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Summary

The diffusion processes are described by the parabolic partial differential equations thor-
oughly studied mathematically and widely applied in thermodynamics, electricity, chem-
istry, porous media, biology or economics. The heat-conduction/diffusion equation has
been exploring the principle of the closest-neighbor interaction leading to the use of the
Laplace operator in the simplest setting, and as the conservation law, to the use of gradi-
ent expressions for the flux of the investigated quantity. Recently, yet another role of the
solution became important - the motion of the solution level sets. In the nonlinear laws,
they can represent the phase interfaces, evolving patterns or object boundaries.

In this text, the framework of nonlinear diffusion is presented. For this purpose, the
results obtained in the domain of reaction-diffusion equations appearing in chemistry and
combustion in particular are discussed. In this case, the rich spatio-temporal dynam-
ics is the consequence of competitive interaction of the reactive and diffusive processes.
The results obtained in modelling of microstructure growth in solidification, thin-layer
dynamics and material-defect dynamics belong to the domain of material science. Here,
the moving material boundaries are described by nonlinear evolution laws. The nonlinear
diffusion is currently used in the computer image processing as well, as shown in the result
describing the heart left-ventricle segmentation in the images obtained by the magnetic
resonance. In several presented examples, the common evolution law for an interface can
be found. It links the interface normal velocity, the mean curvature and the external force
together. The generalization of diffusion processes by means of the fractional dispersion
and advection is sketched in the last example.

The rich variety of features and applications therefore make the nonlinear diffusion
laws the interesting subject of current and future research.
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Souhrn

Difuzńı procesy jsou popsány parabolickými parciálńımi diferenciálńımi rovnicemi, které
jsou d̊ukladně prostudovány matematicky a široce použity v oblasti termodynamiky,
elektřiny, chemie, porézńıho prostřed́ı, biologie nebo ekonomie. Rovnice vedeńı tepla či
difuzńı rovnice využ́ıvá interakce prostorově soused́ıćıch hodnot řešeńı, která je v nej-
jednodušš́ı podobě popsána Laplaceovým operátorem. Jako zákon zachováńı rovnice
použ́ıvá vyjádřeńı toku zkoumané veličiny pomoćı jej́ıho gradientu. Mezi moderńı role
této rovnice patř́ı využit́ı pohybu vrstevnic jej́ıho řešeńı, které v nelineárńıch př́ıpadech
mohou představovat fázová rozhrańı, měńıćı se obrazce nebo hranice objekt̊u.

Tato práce se zabývá problematikou nelineárńı difuze. Představuje výsledky źıskané
v oblasti reakčně-difuzńıch rovnic popisuj́ıćıch chemické reakce a procesy spalováńı. V tom-
to př́ıpadě je bohatá prostoročasová dynamika d̊usledkem interakce reakčńıch a difuzńıch
proces̊u. Do oblasti materiálových věd mı́̌ŕı daľśı zmı́něné výsledky - modelováńı r̊ustu
mikrostruktur při tuhnut́ı, dynamiky tenkých vrstev a materiálových poruch. Pohyblivá
materiálová rozhrańı jsou popsána nelinárńımi zákony. Stejně tak je nelineárńı difuze
použ́ıvána v oblasti poč́ıtačového zpracováńı obrazu, kam patř́ı ukázka segmentace levé
srdečńı komory ve sńımćıch źıskaných magnetickou rezonanćı. V několika z uvedených
oblast́ı se přitom použ́ıvá stejný zákon pohybu pro pohyblivá rozhrańı, který dává do vzta-
hu normálovou rychlost rozhrańı, jeho středńı křivost a vněǰśı silové p̊usobeńı.

Nelineárńı difuze tedy d́ıky svým rozmanitým vlastnostem a použit́ı z̊ustává zaj́ımavým
předmětem současného a budoućıho výzkumu.
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Název: Nelineárńı difuze a jej́ı aplikace
Autor: Michal Beneš
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1 Introduction

The diffusion partial differential equation occupies a unique position in modern applied
mathematics and physics. Since its primary derivation in the work of J.B.J. Fourier dating
back to 1807 and 1822, it is used to describe the heat transfer by conduction in physical
systems, but it also arises in many other fields such as electricity, chemical diffusion, fluids
in porous media, biology and economics.

When using of the linear form of the heat conduction or diffusion equation it became
clear that despite of its key role in the theory of equations of mathematical physics it rep-
resents an approximative model. The thermodynamical context, dependence of the phys-
ical parameters on the solution, or complexity of some applications such as multi-phase
porous media flow or image processing make the diffusion-type balance law intrinsically
non-linear.

We therefore devote this text to a brief summary of knowledge which was gathered
during studies of various non-linear diffusion phenomena arising in the dynamics of chem-
ical reactions, in solid-liquid phase transitions, thin-film evolution and defect dynamics in
materials, and in the processing of images by the evolution partial differential equations.
In this way we try to provide the reader with a comparison of the discussed diffusion
processes, with a notion of mathematical and numerical tools used for their analysis, and
also with the impression of further development in their investigation.

The genesis of the diffusion equation and domains it influenced during more than
two hundred years of its knowledge are more than remarkable and are linked to the de-
velopments of many scientists since Fahrenheit, Laplace, Fourier, Ohm, Thomson, Fick
Poiseuille, Darcy, Einstein, Richards, Fermi to the contemporary mathematicians and
physicists. The problems we mention confirm this line and indicate new aspects which ap-
peared recently. The origin of the equation is related to the concept of the closest-neighbor
dependence (of temperature, in particular) leading to the derivation of the Laplace op-
erator. Later, and also in other contexts such as in porous media, this approach was
connected to the concentration or pressure drop providing the flux of the investigated
quantity. Finally, the randomly behaving systems (particles, but also errors, species or
stock prices) were found to follow the rules provided by the original heat conduction law.
Departure from the concept of the Brownian motion and the Gaussian distribution can
open new perspectives such as study of anomalies in variety of transport problems.

2 Concept of nonlinear diffusion

The limited scope of the text covers the nonlinear diffusion processes described by the
following abstract evolution law

dU

dt
+A(U) = F(U), (1)

U |t=0 = Uini.

in the Hilbert space H with the scalar product (·, ·) and the norm ∥ · ∥. The solution U is
a map from (0, T ) to a suitable subset of H. The basic setting assumes that the operator
A is linear self-adjoint unbounded in H with D(A) dense in H, positive closed and with

A−1 compact. We set V = D(A
1
2 ) with the norm ∥ ·∥V . Several nonlinear generalizations

related to A are considered. The nonlinear mapping F is from H to H. The evolution
law requires the initial state to be described (Uini).
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Law (1) originates in the conservation law of the quantity U as shown in the following
example.
Example. For the sake of simplicity, consider a reaction occurring in a one-dimensional
tank (0, L) of the length L. If x is the spatial variable, and u denotes the concentration
of the only species influenced, the conservation of u reads as:

∂u(t, x)

∂t
+

∂j(t, x)

∂x
= f(u(t, x)),

where f describes the reaction source term, j is the concentration flux. If the linear Fick
law is accepted for the concentration flux (D > 0)

j(t, x) = −D
∂u(t, x)

∂x
,

we obtain the simple example of law (1) in the form of a scalar reaction-diffusion equation.

The operator A(U) = −D ∂2u(t,x)
∂x2 can be linked to the boundary conditions, e.g. of the

Dirichlet type (u(t, 0) = u(t, L) = 0), and F(U) = f(u). In this case H = L2(Ω) and

V = H
(1)
0 (Ω).

In the subsequent text, we observe that the quantity U can become vector-valued and,
due to complexity of physical processes considered, the diffusion operator A and the term
F become nonlinear.

