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Summary

Let H be the skew field of quaternions. We will treat two types of quaternionic polynomials.
Polynomials with quaternionic coefficients of the simple (one-sided) type of degreen having the
form

pn(z) :=
n∑

j=0

ajz
j , z, aj ∈ H, a0, an 6= 0 .

And quaternionic polynomials of the two-sided type which are, due to non-commutativity of
quaternions, more complicated:

pn(z) :=
n∑

j=0

ajz
jbj , z, aj , bj ∈ H, a0b0 6= 0, anbn 6= 0.

The set of zeros of the simple quaternionic polynomial will separate into two classes: Letz0 be a
zero of a simple quaternionic polynomialpn. If z0 is not real and has the property, thatpn(z) = 0
for all z ∈ [z0], where[z0] := {z ∈ H : <z = <z0, |z| = |z0|}, then we will say thatz0 is a
spherical zero. The set[z0] is the set of all quaternions which are similar toz0 in the matrix sense,
i. e. [z0] = {z : z = hz0h

−1 for all h ∈ H\{0}}. If z0 is real or does not generate a spherical zero
it will be called an isolated zero. Under the assumption thatz0 is a zero ofpn, either all elements
in [z0] are zeros or onlyz0 is a zero. In general, all complex (nonreal) zeros of simple polynomials
with real coefficients are spherical zeros. And real zeros of any simple polynomial will always
be isolated zeros. All zeros of the simple quaternionic polynomialp can be found very easily by
finding the zeros of a corresponding real polynomial. See Janovská, Opfer, 2010, [15] .
For quaternionic polynomialsp of the two-sided type, we show that there are three more classes
of zeros defined by the rank of a certain real4 × 4 matrix A . If a zeroz0 in one class has been
found, we are able to find all zeros in the same class. The essential tool is the description of the
polynomialp by a matrix equationP (z) := A(z) z + B(z) , whereA(z) is a real4 × 4 matrix
determined by the coefficients of the given polynomialp andP, z, B are real column vectors
with 4 rows. It turned out that Newton’s method applied to this matrix equation represents a very
effective tool in finding the zeros. See Janovská, Opfer, 2010, [16] .
Some examples and applications for both cases are presented. Since quaternions may be repre-
sented isomorphically by real4 × 4 matrices, the above polynomials could also be regarded as
special matrix polynomials.
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Souhrn

Budeme se zab́yvat dv̌ema typy kvaternionov́ych polynom̊u, tzv. jednostranńymi polynomy, v
nichž jsou mocniny ”nazńamého kvaternionu” ńasobeny koeficienty (kvaterniony) zleva nebo
zprava,

pn(z) :=
n∑

j=0

ajz
j , z, aj ∈ H, a0, an 6= 0 ,

a tzv. oboustranńymi kvaternionov́ymi polynomy, kde je nezńamá vyńasobena (r̊uzńymi) kvater-
nionov́ymi koeficienty zleva i zprava,

pn(z) :=
n∑

j=0

ajz
jbj , z, aj , bj ∈ H, a0b0 6= 0, anbn 6= 0.

Množina kǒren̊u jednostranńych kvaternionov́ych polynom̊u se skĺad́a ze dvou ťrı́d. Neńı-li kořen
z0 jednostranńeho polynomupn reálný a má vlastnost,̌zepn(z) = 0 pro v̌sechnaz ze ťrı́dy ek-
vivalence[z0], kde [z0] := {z ∈ H : <z = <z0, |z| = |z0|},, řı́káme,že z0 je sf́erický kořen
polynomupn. Třı́da ekvivalence[z0] je mnǒzina v̌sech kvaternion̊u, kteŕe jsou podobńe kvater-
nionuz0 v maticov́em smyslu, t.j.[z0] = {z : z = hz0h

−1 pro v̌sechnah ∈ H\{0}}. Je-li z0

reálné nebo negeneruje-li sférický kořen,řı́káme,žez0 je izolovańy kořen polynomupn.
Tedy je-li z0 kořenem kvaternionov́eho polynomupn, pak bud’ v̌sechny prvky v[z0] jsou kǒreny
pn(z) nebo jez0 jediný kořen v t́eto ťrı́dě ekvivalence. Obecně jsou v̌sechny komplexńı (neréalné)
kořeny jednostranńych kvaternionov́ych polynom̊u sf́erické kǒreny a v̌sechny réalné kǒreny jed-
nostranńeho polynomu jsou kǒreny izolovańe. Všechny kǒreny jednostranńeho kvaternionov́eho
polynomupn lze naj́ıt jako kǒreny jist́eho p̌riřazeńeho réalného polynomu stupňe2n, viz. Janovsḱa,
Opfer, 2010, [15] .
Oboustranńe kvaternionov́e polynomy mohou ḿıt ješťe daľśı tři třı́dy kǒren̊u. Tyto ťrı́dy jsou
definov́any pomoćı hodnosti jist́e réalné maticeA ∈ R4×4 . Jestlǐze v ňejaḱe ťrı́dě ekvivalence
najdeme kǒrenz0, pak uḿıme naj́ıt všechny kǒreny, kteŕe lěźı ve ťrı́dě ekvivalence[z0]. Užitečným
nástrojem je popis polynomup(z) pomoćı maticov́e rovniceP (z) := A(z) z + B(z) , kde ma-
tice A(z) je réalná matice typu4 × 4 definovańa koeficienty dańeho polynomup a P, z, B jsou
reálné sloupcov́e vektory očtyřech slǒzkách. Uḱazalo se,̌ze pǒćıtáme-li kǒreny oboustranńeho
kvaternionov́eho polynomu Newtonovou metodou, metoda dobře konverguje, viz [16] .
Uvedeme p̌rı́klady obou typ̊u polynom̊u a aplikaci uvedeńe teorie nǎrěseńı Sylvesterovy rovnice.
Poznamenejme ješťe,že, protǒze existuje izomorfismus mezi kvaterniony a komplexnı́mi maticemi
typu 2 × 2 a taḱe mezi kvaterniony a jistými reálnými maticemi typu4 × 4, lze kvaternionov́e
polynomy povǎzovat za speciálńı maticov́e polynomy.
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1 Introduction

Quaternions are a very useful tool for describing motions of rigid bodies. If a chair is thrown
into the air, then its motion can be described by the use of quaternions in an economic fashion.
Thus, computer games which involve many such motions, are a preferred field of applications
of quaternionic algebra. The same is true for the construction of industrially produced robots.
One can find more applications by employing the internet. However, all these applications are
essentially based on the capability of the multiplication with a single quaternion in the sense of an
orthogonal transformation. More complex (in the sense of complicated) structures like matrices or
polynomials defined by quaternions are mainly studied from a theoretical point of view. There are
few isolated older papers treating quaternionic problems numerically. Two papers on eigenvalue
problems are by Dongarra, Gabriel, Koelling, and Wilkinson, 1984, [3, 4], there is also a paper on
the QR decomposition of quaternionic matrices by Bunse-Gerstner, Byers, and Mehrmann, 1989,
[2].

