindrically
symmetric (here all problems except oblique incidence on a thin foil studied in section
4.1), so one has to include cylindrical r − z geometry. All numerical methods, initially
designed in Cartesian geometry, have been generalized into cylindrical geometry with a
special boundary condition on the symmetry axis z.

24



4 Simulations of laser interaction with targets

In this section we present several selected simulations of laser interaction with different
targets. The simulations correspond to the experiments performed at Prague Asterix
Laser System PALS.

4.1 Oblique incidence on thin foil

The oblique incidence of a laser beam on a 0.8 µm thin Aluminum foil is reasonably simple
and provides initial insight into laser interactions with matter. This simulation is an initial
study to double foil targets which are used for investigation of plasma-wall interactions
[42]. The third harmonics Gaussian laser pulse with wavelength 438 nm, energy 36 J, full
width half maximum (FWHM) length 250 ps and focal spot radius 40 µm interacts with
30◦ oblique thin foil. The simulation starts at time t = 0 and the laser maximum is at
time t = 250 ps. It uses Cartesian geometry as it is not cylindrically symmetric. The
density of the developing laser plasma at three times 150, 200 and 250 ps is presented
in Fig. 5 in a logarithmic scale with computational mesh and a magenta isolines of the
critical surface. Laser beam is vertical and is coming from above with the beam axis on
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Figure 5: Density for interaction of oblique laser beam with a thin Aluminum foil at time:
(a) 150 ps, (b) 200 ps and (c) 250 ps. Magenta curves denote the position of the critical
surface.

the z axis r = 0. It propagates through the sub-critical plasma until the critical surface
and is absorbed at the critical surface. In the beginning of the interaction laser energy
is being deposited close to the upper boundary of the foil which starts to expand in the
upper right direction creating plasma plume (corona). Before time 150 ps the whole foil
in an area around the z axis is heated and secondary plume starts to expand in the lower
left direction. At time 150 ps in Fig. 5 (a) the laser does not penetrate the foil, while at
time 200 ps in Fig. 5 (b) the laser has already burned through the foil and only its small
part, far from the z axis, is still being absorbed at the critical surface.

This simulation provides an example of a large scale change of computational domain
(initial 0.8 µm thin foil expands to plumes of the size around 500 µm at Fig. 5 (c) at time
of laser maximum, which is still not the end of the simulation), which dictates the use of
Lagrangian coordinates moving with the moving plasma. Even when the laser is oblique
to the foil, it heats the foil in such a way that the temperature and pressure gradients
remain orthogonal to the foil. Pressure gradient drives the motion of plasma (3) and as
it is orthogonal to the foil, also the expanding plasma plumes remain orthogonal to the
foil.
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4.2 Disc flyer target

The experimental setup of the disc flyer target, which has been used in experiments [8, 10]
at PALS, is shown in Fig. 6. The Aluminum disc flyer of thickness d and radius r is located
in the distance L from the Aluminum massive target and is parallel to the target surface.
The disc flyer is irradiated by the intense laser pulse and ablatively accelerated towards
massive target. The high velocity impact of the disc flyer on the massive target creates a
crater in the massive target.

BEAM

r

d

L
impv

MASSIVE TARGET

DISC FLYER
LASER

Figure 6: Experimental setup of disc flyer target.

The particular data of the simulated experiments [20] include: the disc radius r =
150µm, the disc thickness d = 6µm or d = 11µm and the initial distance of the disc from
target L = 200µm. The disc is irradiated by laser pulse with energy E = 120 J, 240 J
or 390 J on the basic wavelength 1 315 nm (1ω) and E = 130 J on the third harmonics
with wavelength 438 nm (3ω). The radius of laser spot on target is 125µm and the pulse
duration (FWHM - full width half maximum) is 400 ps.

The simulation is split into two parts: ablative acceleration of the disc flyer and high
velocity impact of the disc flyer on the massive target. The result of the first part, the
accelerated disc flyer for 6µm thick disc with 3ω 130 J laser pulse is presented in Fig. 7
showing the density and the computational mesh at time timp = 1.1 ns, just before the disc
flyer hits the massive target. The simulation starts at time t = 0 and the laser maximum
is at time t = 0.4 ns. The mass weighted averaged values of velocity in higher density
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Figure 7: Density (in g/cm3) and computational mesh of 6µm thick disc accelerated disc
by 3ω laser pulse of energy 130 J at time timp = 1.1 ns. The green line denotes the massive
target surface and the red curve is zero contour of the vertical z velocity component, i.e.
the disc material below this curve is flying down towards the massive target while the
material above this curve is moving up.

rectangular region for all simulated experiments at time of impact timp are compared in
Table 1 with the measured experimental disc flyer velocities. The simulated disc flyer
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velocities are generally somewhat higher than experimental ones with reasonably good
agreement for 6µm, 130 J, 3 ω and 11µm, 120 J, 1 ω cases.