2.1 Mathematics of nonlinear diffusion

The key issues of mathematical analysis are related to the existence, uniqueness and
parameter dependence of the diffusion problems. The desired results are usually obtained
by means of the compactness and monotonicity methods (see [27, 60]) using the apriori
estimates, maximum principle and invariant regions (see [57]). The nonlinearity in the
diffusion operators is frequently given by the anisotropy of the diffusion controlled by
the solution gradient. This allows to explore the monotonicity method. Nonlinear terms
depending on the solution gradient require additional techniques (see [15]). In some
cases, the framework of the viscosity solution can be applied ([22]). Naturally, each of
the particular problems exhibits its own special features with special difficulties of the
mathematical treatment.

In the following, we describe main line of mathematical analysis for the given frame-
work.
Apriori estimates. For problem (1), the weak formulation can be formally obtained as
follows

d

dt
(U, V ) + (A(U), V ) = (F(U), V ), in D′(0, T ) for each V ∈ V, (2)

U |t=0 = Uini.

The solution estimates can be obtained by formally testing (2) (through the expansion of
the solution by means of a linear basis of V) by the solution U :

1

2

d

dt
∥U∥2 + (A(U), U) = (F(U), U),

or by testing by the time derivative dU
dt

obtaining:

∥dU
dt

∥2 + (A(U),
dU

dt
) = (F(U),

dU

dt
),
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Depending on the problem nature, the classical or the weak maximum principle can be
adopted, or its vectorial analogue - the invariant regions method can be used. For the
definition of the invariant region O for the values of the solution U and its use, see [57, 55]
and references therein.
Approximate solutions. Exploring the finite-dimensional subspace Vh of V we find
the solution of the finite-dimensional problem

d

dt
(Uh, V ) + (A(Uh), V ) = (F(Uh), V ), for each V ∈ Vh,

Uh|t=0 = PhUini.

where Ph is the projector on Vh.
This problem usually possesses a unique solution on a time interval (0, Th) guaranteed

by the theory of ordinary differential equations. The mentioned apriori estimates unify
the extent of the time variable to (0, T ).
Convergence. The mentioned approximate solutions Uh are bounded in suitable spaces
due to the apriori estimates when h → 0+. The convergence in terms A(Uh), V ) and
(F(Uh), V ) is achieved due to particular properties of the mapping A - e.g. monotonicity
and further detailed features, and of the mapping F - the simplest of them is the Lipschitz
continuity.
Uniqueness. Typically, two solutions U1 and U1 of (2) are assumed and the weak equal-
ities are subtracted to get

d

dt
(U1 − U2, V ) + (A(U1)−A(U2), V ) = (F(U1)− F(U2), V ), for each V ∈ V,

U1|t=0 − U2|t=0 = 0.

The properties of A and of F (e.g. Lipschitz continuity) help to obtain (via the Gronwall
argument) uniqueness. In special cases, the error estimates for the approximate solution
Uh, and the parameter dependence of the solution can be obtained in a similar way.
Remark. Corresponding detailed results are claimed in sections devoted to the particular
examples of the nonlinear diffusion.

2.2 Numerical methods for nonlinear diffusion

Each of approaches to the numerical solution of the problem (1) performs the discretization
in time and space simultaneously or subsequently.

TheRothe method of time discretization produces a sequence of stationary problems
at given time levels. Denoting τ > 0 the time step and U (k) = U(kτ), k = 0, . . . , NT we
derive:

• the explicit Euler scheme (k = 0, . . . , NT − 1):

U (k+1) − U (k)

τ
+A(U (k)) = F(U (k)), U (0) = Uini,

• the implicit Euler scheme (k = 0, . . . , NT − 1):

U (k+1) − U (k)

τ
+A(U (k+1)) = F(U (k+1)), U (0) = Uini,

or the semi-implicit version with F(U (k)).

8



The method of lines generates the spatial discretization (Ah, Fh, Uh are spatial dis-
cretizations of A, F, U) prior to the time discretization.

dUh

dt
+Ah(Uh) = Fh(Uh) pro t ∈ (0, T ),

Uh|t=0 = PhUini.

The resulting system of ODEs can be solved by corresponding time solver such as one of
the Runge-Kutta methods.
The spatial discretizations usually explore the following methods:

• the Finite-Difference Method assumes availability of the discrete, possibly uni-
form set of nodes ω̄h ⊂ Ω̄ at which the differential expressions in (1) are replaced
by the difference expressions. In described applications, the approximate solution
is a map with values in some finite-dimensional Banach space of the grid functions
Hh (maps of ω̄h to R)

Uh : ⟨0, T ⟩ → Hh or Uh : {0, . . . , NT} → Hh

according to the discretization in time. The original problem is replaced by a system
of nonlinear equations for Uh as the unknown. The gradient differential operator ∇
is approximated by ∇̄h - the backward difference operator, the divergence operator
by ∇h - the forward difference operator, and the Laplace operator ∆ by the second-
order central-difference operator ∆h in arbitrary spatial dimension.

• the Finite-Volume Method has the same philosophy as the previous method.
However, the piece-wise integration over the finite volumes as parts of Ω precedes
the approximation of differential expressions in order to keep the balance principle
at the discrete level as well.

• the Galerkin method - sometimes in combination with other methods - explores
the existence of the orthonormal basis {vj}∞j=0 of the space V. Using only m of
them for defining the approximative solution: Um =

∑m
i=1 γ

m
i vi in such a way that

dUm

dt
+A(Um) = F(Um) in PmV,

Um |t=0 = PmUini,

where Pm is projector into [v1, . . . , vm]λ.

• the nonlinear Galerkin method. Similar to the Galerkin method, it uses the
orthonormal basis {vj}∞j=0 of the space V. It looks for the solution approximation

Um and its correction Zm in the form: Um =
∑m

i=1 γ
m
i vi, Z

m =
∑M

i=m+1 δ
m
i vi, M >

m in such a way that

dUm

dt
+A(Um) = F(Um + Zm) in PmV,

F(Um)−A(Zm) + F′(Um)Zm = 0 in PMV − PmV,

Um |t=0 = Pmu0,

where PM projects onto [v1, . . . , vM ]λ and where we assumed that A is linear, for
simplicity. As the advantage, the approximation converges in some sense on (0,+∞).
The correction Zm of Um tends to 0 when m → +∞.
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We sketch the methods of numerical analysis for the mentioned approaches and assume
for simplicity, that A is linear.
Numerical analysis of the implicit scheme. The scheme has the following form

U
(k+1)
t̄ +A(U (k+1)) = F(U (k+1)), k = 0, . . . , NT − 1, (3)

U (0) = Uini,

where U
(k)
t̄ = 1

τ
(U (k) − U (k−1)). The properties of A imply the scalar product on V as

(U, V )A
def
= (AU, V ),

which can be used in the energy inequalities. We formally multiply (3) by the difference

U
(k)
t̄ , and get

∥U (k+1)
t̄ ∥2 + (U (k+1), U

(k+1)
t̄ )A = (F(U (k+1)), U

(k+1)
t̄ ).

For simplicity, we explore the boundedness of F by a constant F > 0, and the Lipschitz
continuity, we obtain

l∑
k=1

τ∥U (k)
t̄ ∥2 + ∥U (l)∥2A − ∥U (0)∥2A +

l∑
k=1

∥U (k) − U (k−1)∥2A ≤ F 2lτ,

from which the apriori estimates for ∥U (l)∥2A and
∑l

k=1 τ∥U
(k)
t̄ ∥2 follow.

