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Summary

Let H be the skew field of quaternions. We will treat two types of quaternionic polynomials.
Polynomials with quaternionic coefficients of the simple (one-sided) type of degneging the
form

n
pn(2) = Zajzj, z,a; € H, ag, an, #0.
7=0

And quaternionic polynomials of the two-sided type which are, due to non-commutativity of
guaternions, more complicated:

n
pn(z) = Zajzjbj, Z, Qj, bj € H, agbg # 0, apb, # 0.
=0

The set of zeros of the simple quaternionic polynomial will separate into two classes; het

zero of a simple quaternionic polynomjal. If zo is not real and has the property, tha{z) = 0

for all z € [z], where[z] := {z € H : Rz = Rz, |2| = |20]}, then we will say that is a
spherical zero. The séty] is the set of all quaternions which are similar:toin the matrix sense,
i.e.[20] = {# : 2 = hzoh~! forall h € H\{0}}. If 2 is real or does not generate a spherical zero

it will be called an isolated zero. Under the assumption thas$ a zero ofp,,, either all elements

in [zo] are zeros or only is a zero. In general, all complex (nonreal) zeros of simple polynomials
with real coefficients are spherical zeros. And real zeros of any simple polynomial will always
be isolated zeros. All zeros of the simple quaternionic polynomin be found very easily by
finding the zeros of a corresponding real polynomial. See Jaap@Gfer, 2010, [15].

For quaternionic polynomialg of the two-sided type, we show that there are three more classes
of zeros defined by the rank of a certain réat 4 matrix A . If a zeroz, in one class has been
found, we are able to find all zeros in the same class. The essential tool is the description of the
polynomialp by a matrix equatiorP(z) := A(z) z + B(z), whereA(z) is a reald x 4 matrix
determined by the coefficients of the given polynomiand P, z, B are real column vectors

with 4 rows. It turned out that Newton’s method applied to this matrix equation represents a very
effective tool in finding the zeros. See Jandvspfer, 2010, [16].

Some examples and applications for both cases are presented. Since quaternions may be repre-
sented isomorphically by redl x 4 matrices, the above polynomials could also be regarded as
special matrix polynomials.



Souhrn

Budeme se zalvat dv@ma typy kvaterniongxch polynontl, tzv. jednostranymi polynomy, v
nichz jsou mocniny "nazamého kvaternionu” asobeny koeficienty (kvaterniony) zleva nebo
zprava,

n
pn(2) = Zajzj, z,a; € H, ag, a, #0,
=0

a tzv. oboustranymi kvaternionoymi polynomy, kde je nezmma vyrasobena (rznymi) kvater-
nionowmi koeficienty zleva i zprava,

n
pn(z) = Zajzjbj, z, aj, bj € H, apby # 0, anb, # 0.
=0

Mnozina kd'enll jednostranych kvaternionoych polynonti se skhda ze dvouitid. Neri-li kofen
2o jednostrangho polynomuw,, realny a ma vlastnostze p,,(z) = 0 pro VSechna: ze ¥idy ek-
vivalence[zg], kde [z0] := {z € H : Rz = Rz, |2| = |20]},, fikame,Ze z je sfericky kofen
polynomup,,. Tfida ekvivalencdz,] je mndzina \Sech kvaterniob, kte jsou podoba kvater-
nionu zo v maticolem smyslu, t.j.[20] = {z : 2 = hzoh~! pro sechnah € H\{0}}. Je-li z
realné nebo negeneruje-liaficky kofen,fikame,ze z je izolovary kofen polynomup;,.

Tedy je-li zop kofenem kvaternion@ho polynomup,,, pak bud\sechny prvky Vizg] jsou kdeny
pn(2) Nebo jezq jediny kofen v €to fidé ekvivalence. Obeénjsou Bechny komplexinerelné)
koreny jednostranych kvaternionoych polynonti sfericke kafeny a \6echny ralné ka‘eny jed-
nostran@ho polynomu jsou k@ny izolova. VSechny kdeny jednostrangho kvaterniono&ho
polynomup,, Ize najt jako ka‘eny jisého gifazereho réalného polynomu stugn, viz. Janovsa,
Opfer, 2010,[[15].

Oboustrana kvaterniono& polynomy mohou i jeSte dagi tfi tfidy kofenll. Tyto ffidy jsou
definovany pomot hodnosti jisé realné maticeA € R**4. Jestlze v réjake fidé ekvivalence
najdeme kéenz,, pak unime najt vSechny kdeny, kteé |eZi ve fidé ekvivalencézy]. Uzitetnym
nastrojem je popis polynomp(z) pomod maticowe rovniceP(z) := A(z) z + B(z), kde ma-
tice A(z) je realna matice typul x 4 definovam koeficienty daého polynomwyp a P, z, B jsou
realné sloupcoe vektory octyfech slakach. Ulazalo seze pditame-li kdeny oboustraneho
kvaternionoeho polynomu Newtonovou metodou, metodafgdionverguije, viz [16] .
Uvedeme fiklady obou typi polynomnil a aplikaci uvedemteorie ndeSer Sylvesterovy rovnice.
Poznamenejme §&, Ze, protde existuje izomorfismus mezi kvaterniony a kompiexirmaticemi
typu 2 x 2 a talké mezi kvaterniony a jigmi realnymi maticemi typud x 4, Ize kvaternionoé
polynomy povdovat za speéini maticove polynomy.



Klicovaslova: Kdeny jednostranych kvaternionoych polynontl, kafeny oboustranych kvater-
nionovych polynontl, klasifikace kéenl, izolovare ka‘eny, serické kareny, Sylvesterova rovnice
pro kvaterniony.

Keywords: Zeros of simple quaternionic polynomials, zeros of two-sided quaternionic polyno-
mials, classification of zeros, izolated zeros, spherical zeros, Sylvester’'s equation in quaternions.
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1 Introduction

Quaternions are a very useful tool for describing motions of rigid bodies. If a chair is thrown
into the air, then its motion can be described by the use of quaternions in an economic fashion.
Thus, computer games which involve many such motions, are a preferred field of applications
of quaternionic algebra. The same is true for the construction of industrially produced robots.
One can find more applications by employing the internet. However, all these applications are
essentially based on the capability of the multiplication with a single quaternion in the sense of an
orthogonal transformation. More complex (in the sense of complicated) structures like matrices or
polynomials defined by quaternions are mainly studied from a theoretical point of view. There are
few isolated older papers treating quaternionic problems numerically. Two papers on eigenvalue
problems are by Dongarra, Gabriel, Koelling, and Wilkinson, 1984,[3, 4], there is also a paper on
the QR decomposition of quaternionic matrices by Bunse-Gerstner, Byers, and Mehrmann, 1989,
[2].