The first attempts to find the zeros of a quaternonic polynomial were made by Niven in 1941;
so called simple quaternionic polynomials were considered. The idea of Niven was to divide the
polynomial by a quadratic polynomial with (certain) real coefficients and to adjust the coefficients
of the quadratic polynomial by an iterative procedure in such a way that the remainder of the
division vanished. Finally, it was shown, that the set of zeros of the resulting quadratic polynomial
also contained quaternions. The first numerically working algorithm based on these ideas was
presented by Serôdio, Pereira, and Vitório in 2001, [35]. Further contributions to polynomials
with quaternionic coefficients were made by Pumplün and Walcher, 2002, [34], de Leo, Ducati,
and Leonhard, 2006, [29], Gentile and Struppa, 2007, [7], Gentile, Struppa, and Vlacci, 2008,
[8]. There is a very useful overview on quaternionic matrix problems by Zhang,1997, [40]. A
well working procedure for finding all zeros of simple quaternionic polynomials can be found
in Janovsḱa, Opfer, 2010, [15], classification of zeros of two–sided quaternionic polynomials is
given in Janovsḱa, Opfer, 2010, [16].

Let us note that linear mappings in the space of quaternions are not necessarily reduced to the
form ` = ax, they may also have the form̀(x) = axb and eveǹ (x) = axb+cxd+· · ·+yxz with
a finite, but arbitrary number of terms. In the paper by Janovská, Opfer, 2008, [19], we have shown
how to treat such problems. However, there is still a question which algorithms can be applied to
solving quaternionic linear problems. The answer is strongly related to matrix decompositions. In
Opfer, 2005, [32], the CG–algorithm was applied.

Polynomials with quaternionic coefficients located on only one side of the powers (we call
them simple polynomials) may have two different types of zeros: isolated and spherical zeros. We
will give a characterization of the types of the zeros and, based on this characterization, we will
present an algorithm for producing all zeros including their types without using an iteration process
which requires convergence. The main tool is the representation of the powers of a quaternion as
a real, linear combination of the quaternion and the number one (as introduced by Pogorui and
Shapiro, 2004, [33]), and the use of a real companion polynomial which already was introduced
for the first time by Niven, 1941, [30].

Let us consider quaternionic polynomials whose coefficients are located at both sides of the
powers (we call them two–sided polynomials). We show that in this case there are, in addition,
three more classes of zeros defined by the rank of a certain real4×4 matrix. This information can
be used to find all zeros in the same class if only one zero in that class is known. The essential tool
is the description of the polynomialp by a matrix equationP (z) := A(z)z + B(z), whereA(z)
is a real4× 4 matrix determined by the coefficients of the given polynomialp andP, z, B are real
column vectors with four rows. This representation allows also to include two–sided polynomials
which contain several terms of the same degree.

We applied Newton’s method toP (z) = 0 and at least for isolated zeros this method turned
out to be a very effective tool in finding those zeros. It allows us also to prove that the number of
zeros of a quaternionic, two-sided polynomialp is not bounded by the degree of that polynomial.
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We conjecture that the bound is2n. The paper on Newton’s method, 2007, [23], shows that it is
also possible to apply this very important and powerful method to quaternionic cases without loss
of approximation power.

2 Preliminaries

Let us introduce some notation. ByR, C we denote the fields of real and complex numbers,
respectively, and byZ the set of integers. ByH (in honor of the founder, Hamilton, 1843) we
denote the skew field of quaternions.

Let H = R4 be equipped with the ordinary vector space structure with an additional multi-
plicative operationH×H −→ H which most easily can be defined by a multiplication of the four
basis elements

(1, 0, 0, 0) = 1, (0, 1, 0, 0) = i, (0, 0, 1, 0) = j, (0, 0, 0, 1) = k :

i2 = j2 = k2 = ijk = −1 . (1)

An elementx = (x1, x2, x3, x4) ∈ H has the representation

x = x11 + x2i + x3 j + x4k, (2)

wherex1, x2, x3, x4 ∈ R, <x = x1 is the real part ofx, Vec x = x2i + x3 j + x4k is the
vector part ofx. We will identify the quaternionx = (x1, 0, 0, 0) with the real numberx1, the
quaternionx = (x1, x2, 0, 0) will be identified with the complex numberx1 + ix2. If we denote
v = (x2, x3, x4) ∈ R3 the vector part ofx then, the quaternionx has the representation:

x = (x1,v), x1 ∈ R, v ∈ R3. (3)

For x = (x1, x2, x3, x4) = (x1,v) ∈ H, y = (y1, y2, y3, y4) = (y1,w) ∈ H it follows from (1)
that

x y = (x1y1 − x2y2 − x3y3 − x4y4)1 + (x1y2 + x2y1 + x3y4 − x4y3) i (4)

+(x1y3 − x2y4 + x3y1 + x4y2) j + (x1y4 + x2y3 − x3y2 + x4y1)k
= (x1y1 − v ·w, x1w + y1v + v ×w),

where·, × are the scalar, vector products inR3, respectively. Obviously, in general, the mul-
tiplication is not commutative. Givenx according to (2), the conjugatex of x is defined to be

x = (x1,−x2,−x3,−x4). = <x−Vec x. (5)

We define the absolute value ofx by

|x| =
√

x2
1 + x2

2 + x2
3 + x2

4. (6)

The spaceH is a normed vector space overH, where the norm is introduced in (6).
Let x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ H be two quaternions,r ∈ R. Then,

x2 = x2
1 − x2

2 − x2
3 − x2

4 + 2x1(x2i + x3j + x4k) = 2(<x)x− |x|2,
(Vec x)2 = −x2

2 − x2
3 − x2

4 = −|Vec x|2,
<(xy) = x1y1 − x2y2 − x3y3 − x4y4 = <(yx); (7)

xy = y x, x = x; (8)

|x|2 = xx = xx, |xy| = |yx| = |x||y|; (9)

x−1 =
x

|x|2
for x ∈ H\{0}. (10)
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We shall use the following notation:

sgn x =
x

|x|
for x ∈ H\{0}. (11)

It has the property that(sgn x) x = x sgn x = |x|.

Let us see a small example. Letp2(z) = z2 + 1. This quadratic polynomial has no real zero
and it has two imaginary zerosz1,2 = ±i. How many zeros it has as a quadratic quaternionic
polynomial? Letz = h−1z1,2h , whereh ∈ H \ {0} is arbitrary. Then

z2 + 1 = h−1z1,2h h−1z1,2h + 1 = h−1i2h + 1 = 0 .

As a quadratic quaternionic polynomial,p2 has infinitely many zeros.

Definition 1. Two quaternionsa, b ∈ H are called equivalent, denoted bya ∼ b, if

a ∼ b ⇐⇒ ∃h ∈ H \ {0} such that a = h−1bh. (12)

The set
[a] :=

{
u ∈ H : u = h−1ah for all h ∈ H \ {0}

}
(13)

will be called an equivalence class ofa.

The relation∼ is indeed an equivalence relation. Equivalent quaternionsa, b can be easily
recognized by

a ∼ b ⇐⇒ <a = <b and |a| = |b|, (see[20]). (14)

Let a1 be real. Then[a1] = {a1}, which means, that in this case, the equivalence class consists
only of one element,{a1}. If a is not real, then[a] always contains infinitely many elements which
due to (12), (13), and (14), can be characterized by

[a] = {z ∈ H : <z = <a, and |z| = |a|} , (15)

and the equivalence class[a] can be regarded as a two dimensional sphere inR4.
Let z := (z1, z2, z3, z4) ∈ H. Then it follows from (15) thatz ∈ [z]. If z ∈ H will not be real

then the equivalence class[z] contains exactly two complex numbersa ∈ C anda ∈ C where

a = (z1,+
√

z2
2 + z2

3 + z2
4 , 0, 0) = z1 + |Vec z|i ∈ [z],

i.e.,a is the only complex element in[z] with a non negative imaginary part. The complex number
a will be called the complex representative of[z].