Defining the Rothe functions (k = 0, . . . , NT ):

SτU
(τ)(t) = U (k), pro t ∈ ((k − 1)τ, kτ⟩,

QτU
(τ)(t) = U (k−1) + (t− (k − 1)τ)

U (k) − U (k−1)

τ
, (4)

pro t ∈ ⟨(k − 1)τ, kτ⟩,

we can confirm by the limit procedure using the compactness method that the common
limit of the Rothe functions becomes the solution of (1).
Numerical analysis of the method of lines represented by the semi-discrete system

dUh

dt
+AhUh = Fh(Uh) pro t ∈ (0, T ),

Uh|t=0 = PhUini

is again performed by multiplying dUh

dt
and integrating over ω̄h. The resulting equality is

written by means of discretized products in H a V denoted by h.

∥dUh

dt
∥2h +

1

2

d

dt
∥Uh∥2Ah

= (Fh(Uh),
dUh

dt
)h,

from which ∫ t

0

∥dUh

dt
∥2hdt+ ∥Uh∥2Ah

(t) ≤ ∥Uh∥2Ah
(0) + F 2t.

We define the operators of extrapolation from ω̄h on Ω in the analogy to (4): Sh, a Qh

and use the compact imbedding to obtain the limit in the semi-discrete system.
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3 Diffusion in Physical Models

As mentioned above, we provide several examples of nonlinear diffusion arising in reac-
tion kinetics, combustion, solid-liquid phase changes, thin film evolution and dislocation
dynamics in crystalline materials, and in computer image processing. The original role
of the diffusion equation and of its solution as the conservation law for the corresponding
physical quantity using the expression for the quantity flux is enriched by the role of the
solution level-sets describing interfaces. This new role found application in the description
of moving domains in general.

We refer to our own results as well as to key results obtained for each of particular
examples keeping in mind basic knowledge described in many resources of which we can
refer e.g. to [60] for general framework of parabolic problems as dynamical systems,
[57] for the framework of reaction-diffusion problems, [63] for the framework of the free-
boundary problems, [56] for the level-set methods and [48] for an example of historical
review on heat conduction.

3.1 Reaction-diffusion systems in chemistry and biology

The origin of the reaction-diffusion systems is described in the example mentioned in
Section 2. The reaction-diffusion system has a typical form as follows:

∂c1

∂t
= D1∆c1 + f 1(c1, . . . , cn),

. . . (5)

∂cn

∂t
= Dn∆cn + f 2(c1, . . . , cn),

where f 1, . . . , fn are the reaction describing polynomial expressions, the unknown func-
tions c1, . . . , cn depend on time and space. Denoting

U = [c1, . . . , cn], A(U) = [D1∆c1, . . . , Dn∆cn],

F(U) = [f 1(c1, . . . , cn), . . . , fn(c1, . . . , cn)],

system (5) belongs to the problem class described by (1).

The mathematical analysis of systems (5) can be accomplished using the notion of
the invariant region (denoted by O) as suggested in [57] and used in [55, 62, 38]. The
existence theorem typically has the following form:

Theorem 1. Consider system (5) within (1), and let the initial state Uini belongs
to V = Def(

√
A) and has the values in O for almost all x, then the unique weak

solution of this problem exists on (0, T ) for arbitrary T > 0 in L2(0, T ;V).

Proof follows from [57].

The nonlinear Galerkin scheme applied to system (5) converges due to the following
statement

11



Theorem 2. Consider system (5) within (1), and let the initial state Uini belonging to
V = Def(

√
A) has the values in O for almost all x. Then the sequence {Um}∞m=1 of

solutions obtained by the nonlinear Galerkin method strongly converges to the unique
solution U ∈ L2(0, T ;V) of the original problem in L2(0, T ;H) for arbitrary T > 0,
provided m → +∞ and M > m. Furthermore there is a subsequence {Um′}∞m′=1 of
{Um}∞m=1 converging weak-* to U in L2(0,+∞;H).

Proof follows from [55].
Here we list several examples we had the opportunity to study. The research was

focused on numerical solution accurately approximating rich dynamics of the time evolu-
tion.

3.1.1 Gray-Scott model

The first example is the model introduced by P. Gray and S. K. Scott (see [32]). It
describes the autocatalytic chemical reaction

U + 2V → 3V, V → P, (6)

where U , V are reactants and P is final product of the reaction. The chemical substance
U is being continuously added into the reactor and the product P is being continuously
removed from the reactor during the reaction. The model has been extensively studied,
e.g., in [25, 38]. This model is well known to exhibit rich dynamics, as shown in [49].

The chemical reaction (6) may be rewritten into a dimensionless form as in [38].
Assume that Ω represents the reactor, where the chemical reaction takes place, ∂Ω is
boundary of Ω and ν is the unit outward normal on Ω. Then the initial-boundary value
problem for the Gray-Scott model is the following system:

∂u

∂t
= Du∆u− uv2 + F (1− u), (7)

∂v

∂t
= Dv∆v + uv2 − (F + k)v, (8)

in Ω×(0, T ) with initial conditions

u(·, 0) = uini, v(·, 0) = vini,

and zero Neumann boundary conditions

∂u

∂ν
|∂Ω= 0,

∂v

∂ν
|∂Ω= 0.

The functions u, v are unknowns representing concentrations of chemical substances U ,
V . The parameter F denotes the rate at which the chemical substance U is being added
during the chemical reaction, F + k is the rate of V → P transformation and Du, Dv are
the diffusion constants. We denote right-hand sides in the system (7)-(8) by F1(u, v) =
F (1− u)− uv2, F2(u, v) = −(F + k)v + uv2.

The system (7-8) does not possess the invariant region for realistic parameter values.
However, the comparison techniques allow to obtain the L∞ bounds for the solution as
provided by the following statement.
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Figure 1: Chaotic behavior of the solution components u (left) and v (right) is schemati-
cally shown in color scale. The model parameters are a = 2 · 10−5, b = 1 · 10−5, F = 0.02,
k = 0.05, Ω = (0, 0.5)× (0, 0.5).

Theorem 3. Consider the system (7-8). Let T > 0 be arbitrary fixed, and the initial
condition uini, vini ∈ L∞(Ω) satisfies

0 ≤ uini(x) ≤ 1, 0 ≤ vini(x) ≤ M ∀x ∈ Ω,

where 0 < M < F + k. Then the solution u, v of the problem (7-8) satisfies the
inequalities

0 ≤ u(t, x) ≤ 1, 0 ≤ v(t, x) ≤ M ∀(t, x) ∈ (0, T )× Ω.

Furthermore, under these assumptions, the nonlinear Galerkin method converges for
system (7-8).

Proof follows from [25] and [40].
Example of the complex spatio-temporal dynamics obtained in [39] is shown in Figure 1.

3.1.2 Scott-Wang-Showalter model in combustion

The combustion is a chemical and physical phenomenon that is difficult to accurately
describe by a mathematical model. However, we can discuss an example of combustion
of pre-mixed hydrocarbon gases described by a reaction-diffusion model.

In this case, the target patterns were experimentally observed. These patterns were
created by the combustion of simple hydrocarbon gases and other elements; e.g., butane
or octane mixed with oxygen and helium. A formation and a temporal evolution of the
above mentioned patterns can be modelled by the Salnikov scheme [54]:

P −→ A

A −→ B + heat ,

13



where the rate of the first reaction is k1p and the rate of the second reaction is k2a, k1, k2
are the rate constants and p, a denote the concentrations of P,A species. The k2 factor
depends on temperature T and this dependence is of the Arrhenius type. According to
[54], we can describe the concentration of the intermediate species A and the temperature
T by a system of partial differential equations

∂a

∂τ
= k1p0 − k2(T )a+DA∆a,

∂T

∂τ
=

Q

Cpσ
k2(T )a−

T − Ta

tN
+DT∆T,

where p0 is the concentration of the initial species P , T is the temperature, DA is the
mass diffusivity of the species A, DT is the thermal diffusivity, Cpσ is the volumetric
heat capacity (assumed to remain constant), tN is the heat transfer timescale, Ta is the
ambient temperature.