The first attempts to find the zeros of a quaternonic polynomial were made by Niven in 1941,
so called simple quaternionic polynomials were considered. The idea of Niven was to divide the
polynomial by a quadratic polynomial with (certain) real coefficients and to adjust the coefficients
of the quadratic polynomial by an iterative procedure in such a way that the remainder of the
division vanished. Finally, it was shown, that the set of zeros of the resulting quadratic polynomial
also contained quaternions. The first numerically working algorithm based on these ideas was
presented by Sédio, Pereira, and \Mitrio in 2001, [35]. Further contributions to polynomials
with quaternionic coefficients were made by Puimpand Walcher, 2002, [34], de Leo, Ducati,
and Leonhard, 2006/_[29], Gentile and Struppa, 2007, [7], Gentile, Struppa, and Vlacci, 2008,
[8]. There is a very useful overview on quaternionic matrix problems by Zhang,1997, [40]. A
well working procedure for finding all zeros of simple quaternionic polynomials can be found
in Janovsk, Opfer, 2010, [15], classification of zeros of two—sided quaternionic polynomials is
given in Janovsk, Opfer, 2010/[16].

Let us note that linear mappings in the space of quaternions are not necessarily reduced to the
form ¢ = ax, they may also have the fortiz) = axb and ever{(x) = axb+cxd+- - -+yzz with
a finite, but arbitrary number of terms. In the paper by JanavSipfer, 2008/[19], we have shown
how to treat such problems. However, there is still a question which algorithms can be applied to
solving quaternionic linear problems. The answer is strongly related to matrix decompositions. In
Opfer, 2005,[[3R], the CG-algorithm was applied.

Polynomials with quaternionic coefficients located on only one side of the powers (we call
them simple polynomials) may have two different types of zeros: isolated and spherical zeros. We
will give a characterization of the types of the zeros and, based on this characterization, we will
present an algorithm for producing all zeros including their types without using an iteration process
which requires convergence. The main tool is the representation of the powers of a quaternion as
a real, linear combination of the quaternion and the number one (as introduced by Pogorui and
Shapiro, 2004 /[33]), and the use of a real companion polynomial which already was introduced
for the first time by Niven, 1941/ [30].

Let us consider quaternionic polynomials whose coefficients are located at both sides of the
powers (we call them two-sided polynomials). We show that in this case there are, in addition,
three more classes of zeros defined by the rank of a certait xeélmatrix. This information can
be used to find all zeros in the same class if only one zero in that class is known. The essential tool
is the description of the polynomialby a matrix equatior?(z) := A(z)z + B(z), whereA(z)
is a reald x 4 matrix determined by the coefficients of the given polynomiahdP, z, B are real
column vectors with four rows. This representation allows also to include two—sided polynomials
which contain several terms of the same degree.

We applied Newton’s method tB(z) = 0 and at least for isolated zeros this method turned
out to be a very effective tool in finding those zeros. It allows us also to prove that the number of
zeros of a quaternionic, two-sided polynomidk not bounded by the degree of that polynomial.



We conjecture that the bound2s. The paper on Newton’s method, 2007,1[23], shows that it is
also possible to apply this very important and powerful method to quaternionic cases without loss
of approximation power.

2 Preliminaries

Let us introduce some notation. BY, C we denote the fields of real and complex numbers,
respectively, and by, the set of integers. B¥ (in honor of the founder, Hamilton, 1843) we
denote the skew field of quaternions.

Let H = R* be equipped with the ordinary vector space structure with an additional multi-
plicative operatiortl x H — H which most easily can be defined by a multiplication of the four
basis elements

(1,0,0,0) =1, (0,1,0,0) =14, (0,0,1,0)=3j, (0,0,0,1) =k :

2= =k’>=ijk=-1. (1)
An elementr = (x1,x9, x3,x4) € H has the representation
= x11 + z2i + 23 j + x4k, (2)

wherezq,x9, 23,24 € R, R = x1 is the real part oft, Vecx = x9i + x3j + x4k is the
vector part ofr. We will identify the quaternion: = (x1,0,0,0) with the real number, the
quaternionz = (x1, x2,0,0) will be identified with the complex number, + izo. If we denote
v = (29,23, 24) € R? the vector part of: then, the quaternion has the representation:

z=(z1,v), = €R, veR 3)

Forz = (w1, 22,23, 24) = (71,v) € H, y = (y1,¥2,¥3,94) = (y1,w) € H it follows from @)
that
Ty = (191 — Toy2 — 3Yy3 — Taya) 1+ (21y2 + T2y1 + T3y — Tay3) i 4)
+(21y3 — T2ys + 23y1 + Tay2) j + (T1y4 + T2y3 — T3y2 + 1ay1) K

= (zy1 — VW, ;1w + Y1V + V X W),

where-, x are the scalar, vector productsIt¥, respectively. Obviously, in general, the mul-
tiplication is not commutative. Givem according to[(R), the conjugateof = is defined to be

T = (21, —xe, —x3, —14). = Rz — Vecx. (5)

We define the absolute value by

\x\:\/x%—i-:cg—i-m%—&-xi. (6)

The spacé is a normed vector space ovir where the norm is introduced in| (6).
Letx = (1, 22,23,24), ¥y = (Y1, Y2, y3,y4) € H be two quaternions; € R. Then,

22 = 2 — i — 22— 2% 4 22y (20 + 23j + 24k) = 2(R2)x — |2,
(Vecz)? = —a2— 22— 22 = —|Vecz|?,
R(zy) = x1y1 — 2292 — 23y3 — Taya = R(yz); (7
Ty = Y7, T = 8)
@ = 2z=72, |y = lyz| = |2lyl; 9)
e = ﬁ for z € H\{0}. (10)



We shall use the following notation:

sgnx = % for z € H\{0}. (11)

It has the property thadbgn =) © = xsgnx = |z|.

Let us see a small example. Let(z) = 22 + 1. This quadratic polynomial has no real zero
and it has two imaginary zerog » = +i. How many zeros it has as a quadratic quaternionic
polynomial? Let: = h=12 2h, whereh € H \ {0} is arbitrary. Then

Z24+1l=h"tz9hh 21 0h +1=h"12h+1=0.
As a quadratic quaternionic polynomigh, has infinitely many zeros.