There is an isomophism between the field of quaternionsH and a certain class of matrices in
C2×2. Let a = (a1, a2, a3, a4) ∈ H. Let us putα = a1 + a2i, β = a3 + a4i . Then the set of
matrices of the form

H̃ =
(

α β

−β α

)
with ordinary matrix addition and multiplication is isomorphic toH, see B. L. van der Waerden,
1960 (1st ed. 1936), [37].

This isomorphism is very useful in quantum mechanics. In modelling of electronic struc-
tures of molecules and solids containing heavy atoms the use of relativistic kinematics is required
namely, when effects that modify symmetry (spin-orbit coupling) are concerned.

This leads to complex systems of equations with matrices in which a scalar elementa ∈ R
is replaced byH̃ , i.e. by a2 × 2 matrix with complex elements. Due to the isomorphism it
means that we can work with quaternionic matrices. It has some advantages (increased accuracy,
economy of storage), but on the other hand it needs more computational effort.
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There is also another isomorphic matrix representation of quaternions.
We introduce two mappingsω1, ω2 : H −→ R4×4 by

ω1(a) :=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈ R4×4, (16)

ω2(a) :=


a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

 ∈ R4×4. (17)

The first mappingω1 represents the isomorphic image of a quaterniona = (a1, a2, a3, a4) in
the matrix spaceR4×4. Thus we have

ω1(ab) = ω1(a)ω1(b).

The two matricesω1(a), ω2(b) coincide if and only ifa = b ∈ R, see G̈urlebeck, Spr̈ossig, 1995,
[11].

The second mappingω2 introduced by Aramanovitch, 1995, [1], has the important property
that it reverses the multiplication order

ω2(ab) = ω2(b)ω2(a).

From the definition (16) it follows that

ω1(a)T = ω1(a), ω2(b)T = ω1(b).

where the superscriptT denotes transposition. It follows, that both matrices are orthogonal in the
senseω1(a)ω1(a)T = ω1(a)ω1(a) = |a|2 I, ω2(b)ω2(b)T = |b|2 I, whereI is the(4× 4) identity
matrix.

Let a := (a1, a2, a3, a4) ∈ H. We introduce an column operatorcol : H −→ R4 by

col(a) :=


a1

a2

a3

a4

 . (18)

This column operator enables us to regard a quaternion as a matrix with one column and four rows.
It is linear overR, i. e.

col(αa + βb) = αcol(a) + βcol(b), a, b ∈ H, α, β ∈ R. (19)

Lemma 1. (Aramanovitch, 1995, [1], G̈urlebeck, Spr̈ossig, 1995, [11]) For arbitrary quater-
nionsa, b, c we have

col(ab) = ω1(a)col(b) = ω2(b)col(a),
col(abc) = ω1(a)ω2(c)col(b),
col(abc) = ω1(a)ω1(b)col(c) = ω2(c)ω2(b)col(a).

For more properties of these mappings, see [16].

Let us put
ω3(a, b) := ω1(a)ω2(b) ∈ R4×4, a, b ∈ H. (20)
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Lemma 2. The matrixω3(a, b) is normal and orthogonal in the sense

ω3(a, b)Tω3(a, b) = ω3(a, b)ω3(a, b)T = |a|2|b|2 I .

Thus, all eigenvalues ofω3(a, b) have the same absolute value|a||b| .

For proof, see [16] .

Let A be a square matrix overC of order n. Then, see e.g. Horn & Johnson, [13], any
powerAj belongs to a linear hull of the powers of the matrixA up to the degree of the minimal
polynomial:

Aj ∈ 〈I, A, A2, . . . ,Aν−1〉 , j ∈ N ,

whereν is the degree of the minimal polynomial ofA. In general,ν ≤ n andν dividesn, see e.g.
Horn & Johnson, [13]. In particular forν = 2 we have

Aj = αj I + βjA , j ∈ N ,

and the coefficientsαj , βj can be computed by recursion.
We will apply this theory to quaternions or, more precisely, to the real matrixω1(a) that

represents the quaterniona. It has the minimal polynomial

µ(ω(a)) = λ2 − 2λa1 + |a|2 i.e. ν = 2 .

As a consequence, all powerszj , j ∈ Z of a quaternionz have the formzj = αz + β with real
α, β. In particular,

z2 = 2<z z − |z|2. (21)

In order to determine the numbersα, β we set up the following iteration (for negativej and non

vanishingz we usez−1 =
z

|z|2
instead ofz)

zj = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . , where (22)

α0 = 0, β0 = 1, (23)

αj+1 = 2<z αj + βj , (24)

βj+1 = −|z|2αj , j = 0, 1, . . . (25)

The corresponding iteration given by Pogorui and Shapiro, 2004, [33], is a three term recursion
whereas this one (formulas (23) to (25) is a two term recursion. Thus, they differ, formally. In
some cases two term recursions are more stable, than the corresponding three term recursion. For
an example, see Laurie, 1999, [28]. The given recursion is a very economic means to calculate the
powers of a quaternion. In order to compute all powers ofz ∈ H up to degreen, one needsn− 1
quaternionic multiplications, where one quaternionic multiplication (see (4)) needs 28 flops real
floating point operations, whereas the recursion (23) to (25) only needs3n flops. The sequence
{αj} is defined by a difference equation of order two with constant coefficients. Using the theory
of difference equations, it is possible to give a closed form solution forαj . There are two versions
valid for the casez 6∈ R. One of the versions is purely real, the other is formally complex. The
real version of the solution is as follows:

αj =
={uj

1}√
|z|2 − (<z)2

, u1 := <z + i
√
|z|2 − (<z)2,

√
|z|2 − (<z)2 > 0, j ≥ 0, (26)

whereu1 is one of the two complex solutions ofu2 − 2<z u + |z|2 = 0. Formula (26) forαj is
of course easier to program than the iteration (23) to (25). However, since a power is involved, an
economic use of (26) would also require an iteration.
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3 Simple (one–sided) quaternionic polynomials

Let pn(z) be a given polynomial of degreen, n positive integer,

pn(z) =
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an 6= 0 . (27)

Polynomialpn(z) in (27) is called one-sided (or simple) quaternionic polynomial.

Let us remark that the assumptiona0 6= 0 guarantees that the origin is never a zero ofpn, the
assumptionan 6= 0 ensures that the degree of the polynomial is not less thenn. Without loss of
generality we could assumean = 1. It should be noted that the general form of a quaternionic
monomial would bea0 · z · a1 · z · a2 · · · aj−1 · z · aj , i.e., the abovepn is only a very special type
of quaternionic polynomial. See [31] for some statements on polynomials of general type. It also
should be noted that it is still possible to evaluatepn(z) by Horners scheme, although coefficients
and argument are inH.

The set of zeros of a polynomial of type (27) will separate into two classes.

Definition 2. Let z0 be a zero of a simple quaternionic polynomial (27). Ifz0 is not real and has
the property thatpn(z) = 0 for all z ∈ [z0], then we will say thatz0 is (or generates) a spherical
zero. Ifz0 is real or does not generate a spherical zero, it is called an isolated zero. The number of
zeros ofpn will be defined as the number of equivalence classes, which contain at least one zero
of pn.