These equations can be transformed into the dimensionless form as follows

∂α

∂t
= µ− αf(Θ) + ∆α,

∂Θ

∂t
=

1

κ
(αf(Θ)−Θ) + Le∆Θ,

(9)

which is known as the Scott-Wang-Showalter model. Here, Le constant denotes the Lewis
number (Le = DT

DA
). The function f is defined as

f(Θ) = exp

(
Θ

1 + εΘ

)
.

Furthermore,

Θ =
E(T − Ta)

RT 2
a

, α =
a

cref
, t =

τ

tchem
, x =

x̃

lref
, y =

ỹ

lref
, (10)

where

tchem =
1

k2,a
, cref =

Cpρ

Q

RT 2
a

E

tchem
tN

, lref = (DAtchem)
1
2 .

Finally, we rewrite the Arrhenius equation k2(T ) = A exp
(
− E

RT

)
as k2(T ) = k2,af(Θ),

where k2,a is a value of function k2(T ) in ambient temperature of Ta.
If system (9) is studied in Ω ⊂ R2 over the period (0, T ) then we add the initial

condition:
α|t=0 = αini, Θ|t=0 = Θini.

and the boundary conditions of the Dirichlet type as follows:

α|∂Ω =
µ

e(
µ

1+εµ
)
, Θ|∂Ω = µ.

or of the Neumann type as follows:

∂α

∂n

∣∣∣∣
∂Ω

= 0,
∂Θ

∂n

∣∣∣∣
∂Ω

= 0,
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Figure 2: Temperature field (left) and concentration field (right) in color scale at time
t = 0.9 shows a spiral-wave pattern observed in the experiment as well. The spatial scale
indicates the grid size 300× 300 on the domain Ω = (0, 30)× (0, 30).

where n⃗ is outer normal vector to the boundary of the domain Ω.

Theorem 4. Consider system (9). Then for the parameter values µ = 2.5, ϵ = 0.18,
κ = 0.0005, it possesses the invariant region

0.01 ≤ α ≤ 2.5, 0.01 ≤ Θ ≤ 616.

Proof follows from [61].

Consequently, the framework of Section 3.1 is applicable to system (9). Figure 2 shows
a spiral-wave pattern developed for µ = 2.6, Le = 1.5, ϵ = 0.18, κ = 0.0005 on the domain
Ω = (0, 30)× (0, 30) as presented in [35].

3.2 Moving interfaces in material science

Complex diffusion phenomena accompany physical processes taking place in crystalline
materials - phase transitions, thin surface layer evolution or dynamics of material defects.
These phenomena are discussed below.

3.2.1 Microstructure in solidification

The solidification of a pure material belongs to the class of first-order phase transitions
where the energy of self-organization is released during the process. The Stefan problem
for melting or freezing is obtained by evaluating the heat balance of the system. Formation
of microstructure in the system is the result of changes in an other kind of energy, linked
to the structural organization (free energy or entropy). Heat and free energy interact
during the transient solidification process and can lead to the development of unstable
complex shapes in the solid subdomain (e.g., cells, dendrites). A detailed analysis of the
phase transition with more kinds of energy has been performed in [33, 34, 5].

Let Ω ⊂ R2 be a bounded domain where the phase transition occurs, Ωl(t), Ωs(t)
liquid and solid subdomain, respectively separated by the moving interface Γ (see Figure
3), ⟨0, T ⟩ a time interval, u : ⟨0, T ⟩ × Ω̄ → R the temperature field.
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Figure 3: Domain Ω divided into the growing solid and vanishing liquid.

The process of phase change at small scale is according to [33] and [5] described by
the Stefan problem with surface tension in the following form:

ρc
∂u

∂t
= ∇(λ∇u) in Ωs and Ωl , (11)

u |∂Ω= u∂Ω , (12)

u |t=0= u0 , (13)

λ
∂u

∂n
|s −λ

∂u

∂n
|l= LvΓ , (14)

u− u∗ = − σ

∆s
κ− α

σ

∆s
vΓ , (15)

Ωs(t) |t=0= Ωso . (16)

where ρ, c, λ, L are the density, volumetric heat capacity, heat conductivity and latent
heat, respectively. The interface Γ has the mean curvature denoted by κ, the normal
velocity vΓ (in the direction of the outer normal nΓ to Ωs), the surface tension σ and the
difference in entropy densities ∆s.

The discontinuity of heat flux on Γ(t) is described by the Stefan condition (14), the
formula (15) is the Gibbs-Thompson relation on Γ(t) and α is the coefficient of attachment
kinetics. The Dirichlet boundary condition (12) is chosen for simplicity. The conditions
(13) and (16) are the initial conditions for temperature, and spatial distribution of the
solid and liquid phase.

Among various approaches to the mathematical treatment of the problem (e.g. see
[63]), the diffuse-interface model yields a well controlled smooth approximation of the
characteristic function of phase as a part of the solution (see [5]). The model equations
consist of the heat equation with nearly singular heat source coupled to a semilinear or
quasilinear parabolic equation for the order parameter known as the Allen-Cahn equation
or equation of phase. The equations in various setting were studied in, e.g. [16, 6] and
in references therein. The anisotropy has been incorporated in [4, 7]. A recent study [26]
lists current achievements in this domain.

The anisotropic form of the phase-field model of microstructure formation reads as

∂u

∂t
= ∇2u+ Lχ′(p)

∂p

∂t
, (17)

ξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1

ξ
f0(p) + F (u)ξΦ0(∇p),
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Figure 4: The Frank diagram of anisotropy.

with the initial conditions

u|t=0 = u0 , p|t=0 = p0 ,

and with the boundary conditions of Dirichlet type

u|∂Ω = 0 , p|∂Ω = 0,

for simplicity. Here, ξ > 0 is the ”small” parameter (thickness of the interface), and
f0 the derivative of double-well potential. The coupling function F (u) is bounded and
continuous, or even Lipschitz-continuous. The anisotropy is included using the monotone
operator T 0 converting the gradient (see below). We consider f0(p) = ap(1 − p)(p − 1

2
)

with a > 0. The enthalpy is given by H(u) = u − Lχ(p), where the coupling function
χ is monotone with bounded, Lipschitz-continuous derivative: χ(0) = 0, χ(0.5) = 0.5,
χ(1) = 1, supp(χ′) ⊂ ⟨0, 1⟩. For the sake of simplicity, Ω is rectangle. Obviously, the
extension to higher dimensions, and to other boundary conditions is possible. The forcing
term F (u)ξΦ0(∇p) has the origin described in [3].

The anisotropy is incorporated into the phase-field model according to the approach
developed by the author in [4] and [7], which also is influenced by the literature cited
therein. Main idea is in replacing isotropic Euclidean norm in R2 by another norm ex-
hibiting the desired anisotropy, and in replacing derivatives in a corresponding way.

For this purpose, we introduce a nonnegative function Φ0 : R2 → R+
0 which is smooth,

strictly convex, C2(Rn \ {Θ}) and satisfies:

Φ0(tη) = |t|Φ0(η), t ∈ R, η ∈ R2, (18)

λ|η| ≤ Φ0(η) ≤ Λ|η|, (19)

where λ,Λ > 0. The function satisfies the following relation

Φ0(η) = Φ0
η(η) · η, η ∈ R2,

where the index η denotes derivative of Φ0 (i.e., Φ0
η = (∂η1Φ

0, ∂η2Φ
0)). We define the map

T 0 : R2 → R2 as

T 0(η) := Φ0(η)Φ0
η(η) for η ̸= 0,

T 0(0) := 0.