Problem timp[ns] vimp[km/s] vexp[km/s]

6µm, 130 J, 1 ω 2.2 88 60

6µm, 130 J, 3 ω 1.1 153 150

11µm, 120 J, 1 ω 3.4 46 40

11µm, 240 J, 1 ω 2.4 76 54

11µm, 390 J, 1 ω 2.0 104 ?

Table 1: Time of impact timp, impact velocity from simulations vimp, and experimental
impact velocity vexp. Symbol “?” denotes unavailable experimental velocity.

The initial data for the second part of the simulation, i.e. the high velocity impact,
are obtained by remapping of the results of the first part (disc flyer acceleration) on
the newly constructed mesh. The disc flyer in plasma state hits the massive target in
high velocity, most of its kinetic energy is transformed into internal energy, which melts
and evaporates target material creating the crater in the target. The impact creates
approximately circular shock wave which propagates into the target and can be seen in
Fig. 8 in solid material. The results at time t = 80 ns after the impact are presented
in Fig. 8 in the form of temperature with computational mesh (a) and internal energy
increase (b). The isolines distinguishing the phases in temperature are given by Aluminum
melting and boiling points. The isolines distinguishing the phases in internal energy are
given by specific heat needed to heat Aluminum to melting or boiling point together with
heat of fusion and heat of vaporization needed for melting and evaporation of Aluminum.
As the employed QEOS equation of state [41] is designed mainly for plasma and does
not include heat of fusion and heat of vaporization the temperature and internal energy
plots give different phase interfaces. By crater boundary we understand the liquid gas
phase interface. The crater depth and radius estimated from temperature and internal
energy simulation results are compared with the experimental data for all investigated
cases in Table 2. For lower energies 120 J and 130 J the estimates from temperature
correspond better to the experimental crater sizes while for higher energies 240 J and
390 J the internal energy estimates are closer to the experimental measurement. For the
impact simulation we have to use the ALE method, as the pure Lagrangian simulation
fails soon, e.g. for the 6µm, 130 J, 3 ω case the Lagrangian computation fails around time
t = 0.5 ns.

Problem experiment temperature energy

Dc Rc Dc Rc Dc Rc

6µm, 130 J, 1 ω 300 300 350 290 210 260

6µm, 130 J, 3 ω 550 500 470 470 320 420

11µm, 120 J, 1 ω 280 300 270 280 200 260

11µm, 240 J, 1 ω 320 320 460 330 300 310

11µm, 390 J, 1 ω 380 400 530 370 450 340

Table 2: Comparison of crater depth Dc and radius Rc (in µm) according to temperature
and specific internal energy increase with experimental values.
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Figure 8: Computational mesh (only every second edge in each logical direction is visible)
and temperature (in eV) (a) and specific internal energy increase (in erg/g) (b) of 6µm
thick disc irradiated by 130 J laser beam on third harmonic at time t = 80 ns after the
impact. Solid, liquid and gas phases are separated by isolines in temperature and energy
increase of melting and evaporation of Aluminum, different material phases are shown in
different color maps.

4.3 Foam target

Foam layers are used in the ICF targets for smoothing different inhomogeneities appear-
ing during laser target interactions. Simulations of laser interactions with foams are
complicated by the difference between microscopic pore dimensions and macroscopic ex-
perimental scales. If the foam is modeled as a low density homogeneous material the laser
is burning through the foam too fast, producing unrealistic results. This problem can
be avoided by introducing structured model of the foam [16] shown in Fig. 9 (a) con-
sisting from a series of parallel high-density slabs separated by low-density voids. When
the laser burns through this structured model of foam it is delayed on each slab as it
needs some time to burn through each slab. Here, we consider the interaction of the third
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Figure 9: Structured model of the foam (a), burning of laser through the foam target (b).

harmonic Gaussian laser pulse of 320 ps FWHM duration, energy of 170 J and focal spot
radius of 300 µm with 400 µm-thick layer of TAC foam of density 9.1 mg/cm3 with 2 µm
pores. Computation starts 500 ps before the laser maximum. The foam is modeled by
uniform density 9.1 mg/cm3 material and by structured model consisting from a sequence
of ds = 0.018 µm thick dense slabs of density ρs = 1 g/cm3 separated by dv = 1.982 µm
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thick voids with density ρv = 1 mg/cm3 (giving the average density 9.1 mg/cm3). The
time evolution of the depth of the burned region of the foam on the z axis is plotted in
Fig. 9 (b) for uniform and structured foam model with the initial upper surface of the
foam at z = 0. The experimental speed of laser penetration into the foam before the laser
pulse maximum (i.e. before time 0.5 ns) is about 600 ∼ 700µm/ns, the speed from the
structured simulation is about 500µm/ns (average in time interval (0.1, 0.5) ns) and from
the uniform simulation about 1600µm/ns (average in time interval (0.0, 0.25) ns). The
speed of burning through for the structured model is reasonably close to the experimental
measurement, while this speed for the uniform model is more than twice higher.