Definition 1.  Two quaternions, b € H are called equivalent, denoted by~ b, if
a~b <= 3JhecH\{0} suchthat a =h"'bh. (12)

The set
[a] :={ueH :u=h""ah foral heH)\{0}} (13)

will be called an equivalence classaf

The relation~ is indeed an equivalence relation. Equivalent quaternighscan be easily
recognized by
a~b <= Ra=RNb and |a|= b, (sed2(). (14)

Let a; be real. Therja;] = {a1}, which means, that in this case, the equivalence class consists
only of one element{a, }. If a is not real, thera] always contains infinitely many elements which
due to [(I2),[(IB), and (14), can be characterized by

[a] ={z € H : Rz=RNa, and |z|=lal}, (15)

and the equivalence clagg can be regarded as a two dimensional spheRin
Letz := (21, 22, 23, 24) € H. Then it follows from[(15) thakt € [2]. If z € H will not be real
then the equivalence clagg contains exactly two complex numbers C anda € C where

a=(z1,+1/23 + 22 +22,0,0) = 21 + |Vec z|i € [7],

i.e.,a is the only complex element jr] with a non negative imaginary part. The complex number
a will be called the complex representative|of.

There is an isomophism between the field of quaterni@r@sd a certain class of matrices in
C?*2. Leta = (a1,a9,a3,a4) € H. Let us puta = a; + asi, 8 = a3 + as4i. Then the set of

matrices of the form
~ B o ﬂ
"= ( -5 )

with ordinary matrix addition and multiplication is isomorphiclfh see B. L. van der Waerden,
1960 (1st ed. 1936), [37].

This isomorphism is very useful in quantum mechanics. In modelling of electronic struc-
tures of molecules and solids containing heavy atoms the use of relativistic kinematics is required
namely, when effects that modify symmetry (spin-orbit coupling) are concerned.

This leads to complex systems of equations with matrices in which a scalar elersefi
is replaced byﬁ, i.e. by a2 x 2 matrix with complex elements. Due to the isomorphism it
means that we can work with quaternionic matrices. It has some advantages (increased accuracy,
economy of storage), but on the other hand it needs more computational effort.
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There is also another isomorphic matrix representation of quaternions.
We introduce two mappings;,ws : H — R**4 py

a; —a2 —asz —a4
a2 ap —a4 az
a3 a4 a; —ag
a4 —as a2 ai

wi(a) == e RP4, (16)

ap —az —a3 —a4

az al a4 —as 4x4
wola) := e R*7%, 17
2(a) az —aq ai az (17)

aq asz —az ai

The first mappingv; represents the isomorphic image of a quaternica (a1, az, as, a4) in
the matrix spac®**4. Thus we have

wi(ab) = wi(a)w(b).
The two matricess; (a), w2 (b) coincide if and only ifa = b € R, see Girlebeck, Spissig, 1995,

1]

The second mapping, introduced by Aramanovitch, 1995,/ [1], has the important property
that it reverses the multiplication order

wa(ab) = wa(b)wa(a).
From the definition[(1]6) it follows that

T

wi(a)” = wi(a), wo (b)Y = w1 (D).

where the superscript denotes transposition. It follows, that both matrices are orthogonal in the

sensev; (a)wi(a)T = wi(a)wi (@) = |a|* T, wa(b)w2(b)T = |b|? 1, whereT is the(4 x 4) identity
matrix.

Leta := (a1, as, a3, as) € H. We introduce an column operatasl : H — R* by

ay

col(a) = | ** |. (18)

as
a4

This column operator enables us to regard a quaternion as a matrix with one column and four rows.
Itis linear overR, i. e.

col(aa + (b) = acol(a) + Beol(b), a,be H, o, € R. (29)

Lemma 1. (Aramanovitch, 1995/ ]1], Grlebeck, Spissig, 1995,[[11]) For arbitrary quater-
nionsa, b, c we have

col(ab) = wi(a)col(b) = wa(b)col(a),
col(abc) = wi(a)wsa(c)
col(abc) = wi(a)wi(b)col(c) = wa(c)wa(b)col(a).
For more properties of these mappings, Seé [16].

Let us put
ws(a,b) := wi(a)ws(b) € R a,bc H. (20)



Lemma2. The matrixws(a,b) is normal and orthogonal in the sense
ws(a,b)Tws(a,b) = ws(a, b)ws(a,b)T = |a*|b*I.
Thus, all eigenvalues afs(a, b) have the same absolute valag{b| .

For proof, see [16] .

Let A be a square matrix ovelf of ordern. Then, see e.g. Horn & Johnson, [13], any
power A’ belongs to a linear hull of the powers of the matAixup to the degree of the minimal
polynomial:

Al e (I, A A% ... A" jeN,

wherev is the degree of the minimal polynomial &f. In generaly < n andv dividesn, see e.g.
Horn & Johnson,[[13]. In particular far = 2 we have

Al =o;T+BjA, jEN,

and the coefficientsy;, 3; can be computed by recursion.
We will apply this theory to quaternions or, more precisely, to the real mati{x) that
represents the quaternienlIt has the minimal polynomial

pww(a)) =A% —2xa; + |a]® ie. v=2.

As a consequence, all powers j € Z of a quaterniore have the formz/ = az + 3 with real
«, 8. In particular,

22 = 2Rz 2z — |22 (21)

In order to determine the numbets3 we set up the following iteration (for negatiyeand non
vanishingz we usez~! = é instead ofz)

# o= ajz+pj, «,B€R, j=0,1,..., where (22)

ag = 0, [o=1, (23)

ajr1 = 2Rzaj + G, (24)

Biy1 = —|z]Paj, j=0,1,... (25)

The corresponding iteration given by Pogorui and Shapiro, 2004, [33], is a three term recursion
whereas this one (formulas (23) {o [25) is a two term recursion. Thus, they differ, formally. In
some cases two term recursions are more stable, than the corresponding three term recursion. For
an example, see Laurie, 1999, [28]. The given recursion is a very economic means to calculate the
powers of a quaternion. In order to compute all powers afH up to degree:, one needs — 1
quaternionic multiplications, where one quaternionic multiplication ($ée (4)) needs 28 flops real
floating point operations, whereas the recursipn| (23) tp (25) only rieeflsps. The sequence

{a;} is defined by a difference equation of order two with constant coefficients. Using the theory
of difference equations, it is possible to give a closed form solution foiT here are two versions

valid for the case: ¢ R. One of the versions is purely real, the other is formally complex. The
real version of the solution is as follows:

S{ui}

22 = (R2)?

w =Rz +iVEP - 22, VP - (R2)2> 0,520, (26)

Qj =

whereu; is one of the two complex solutions af — 2Rz u + |z|?> = 0. Formula ) fora; is
of course easier to program than the iteratjor} (23)) i (25). However, since a power is involved, an
economic use of (26) would also require an iteration.
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3 Simple (one—sided) quaternionic polynomials

Letp,(z) be a given polynomial of degreg n positive integer,
n .
z):Zajzj, z,a;j€H, 7=0,1,2,...,n, ap, an #0. (27)

Polynomialp,,(z) in (27) is called one-sided (or simple) quaternionic polynomial.