The Φ0-normal vector and velocity of a level set

Γ(t) = {x ∈ R2 | P (t, x) = const.},
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given by a suitable field P depending on time and space are

nΓ,Φ = −T 0(∇P )

Φ0(∇P )
, vΓ,Φ =

∂tP

Φ0(∇P )
.

The anisotropic curvature is given by the formula

κΓ,Φ = div(nΓ,Φ).

In [7, 9], the law
vΓ,Φ = −κΓ,Φ + F,

has been studied by the phase-field method, in particular by the Allen-Cahn equation as
in (17).
Example. In case of R2, we may use the polar coordinates of a vector η ∈ R2 denoted
by ϱ and θ to define

Φ0(η) = ϱf(θ),

for a suitable 2π-periodic function f (we choose f(θ) = 1 + A cos(m(θ − θ0)) where A is
the anisotropy strength and m ∈ N0 the anisotropy type). Φ0 therefore belongs to C1(R2)
and C2(R2\{0}) provided Ψ belongs to C2(⟨0, 2π⟩per). Figure 4 depicts the Frank diagram
for an example of f - see [34] for definitions.

The analysis of problem (17) is related to numerical studies obtained by the model
both for the case of curve dynamics in the plane (see [7]), and for the case of microstructure
growth in solidification (see [4, 9]).

The system (17) has been analysed in [5, 4] from where the following statement follows:

Theorem 5. Assume that problem (17) is solved in a bounded domain Ω ⊂ R2 with
C2 boundary and homogeneous Dirichlet boundary conditions, T 0 monotone, and F
bounded continuous, χ the function with properties χ(0) = 0, χ(1) = 1, χ(0.5) = 0.5,
χ′ bounded and Lipschitz continuous with support ⟨0, 1⟩. Let ξ > 0 be fixed and
uini, pini ∈ H1

0(Ω). Then there exists the weak solution satisfying, in terms of D′(0, T ),
the equalities

d

dt
(u− Lχ(p), v) + (∇u,∇v) = 0 ,

αξ2
d

dt
(p, q) + ξ2(T 0(∇p),∇q) = (f0(p), q) + ξ2(F (u)Φ0(∇p), q) ,

u|t=0 = uini, p|t=0 = pini.

for each v, q ∈ H1
0(Ω), and satisfying

u, p ∈ L∞(0, T ; H1
0(Ω)),

∂u

∂t
,
∂p

∂t
∈ L2(0, T ; L2(Ω)) .

If F is Lipschitz continuous, χ′ ≡ 1 and T 0 is strictly monotone, the weak solution
is unique.

Proof explores the properties of (17) and is based on the compactness and monotonicity
method.

The matched asymptotics as used e.g. in [5] gives the recovery of the Stefan condition
and the Gibbs-Thomson law at the phase interface.
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In this procedure, the solution and other quantities of (17) are formally expanded into
the series in powers of ξ far from Γ:

u(t, x; ξ) = u0(t, x) + u1(t, x)ξ + u2(t, x)ξ
2 +O(ξ3),

p(t, x; ξ) = p0(t, x) + p1(t, x)ξ + p2(t, x)ξ
2 +O(ξ3),

and near Γ with the change to radial-tangential coordinates r, s and stretching r = ξz

ū(z, s, t; ξ) = ū0(z, s, t) + ū1(z, s, t)ξ + ū2(z, s, t)ξ
2 +O(ξ3),

p̄(z, s, t; ξ) = p̄0(z, s, t) + p̄1(z, s, t)ξ + p̄2(z, s, t)ξ
2 +O(ξ3).

Defining Γ0 ≡ p̄0 =
1
2
and exploring identities at corresponding powers of ξ, the following

statement is obtained:

Theorem 6. On the manifold Γ0, the Stefan condition for the absolute terms in the
outer expansion of temperature holds:

|∇r|2
(
∂u0

∂r

∣∣∣∣
s

− ∂u0

∂r

∣∣∣∣
l

)
= LvΓ,Φ,0,

and the Gibbs-Thomson law for the absolute term in the inner expansion of the phase
function holds:∫

R

(
−κΓ,Φ,0

∂p̄0
∂z

− F (ū0)

∣∣∣∣∂p̄0∂z

∣∣∣∣− ∂p̄0
∂z

vΓ,Φ,0

)
∂p̄0
∂z

dz = 0.

We solve equations (17) numerically by means of the tools used in [5, 9]. Using the
notation introduced in Section 2.2, we propose a semi-discrete scheme for the problem
(17) based on spatial discretization by finite differences as follows

u̇h = ∆hu
h + Lχ′(ph)ṗh, (20)

uh |γh= 0, uh(0) = Phu0,

ξ2ṗh = ξ2∇h · T 0(∇̄hp
h) + f0(p

h) + ξ2Φ0(∇̄hp
h)F (uh) on ωh, (21)

ph |γh= 0, ph(0) = Php0,

where the solution is the map uh, ph : ⟨0, T ⟩ → Hh, Ph restricts the initial condition u0

and u0 on the grid ω̄h. As in [5], [7] and related work, the semi-discrete scheme is solved
by the Merson variant of the 4-th order Runge-Kutta method. We mention, that the
scheme (20-21) is convergent.

Theorem 7. If uini, pini ∈ H2(Ω) ∩ H1
0(Ω), then the solution of the semi-discrete

scheme (20-21) for the method of lines converges in L2(0, T ; L2(Ω)) to the weak solu-
tion of (17).

Figure 5 shows an example of numerically solved pattern formation in solidification as
described in [26].

3.2.2 Surface diffusion

Within the context of solid state physics and material science, the evolution law of surface
diffusion can be investigated. The mentioned law is described, e.g. in the results of Mullins
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Figure 5: Three-dimensional dendritic growth with four-folded anisotropy and parameters
u∗ = 1.0, L = 2.0, β = 300, a = 2.0, α = 3, L1 = L2 = L3 = 4.0, initial radius = 0.05,
N1 = N2 = 400, ξ = 0.011. Left - the temperature profile.

[46], [47] as a mechanism of surface formation under the action of chemical potential.
Further interesting application is in the microcrack formation as given in [1]. The law
reads as

V = ∆Γ(H + F ) on Γ, (22)

for two-dimensional surfaces Γ embedded in the Euclidean three-dimensional space R3,
which can be represented by graphs. Here, Γ(t) is the evolving surface in R3, nΓ the
normal vector to Γ, V the normal velocity of Γ, ∆Γ the Laplace-Beltrami operator with
respect to Γ, H the mean curvature of Γ (the sum of principal curvatures), F the forcing
term.

The problem has been studied, e.g. in [8] and in references therein. The purpose of the
research is to provide a suitable tool for the study of surface phenomena accompanying
special surface treatment or behavior of surfaces under the influence of external forces. The
general field of application of the developed model can be in the body-shape dynamics as a
result of surface processes, surface destruction as a result of external stress and vibration,
computer data processing.

We also mention a certain diversity in the physical and mathematical terminology,
as indicated by [36]. Mathematical understanding of this phenomenon is related to the
shape changes due to the redistribution of the matter below the surface, whereas physical
investigation considers the surface atomic redistribution processes.
Graph formulation. Our scope is given by the fact that we intend to study the evolution
of surfaces as graphs of real functions of two variables. More precisely, we assume that
there is a function Φ : R1+2 → R such that

Γ(t) = {[x, y] ∈ R3 | y = Φ(t, x), x ∈ Ω ⊂ R2}.