4.4 Massive target irradiated by annular laser beam

In this section we investigate formation of plasma jets by interaction of annular laser beam
with a massive Aluminum target. We use Gaussian in time laser pulse on 3-rd harmonics
with FWHM length 400 ps and energy 10 J. The radial intensity profile of the annular
beam is presented in Fig. 10(a). It has a 10% minimum on the z axis at r = 0, it is
proportional to r2 for small r and has a smooth maximum around r = 600 µm. Thanks
to the annular radial laser profile the plasma plume develops and expands faster around
the radial maximum of intensity at r = 600µm, than around the z axis at r = 0. Such
plume development leads to cone profile of higher density region visible in Fig. 10 (b) at
4 ns. The cone moves up in z direction and left in r direction towards the z axis and
collides on the symmetry axis creating a plasma jet which can be seen in Fig. 11 (d) at 16
ns as high density, high pressure region along the z axis propagating up. Important is the
radial pressure gradient on the cone directed inwards towards the z axis (which can be
seen in Fig. 10 (c) showing the pressure at 4 ns) which drives the negative radial velocity
towards the z axis, see the radial velocity plot at 4 ns in Fig. 10 (d).
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Figure 10: Plasma jet formation by annular laser beam: (a) radial laser intensity profile,
(b) density, (b) pressure and (c) radial velocity distributions at time 4 ns.

The density evolution at times 2, 5, 8 and 16 ns is presented in Fig. 11 (a),(b),(c),(d).
The outlined dynamics of the plasma plume created by the annular laser provides a pure
hydrodynamical mechanism for the plasma jets generation [17]. The plasma jets appear
not only on the laser plasma micro-scale presented here, but also astrophysics deals with
giant jets on the macro-scale.
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Figure 11: Plasma jet formation by annular laser beam: density evolution at times 2 (a),
5 (b), 8 (c) and 16 (d) ns; (d) pressure at 8 ns.

5 Outlook of the research and education in the given

field

The field of numerical methods for compressible inviscid flow, called computational gas
dynamics, belongs to a wider area of computational fluid dynamics, while at the same time
spans over several traditional disciplines as aerospace engineering, mechanical engineering,
meteorology, applied mathematics, numerical analysis, astrophysics or plasma physics.
From the countless applications of gas dynamics we focus mainly on the fluid models of
laser plasma. Further research in this field at the Faculty of Nuclear Sciences and Physical
Engineering can concentrate on:

• improving existing Lagrangian methods, as e.g. developing new, better types of
artificial viscosity,

• new numerical Lagrangian methods, as e.g. high order discrete Galerkin method,

• rezoning methods for grids with high aspect ratio cells,

• new remapping methods, as e.g. high order methods based on piecewise parabolic
reconstruction,

• Lagrangian and ALE methods in 3D,

• improving the PALE code for laser plasma simulations by including models for
another physical processes, as e.g. radiation transport or magnetic field.

The research is closely linked to the education at the Faculty of Nuclear Sciences and
Physical Engineering. Supervised students work on the research project in the framework
of their bachelor, master and Ph.D. theses. The advances in the research are reflected in
the content of the courses for the study branch Computational Physics. The research can
support the education in the following directions:

• new topics for the bachelor, master and Ph.D. theses,

• new courses reflecting the advances in computational gas dynamics,

• continue to incorporate students project into international cooperation.

30



References

[1] T.J. Barth and D.C. Jespersen. The design and application of upwind schemes on
unstructured meshes. Technical Report AIAA-89-0366, AIAA, NASA Ames Research
Center, 1989.

[2] J. Boris and D. Book. Flux-corrected transport I: SHASTA, a fluid transport algo-
rithm that works. J. Comput. Phys., 11:38–69, 1973.

[3] J.C. Campbell and M.J. Shashkov. A tensor artificial viscosity using a mimetic finite
difference algorithm. J. Comput. Phys., 172(2):739–765, 2001.

[4] E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen. The construction
of compatible hydrodynamics algorithms utilizing conservation of total energy. J.
Comput. Phys., 146(1):227–262, 1998.

[5] E. J. Caramana and M. J. Shashkov. Elimination of artificial grid distortion and
hourglass-type motions by means of Lagrangian subzonal masses and pressures. J.
Comput. Phys., 142:521–561, 1998.

[6] E.J. Caramana, M. J. Shashkov, and P.P. Whalen. Formulations of artificial viscosity
for multi-dimensional shock wave computations. J. Comput. Phys., 144:70–97, 1998.

[7] G. E. Collins. Quantifier elimination in the elementary theory of real closed fields
by cylindrical algebraic decomposition. In Lecture Notes in Computer Science, pages
134–183, Berlin, 1975. Springer-Verlag. Vol. 33.

[8] M. Kalal et.al. High power laser interaction with single and double layer targets. In
Proceedings of XXVIII ECLIM, pages 249–259, Roma, September 6-10, 2004, 2005.

[9] V. Ganzha, R. Liska, M. Shashkov, and C. Zenger. Mimetic finite difference methods
for diffusion equations on unstructured triangular grid. In M. Feistauer, V. Doleǰśı,
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