Let us remark that the assumptiaf # 0 guarantees that the origin is never a zerg,gfthe
assumptioru,, # 0 ensures that the degree of the polynomial is not less #hafvithout loss of
generality we could assumsg, = 1. It should be noted that the general form of a quaternionic
monomial would bei - z- a1 - z-a2---a;—1 - 2 - aj, .., the above,, is only a very special type
of quaternionic polynomial. Sek [31] for some statements on polynomials of general type. It also
should be noted that it is still possible to evaluatéz) by Horners scheme, although coefficients
and argument are iH.

The set of zeros of a polynomial of tyge [27) will separate into two classes.

Definition 2.  Let 2 be a zero of a simple quaternionic polynomial|(27)lfs not real and has

the property thap,,(z) = 0 for all z € [z], then we will say that is (or generates) a spherical
zero. Ifzg is real or does not generate a spherical zero, itis called an isolated zero. The number of
zeros ofp,, will be defined as the number of equivalence classes, which contain at least one zero

of pp,.

In what follows, we will see that under the assumption tas a zero of,,, either all elements
N [zp] are zeros, ok is the only zero ifjzo].

By means of[(2R2) the polynomial, can be written as

Zajz —ZGJ ajz+ B;) = ZO‘J“J Z"‘Zﬁjaj (2)2+ B(z). (28)

Theorem 1. Let zy € H be fixed. ThenA(z) = const, B(z) = const for all z € [z], where
A, B are defined in(28). Lety be a zero op,,. Then,

pn(20) = A(2)z0 + B(2) =0 forall z € [z]. (29)

The quantitiesA, B in (29) can only vanish simultaneously. 4#f(z,) = 0 and if z; is not real,
then,zy generates a spherical zeromf. If A(zy) # 0, thenz is an isolated zero.

Proof.  From [23) to [(2b) it is clear, that the coefficients, 3;, j > 0, are the same for all

z with the saméRz, |z|. Thus, the coefficients are the same forzak [z], therefore,A(z) =
const, B(z) = const for all z € [zy]. If A(z9) = 0, then necessarilyg(zy) = 0, and vice versa.
And p(z) = 0 for all z € [2]. This implies thatzy generates a spherical zerozif is not real.
Recall, thaty # 0. Let A(z9) # 0 andzy not isolated. This case leads to a contradiction as shown
in the next theorem. O

Theorem 2.  Let zp, z; € H be two different zeros agf,, with zy € [z1]. Thenp,(z) = 0 for all
z € [z1] andzy generates a spherical zerggfandA(z) = B(z) = 0forall z € [zy], whereA, B
are defined in[(28). In particulaz, is a spherical zero gf, if and only if A(z9) = 0, provided,
zp IS not real.

Proof.  Sincezy, z; are assumed to be different and to belong to the same equivalence class, they
cannot be real. From (28) it follows thay (z;) = A(z)z;+ B(z) = Oforall z € [z] = [z1], j =
0, 1. Taking differences, we obtaj,(z0) — pn(z1) = A(2)(20 — 21) = 0forall z € [z1] = [20],
implying A(z) = 0. According to Theorerﬁ]l, the zerg generates a spherical zeromgf. If
A(zp) # 0, the zerogy, cannot be spherical. See also Pogorui and Shapirb, [33]. O
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Thus, we have the following classification of the zetg®f p,, given in [27):
1. zg is real. By definitionz is isolated.
2. zgis not real.

— A(z0) =0 = z is spherical, alk € [z] are zeros op,,.
— A(z9) # 0 = zg is isolated.

The computation of all zeros gf,, including their types, can be reduced to the computation
of all zeros of a real polynomial of degrée.

Let p,, be the polynomial defined i (R7) with the quaternionic coefficientsiy, ..., ay.
Following Niven, 1941,[[30], or more recently Pogorui and Shapiro, 2004, [33], we define the
polynomialgs,, of degree2n with real coefficients by

n 2n
Gon(2) = Z chakZﬁk = Zbkzk, z € C, where (30)
3,k=0 k=0
min(k,n)
b = > @ap;E€R, k=0,1,...,2n. (31)

j=max(0,k—n)

We will call g2, the companion polynomial of the quaternionic polynomial Since it has real
coefficients, we may assume that it is always possible to find all (real and complex) zesgs of
How are the quaternionic zeros pf related to the real or complex zeros @f,? Here is the
answer. For detailed proof, see [15].

Theorem 3. Letp, be a given simple quaternionic polynomial andggt be the corresponding
companion polynomial. Then

1. Letzy € R. Then, ¢2,(20) = 0 <= p,(20) = 0. The set of the real zeros is the same for
pp and forga,,.

2. Letz be a nonreal zero @b, and letA(z,) = 0. See[(2B) for the definition od. Then,z,
generates a spherical zeropf.

3. Letz is a nonreal, complex zero f,, with the property thatd(x) # 0. Then,z

z:=—A(z) 'B(z) = — (32)
AP
is an isolated zero qf,,. If we use the notation
= (71,22,0,0); 2:=(21,22,23,21); AB:= (v1,v2,v3,v4). (33)
and|v| = \/vZ + v2 + v2 we can giver also the following form
Z = ($1,—@U2,—@U3,—@U4)- (34)
[v] v |v]

There is still one missing link. Is it true, that the zeros of the companion polynamiatally
exhaust all zeros gf,, or is it possible thap,, has a zero which we do not find by checking all
zeros ofgs,?

Theorem 4.  Letp,(z) = 0 wherep,, is defined in[(2]7). Then, there is anc C with z € [2]
such thaty,, (z) = 0, wheregs,, is defined in[(3D)[(31).
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Example 1. Let

pe(2) = 20 +j2° 412 — 22 —jz —i. (35)

Then, the companion polynomial fpg is
qua(x) =22 + 210 — 2% — 220 — 2t 4 22 4 1. (36)
The twelve zeros of, are
1 (twice), —1 (twice), =i (twice each) 0.5(f+1 +1i).

There are two different, real zeros,» = +1 which are also zeros gfs. There is one spherical
zero,z3 = i, of pg (—1 generates the same spherical zero). And, finally there are two isolated zeros
which have to be computed from= 0.5 (+1 = i) by formula [34). This formula yields

20:=05(1,—1,-1,-1), 25:=05(—1,1,—1,—1).

So far our simple quaternionic polynomial had coefficients on the left side of the powers. Let

Pn(z) = szaj, z,aj €H, j=0,1,2,...,n, ap,ap,#0. (37)
j=0
be a given polynomial with coefficients on the right side of the powers.
We apply the former theory to

n

pn(2) == pn(Z) = Zﬁjzj, z,aj € H, j=0,1,2,...,n, ag, a, #0. (38)
=0

Lemma 3. The two polynomials

n

Dn(z) := szaj and p,(z) := ZCTJ-Zj
=0

j=0
have the same real and spherical zeros.