For simplicity, we assume that Ω = (0, L1) × (0, L2) ⊂ R2 is an open rectangle, we also
denote by ∂Ω its boundary, by n∂Ω its outer normal and by ∂n the normal derivative with
respect to n∂Ω. Consequently, law (22) can be reformulated into the evolution equations

∂Φ

∂t
= ∇ · (Q(∇Φ)(∇(H + F )− (∇(H + F ) ·N)N)) , (23)

H = −∇ ·
(

∇Φ

Q(∇Φ)

)
. (24)
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which are viewed as the fourth-order PDE with respect to Φ. For simplicity, it is endowed
with the Dirichlet boundary conditions:

Φ|∂Ω = 0, H|∂Ω = 0, (25)

or alternatively, with the Neumann boundary conditions:

∂Φ

∂n

∣∣∣∣
∂Ω

= 0,
∂H

∂n

∣∣∣∣
∂Ω

= 0, (26)

and by the initial condition

Φ|t=0 = Φini. (27)

The boundary conditions (25)/(26) can be generalized. In [8] the following basic solution
properties are shown:

Theorem 8. Let Φ, H be a solution to the initial-boundary value problem (23-24)
with F = 0. Then the following properties hold:

d

dt

∫
Ω

Φdx = 0,

provided the boundary conditions (26) are imposed, and

d

dt

∫
Ω

Q(∇Φ)dx+

∫
Ω

(
|∇H|2 − |∇H ·N|2

)
Q(∇Φ)dx = 0,

provided the boundary conditions either (25), or (26) are imposed.

For the purpose of numerical solution of the law (23-24), we derive a numerical
scheme based on the method of lines together with the finite-difference discretization of
spatial derivatives. We use the notation introduced in Section 2.2. We also use a pro-
jection operator Ph : C(Ω) → RN1+1,N2+1 defined as Phg = g|ω̄h

. The discretization of
the Neumann boundary conditions is performed by means of the finite-difference approx-
imation of normal derivatives. Then, we propose a semi-discrete scheme containing a
time-dependent system of ODEs for the unknown functions Φh, Hh : (0, T )× ω̄h → R

dΦh

dt
= ∇h ·

(
Q(∇̄hΦ

h)(∇̄h(H
h + F )− (∇̄h(H

h + F ) ·Nh)Nh
)
, (28)

Hh = −∇h ·
(

∇̄hΦ

Q(∇̄hΦh)

)
, Nh = − ∇̄hΦ

h

Q(∇̄hΦh)
. (29)

According to (25)/(26), we consider two pairs of boundary conditions, alternatively:

Φh
∣∣
γh

= 0, Hh
∣∣
γh

= 0, (30)

or

Φh
n̄

∣∣
γh

= 0, Hh
n̄

∣∣
γh

= 0. (31)

The initial condition is written as follows

Φh
∣∣
t=0

= PhΦini.
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The scheme (28-29) is a system of first-order differential equations in the initial-value
problem. We resolve it by means of the Runge-Kutta method with the step adaptivity
(Merson variant) as described in [7]. The scheme (28-29) exhibits similar features to
Theorem 8 as shown in [8]. Figure 6 shows an example of singular behaviour when a
perturbation leads to the pinch-off in longterm.

Figure 6: Example of solution of (23) - the shape which develops in time (F = −100
Φ
).

3.2.3 Dislocation dynamics

Discrete dislocation dynamics is devoted to the study of interactions between one or more
dislocation curves and several other defects such as dipolar loops. The mentioned objects
are located in a bounded 3D domain.

At low-temperature, glide dislocations can be represented as smooth planar curves.
As described in earlier results such as [24, 45, 44] and in references therein, motion of the
dislocation curve Γ can be described by the evolution law

BvΓ = −TκΓ + F, (32)

relating its normal velocity vΓ to the curvature κΓ and sum F of forces acting on Γ in the
normal direction. Here, B denotes the drag coefficient and T stands for the line tension.
Due to the term with the surface tension, law (32) belongs to the category of diffusive
processes. Among other properties, it has the same form as the Gibbs-Thomson law in
the model of phase transitions described in Section 3.2.1.

The parametric description of (32) is suitable for dislocation dynamics as such material
defects are represented by open curves (see [44, 12]). Self-intersections as well as other
topological changes can be incorporated into this approach in an algorithmic way.

For this purpose, we introduce notation for quantities related to this representation. A
planar curve Γ(t) evolving during the time interval ⟨0, T ⟩ can be described parametrically

by a smooth vector mapping X⃗ : ⟨0, T ⟩×⟨0, 1⟩ → R2 depending on time and on parameter
u from a fixed bounded interval ⟨0, 1⟩. Then, the curve is expressed as

Γ(t) = {X⃗(t, u) = [X1(t, u), X2(t, u)] | u ∈ ⟨0, 1⟩}.

The unit tangential vector to the curve T⃗ is defined as T⃗ = ∂uX⃗/|∂uX⃗|. The unit normal

vector to the curve N⃗ is perpendicular to the tangential vector in selected direction and
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is denoted as N⃗ = ∂uX⃗
⊥/|∂uX⃗|. The Frenet formulae (see e.g. [64, 12]) and expres-

sions for other relevant quantities lead to the reformulation of (32) into the equation for

parametrization X⃗ = X⃗(t, u) in the form

∂tX⃗ = T
∂2
uuX⃗

|∂uX⃗|2
+ F

∂uX⃗
⊥

|∂uX⃗|
, (33)

where law (32) can be recovered by multiplying the vectorial equation (33) by the vector

N⃗ .

This equation is accompanied either by the periodic boundary conditions

X⃗(t, 0) = X⃗(t, 1),

for closed dislocation curves (e.g. appearing in the Frank-Read source), or with fixed ends

X⃗(t, 0) = X⃗fixed,0, X⃗(t, 1) = X⃗fixed,1,

for open dislocation curves. The initial condition for the curve position is prescribed as

X⃗(0, u) = X⃗ini(u).

The dislocation curves interact dynamically with other material defects such as dipolar
loops through the elastic force field. The xz-plane represents the dislocation glide plane.
The dipolar loops are considered in their stable configurations - having long rectangular
fixed shapes (see [44] and references therein).

Therefore their motion can be fully described by motion of their barycenters, at the
given level of approximation. They are assumed to have longer edges parallel with the z-
axis whereas their shorter edges are parallel with either [1, 1, 0] or [1,−1, 0] vectors. This
means that a dipolar loop can move along the x-axis only, keeping the y- and z-coordinates
constant. The Burgers vector is set as b⃗ = [b, 0, 0].

As indicated above, each dipolar loop is assumed to have a rectangular shape and to
have one of the two stable configurations in the atomic lattice depending of the defect
type - vacancy (i.e. V1, V2) and interstitial (i.e. I1, I2) configurations - see [44]. We also
assume that dipolar loops have the same size which is described by the average half-width
h, the average half-length l, and the average perimeter P = 2

(
2h

√
2 + 2l

)
as can be

seen in [44]. The position of a dipolar loop Λj, j = 1, . . . , N is given by the coordinates[
x(j), y(j), z(j)

]
of its barycenter. According to the previous assumptions, y(j) = const. ̸= 0

and z(j) = const., whereas x(j) = x(j)(t) is given by the motion law

dx(j)

dt
=

1

BP
F

(j)
x,total

(
Γ, x(1), . . . , x(N)

)
, (34)

where the term F
(j)
x,total is given by the force interaction with other dipolar loops and

with the dislocation curve Γ(t) described by the parametrization X⃗. This interaction is
projected to the only possible direction of the loop motion - to the direction of the x-axis.