In what follows, we will see that under the assumption thatz0 is a zero ofpn, either all elements
in [z0] are zeros, orz0 is the only zero in[z0].

By means of (22) the polynomialpn can be written as

pn(z) :=
n∑

j=0

ajz
j =

n∑
j=0

aj(αj z + βj) =

 n∑
j=0

αjaj

 z +
n∑

j=0

βjaj =: A(z)z + B(z). (28)

Theorem 1. Let z0 ∈ H be fixed. ThenA(z) = const, B(z) = const for all z ∈ [z0], where
A,B are defined in (28). Letz0 be a zero ofpn. Then,

pn(z0) = A(z)z0 + B(z) = 0 for all z ∈ [z0]. (29)

The quantitiesA,B in (29) can only vanish simultaneously. IfA(z0) = 0 and if z0 is not real,
then,z0 generates a spherical zero ofpn. If A(z0) 6= 0, thenz0 is an isolated zero.

Proof. From (23) to (25) it is clear, that the coefficientsαj , βj , j ≥ 0, are the same for all
z with the same<z, |z|. Thus, the coefficients are the same for allz ∈ [z0], therefore,A(z) =
const, B(z) = const for all z ∈ [z0]. If A(z0) = 0, then necessarilyB(z0) = 0, and vice versa.
And p(z) = 0 for all z ∈ [z0]. This implies thatz0 generates a spherical zero ifz0 is not real.
Recall, thatz0 6= 0. LetA(z0) 6= 0 andz0 not isolated. This case leads to a contradiction as shown
in the next theorem. �

Theorem 2. Let z0, z1 ∈ H be two different zeros ofpn with z0 ∈ [z1]. Thenpn(z) = 0 for all
z ∈ [z1] andz0 generates a spherical zero ofpn andA(z) = B(z) = 0 for all z ∈ [z0], whereA,B
are defined in (28). In particular,z0 is a spherical zero ofpn if and only if A(z0) = 0, provided,
z0 is not real.

Proof. Sincez0, z1 are assumed to be different and to belong to the same equivalence class, they
cannot be real. From (28) it follows thatpn(zj) = A(z)zj +B(z) = 0 for all z ∈ [z0] = [z1], j =
0, 1. Taking differences, we obtainpn(z0)− pn(z1) = A(z)(z0 − z1) = 0 for all z ∈ [z1] = [z0],
implying A(z) = 0. According to Theorem 1, the zeroz0 generates a spherical zero ofpn. If
A(z0) 6= 0, the zero,z0, cannot be spherical. See also Pogorui and Shapiro, [33]. �
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Thus, we have the following classification of the zerosz0 of pn given in (27):

1. z0 is real. By definition,z0 is isolated.

2. z0 is not real.

– A(z0) = 0 ⇒ z0 is spherical, allz ∈ [z0] are zeros ofpn.

– A(z0) 6= 0 ⇒ z0 is isolated.

The computation of all zeros ofpn, including their types, can be reduced to the computation
of all zeros of a real polynomial of degree2n.

Let pn be the polynomial defined in (27) with the quaternionic coefficientsa0, a1, . . . , an.
Following Niven, 1941, [30], or more recently Pogorui and Shapiro, 2004, [33], we define the
polynomialq2n of degree2n with real coefficients by

q2n(z) :=
n∑

j,k=0

ajakz
j+k =

2n∑
k=0

bkz
k, z ∈ C, where (30)

bk :=
min(k,n)∑

j=max(0,k−n)

ajak−j ∈ R, k = 0, 1, . . . , 2n. (31)

We will call q2n the companion polynomial of the quaternionic polynomialpn. Since it has real
coefficients, we may assume that it is always possible to find all (real and complex) zeros ofq2n.
How are the quaternionic zeros ofpn related to the real or complex zeros ofq2n? Here is the
answer. For detailed proof, see [15].

Theorem 3. Let pn be a given simple quaternionic polynomial and letq2n be the corresponding
companion polynomial. Then

1. Letz0 ∈ R. Then, q2n(z0) = 0 ⇐⇒ pn(z0) = 0. The set of the real zeros is the same for
pn and forq2n.

2. Letz0 be a nonreal zero ofq2n and letA(z0) = 0. See (28) for the definition ofA. Then,z0

generates a spherical zero ofpn.

3. Letx is a nonreal, complex zero ofq2n with the property thatA(x) 6= 0. Then,z

z := −A(x)−1B(x) = −A(x)B(x)
|A(x)|2

. (32)

is an isolated zero ofpn. If we use the notation

x = (x1, x2, 0, 0); z := (z1, z2, z3, z4); AB := (v1, v2, v3, v4). (33)

and|v| =
√

v2
2 + v2

3 + v2
4 we can givez also the following form

Z := (x1,−
|x2|
|v|

v2,−
|x2|
|v|

v3,−
|x2|
|v|

v4). (34)

There is still one missing link. Is it true, that the zeros of the companion polynomialq2n really
exhaust all zeros ofpn or is it possible thatpn has a zero which we do not find by checking all
zeros ofq2n?

Theorem 4. Let pn(z) = 0 wherepn is defined in (27). Then, there is anx ∈ C with x ∈ [z]
such thatq2n(x) = 0, whereq2n is defined in (30), (31).

12



Example 1. Let
p6(z) := z6 + jz5 + iz4 − z2 − jz − i. (35)

Then, the companion polynomial forp6 is

q12(x) = x12 + x10 − x8 − 2x6 − x4 + x2 + 1. (36)

The twelve zeros ofq12 are

1 (twice), −1 (twice), ±i (twice each), 0.5(±1± i).

There are two different, real zeros,z1,2 = ±1 which are also zeros ofp6. There is one spherical
zero,z3 = i, of p6 (−i generates the same spherical zero). And, finally there are two isolated zeros
which have to be computed fromx = 0.5 (±1± i) by formula (34). This formula yields

z4 := 0.5 (1,−1,−1,−1), z5 := 0.5 (−1, 1,−1,−1).

So far our simple quaternionic polynomial had coefficients on the left side of the powers. Let

p̃n(z) :=
n∑

j=0

zjaj , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an 6= 0 . (37)

be a given polynomial with coefficients on the right side of the powers.
We apply the former theory to

pn(z) := p̃n(z) =
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an 6= 0. (38)

Lemma 3. The two polynomials

p̃n(z) :=
n∑

j=0

zjaj and pn(z) :=
n∑

j=0

ajz
j

have the same real and spherical zeros.

Let us summarize the algorithm for finding zeros of a simple quaternionic polynomial (27),

pn(z) :=
n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, . . . , n, an = 1 , a0 6= 0, n ≥ 1 .

1. Compute the real coefficientsb0, b1, . . . , b2n of the companion polynomialq2n by formula
(31). Make sure that they are real.

2. Compute all2n (real and complex) zeros ofq2n, (in MATLAB, use the commandroots ).
Denote these zeros byz1, z2, . . . , z2n and order these zeros (if necessary) such thatz2j−1 =
z2j , j = 1, 2, . . . , n. If a specificz2j0−1 is real, then, it means thatz2j0−1 = z2j0 .

3. Define an integer vectorind (like indicator) of lengthn and set all components to zero.
Define a quaternionic vectorZ of lengthn and set all components to zero.
For j:=1:n do Putz := z2j−1.