Let us summarize the algorithm for finding zeros of a simple quaternionic polyngmjal (27),
n .
pn(2) ::Zajz], z,a; e H, j=0,1,...,n,ap,=1,a0#0, n>1.
7=0

1. Compute the real coefficients, b1, . . ., ba, Of the companion polynomiaj,, by formula
(31). Make sure that they are real.

2. Compute alln (real and complex) zeros g#,,, (in MATLAB, use the commandoots ).
Denote these zeros hy, 29, . . . , 22, and order these zeros (if necessary) suchdfat; =
%25, J = 1,2,...,n. Ifaspecificzg,—1 is real, then, it means thag;,_1 = z9j,.

3. Define an integer vectand (like indicator) of lengthn and set all components to zero.
Define a quaternionic vectdf of lengthn and set all components to zero.
For j:;=1:n do Putz := 29;_1.

(@) if zisreal,Z(j) := z; go to the next stegend if

(b) Computes := A(z)B(z) by formula [28), with the help of (23) td_(25).
(c) if v=0,putind(j):=1;Z(j) := z; go to the next stegend if
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(d) if v #0,let(vy,vq,v3,v4) :=v. CoOmputew| := \/v3 + v + v3, put

B1) 2(j) = (%(zx 5, BB, —’ffj)’m) |
end if
end for

The result of this algorithm will be an integer veciod and a quaternionic vectdf, both
of lengthn. If ind(j) = 1, it signals that the complex numbgi(j) generates a spherical zero of
pn. In all other case</(j) will be an isolated zero gf,. Though the quaternionic vectdf has
lengthn, the number of pairwise distinct entries may be smaller.

There are two delicate decisions to make in the above algorithm. In step 3(a) one has to decide
whetherz is real. And in step 3(c) one has to decide whethixzero. Since a real zero gf,, is
always a double zero a test of the fofz)| < 10~ is appropriate.

We made some hundred tests with polynomjalsof degreen < 50 with random integer
coefficients in the range-5, 5] and with real coefficients in the rang 1]. In all cases we found
only (non real) isolated zeras The test cases showeg,(z)| ~ 10713, Real zeros and spherical
zeros did not show up. If is too large, say: =~ 100, then it is usually not any more possible to
find all zeros of the companion polynomial by standard meansr(gdg in MATLAB) because
the coefficients of the companion polynomial are too large.

Conclusion The described procedure finds all zeros of the simple quaternionic polyngmial
The set of zeros consists of at least one and at mes¢ments, where the spherical zeros of the
same equivalence class count as one zero.

4 Two-sided quaternionic polynomials
Let us recall that a general quaternionic polynomial consists of a sum of terms of the type
tj(z) = QapjrRalg o aj—1,52:aj5 , 2,005,155+, Ajj S H, j > 0.

We call this term a monomial of degréeSince there may be several terms of the same degree we
have to enumerate the terms. We do that in the form
tin(z) == ag;)-z-ag? . -ag-k_)lyj-z-ay;) ., k=1,2,...k;, k; >0. (39)
The casér; = 0 means that there is no monomial of degjed general, quaternionic polynomial
of degreen takes the form

n kj
p(z) =D > tik(2). (40)

§=0 k=1
There are some recent results on these polynomials in a paper by Opfer, [2009, [31]. The

essential result is by Eilenberg and Niven 1944, [5]. It says that such a polynomial has at least one

zero, provided the number of monomials of degree n is only one. Itis clear, that also polynomials

which contain terms like-z2-b-2*-c are included in the forn@g). One only needs to choose some

of the coefficients to be real. Letc R be areal zero gf defined in[(4D). Since a realcommutes

with all quaternions the polynomial can be written in the form

n k;
p(z) = Z A;2) where Aj:= Z a(()l;) a%’;) o 'agl;) , z€R (41)
j=0 k=1
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Example 2. Letz € R,
p(z) == 2% + azbze + dzc + f . (42)

The polynomial[(4]L) reads in this case
p(2) = (1 + abe)z® +dez + f .
Let us choose
a:=1i,b:=j,c:=-k, d:=i+j,e=j+k, fi=—1-i+j—k,

such thap(z) = 222 + (-1,1,-1,1)z + (=1, —1,1,—1) . The companion polynomiain ),

(37) of degree four has as a double zero and has no other real zero. Thus, the polynprnial
(42) has exactly one real zero, namelylf in the general case the companion polynomgidlas

no real zero, then also the given polynomigh (40) has no real zero. Because of these results,
we will always disregard the discussion on real zeros in the sequel.

Now, we will treat the two—sided quaternionic polynomial in the fdrnj (43). To the polynomials
with multiple terms of the same degree we will return later.

p(2) ::Zajzjbj, z,a;, b €H, j=0,1,...,n € N, apbg # 0, apb, #0. (43)
=0

By means of[(22) the two—sided quaternionic polynorpiaén be written as

p(z) = Z a;j2’bj = Z aj(aj z + Bj)b; (44)
=0 =0
= Z aja; zbj + Zﬂjajbj = C(Z) + B(Z), where (45)
=0 =0
C(Z) = Z a;a; 2 bj, B(Z) = Zﬁj&jbj . (46)
=0 =0

Lemma4. LetC be defined as il (46). The@;: R — R*is a linear mapping oveR. Let
zo be nonreal. Then3(z), defined in[(4p), is constant fere [z]. If p(z) = 0 for somez € H,
thenC(z) = B(z) =00rC(z) # 0 andB(z) # 0.

If we apply the column operatof ([L8), relatiofis](19) and Lemina 1 to the polyngnvie
obtain

Theorem5.  Letp(z) := C(z) + B(z) be defined as ifj (44) to (46). Then,

col(p(z)) = (Z ajw,(aj,bj)) col(z) + > Bicol(aj, by) (47)
j=0 j=0
= A(z)col(z) + col(B(z)), where (48)

3

A(z) = ( ajw;),(aj,bj))eﬂ@‘*“, col(B(z))225jcol(aj,bj). (49)
j=0 j=0

Lemma 5. Let 2o be nonreal. Then, the matriX(z), defined in Theorerﬁ]S is constant for
z € [zo].
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Instead of considering the equatipfx) = 0 we consider the equivalent equation

P(z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) := (50)

o O o o

Theorem 6.  Let =z be a nonreal zero gf such that equatiof (50) is valid. Then, this equation
remains valid if inA(z), B(z) the zeroz is replaced with the complex representatiyeof [z].