The interaction dynamics of dislocation curves Γ1, . . . ,ΓK parametrized by X⃗(1), . . . , X⃗(K)

and dipolar loops Λ1, . . . ,ΛN is therefore described by the following set of equations en-
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dowed with the boundary and initial conditions

∂tX⃗(l) = T
∂2
uuX⃗

(l)

|∂uX⃗(l)|2
+ F (t, X⃗(1), . . . , ⃗X(M),Λ1, . . . ,ΛN)

∂uX⃗(l)
⊥

|∂uX⃗(l)|
, (35)

X⃗(l)(t, 0) = X⃗(l)
fixed,0, X⃗(l)(t, 1) = X⃗(l)

fixed,1, l = 1, . . . , K, (36)

X⃗(l)(0, u) = X⃗(l)
ini(u), l = 1, . . . , K (37)

dx(j)

dt
=

1

BP
F

(j)
x,total

(
X⃗(1), . . . , ⃗X(K), x(1), . . . , x(N)

)
, (38)

x(j)(0) = x
(j)
ini , j = 1, . . . , N. (39)

Figure 7: 10 dipolar loops of V1 and V2 type clustering together. The graph on the left
shows the spatial positions of interacting dislocation and dipolar loops, the graph on the
right shows the projection of positions onto the glide plane.

The equations are solved by means of a numerical scheme based on discretization of
the model equations in space by the flowing finite-volume method (see [44] and Figure
8) and subsequently, on discretization of the model equations in time by the higher-order
Runge-Kutta scheme.

For M = 1, the dislocation curve Γ is approximated by a piece-wise linear curve with
vertices - nodes X⃗i(t), i = 0, ...,Mv in the glide plane. The end-points X⃗0 and X⃗Mv are
prescribed by the boundary conditions (36)

X⃗0 = X⃗fixed,0, X⃗Mv = X⃗fixed,L,

and do not depend on time. The following system of ordinary differential equations
(ODE’s) is obtained (compare with [12])

B
dX⃗i

dt
= T

2

di + di+1

(
X⃗i+1 − X⃗i

di+1

− X⃗i − X⃗i−1

di

)
+

2

di + di+1

Fi

X⃗⊥
i+1 − X⃗⊥

i−1

2
, (40)

i = 1, . . . ,Mv − 1 .

with the initial conditions

X⃗i(0) = X⃗ini(si), i = 1, . . . ,Mv − 1.

Figure 7 shows an example of the dipolar-loop clustering by interaction with a moving
dislocation as described in [43].
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Figure 8: Piecewise linear approximation of the dislocation curve, flowing finite volumes
and construction of dual volumes.

3.3 Diffusion in computer image processing

This work is motivated by the need of medical practice for evaluation of the dynamical
images of the heart obtained by the magnetic resonance imaging (cardiac MRI). One of the
important purposes of cardiac MRI examination is an estimation of parameters reflecting
current clinical state of patients. A typical example could be an accurate measurement
of heart ventricle volume during the heart contraction showing the contractive ability
of myocardium. Within this framework, it is necessary to find the inner contour of the
ventricle in the MR images. We attempt to adapt and modify a segmentation model
based on numerical solution of a partial differential equation of the level set type. The
iterative algorithm is controlled by the segmented image data in such a way that the
edges of the objects can be found. The level set equation is solved by the semi-implicit
complementary-volume numerical scheme [37].

A similar model used in image segmentation is based on the phase-field approach to
the mean curvature flow. It is given by the Allen-Cahn equation (see [11]). In [18] the
Allen-Cahn equation is used for segmentation of the left heart ventricle volume and the
wall of the left heart ventricle. Recently, a priori information carried by the image data
has been included into the segmentation models (see [51]).

In our case, the image is segmented by means of the curve Γ(t) ⊂ Ω in R2 propagating
in the normal direction with speed V . The velocity V at a curve point x ∈ Γ(t) is given
by its (mean) curvature κΓ and external force as in Sections 3.2.1 and 3.2.3

V = −κΓ + F. (41)

For the segmentation purposes, law (41) can be modified by incorporating the influence of
the processed signal (or its gradient) into the curvature and the force terms. The motion
law (41) can be treated by the level set method. In this case, Γ(t) is represented as a level
set

Γ(t) = {x ∈ Ω |u(t, x) = 0} . (42)

where u : ⟨0, T ⟩ × Ω → R.
The evolution equation implicitly describing the motion of Γ(t) given by (42) with

velocity V in the outward normal direction is derived as follows. Using the convention
introduced by the signed distance function, we can express the normal vector, the normal
velocity and the mean curvature as

n⃗ =
∇u

|∇u|
, V = − ∂tu

|∇u|
, κΓ = ∇ · n⃗ = ∇ · ∇u

|∇u|
. (43)

Substituting (43) to equation (41), we obtain the level set equation in the form

∂tu = |∇u|∇ · ∇u

|∇u|
− F |∇u|. (44)
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This equation has been extensively studied and applied (see [28], [50], [56]). This expe-
rience suggests a regularization useful both for theory and numerical computation in the
form:

∂tu = |∇u|ε∇ · ∇u

|∇u|ε
− F |∇u|ε,

where |∇u|ε =
√
ε2 + |∇u|2.

Known features of the level set equation based mainly on the controlled motion of
isolines of the solution naturally led to its use in the image processing (see [17], [42], [53],
[56]).

In particular, the detection of image object edges (boundaries) is a one of tasks in
image segmentation. Edges in the input image I0 : Ω → {0, 1, 2 . . . , Imax} (represented
by the matrix nx1 × nx2 , where Ω = (0, nx1/max{nx1 , nx2})× (0, nx2/max{nx1 , nx2}) can
be recognized by the magnitude of its spatial gradient. The level set equation operating
in Ω can be modified as follows

∂tu = |∇u|ε∇ ·
(
g
(∣∣I0 ∗ ∇Gσ

∣∣) ∇u

|∇u|ε

)
− g

(∣∣I0 ∗ ∇Gσ

∣∣) |∇u|εF , (45)

where g : R+
0 → R+ is a non-increasing function for which g(0) = 1 and g(s) → 0 for

s → +∞. This function was first used by P. Perona and J. Malik ([52] in 1987) to
modify the heat equation into a nonlinear diffusion equation which maintains edges in
an image. Consequently, the function g is called the Perona-Malik function. We put
g(s) = 1/(1 + λs2) with s ≥ 0. Gσ ∈ C∞(R2) is a smoothing kernel, e.g. the Gauss
function with zero mean and variance σ2

Gσ(x) =
1√
2πσ2

e−
|x|2

2σ2 , (46)

which is used to pre-smoothing (denoising) of image gradients by convolution

(I0 ∗ ∇Gσ)(x) =

∫
R2

Ī0(x− y)∇Gσ(y) dy , (47)

where Ī0 is the extension of I0 to R2 by, e.g., mirroring, periodic prolongation or zero
padding. Let us note that equation (45) can be rewritten into the advection-diffusion
form

∂tu = g0|∇u|ε∇ ·
(

∇u

|∇u|ε

)
︸ ︷︷ ︸

(D)

+∇g0 · ∇u︸ ︷︷ ︸
(A)

− g0|∇u|εF︸ ︷︷ ︸
(F )

. (48)

For convenience, we use the abbreviation g0 = g(|I0 ∗ ∇Gσ|). (D) in (48) denotes the
diffusion term, (A) the advection term and (F ) the external force term. The term g0 is
called the edge detector. We can observe that value of the edge detector is approximately
equal to zero close to image edges. Consequently, the evolution of the segmentation
function slows down in the neighborhood of image edges. On the contrary, in parts of the
image with constant intensity the edge detector equals to one. The advection term attracts
the segmentation function to the image edges. We propose an advection parameter A to
change the magnitude of the advection term and obtain the modified level set equation,
namely

∂tu = g0|∇u|ε∇ ·
(

∇u

|∇u|ε

)
+A∇g0 · ∇u− g0|∇u|εF . (49)
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Figure 9: Segmentation result for three spatial slices at the end-diastole with parameters
h = 0.0028, λ = 0.25, Aout = 2, Fout = −10, Fin = 50.

