
České vysoké učení technické v Praze
Fakulta elektrotechnická

Czech Technical University in Prague
Faculty of Electrical Engineering

Doc. Dr. Ing. Zdeněk Hanzálek

Rozvrhování pro časem řízené komunikační
protokoly

Scheduling for Time-triggered Communication
Protocols

1

Summary

This text summarizes our approach to a message scheduling in time-triggered protocols
and its formulation as Resource Constrained Project Scheduling with Temporal Constra-
ints. In addition, we extend the model by so called take-give resources, that are needed
from the beginning of an activity to the completion of another activity. We formulate this
problem by an integer linear programming.
Furthermore, we show, how to create a static schedule of the Profinet IO IRT com-

munication protocol, which is an industrial Ethernet protocol standardized in IEC 61158.
This approach offers an alternative to the available commercial tool, providing compa-
rable results with respect to the resulting schedule makespan. Furthermore, we make
use of temporal constraints providing a greater flexibility with respect to the individual
messages. Due to this flexibility, it is possible to place the selected messages in various
parts of the communication cycle (in order to increase the computational time available
for the main-controller application, or to retransmit the synchronization message without
holdup in the switch, or to add new messages into the original schedule). The solution
is based on a formulation of the Profinet IO IRT scheduling problem in terms of the
Resource Constrained Project Scheduling with Temporal Constraints.

2

Souhrn

Tato práce ilustruje náš přístup k rozvrhování zpráv v časem řízených komunikačních pro-
tokolech a formulaci tohoto problému pomocí Resource Constrained Project Scheduling
s temporálními omezeními. Tento model dále rozšiřujeme o speciální typ zdroje nazvaný
”take-give”, který je využíván od začátku jedné aktivity po dokončení jiné aktivity. Pro-
blém je formulován pomocí celočíselného lineárního programování.
Dále ukazujeme, jak vytvořit statický rozvrh pro Profinet IO IRT komunikační proto-

kol, což je průmyslový Ethernetový protokol standardizovaný v IEC 61158. Prezentovaný
přístup umožňuje flexibilně formulovat časová omezení pro jednotlivé komunikační zprávy.
Díky této flexibilitě můžeme umístit vybrané zprávy na začátek respektive na konec ko-
munikačního cyklu (to umožní prodloužit čas potřebný pro hlavní řídicí smyčku nebo
přeposlat synchronizační zprávu bez zdržení v zařízení switch nebo přidat nové zprávy
do původního rozvrhu). Řešení je založeno na formulaci Profinet IO IRT rozvrhovacího
problému pomocí Resource Constrained Project Scheduling s temporálními omezeními

3

Klíčová slova: rozvrhování, časem řízené komunikační protokoly, Profinet IO IRT,
Resource Constrained Project Scheduling, celočíselné lineární programování.

Keywords: scheduling, time-triggered communication protocols, Profinet IO IRT, Re-
source Constrained Project Scheduling, integer linear programming.

4

Contents

1 Introduction 6

2 Resource Constrained Project Scheduling with Temporal Constraints 8

3 Integer Linear Programming Formulation 9

4 Profinet IO Industrial Protocol 11
4.1 Scheduling Problem Input Parameters . 13
4.2 Problem Statement . 15

5 Formalization of Profinet IO IRT scheduling as a RCPS/TC problem 16
5.1 PS |temp|Cmax problem . 16
5.2 Algorithm Description . 18

5.2.1 Unicast Messages . 18
5.2.2 Multicast Messages . 18

6 Application Point of View 19
6.1 Controller Application . 20
6.2 Synchronization Messages using the Cut-Through Mechanism 20
6.3 Rescheduling - Adding New Messages and Nodes into the Original Schedule 21

6.3.1 Adding New Messages . 21
6.3.2 Adding New Nodes and Messages 21

7 Conclusions 22

8 Doc. Dr. Ing. Zdeněk Hanzálek 26

5

1 Introduction

Contrary to the original intended use of the Ethernet, there has been a demand to use
this technology even on the field level (real-time communication with sensors and actua-
tors) of industrial automation. The intention is to use a single network technology, going
through the whole factory up to the office level. The Ethernet has been increasingly ado-
pted in industry, since it is wide-spread and well supported by chip manufacturers.
Profinet IO IRT is an Ethernet-based hard real-time communication protocol, which