From these results we obtain a classification of the zeros of two-sided quaternionic polynomial
p as follows:

Definition3.  Letz be a zero op, defined in[(4B), and let, € 2] be the complex representative
of [z]. The zeroz will be called zero of typé: if rank(A(zp)) =4 —k, 0 < k < 4. A zero of
type4 (rank(A(zp)) = 0) will be called the spherical zero. It has the property that adl [z]
are zeros. A zero of typewill be called isolated zero. In this case= —(A(z)) 'col(B(z)) is
the only zero inzp]. We will also call a real zero an isolated zero.

Since the one—sided quaternionic polynomials also belong to the class we are considering,
zeros of type® and4 will in fact occur. Seel[15]. From the study of the quadratic case in the next
section, we shall see that zeros of typeill also exist. By some more tests with= 4, we found
that all ranks (zero to four) are indeed possibleAarin the next section we show, that far= 2
the casesank(A) = 1 (type3) andrank(A) = 3 (typel) are impossible.

Definition 4.  Letp be any quaternionic polynomial of degree> 2. By #Z(p) we understand
the number of equivalence classedirwhich contain zeros ofp. We call this number, essential
number of zeros ap.

By this definition,p(z) := 22 +1 has one essential zero, siric@nd—i are located in the same
equivalence class.

All polynomials with real coefficients and degrees well as all quaternionic, one-sided polyno-
mials of degree: have at most essential zeros, see [33,16].

Theorem 7.  Let p be a quaternionic, two—sided polynomial of degreeThen,#Z(p), the
essential number of zeros pfis, in general, not bounded by

Example 3.  Letp(z) := a323b3 + a22%by + a12b1 + co, where

[ (17 17070)’ b3 = (_]-7 _1; _170)7 Co ‘= (27 O’O’O)
1,0,1,1), b2:=(0,-1,0,1),
al = (07 _]-a ]-5 1)7 bl = (170’0’ 1)’

The polynomial is of degree three and the essential number of zerpssfive.

Conjecture  Letp be a quaternionic two—sided polynomial of degreef the form [43). Then,
the essential number of zerospWwill not excee®n:

#Z(p) < 2n.

4.1 The quadratic case

In this section we will study the quadratic case
p(z) =22 +azb+c, a,bceH a¢Rb¢R. (51)

The cases € R orb € R were already studied in [15]. We note, that it is not a restriction to
assume that the highest coefficient{&tis one. Lefl be the4 x 4 identity matrix. Then, for the
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quadratic case we have (use Definitipn|(49) forand [46) forB andag = 0, oy = 1, g =
2%(2)7 ﬂo = 1751 == 07 62 == _’2‘2)

A(2) = 2R(2)I +w3(a,b), B(z) =c— |z]*. (52)
We note here, that by Lemrha 2 and byl[13] the maifc) is normal.

Lemma6. The rank of the matriA (=), defined in[(5R) can only be even, i. e. the rank can be
zero, two or four.

Proof. Leteig(B) denote the column vector of all eigenvalues of a real square nfatrhen

cig(A(z)) = eig(ws(a, b)) + 2R(z) (53)

—_ = =

The matrixws(a, b) is orthogonal (cf. Lemmp]2) and all its eigenvalues have the same absolute
value |a|[b]. In particular, the eigenvalues af(a,b) are never zero. The four eigenvalues of
ws(a, b) always come in two pairs, (a) either two pairs of complex conjugate numbers, or (b) one
pair of complex conjugate numbers and one pair of the same real number or (c) two pairs of the
same real number, where the two real pairs may only differ in sign. In casA (&) will be non
singular, in case (b) it may be non singular or have rank two. In casé\(c), may have rank

zero, two or four. O

Theorem 8.  For the zeros of a quadratic polynomjatiefined in[(51), there are the following
possibilities:
1. All eigenvalues ofus(a, b) are nonreal. Then, only isolated zeros are possible.

2. There are real and complex eigenvalues. Then, isolated zeros or zeroséatggeossible.

3. All eigenvalues are real. Then, spherical zeros, zeros of 2ynd isolated zeros are
possible.

Proof.  Follows from the foregoing lemma. 0

We will show, that spherical zeros are impossible if at least one of the coeffieiehia (57
is nonreal.

Lemma?7. Leta, b€ Hand definel := ws(a,b) := wy(a)ws(b), wherew;, wo are defined in
(16), (17). ThenJ has four identical real eigenvalues if and only jfb € R.

Proof. Leta, b € R. ThenJ = abl andJ has four identical real eigenvalues. Now, assume,
that J has four identical real eigenvalues Puta := (a1, a2,as,a4), b := (b1,b2,b3,b4). IN
this case the characteristic polynomiahig(z) := det(J — 2I) = (z — ¢)*. It follows that
c* = det(ws(a,b)) = |a|*b|*, and thusc = +|a||b|. It also follows that the trace is(J) =
4a1by = 4c. Thereforea,b; = +lal|b|. This impliesa, b € R. O

Because of the eigenvalue formu[a](53), this lemma implies that the mAtroan have
rank(A) =0onlyifa, b € R.

Example 4. Let p(z) = 2?+izj+k. Some tests show thag = 3 (—1+1iv/3) is a complex
representative of a zero. In this case

1 0 0 1 -1
0 -1 -1 0 0

AG)=1| o 1 1 o | Bl=| |
1 0 0 -1 1



andrank(A(zp)) = 2. The zeros = (21, 22, 23, 24) € [20] Obey the equations
21 =R(z) = 0.5, |22 =20 =1, A(z)col(z)+ B(z) =0. (54)
There are two solutions of type 2, namely

1 1
= —(=1,-1,1,1 — S(=1,1,-1,1).
(%5} 2( ) 77)77 U2 2( s Ly 7)

Example 5.  Letp(z) = 22 + izj + 1. Then, there are two nonequivalent, complex repre-
sentatives of zeros, namety = %(il +iv/3) . For the representative. = %(—1 +1iv/3) we
have

-1 0 0 1 0
0o -1 -1 0 0

A(Z_) - O -1 -1 0 ’ B(Z_) - 0 )
1 0 0 —1 0

andrank(A(z_)) = 2. The zerosz = (z1, 22, 23,21) € [29] obey the equation$ (b4). The

solutions are . )
=—(—-1,-1,1,—-1 = —(—-1,1,—-1,—-1).
U 2( ) P )77 U2 2( s Ly ) )

For the other representative = 1(£1 + iv/3) we have

A(zy) = B(zy) =

_ o O =

O = = O
|

O R, Rk, O

_ o O =

o O o o

andrank(A(z4)) = 2. The zeros are

1 1
uz = 5(1, —1,-1,-1),, wuy4= 5(1, 1,1,-1).

All together for the given quadratic polynomial there are four different equivalence classes which
contain zeros of type and two more isolated zereg g = 3(1 + V/5)k.