(a) if z is real,Z(j) := z; go to the next step;end if

(b) Computev := A(z)B(z) by formula (28), with the help of (23) to (25).

(c) if v = 0, putind(j) := 1;Z(j) := z; go to the next step;end if
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(d) if v 6= 0, let (v1, v2, v3, v4) := v. Compute|w| :=
√

v2
2 + v3

3 + v2
4, put

(34′) Z(j) :=
(
<(z),−|=(z)

|w|
v2,−

|=(z)|
|w|

v3,−
|=(z)|
|w|

v4

)
.

end if

end for

The result of this algorithm will be an integer vectorind and a quaternionic vectorZ, both
of lengthn. If ind(j) = 1, it signals that the complex numberZ(j) generates a spherical zero of
pn. In all other casesZ(j) will be an isolated zero ofpn. Though the quaternionic vectorZ has
lengthn, the number of pairwise distinct entries may be smaller.

There are two delicate decisions to make in the above algorithm. In step 3(a) one has to decide
whetherz is real. And in step 3(c) one has to decide whetherv is zero. Since a real zero ofq2n is
always a double zero a test of the form|=(z)| < 10−6 is appropriate.

We made some hundred tests with polynomialspn of degreen ≤ 50 with random integer
coefficients in the range[−5, 5] and with real coefficients in the range[0, 1]. In all cases we found
only (non real) isolated zerosz. The test cases showed|pn(z)| ≈ 10−13. Real zeros and spherical
zeros did not show up. Ifn is too large, sayn ≈ 100, then it is usually not any more possible to
find all zeros of the companion polynomial by standard means (sayroots in MATLAB) because
the coefficients of the companion polynomial are too large.

Conclusion The described procedure finds all zeros of the simple quaternionic polynomialpn.
The set of zeros consists of at least one and at mostn elements, where the spherical zeros of the
same equivalence class count as one zero.

4 Two–sided quaternionic polynomials

Let us recall that a general quaternionic polynomial consists of a sum of terms of the type

tj(z) := a0j ·z·a1j · · · aj−1,j ·z·ajj , z, a0j , a1j , . . . , ajj ∈ H, j ≥ 0.

We call this term a monomial of degreej. Since there may be several terms of the same degree we
have to enumerate the terms. We do that in the form

tjk(z) := a
(k)
0j ·z·a

(k)
1j · · · a

(k)
j−1,j ·z·a

(k)
jj , k = 1, 2, . . . , kj , kj ≥ 0. (39)

The casekj = 0 means that there is no monomial of degreej. A general, quaternionic polynomial
of degreen takes the form

p(z) :=
n∑

j=0

kj∑
k=1

tjk(z) . (40)

There are some recent results on these polynomials in a paper by Opfer, 2009, [31]. The
essential result is by Eilenberg and Niven 1944, [5]. It says that such a polynomial has at least one
zero, provided the number of monomials of degree n is only one. It is clear, that also polynomials
which contain terms likea·z2·b·z4·c are included in the form (39). One only needs to choose some
of the coefficients to be real. Letz ∈ R be a real zero ofp defined in (40). Since a realz commutes
with all quaternions the polynomial can be written in the form

p(z) =
n∑

j=0

Ajz
j where Aj :=

kj∑
k=1

a
(k)
0j a

(k)
1j · · · a

(k)
jj , z ∈ R. (41)
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Example 2. Let z ∈ R,
p(z) := z2 + azbzc + dzc + f . (42)

The polynomial (41) reads in this case

p(z) = (1 + abc)z2 + dez + f .

Let us choose

a := i, b := j, c := −k, d := i + j, e := j + k, f := −1− i + j− k ,

such thatp(z) = 2z2 + (−1, 1,−1, 1)z + (−1,−1, 1,−1) . The companion polynomialq in (30),
(31) of degree four has1 as a double zero and has no other real zero. Thus, the polynomialp in
(42) has exactly one real zero, namely1. If in the general case the companion polynomialq has
no real zero, then also the given polynomialp in (40) has no real zero. Because of these results,
we will always disregard the discussion on real zeros in the sequel.

Now, we will treat the two–sided quaternionic polynomial in the form (43). To the polynomials
with multiple terms of the same degree we will return later.

p(z) :=
n∑

j=0

ajz
jbj , z, aj , bj ∈ H, j = 0, 1, . . . , n ∈ N , a0b0 6= 0, anbn 6= 0 . (43)

By means of (22) the two–sided quaternionic polynomialp can be written as

p(z) :=
n∑

j=0

ajz
jbj =

n∑
j=0

aj(αj z + βj)bj (44)

=
n∑

j=0

αjaj z bj +
n∑

j=0

βjajbj = C(z) + B(z), where (45)

C(z) :=
n∑

j=0

αjaj z bj , B(z) :=
n∑

j=0

βjajbj . (46)

Lemma 4. Let C be defined as in (46). Then,C : R4 −→ R4 is a linear mapping overR. Let
z0 be nonreal. Then,B(z), defined in (46), is constant forz ∈ [z0]. If p(z) = 0 for somez ∈ H,
thenC(z) = B(z) = 0 or C(z) 6= 0 andB(z) 6= 0.

If we apply the column operator (18), relations (19) and Lemma 1 to the polynomialp we
obtain

Theorem 5. Let p(z) := C(z) + B(z) be defined as in (44) to (46). Then,

col(p(z)) =

 n∑
j=0

αjω3(aj , bj)

 col(z) +
n∑

j=0

βjcol(aj,bj) (47)

= A(z)col(z) + col(B(z)) , where (48)

A(z) =

 n∑
j=0

αjω3(aj , bj)

 ∈ R4×4 , col(B(z)) =
n∑

j=0

βjcol(aj,bj) . (49)

Lemma 5. Let z0 be nonreal. Then, the matrixA(z), defined in Theorem 5 is constant for
z ∈ [z0].
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Instead of considering the equationp(z) = 0 we consider the equivalent equation

P (z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) :=


0
0
0
0

 . (50)

Theorem 6. Let z be a nonreal zero ofp such that equation (50) is valid. Then, this equation
remains valid if inA(z), B(z) the zeroz is replaced with the complex representativez0 of [z].

From these results we obtain a classification of the zeros of two-sided quaternionic polynomial
p as follows:

Definition 3. Let z be a zero ofp, defined in (43), and letz0 ∈ [z] be the complex representative
of [z]. The zeroz will be called zero of typek if rank(A(z0)) = 4 − k, 0 ≤ k ≤ 4. A zero of
type4 (rank(A(z0)) = 0) will be called the spherical zero. It has the property that allz ∈ [z0]
are zeros. A zero of type0 will be called isolated zero. In this casez = −(A(z0))−1col(B(z0)) is
the only zero in[z0]. We will also call a real zero an isolated zero.

Since the one–sided quaternionic polynomials also belong to the class we are considering,
zeros of types0 and4 will in fact occur. See [15]. From the study of the quadratic case in the next
section, we shall see that zeros of type2 will also exist. By some more tests withn = 4, we found
that all ranks (zero to four) are indeed possible forA. In the next section we show, that forn = 2
the casesrank(A) = 1 (type3) andrank(A) = 3 (type1) are impossible.

Definition 4. Let p be any quaternionic polynomial of degreen ≥ 2. By #Z(p) we understand
the number of equivalence classes inH which contain zeros ofp. We call this number, essential
number of zeros ofp.

By this definition,p(z) := z2 +1 has one essential zero, sincei and−i are located in the same
equivalence class.