Finally, using the zero Neumann boundary condition we define the following initial-
boundary value problem

∂tu(t, x) = g0|∇u|ε∇ ·
(

∇u

|∇u|ε

)
+A∇g0 · ∇u− g0|∇u|εF in (0, T )× Ω ,

u(0, x) = dΓ0(x) in Ω ,

∂u

∂n
(t, x) = 0 in (0, T )× ∂Ω .

Numerical algorithm solving this problem is the key part of the segmentation algorithm.
A numerical scheme with justified key features such as stability and convergence can

become a basis for a reliable and efficient algorithm. For this purpose, a semi-implicit
co-volume space discretization is used. This approach is similar to [19], [20], [21], [42].
We choose a uniform discrete time step τ and approximate the time derivative in (49) by
backward difference. The linear terms of the equation are considered at the current time
level while the nonlinear terms (i.e. |∇u|ε) are treated at the previous time level. In this
way we obtain the following semi-implicit discretization

uk − uk−1

τ
= g0|∇uk−1|ε∇ ·

(
∇uk

|∇uk−1|ε

)
+A∇g0 · ∇uk − g0|∇uk−1|εF . (50)

To simplify the construction of spatial discretization, we rewrite the previous equation
using the following expression

g0∇ ·
(

∇uk

|∇uk−1|ε

)
= ∇ ·

(
g0

∇uk

|∇uk−1|ε

)
−∇g0 · ∇uk

|∇uk−1|ε
. (51)

Now we substitute (51) to (50). Dividing by |∇uk−1|ε, we get new form of (50)

1

|∇uk−1|ε
uk − uk−1

τ
= ∇ ·

(
g0

∇uk

|∇uk−1|ε

)
+ (A− 1)

1

|∇uk−1|ε
∇g0 · ∇uk − g0F . (52)

The co-volume method (see [37]) is used to construct a fully-discrete system of equation.
Example of the algorithm function is shown in Figure 9.

3.4 Fractional advection-dispersion equation

The limited extent of this work did not leave much space to mention interesting results
obtained for the multi-phase flow in porous media (e.g. see [29, 30, 31]), combustion (see
e.g. [59, 58]) or turbulent transport of aerosols ([13, 36]).
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Figure 10: The Brownian motion schematically compared to the Lévy motion

Despite this fact, we mention a subject of ongoing research devoted to the anomalous
transport in porous media described by the following equation in Rn, n = 1, 2, 3

∂u

∂t
+ v · ∇u = Λ∇α

Mu+Q(t, x), (53)

where u = u(t, x) is the concentration (probability density), v = v(t, x) the known
velocity field, Λ > 0 the spread coefficient (dimensionally different from the usual diffusion
coefficient), M = M(θ) the mixing measure on unit sphere (not necessarily symmetric),
α ∈ (1, 2⟩ the fractional derivative order (the index of stability of Lévy motion - the
measure of super-diffusivity, in other words), Q = Q(t, x) the source term.

The generalized operator of fractional order is defined as

∇α
Mf (x, t) =

1

Γ (−α)

∫
|θ|=1

∫ ∞

0

r−α−1f (x− rθ, t) dr ·M (θ) dθ.

The equation delivered in [41] generalizes the advection-diffusion equation and allows to
study the anomalous effects out of usual diffusion processes in porous media or distribution
of atoms along surfaces.

In fact, the Brownian motion can be generalized to the Lévy motion (allowing for
infinite invariance, the probability density is shifted toward the tails - see [14, 23] and
Figure 10).

The preliminary computational studies showed promising behaviour of the solution
when coupled to the Darcy flow in porous media as shown in [2, 10]. On the other hand,
equation (53) is justified by the relation to stochastic processes only, and its meaning is
still to be studied.

4 Outlook of the research and education in the given

field

The presented topic of nonlinear diffusion is related to mathematical as well as applied
research in the domains of chemical reactions, combustion, material science, flow in porous
media, computer image processing and many others. Within the framework of the research
carried at the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical
University in Prague, the investigation can be focused on the following issues:

• phase transitions in multi-component materials at micro-scale (quantitatively accu-
rate models of alloys solidification)
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• surface diffusion in thin films and epitaxial growth (models incorporating elastic
effects)

• multi-phase multi-component flow in porous media with phase changes (evaporation
and freezing/thawing)

• nonlinear diffusion methods in image processing (processing algorithms for medical
data with apriori known properties)

• advanced methods of high performance computing (parallelization and GPU com-
puting of nonlinear diffusion)

The research is closely connected to the bachelor, master and Ph.D. theses of supervised
students as well as to the contents of the courses, in the study branches Mathematical
Engineering and Mathematical Informatics in particular. The following issues reflect the
progress in the research of the nonlinear diffusion and applications:

• introducing new topics for the bachelor, master and Ph.D. theses

• introducing new courses reflecting the progress in the mathematics of nonlinear
diffusion and continuum mechanics

• maintaining and broadening the international cooperation

• improving the industrial contacts
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[18] R. Chabiniok and J. Tintěra. Cardiac MRI data segmentation using the partial
differential equation of Allen-Cahn type. COE Lecture Note, 6:37–49, 2007.

[19] S. Corsaro, K. Mikula, A. Sarti, and F. Sgallari. Semi-implicit co-volume method
in 3D image segmentation. SIAM Journal on Scientific Computing, 28, No. 6:2248–
2265, 2006.
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[43] V. Minárik. Mathematical Model of Discrete Dislocation Dynamics. PhD thesis,
Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University, 2009.

[44] V. Minárik, M. Beneš, and J. Kratochv́ıl. Simulation of dynamical interaction be-
tween dislocations and dipolar loops. J. Appl. Phys., 107:061802, 2010.
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Numerical Mathematics and Advanced Applications, ENUMATH 2003 (peer reviewed
proceedings), pages 631–641. Springer Verlag, 2004, ISBN 3-540-21460-7.

[46] W.W. Mullins. Theory of thermal grooving. J. Appl. Phys., 28(3):333–339, 1957.

[47] W.W. Mullins. The effect of thermal grooving on grain boundary motion. Acta
Metall., 6:414–427, 1958.

[48] T.N. Narasimhan. Fourier’s heat conduction equation: History, influence, and con-
nections. Reviews of Geophysics, 37(1):151–172, 1999.

[49] Y. Nishiura and D. Ueyama. Self-replication, self-destruction, and spatio-temporal
chaos in the Gray-Scott model. Forma, 15:281–289, 2000.

[50] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer
Verlag, New York, 2003.

[51] N. Paragios. Variational methods and partial differential equations in cardiac image
analysis. In IEEE, editor, Invited Publication : IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 17–20, Arlington, VA, USA, 2004.

[52] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, No. 7:629–639,
1990.

[53] G. Sapiro. Geometric Partial Differential Equations and Image Processing. Cam-
bridge University Press, Cambridge, 2001.

[54] S.K. Scott, J. Wang, and K. Showalter. Modelling studies of spiral waves and tar-
get patterns in premixed flames. http://www.rsc.org/ej/FT/1997/a608474e.pdf,
1997.

32
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