Example 6. Letp(z) = 22 +izj + 1 + k. In this case we find thaty := 1 + i is a complex
representative of a zero and we have

2.0 0 1 -1
02 -1 0 0

A)=1g 0 —1 2| BEI=1 4|
10 0 2 1

and rank(A(zp)) = 4. The isolated zere € [z] is the unique solution oA (z)z + B(zp) =0
which is
u=(1,0,0,-1).

5 Quaternionic polynomials with multiple terms of the same degree

In the case of a simple polynomial with multiple terms of the same degree, we can sum the terms,
for example

7i(2) = ag-l)zj + a§-2)zj = (ag-l) + a§2))zj = a2,
and we obtain again the one-sided quaternionic polynomial (27).

In the two—sided case A ‘
ti(z) = a§1)z3b§1) + a§2)z3b§2)
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such simplification is not possible, nevertheless, the presented technique will also work.
Since one cannot combine terms of the same degree, we will specialize the general two—sided
quaternionic polynomial defined ip (39), (40) in the following way:

tir(z) = a((]];)-z-agl;) . --a§li)17j-z-a§’;) ., k=1,2,...kj, k; >0, kn, =ko=1, (55)
n kj

p(z) = D> ) tin(2), tw #0, to 0. (56)
§=0 k=1

The conditionk,, = 1 together witht,,; # 0 ensures that there is exactly one term with degree
which is not vanishing. This allows to normalize the highest terreitoAccording to Eilenberg
and Niven,[[5], this condition guarantees the existence of at least one zero. However, the following
development will also work if we have several terms of the highest degree, thus, alleying .
The conditionky = 1 is not a restriction, since the constant terms could be combined to one term.
The conditionty; # 0 implies that the origire = 0 is never a zero.

We apply the column operator 9 again using the representatioh= «;z + j3;, developed
in (22) to [2%) and the matrixs defined in[(2D). We obtain

n kj
col(p(z)) = > _ > col(tin(#)), (57)
=0 k=1
col(tjr(z)) = col (ag-k)zjbg-k)) = col(aj(k) (az + ﬁj)bj(k)) (58)
= ajcol(agk)zbg-k)) + ﬁjcol(a§k)zb§k)) (59)
= Ajjcol(z) + col(Bjk), where (60)
Aje = ajws(a B, By = a0 (61)

If we put
n kj n kj
A:=> Y Ay, B:=> ) Bj, (62)
=0 k=1 =0 k=1

we obtain exactly the representatipn|(50). The classification of the zeros, given in Defihition 3
will still be valid, as well as the further statements in Section 3. But The¢iem 8 on quadratic
polynomials will, in general, not be true. A quadratic polynomial will read

K
p(z) =22+ Z akz2b®) 4 ¢, (63)
k=1

and the corresponding matrix representation is

K

col(p(z)) = (2R(z)I+ Z w3(a®, b(k))) col(z) + col(c — |z|?) (64)
k=1

= Acol(z) + col(B). (65)

In this case, the matriA contains a sum abs; matrices and Lemnig 6 will not be valid any more.
We have to apply the general case.

Example 7. Let
p(z) =22+ azb+czd+e, abcdecH. (66)

Let us classify the zeros of this polynomial for three different choices of the coefficients.
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Case 1.
a:=(0,—-1,0,0), b:=(0,1,1,0), c:=(0,1,-1,1),

d:= (0,1,1,0), e:=(0,3,-1,3).
In this casexg = 1 + iv/6 is a complex representative of a zergpof

3 -1 1 1 -7
-1 1 1 -1 3

A(z) = 1 1 3 -1 | co (Blz0)) = | _{ |-
1 -1 -1 1 -3

rank (A(zp)) = 2 and there are two different zeros of type= 2 of p in [2], namely
up = (1,-2,2,2), ug = (1,-1,1,2).
Case 2. Letus choose

a = (07 ]-7 170)7 b:= (1707 _170)7 Ci= (0707 17 1)7
d:=(0,1,1,0), e:=(16,4,—16,6).

In this casezyy = 1 + iyv/29 belongs to a class of zeros f

2 =2 0 -2 —14
0 20 0 4

A(zy) = 5 0 2 _9 , col(B(z0)) = 16 ,
-2 =2 0 2 6

rank (A(zp)) =3 and we have to solvAcol(z) + col(B) = 0 for z € [z] . The only zero
of typek = 1 of pin 2] is
=(1,-2,3,-4).
Case 3.
a:=(—4,-1,4,2), b:=(3,-3,3,-3), ¢:=(0,-5,0,—1),
d:=(4,-3,-5,1), e:=(258,208,239,220).

In this casezp = 2 + iv/83 is a complex representative of a zergpof

-31 -12 -1 20 171
=34 21 0 29 208

A(ZO) - -1 =20 —9 36 ’ col (B(’ZO)) - 239 ’
48 —19 —-34 29 220

rank (A(zp)) =4 and there is one isolated zero (type= 0) of p in [zo] .

Let us note that if in[(66) = ¢ = 1 then we put: := u — d and obtain the one—sided case
(seell29])
pi=pu—d =uv*+(a—du—ad+e, z:=u—d.
The investigation of this section makes also sense for the linearricasa, if we would delete
the conditionk := k; = 1, i.e. the polynomial may have two or more linear terms. In this case
we would have

K
Z a®) zpk) 4 (67)
k=1
K
col(p(z)) = Acol(z) +col(c), where A = ng(a(k),b(k)) : (68)
k=1

SinceA, col(c) do not depend on, the equivalence classes have to be replaced with the full space
H. A zero of typek, 0 < k < 4, is then a zero in &—dimensional subspace &f. Because

of the loosening of the conditiok, = 1, the equatiorp(z) = 0 may have no solution, like e.g.
p(z) == az — za + 1. The linear case, also for systems is treated in more detail in Jenavek
Opfer, 2008,[15].
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5.1 Numerical computation of zeros

The representation of a given quaternionic, two-sided polynagpriiathe form
P(z) == A(2)z+ B(z)

which was already used for the classification of the zeros can also be applied successfully to
finding the zeros, by applying Newton’s methodR¢z) = 0. It shows the typical feature, that it
may be slow in the beginning, but it will terminate then very quickly with quadratic rate.

One can show that both one— and two—sided quaternionic polynomials can have no multiple
zeros (apart of some trivial examples). This is the reason why Newton’s method works well.

In short, the application of Newton’s method results in solving the following linear equation
for s, repeatedly:

P(2)+ P(2)s=0; z:=2z+s, (69)

where in the beginning one needs an initial gueds order to compute thel x 4) Jacobi matrix

P’ we use numerical differentiation. Let, k¥ = 1,2, 3,4 be one of the four standard unit vectors
iNR*, 2 := (21, 22, 23, 24). Then,

87P(Z) . P(z+heg) — P(2)
0z, - h ’

OP oP oP oP
P’ = [ =—(2), =—(2), =—(2), — .
(Z) <621 § 782’2 § ’823 ¥ 7aZ4 Z)>

k=1,2,3,4, h~10"", (70)
(71)

The choiceh ~ 1077 is the standard choice for computers with machine precisioa aH—'°.
This choice implies a good balance between the round off and truncation errors.