All polynomials with real coefficients and degreen as well as all quaternionic, one-sided polyno-
mials of degreen have at mostn essential zeros, see [33, 16].

Theorem 7. Let p be a quaternionic, two–sided polynomial of degreen. Then,#Z(p), the
essential number of zeros ofp, is, in general, not bounded byn.

Example 3. Let p(z) := a3z
3b3 + a2z

2b2 + a1zb1 + c0, where

a3 := (1, 1, 0, 0), b3 := (−1,−1,−1, 0), c0 := (2, 0, 0, 0).
a2 := (−1, 0, 1, 1), b2 := (0,−1, 0, 1),
a1 := (0,−1, 1, 1), b1 := (1, 0, 0, 1),

The polynomialp is of degree three and the essential number of zeros ofp is five.

Conjecture Let p be a quaternionic two–sided polynomial of degreen of the form (43). Then,
the essential number of zeros ofp will not exceed2n:

#Z(p) ≤ 2n .

4.1 The quadratic case

In this section we will study the quadratic case

p(z) := z2 + azb + c , a, b, c ∈ H, a /∈ R, b /∈ R. (51)

The casesa ∈ R or b ∈ R were already studied in [15]. We note, that it is not a restriction to
assume that the highest coefficient (atz2) is one. LetI be the4× 4 identity matrix. Then, for the
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quadratic case we have (use Definition (49) forA and (46) forB andα0 = 0, α1 = 1, α2 =
2<(z), β0 = 1, β1 = 0, β2 = −|z|2)

A(z) = 2<(z)I + ω3(a, b), B(z) = c− |z|2 . (52)

We note here, that by Lemma 2 and by [13] the matrixA(z) is normal.

Lemma 6. The rank of the matrixA(z), defined in (52) can only be even, i. e. the rank can be
zero, two or four.

Proof. Let eig(B) denote the column vector of all eigenvalues of a real square matrixB. Then

eig(A(z)) = eig(ω3(a,b)) + 2<(z)


1
1
1
1

 . (53)

The matrixω3(a, b) is orthogonal (cf. Lemma 2) and all its eigenvalues have the same absolute
value |a||b|. In particular, the eigenvalues ofω3(a, b) are never zero. The four eigenvalues of
ω3(a, b) always come in two pairs, (a) either two pairs of complex conjugate numbers, or (b) one
pair of complex conjugate numbers and one pair of the same real number or (c) two pairs of the
same real number, where the two real pairs may only differ in sign. In case (a),A(z) will be non
singular, in case (b) it may be non singular or have rank two. In case (c),A(z) may have rank
zero, two or four. �

Theorem 8. For the zeros of a quadratic polynomialp defined in (51), there are the following
possibilities:

1. All eigenvalues ofω3(a, b) are nonreal. Then, only isolated zeros are possible.

2. There are real and complex eigenvalues. Then, isolated zeros or zeros of type2 are possible.

3. All eigenvalues are real. Then, spherical zeros, zeros of type2, and isolated zeros are
possible.

Proof. Follows from the foregoing lemma. �

We will show, that spherical zeros are impossible if at least one of the coefficientsa, b in (51)
is nonreal.

Lemma 7. Let a, b ∈ H and defineJ := ω3(a, b) := ω1(a)ω2(b), whereω1, ω2 are defined in
(16), (17). Then,J has four identical real eigenvalues if and only ifa, b ∈ R.

Proof. Let a, b ∈ R. ThenJ = abI andJ has four identical real eigenvaluesab. Now, assume,
that J has four identical real eigenvaluesc. Put a := (a1, a2, a3, a4), b := (b1, b2, b3, b4). In
this case the characteristic polynomial isχJ(x) := det(J − xI) = (x − c)4. It follows that
c4 = det(ω3(a, b)) = |a|4|b|4, and thus,c = ±|a||b|. It also follows that the trace istr(J) =
4a1b1 = 4c. Therefore,a1b1 = ±|a||b|. This impliesa, b ∈ R. �

Because of the eigenvalue formula (53), this lemma implies that the matrixA can have
rank(A) = 0 only if a, b ∈ R.

Example 4. Let p(z) = z2 + izj+k . Some tests show thatz0 = 1
2(−1+ i

√
3) is a complex

representative of a zero. In this case

A(z0) =


−1 0 0 1

0 −1 −1 0
0 −1 −1 0
1 0 0 −1

 , B(z0) =


−1

0
0
1

 ,
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andrank(A(z0)) = 2 . The zerosz = (z1, z2, z3, z4) ∈ [z0] obey the equations

z1 = <(z0) = −0.5, |z|2 = |z0|2 = 1 , A(z0)col(z) + B(z0) = 0 . (54)

There are two solutions of type 2, namely

u1 =
1
2
(−1,−1, 1, 1), , u2 =

1
2
(−1, 1,−1, 1) .

Example 5. Let p(z) = z2 + izj + 1 . Then, there are two nonequivalent, complex repre-
sentatives of zeros, namelyz± = 1

2(±1 + i
√

3) . For the representativez− = 1
2(−1 + i

√
3) we

have

A(z−) =


−1 0 0 1

0 −1 −1 0
0 −1 −1 0
1 0 0 −1

 , B(z−) =


0
0
0
0

 ,

and rank(A(z−)) = 2 . The zerosz = (z1, z2, z3, z4) ∈ [z0] obey the equations (54). The
solutions are

u1 =
1
2
(−1,−1, 1,−1), , u2 =

1
2
(−1, 1,−1,−1) .

For the other representativez+ = 1
2(±1 + i

√
3) we have

A(z+) =


1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

 , B(z+) =


0
0
0
0

 ,

andrank(A(z+)) = 2 . The zeros are

u3 =
1
2
(1,−1,−1,−1), , u4 =

1
2
(1, 1, 1,−1) .

All together for the given quadratic polynomial there are four different equivalence classes which
contain zeros of type2 and two more isolated zerosu5,6 = 1

2(1±
√

5)k.

Example 6. Let p(z) = z2 + izj + 1 + k . In this case we find thatz0 := 1 + i is a complex
representative of a zero and we have

A(z0) =


2 0 0 1
0 2 −1 0
0 0 −1 2
1 0 0 2

 , B(z0) =


−1

0
0
1

 ,

and rank(A(z0)) = 4 . The isolated zeroz ∈ [z0] is the unique solution ofA(z0)z + B(z0) = 0
which is

u = (1, 0, 0,−1) .

5 Quaternionic polynomials with multiple terms of the same degree

In the case of a simple polynomial with multiple terms of the same degree, we can sum the terms,
for example

τj(z) = a
(1)
j zj + a

(2)
j zj = (a(1)

j + a
(2)
j )zj =: ajz

j ,

and we obtain again the one–sided quaternionic polynomial (27) .
In the two–sided case

tj(z) = a
(1)
j zjb

(1)
j + a

(2)
j zjb

(2)
j
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such simplification is not possible, nevertheless, the presented technique will also work.
Since one cannot combine terms of the same degree, we will specialize the general two–sided

quaternionic polynomial defined in (39), (40) in the following way:

tjk(z) := a
(k)
0j ·z·a

(k)
1j · · · a

(k)
j−1,j ·z·a

(k)
jj , k = 1, 2, . . . , kj , kj ≥ 0, kn = k0 = 1 , (55)

p(z) :=
n∑

j=0

kj∑
k=1

tjk(z) , tn1 6= 0, t01 6= 0 . (56)

The conditionkn = 1 together withtn1 6= 0 ensures that there is exactly one term with degreen
which is not vanishing. This allows to normalize the highest term tozn. According to Eilenberg
and Niven, [5], this condition guarantees the existence of at least one zero. However, the following
development will also work if we have several terms of the highest degree, thus, allowingkn ≥ 1.
The conditionk0 = 1 is not a restriction, since the constant terms could be combined to one term.
The conditiont01 6= 0 implies that the originz = 0 is never a zero.