uses static schedules for time-critical data. Each node contains a special hardware switch,
intentionally breaking the standard forwarding rules to ensure that no queuing delays
occur for time-critical data. The objective of this paper is to find Profinet IO IRT schedules
minimizing the makespan and respecting temporal constraints. Furthermore, the aim of
this paper is to formulate the problem in terms of the Resource Constrained Project
Scheduling with Temporal Constraints (RCPS/TC [1], [2], as described in Section 2), so
that a possible user is not bound to a particular implementation but he/she can choose
from a variety of algorithms solving this problem.
Here, we present some references that deal with time-triggered communication on the

field level, and with the Ethernet and various industrial protocols built upon it. We also
present some basic notions and related work referring to RCPS/TC.
However, the Ethernet was not designed to satisfy the requirements of real-time com-

munication [3], [4], [5]. Therefore, many contributions from the research community su-
ggested solutions to overcome the non-deterministic behavior of the Ethernet medium
access and how to provide real-time communication guarantees. Some of the suggested
methods propose traffic smoothing [6],[7] or a time-triggered approach [3], [8], [9]. The
traffic smoothing relies on the fact that, up to a certain communication load, no collisions
occur on the medium with a high probability. Thus, the generation of the messages by
the application layer must be controlled in order to keep a low communication load. The
centralized medium access may rely on the presence of a manager node (master) that
determines when the individual controlled nodes (slaves) should transmit their messages,
and ensures that the real-time data are separated in time from the non-real-time data. The
decentralized access usually relies on the assumption that every node knows its schedule,
defining when to start the communication.
The above mentioned approaches, which satisfy the real-time requirements with an

Ethernet, have been realized in industrial standards, such as DDS [10], Ethernet Powerlink
[11],[12], AFDX [13] or Profinet IO [14], [15],[16]. The latter one, Profinet IO (specifically,
its RT Class 3, i.e. Isochronous Real Time – IRT) is dealt with in the rest of the paper.
Profinet IO IRT uses static schedules for time-critical data to fulfill the requirement on

the timeliness of the data delivery. The individual-node schedules are downloaded into the
nodes, each of which contains a switch. Thus, a special hardware (switch), unlike in the
traditional Ethernet, is required to be able to accept the respective schedule. There is a
commercial tool, part of the Siemens1 Simatic Manager professional engineering software
[17], that is able to generate the schedules. However, no papers describing the scheduling
algorithm used in this commercial tool have been published. There is just some related
work, such as [18], where graph algorithms used to solve some scheduling or planning
problems are described, but they are not directly connected to the Profinet IO IRT sche-
duling. Paper [19] describes a scheduling algorithm that is based on an edge coloring of a
graph that represents the network topology, but there are certain limitations, such as link

1Siemens, Simatic, Simotion and Sinamics are registered trademarks of Siemens.

6

delay and bridge delay parameters are not taken into consideration, and only half-duplex
links are assumed.
Resource Constrained Project Scheduling problem with limited renewable resources

and general temporal constraints is a well established model in the research community
(see [20], [2], [21]).
Various types of solutions of Resource Constrained Project Scheduling problems with

positive and negative time-lags have been proposed in literature. Most of exact algorithms
are based on branch and bound technique [1] but this approach is suitable for problems
with less than 100 activities [22]. A heuristic algorithm by Cesta et al [23] is based on
constraint satisfaction problem solving. The algorithm is based on the intuition that the
most critical conflicts to be resolved first are those involving activities with large resource
capacity requirements. Another heuristic algorithm proposed in [24] combines the bene-
fits of the “squeaky wheel” optimization with an effective conflict resolution mechanism,
called “bulldozing”. The possibility of improving on the squeaky wheel optimization by
incorporating aspects of genetic algorithms is suggested in [25]. An overview of heuris-
tic approaches is shown in [22] where the authors compare truncated branch and bound
techniques, priority rule methods and schedule improvement procedures. A beam search
heuristic is applied in [22] to scheduling of rolling ingots production. This problem cover
renewable resources, changeover time and batching machines.
In addition, there are special resources (e.g. memory in the switch) that are needed

from the beginning of an activity to the completion of another activity. This is why
we extend the classical Resource Constrained Project Scheduling problem by so called
take-give resources. Up to our knowledge, there is no work dealing with take-give
resources in RCPS. Scheduling with blocking operations [26, 27] can be seen as a
subproblem of scheduling with take-give resources. Operations are blocking if they must
stay on a machine after finishing when the next machine is occupied by another job.
During this stay the machine is blocked for other jobs, i.e. blocking operations models
the absence of storage capacity between machines. On the other hand, there is a more
general framework called reservoirs or storage resources [28] usually used to model
limited storage capacity or inventory limits. In this framework each activity can replenish
or deplete certain amount of a resource but the resource assignment is not considered.
Therefore this framework can not deal with changeover times on given resource type, as
it is required in the lacquer production problem to model mixing vessels cleaning.
This text is organized as follows: Section 2 describes the notation and the scheduling