If we apply the numerical techniques presented to the previous examples we obtain:
Examplg 4: There are two further non equivalent zeros both of type 4. The essential number of
zeros is 3.

Examplgb: There are two further non equivalent zeros both of type 4. The essential number of
zeros is 4.

Exampl€ 6: There is one more zero of type 4, and there are two more equivalent zeros of type 2.
The essential number of zeros is 3.

An application to Examplg|7, reveals in (a) two additional, non equivalent zeros, in (b) one addi-
tional non equivalent zero, in (c) one additional non equivalent zero. Thus, the essential number
of zeros is in (a): three zeros, in (b) two zeros, in (c) two zeros.

Therefore, in several examples, the essential number of zeros exceeds the degree.

6 Sylvester’s equation in quaternions

Let us investigate Sylvester’s equation in quaternions. In thiseasd and the equation has the
form
az+zb=e, z,a,b ecH. (72)

Our aim is to find zeros of the linear two—sided quaternionic polynomial, we will call it
Sylvester’s polynomial,

p(z) i =az+bz—e, =z, a,b ecH. (73)

In this casep(z) is linear, i.e.n = 1, two—sided quaternionic polynomial with two linear terms,
i.e. we follow the theory of the two—-sided quaternionic polynomial$ (§7), (68). Bedause
k1 := 2, i.e. there are two terms of the highest degtee 1, the existence of the solution is not
guaranteed. We hayéz) = a( z20(1) 4 4@ 20?2 + ¢ where

aV :=a, b1 :=(1,0,0,0), a®:=(1,0,0,0), b :=b, c:=—e.
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Then

P(z) col(p(z)) = Acol(z) + col(c), where
A = wi(aW, V) + w3(a®,bP)) = wi(a) + w(b).

Example 8.  Let Sylvester’s equationz + zb = e be given, where

=(1,-1,1,1), b:=(1,1,1,1), e:=(-4,4,8,0).

Then
2 0 -2 =2
0 2 0 0
A:wl(a)+wg(b): 2 0 9 9
2 0 =2 2

The matrixA doesn’t depend op, rank (A(zp)) = 4 and there is one isolated zero (type- 0)
of p. This can be found as a solution of the system of linear equations

P(z) := col(p(z)) = Acol(z) — col(e) =

o O oo

The solution isz = (1,2,2,1) .

The linear quaternionic polynomial as well as Sylvester’s equation are treated in detall in [22].
Let us repeat here only the following theorem.

Theorem 9. Leta := (a1, a2, as,a4), d := (d1,ds,ds,ds). The Sylvester equatian: + zd = e
has a unique solution for all choices ef H if and only ifZ?ﬁ(aj? —d3) #00ray +dy #0.
If the unique solution exist it is given by

z=f'e+ated), fi == 2Rd+a+|d?a" ifa£0, or (74)
r=(etaed )f', f = 2Ra+d+la?d”t ifd#£0. (75)

Corollary  Leta,d be arbitrary quaternions. Then, Sylvester’s polynomi{al) = ax + zd is
singular (has no solution or many solutions) if and only if

la| = |d| andRa + Rd = 0, (76)
or in other words if and only it and—d are equivalent.

Example 9.  Let us try to find zero of the Sylvester’'s polynomjdl) = axz — za — e where

a = (ay,a9,as,a4) € H, e := (—1,0,0,0). Following the previous corollary we know that
there is no unique solution of the corresponding Sylvester’'s equation. If we use the theory of the
two—sided quaternionic polynomials, we found out that

0 0 0 0
0 0 —2a4 2as3
A=wia)twl-a)=| o 0 —2a,
0 —2a3 2a2 0

Then therank(A) = 2 and the equation
P(z) := col(p(z)) = Acol(z) + col(e)

has no solution, because for the resulting system of linear equalions = 0 the Frobelius
theorem is not valid.
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7 Conclusions

We investigated polynomials with quaternionic coefficients both of the simple and two—sided type.

The quaternionic polynomials of the simple type may have two different types of zeros: iso-
lated zeros and spherical zeros. We gave a characterization of the zeros and, based on this char-
acterization, we presented the algorithm for producing all zeros including their types. For more
details se€ [15].

The two—sided quaternionic polynomials may have all together five different types of zeros.
These types are defined by the rank of a certain4eald matrix. This information can also be
used to find all zeros in the same similarity cldsg (13) if only one zero in that class is known. The
essential tool is the description of the polynomiddy a matrix equatioP(z) := A(z)z + B(z),
whereA(z) is a reald x 4 matrix determined by the coefficients of the given polynorpigdnd
P, z, B are real column vectors with four rows. This representation allows also to include two-
sided quaternionic polynomials which contain several terms of the same degree and to prove, that
the essential number of zeros of a quaternionic, two-sided polyngrofadegree. is, in general,
not bounded by:. Our conjecture is that the bound2s. More details can be found ih [16].

It turned out that Newton’s method applied to the equafign) = 0 is a very effective tool in
finding the zeros. For Newton’s method, see &dlso [23].

Finally, we apply the theory to the linear two—sided quaternionic Sylvester’s polynomial.
Sylvester's equation was also treated by a little different technique Iri [19, 25]. There are other
algebraic equations in quaternions that can be treated by the technique presented here, e.g. alge-
braic Riccati equation, or algebraic Bernoulli equation.

We would like to mention, that we used two essential ideas of other authors, namely
— The idea by Anatoliy Pogofand Michael Shapirol [33], was to write the powetsn the form
a z + (8 with real o, 3, which reduces the two-sided polynomials to a sum of terms of the form
azb. This idea also gave birth to the introduction of equivalence classes of z€ibs in
— Another idea, by Ludmilla Aramanovitch,I[1], was the introduction of the matsix(for-
mula [17)) which permitted to pull out the variablefrom azb. Both ingredients allowed the
development of the important formuf(a {48).

Because there is an isomorphism between the skew field of quatefifiiand certain matri-
ces inC?*2, let us denote it for a while b§lc, and also betweeH and certain matrices iR***,
denoted byH. both simple and two—sided quaternionic polynomials can be understood as matrix
polynomials with all coefficients either froffic or from Hg, [16] . However, there is one differ-
ence. If we solve a particular matrix equation, we obtain zeros in the considered matrix space.
Experiments showed, that these matrix polynomials have the wanted quaternionic zeros but may
in addition have other zeros which lack an interpretation as a quaternion.
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