We apply the column operator top, again using the representationzj = αjz + βj , developed
in (22) to (25) and the matrixω3 defined in (20). We obtain

col(p(z)) =
n∑

j=0

kj∑
k=1

col(tjk(z)), (57)

col(tjk(z)) = col
(
a

(k)
j zjb

(k)
j

)
= col(a(k)

j (αjz + βj)b
(k)
j ) (58)

= αjcol(a(k)
j zb

(k)
j ) + βjcol(a(k)

j zb(k)
j ) (59)

= Ajkcol(z) + col(Bjk) , where (60)

Ajk = αjω3(a
(k)
j , b

(k)
j ) , Bjk = βja

(k)
j b

(k)
j . (61)

If we put

A :=
n∑

j=0

kj∑
k=1

Ajk , B :=
n∑

j=0

kj∑
k=1

Bjk , (62)

we obtain exactly the representation (50). The classification of the zeros, given in Definition 3
will still be valid, as well as the further statements in Section 3. But Theorem 8 on quadratic
polynomials will, in general, not be true. A quadratic polynomial will read

p(z) := z2 +
K∑

k=1

akzb(k) + c, (63)

and the corresponding matrix representation is

col(p(z)) =
(
2<(z)I +

K∑
k=1

ω3(a(k), b(k))
)
col(z) + col(c− |z|2) (64)

= Acol(z) + col(B) . (65)

In this case, the matrixA contains a sum ofω3 matrices and Lemma 6 will not be valid any more.
We have to apply the general case.

Example 7. Let

p(z) = z2 + azb + czd + e , a, b, c, d, e ∈ H . (66)

Let us classify the zeros of this polynomial for three different choices of the coefficients.

19



Case 1.
a := (0,−1, 0, 0), b := (0, 1, 1, 0), c := (0, 1,−1, 1),
d := (0, 1, 1, 0), e := (0, 3,−1, 3) .

In this casez0 = 1 + i
√

6 is a complex representative of a zero ofp,

A(z0) =


3 −1 1 1

−1 1 1 −1
1 1 3 −1
1 −1 −1 1

 , col (B(z0)) =


−7

3
−1
−3

 ,

rank (A(z0)) = 2 and there are two different zeros of typek = 2 of p in [z0] , namely

u1 := (1,−2, 2, 2) , u2 := (1,−1, 1, 2) .

Case 2. Let us choose

a := (0, 1, 1, 0), b := (1, 0,−1, 0), c := (0, 0, 1, 1),
d := (0, 1, 1, 0), e := (16, 4,−16, 6) .

In this casez0 = 1 + i
√

29 belongs to a class of zeros ofp,

A(z0) =


2 −2 0 −2
0 2 0 0
2 0 2 −2

−2 −2 0 2

 , col (B(z0)) =


−14

4
−16

6

 ,

rank (A(z0)) = 3 and we have to solveAcol(z)+col(B) = 0 for z ∈ [z0] . The only zero
of typek = 1 of p in [z0] is

u := (1,−2, 3,−4) .

Case 3.
a := (−4,−1, 4, 2), b := (3,−3, 3,−3), c := (0,−5, 0,−1),
d := (4,−3,−5, 1), e := (258, 208, 239, 220) .

In this casez0 = 2 + i
√

83 is a complex representative of a zero ofp,

A(z0) =


−31 −12 −1 20
−34 −21 0 29
−1 −20 −9 36
48 −19 −34 29

 , col (B(z0)) =


171
208
239
220

 ,

rank (A(z0)) = 4 and there is one isolated zero (typek = 0) of p in [z0] .

Let us note that if in (66)b = c = 1 then we putz := u − d and obtain the one–sided case
(see [29])

p̃ := p(u− d) := u2 + (a− d)u− ad + e , z := u− d .

The investigation of this section makes also sense for the linear case,n = 1, if we would delete
the conditionK := k1 = 1, i.e. the polynomial may have two or more linear terms. In this case
we would have

p(z) :=
K∑

k=1

a(k)zb(k) + c , (67)

col(p(z)) = Acol(z) + col(c), where A =
K∑

k=1

ω3(a(k),b(k)) . (68)

SinceA, col(c) do not depend onz, the equivalence classes have to be replaced with the full space
H. A zero of typek , 0 ≤ k ≤ 4 , is then a zero in ak−dimensional subspace ofH. Because
of the loosening of the conditionk1 = 1, the equationp(z) = 0 may have no solution, like e.g.
p(z) := az − za + 1 . The linear case, also for systems is treated in more detail in Janovská and
Opfer, 2008, [15].
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5.1 Numerical computation of zeros

The representation of a given quaternionic, two-sided polynomialp in the form

P (z) := A(z)z + B(z)

which was already used for the classification of the zeros can also be applied successfully to
finding the zeros, by applying Newton’s method toP (z) = 0. It shows the typical feature, that it
may be slow in the beginning, but it will terminate then very quickly with quadratic rate.

One can show that both one– and two–sided quaternionic polynomials can have no multiple
zeros (apart of some trivial examples). This is the reason why Newton’s method works well.

In short, the application of Newton’s method results in solving the following linear equation
for s, repeatedly:

P (z) + P ′(z)s = 0; z := z + s, (69)

where in the beginning one needs an initial guessz. In order to compute the(4× 4) Jacobi matrix
P ′ we use numerical differentiation. Letek, k = 1, 2, 3, 4 be one of the four standard unit vectors
in R4, z := (z1, z2, z3, z4). Then,

∂P

∂zk
(z) ≈ P (z + hek)− P (z)

h
, k = 1, 2, 3, 4, h ≈ 10−7, (70)

P ′(z) :=
(

∂P

∂z1
(z),

∂P

∂z2
(z),

∂P

∂z3
(z),

∂P

∂z4
(z)

)
. (71)

The choiceh ≈ 10−7 is the standard choice for computers with machine precision of≈ 10−15.
This choice implies a good balance between the round off and truncation errors.

If we apply the numerical techniques presented to the previous examples we obtain:
Example 4: There are two further non equivalent zeros both of type 4. The essential number of
zeros is 3.
Example 5: There are two further non equivalent zeros both of type 4. The essential number of
zeros is 4.
Example 6: There is one more zero of type 4, and there are two more equivalent zeros of type 2.
The essential number of zeros is 3.
An application to Example 7, reveals in (a) two additional, non equivalent zeros, in (b) one addi-
tional non equivalent zero, in (c) one additional non equivalent zero. Thus, the essential number
of zeros is in (a): three zeros, in (b) two zeros, in (c) two zeros.
Therefore, in several examples, the essential number of zeros exceeds the degree.