problem. The ILP problem formulation is shown in Section 3. Section 4 provides a brief
review of the Profinet IO IRT standard and discusses the necessity to use special hardware
(Ethernet switches). Furthermore, it shows how to derive the input timing parameters
in order to obtain a message schedule, which can be executed on the Profinet IO IRT
hardware. Section 4.2 refines the Profinet IO IRT scheduling problem including extension
by temporal constraints (i.e. release dates, deadlines and end-to-end deadlines of the
messages). The main contribution is shown in Section 5, presenting a solution of the
problem. Section 6 illustrates how the problem extension by temporal constraints may be
conveniently used in the application design.

7

2 Resource Constrained Project Scheduling with Tem-
poral Constraints

We assume that the project deals with a set of n + 2 non-preemptive activities V =
{0, 1, 2, ..., n+ 1}. Let pi ∈ R

+
0 be a processing time of activity i and si ∈ R

+
0 be the

start time of activity i. Activities 0 and n + 1 with p0 = pn+1 = 0 denote “dummy”
activities which represent the project beginning and the project termination, respectively.
The activities correspond to nodes of oriented graph G = (V, E) where E is a set of edges
representing general temporal constraints between nodes. Each edge eij ∈ E from node i
to node j is labeled by weight δij ∈ R. The start times of activity i and activity j are
subject to temporal constraint given by inequality

sj − si ≥ δij ∀(i, j) ∈ V2; eij ∈ E . (1)

Let dij is the length of the longest path from node i to node j, and dij = −∞ when there
is no such a path or when i = j. Inequality sj − si ≥ dij holds for each tuple (i, j) ∈ V2

when there is no positive cycle. When there is a positive cycle, then dii > 0 for all nodes
i taking part in such a cycle and consequently there is no feasible schedule.
The activities are executed on a set of m (renewable) resources R = {1, 2, ..., m}.

Resource k ∈ R has capacity of Rk ∈ Z
+ units. Activity i requires rik ∈ Z

+
0 units of

resource k during its execution (i.e. from start time si to completion time Ci = si + pi),
such that 0 ≤ rik ≤ Rk. Multiple resources may be required by one activity (sometimes
called multiprocessor activity). Every activity i with pi = 0 is executed on resource k
with capacity Rk = ∞, such activity is assumed to be an event. Furthermore, we define
assignment zivk ∈ {0, 1}, which is equal to 1 if activity i is assigned to unit v of resource
k, and 0 otherwise. Consequently equation

∑Rk

v=1 zivk = rik holds for each activity i ∈ V
and each resource k ∈ R.
In addition, we assume changeover time oij ∈ R

+
0 (also called sequence dependent

setup-up time) which satisfies triangular inequality. Occurrence of changeover in a given
schedule is indicated by binary variable changei,j,v,k(s, z) which is equal to 1 if and only
if zivk = zjvk = 1 and activity i immediately precedes activity j on unit v of resource k.
Consequently sj ≥ si + pi + oij

2 holds when there exists unit v of resource k such that
changei,j,v,k(s, z) = 1.
For a given schedule (s, z), let the set of activities in progress at time t be denoted as

A(s, z, t) := {i ∈ V; si ≤ t < si + pi}.
The resource constraints are defined as follows

∑

i∈A(s,z,t)

rik ≤ Rk ∀t ∈ [0, UB] and ∀k ∈ R;Rk < ∞, (2)

where UB denotes an upper bound on the schedule length [1].
The NP-hard problem of minimizing a schedule length Cmax = maxi∈V {Ci}, subject

to the temporal and resource constraints, can be denoted by PS |temp, oij |Cmax in the
tree-field notation of project scheduling problems (in order to avoid confusion with the
start time, we use oij instead of sij proposed in [2]).
We extend this problem by a concept of take-give resources as follows. Let us assume

a set of b take-give resources Q = {1, 2, ..., b}. Take-give resource k ∈ Q has capacity of

2The inequality holds for both immediate and non-immediate precedence, due to the satisfaction of
triangular inequality, i.e. oij ≤ oil + olj ∀(i, l, j) ∈ V3.

8

Qk ∈ Z
+ units such that Qk < ∞. Analogously to activity executed on resources, we

introduce occupation executed on take-give resources. Occupation i requires ailk ∈ {0, 1}
units of take-give resource k ∈ Q during its execution. Occupation i starts its execution
at si, start time of activity which takes a take-give resource, and finishes its execution
at Cl = sl + pl, completion time of activity which gives back (i.e. releases) the take-give
resource. Multiple take-give resources may be taken or given back by one activity, but
there is at most one take-give resource taken by activity i and given back by activity l

(i.e.
∑

k∈Q ailk ≤ 1 ∀(i, l) ∈ V2) and there is a path from i to l with dil > 0. We define
take-give assignment z̃ivk ∈ {0, 1}, which is equal to 1 if occupation i is assigned to unit
v of take-give resource k, and 0 otherwise. Consequently equation

∑Qk

v=1 z̃ivk = ailk holds
for each (i, l) ∈ V2 and each resource k ∈ Q.
In the same way, as for resources, we assume changeover time õij ∈ R

+
0 on take-give

resources which also satisfies triangular inequality. Occurrence of changeover in a given
schedule is indicated by binary variable ˜changei,j,v,k(s, z̃) which is equal to 1 if and only if
z̃ivk = z̃jvk = 1 and occupation i immediately precedes occupation j on unit v of take-give
resource k. Consequently sj ≥ sl + pl + oij holds when there exists unit v of resource k
such that ˜changei,j,v,k(s, z̃) = 1.
For a given schedule (s, z), let the set of occupations in progress at time t is denoted

as O(s, t, z̃) := {(i, l) ∈ V2; ∃k ∈ Q, ailk = 1, si ≤ t < sl + pl} ∪ {i ∈ V; ∃j ∈ V, ∃k ∈
Q, ∃v ∈ {1, . . . , Qk} , ˜changei,j,v,k(s, z̃) = 1 and si+ pi ≤ t < sl+ pl+ oij}. The take-give
resource constraints are as follows:

∑

(i,l)∈O(s,t)

ailk ≤ Qk ∀t ∈ [0, UB] and ∀k ∈ Q. (3)

A schedule S = (s, z, z̃) is feasible if it satisfies the temporal, resource and take-give re-
source constraints. A set of feasible schedules for given input data is denoted by S. The pro-
blem to find a feasible schedule with minimal Cmax can be denoted by PS |temp, oij , tg|Cmax.

3 Integer Linear Programming Formulation

In this part, we define problem PS|temp, oij, tg|Cmax by Integer Linear Programming. Let
xij be a binary decision variable such that xij = 1 if and only if i is followed by j and
x̂ij = 0 if and only if j is followed by i. Furthermore, let ŷij be another binary decision
variable such that if ŷij = 1 the resource constraints are eliminated in effect, i.e. activities
i and j can not share an unit.
We defineM as a set of possible resource conflicts. The possible resource conflict is an

unordered couple {i, j}, such that {i, j} ∈ M iff activity i and activity j share resource
k of finite capacity (i.e. ∃k ∈ R; rik · rjk ≥ 1 and Rk < ∞) and the execution of one
activity including changeover time can overlap with the execution of the other activity
(i.e. dij < (pi + oij) and dji < (pj + oji)).
We define B as a set of possible take-give resource conflicts. The possible take-give

resource conflict is an unordered couple {i, j}, such that {i, j} ∈ B iff occupation i and
occupation j share take-give resource k (i.e. ∃l ∈ V, ∃h ∈ V, ∃k ∈ Q; ailk · ajhk = 1) and
the execution of one occupation can overlap with the execution of the other occupation
(i.e. dij < 0 and dji < 0).
Constraint (5) is a direct application of temporal constraint (1). Constraints (6), (7),

(8), (9) and (10) correspond to resource constraints. The binary decision variables xij

and yij define the mutual relation of activities i and j. Their relation is expressed with
constraints (6) and (7). There are three feasible combinations:

9

min sn+1 (4)

subject to:

sj − si ≥ dij, ∀(i, j) ∈ V2; i 6= j, dij > −∞
(5)

si − sj + UB · xij + UB · yij ≥ pj + oji, ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ M
(6)

si − sj + UB · xij − UB · yij ≤ UB − pi − oij , ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ M
(7)