6 Sylvester’s equation in quaternions

Let us investigate Sylvester’s equation in quaternions. In this casen = 1 and the equation has the
form

az + zb = e , z, a, b, e ∈ H . (72)

Our aim is to find zeros of the linear two–sided quaternionic polynomial, we will call it
Sylvester’s polynomial,

p(z) := az + bz − e , z, a, b, e ∈ H . (73)

In this case,p(z) is linear, i.e.n = 1, two–sided quaternionic polynomial with two linear terms,
i.e. we follow the theory of the two–sided quaternionic polynomials (67), (68). BecauseK :=
k1 := 2, i.e. there are two terms of the highest degreen = 1, the existence of the solution is not
guaranteed. We havep(z) = a(1)zb(1) + a(2)zb(2) + c where

a(1) := a, b(1) := (1, 0, 0, 0), a(2) := (1, 0, 0, 0), b(2) := b, c := −e .
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Then

P (z) := col(p(z)) = Acol(z) + col(c), where

A = ω3(a(1), b(1)) + ω3(a(2), b(2)) = ω1(a) + ω2(b) .

Example 8. Let Sylvester’s equationaz + zb = e be given, where

a := (1,−1, 1, 1) , b := (1, 1, 1, 1) , e := (−4, 4, 8, 0) .

Then

A = ω1(a) + ω2(b) =


2 0 −2 −2
0 2 0 0
2 0 2 2
2 0 −2 2

 .

The matrixA doesn’t depend onz, rank (A(z0)) = 4 and there is one isolated zero (typek = 0)
of p . This can be found as a solution of the system of linear equations

P (z) := col(p(z)) = Acol(z)− col(e) =


0
0
0
0

 .

The solution isz = (1, 2, 2, 1) .

The linear quaternionic polynomial as well as Sylvester’s equation are treated in detail in [22].
Let us repeat here only the following theorem.

Theorem 9. Leta := (a1, a2, a3, a4), d := (d1, d2, d3, d4). The Sylvester equationax + xd = e
has a unique solution for all choices ofe ∈ H if and only if

∑4
j=2(a

2
j − d2

j ) 6= 0 or a1 + d1 6= 0.
If the unique solution exist it is given by

x = f−1
l (e + a−1ed), fl := 2<d + a + |d|2a−1 if a 6= 0, or (74)

x = (e + aed−1)f−1
r , fr := 2<a + d + |a|2d−1 if d 6= 0. (75)

Corollary Let a, d be arbitrary quaternions. Then, Sylvester’s polynomialp(x) = ax + xd is
singular (has no solution or many solutions) if and only if

|a| = |d| and<a + <d = 0, (76)

or in other words if and only ifa and−d are equivalent.

Example 9. Let us try to find zero of the Sylvester’s polynomialp(x) = ax − xa − e where
a = (a1, a2, a3, a4) ∈ H, e := (−1, 0, 0, 0) . Following the previous corollary we know that
there is no unique solution of the corresponding Sylvester’s equation. If we use the theory of the
two–sided quaternionic polynomials, we found out that

A = ω1(a) + ω2(−a) =


0 0 0 0
0 0 −2a4 2a3

0 2a4 0 −2a2

0 −2a3 2a2 0

 .

Then therank(A) = 2 and the equation

P (z) := col(p(z)) = Acol(z) + col(e)

has no solution , because for the resulting system of linear equationsP (z) = 0 the Frobelius
theorem is not valid.
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7 Conclusions

We investigated polynomials with quaternionic coefficients both of the simple and two–sided type.

The quaternionic polynomials of the simple type may have two different types of zeros: iso-
lated zeros and spherical zeros. We gave a characterization of the zeros and, based on this char-
acterization, we presented the algorithm for producing all zeros including their types. For more
details see [15].

The two–sided quaternionic polynomials may have all together five different types of zeros.
These types are defined by the rank of a certain real4 × 4 matrix. This information can also be
used to find all zeros in the same similarity class (13) if only one zero in that class is known. The
essential tool is the description of the polynomialp by a matrix equationP (z) := A(z)z + B(z),
whereA(z) is a real4 × 4 matrix determined by the coefficients of the given polynomialp and
P, z, B are real column vectors with four rows. This representation allows also to include two-
sided quaternionic polynomials which contain several terms of the same degree and to prove, that
the essential number of zeros of a quaternionic, two-sided polynomialp of degreen is, in general,
not bounded byn. Our conjecture is that the bound is2n. More details can be found in [16].

It turned out that Newton’s method applied to the equationP (z) = 0 is a very effective tool in
finding the zeros. For Newton’s method, see also [23].

Finally, we apply the theory to the linear two–sided quaternionic Sylvester’s polynomial.
Sylvester’s equation was also treated by a little different technique in [19, 25]. There are other
algebraic equations in quaternions that can be treated by the technique presented here, e.g. alge-
braic Riccati equation, or algebraic Bernoulli equation.

We would like to mention, that we used two essential ideas of other authors, namely
– The idea by Anatoliy Pogoruı̆ and Michael Shapiro, [33], was to write the powerszj in the form
α z + β with realα, β, which reduces the two-sided polynomials to a sum of terms of the form
azb. This idea also gave birth to the introduction of equivalence classes of zeros inH.
– Another idea, by Ludmilla Aramanovitch, [1], was the introduction of the matrixω2 (for-
mula (17)) which permitted to pull out the variablez from azb. Both ingredients allowed the
development of the important formula (48).

Because there is an isomorphism between the skew field of quaternionsH and certain matri-
ces inC2×2, let us denote it for a while byHC, and also betweenH and certain matrices inR4×4,
denoted byHR. both simple and two–sided quaternionic polynomials can be understood as matrix
polynomials with all coefficients either fromHC or from HR, [16] . However, there is one differ-
ence. If we solve a particular matrix equation, we obtain zeros in the considered matrix space.
Experiments showed, that these matrix polynomials have the wanted quaternionic zeros but may
in addition have other zeros which lack an interpretation as a quaternion.
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Future scientific research

1. Numerical Linear Algebra
As I have already mentioned in Conclusions, there is an isomorphism between quaternions
and special2× 2 complex matrices and also an isomorphism between quaternions and spe-
cial 4 × 4 real matrices, i.e. the quaternionic polynomials can be understood as certain
matrix polynomials. Naturally, our nearest aim is classification and computation of zeros of
matrix polynomials. It is truly a difficult task. So far we are able fully classify only zeros
of quadratic matrix polynomials with general matrices2 × 2. I have presented some inter-
mediate results for the matrix polynomials on the 25th Biennial Conference on Numerical
Analysis in Glasgow 2011. Together with G. Opfer, we have submitted the paper ”On a
Toeplitz form of the characteristic polynomials with an application to matrix polynomials”
to Numerische Mathematik.

2. Nonlinear Dynamical Systems
We study the long–term qualitative behavior of nonlinear dynamical systems including nu-
merical solutions and simulations. In particular, we apply the Filippov systems theory to
selected problems from biology and chemical engineering. For example we explored a new
formulation of Bazykin’s ecological model, a predator-prey model with human intervention,
an ideal closed gas–liquid system including DAE formulation of the system with a chemical
reaction, etc. We illustrate the theory by simulations of the behavior of the specific systems.

Concept of teaching
Except for the basic courses for bachelors, I run advance lectures that are designed for master and
doctoral students who want to deepen their mathematical education: the objective is to model,
simulate and solve particular problems in chemical engineering. This includes Dynamical Sys-
tems, Ordinary and Partial Differential equations, Finite Element Method, Numerical Analysis,
etc. These activities are directly related to my research.
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