−xij + yij ≤ 0, ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ M
(8)

zivk + zjvk − 1 ≤ 1− yij, ∀(i, j) ∈ V2, ∀k ∈ R, ∀v ∈ {1, . . . , Rk} ;

i 6= j, {i, j} ∈ M, rik · rjk ≥ 1
(9)

Rk∑

v=1

zivk = rik, ∀i ∈ V, ∀k ∈ R; rik ≥ 1, Rk < ∞

(10)

p̃i = sl + pl − si, ∀(i, l) ∈ V2;
∑

k∈Q

ailk = 1

(11)

si − sj + UB · x̃ij + UB · ỹij ≥ p̃j + õji, ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ B
(12)

si − sj + UB · x̃ij − UB · ỹij ≤ UB − p̃i − õij, ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ B
(13)

−x̃ij + ỹij ≤ 0, ∀(i, j) ∈ V2; i 6= j, {i, j} ∈ B
(14)

z̃ivk + z̃jvk − 1 ≤ 1− ỹij, ∀(i, j, l, h) ∈ V4, ∀k ∈ Q, ∀v ∈ {1, . . . , Qk} ;
(15)

i 6= j, {i, j} ∈ B, ailk · ajhk = 1
Qk∑

v=1

z̃ivk = ailk, ∀(i, l) ∈ V2, ∀k ∈ Q; ailk = 1

(16)

domains of input variables are: dij ∈ R, pi, oij, õij, UB ∈ R
+
0 , rik ∈ {0, 1, . . . , Rk} , ailk ∈ {0, 1}

domains of output variables are: si ∈ [0, UB − pi] , zivk, z̃ivk ∈ {0, 1}

domains of internal variables are: p̃i ∈ [0, UB] , xij , x̃ij , yij, ỹij ∈ {0, 1}

Figure 1: ILP model of PS|temp, oij, tg|Cmax problem

10

1. When xij = 0 and yij = 0, constraints (6) and (7) reduce to sj + pj + oji ≤ si, i.e. j
is followed by i.

2. When xij = 1 and yij = 0, constraints (6) and (7) reduce to si + pi + oij ≤ sj , i.e. i
is followed by j.

3. When xij = 1 and yij = 1, the constraints (6) and (7) are eliminated in effect and
the activities i and j must be scheduled on different units.

4. Combination xij = 0 and yij = 1 is not feasible due to constraint (8).

The number of units is limited using variable zivk in constraints (9) and (10). The
constraint (10) satisfies that each activity i is assigned to the appropriate number of units
rik for each resource k ∈ R. From constraint (9) follows that when two activities i and j
can overlap, i.e. yij = 1 then the activities can not be processed on the same unit v on
resource k since zivk + zjvk − 1 ≤ 0.
The inequalities (11), (12), (13), (14), (15) and (16) stand for take-give resource con-

straints. The variables x̃ij , ỹij and z̃ivk have the same meaning as xij , yij and zivk for
resource constraints. The only difference is that p̃i ,processing time of occupation, is a
variable while pi ,processing time of activity, is a constant. Processing time p̃i, expressed
in equation (11) is given by si, start time of activity i which takes take-give resource
k ∈ Q and completion time of activity l which gives back the take-give resource. Finally,
the objective function of the ILP model (4) minimizes the start time of dummy activity
n+ 1, i.e. the last activity of the schedule.

4 Profinet IO Industrial Protocol

Profinet IO is defined in [14] and [15] as part of the international IEC 61158 standard
and one of its aims has been to replace traditional fieldbus systems on the field and cell
levels in the control system hierarchy. As there are many application areas with different
requirements, there are also various classes of service defined in Profinet IO. In fact, there
are 4 of them, called RT Class UDP, and RT Class 1 to RT Class 3, which differ in the
real-time capabilities and the availability of the clock synchronization. For applications
with soft real-time requirements, the basic communication principle relies on a switched
full-duplex topology, where messages are forwarded according to the forwarding rules
defined within IEEE 802 (see [29]).
The process data is exchanged between the IO controller and IO device using one

of the specified real-time classes. There can also be non-real-time – NRT data (having
lower priority than RT Class 1 and RT Class UDP) such as diagnostic or configuration
information that are transmitted using the Profinet IO protocol, or other data using
various protocols based on the TCP/IP suite. In-depth information about Profinet IO
can be found in the IEC 61158 standard [14], [15], or in [30].
A typical topology, with four 4-port and one 2-port communication nodes, is depicted

in Figure 2. There is a switch integrated in each node. Specifically, node N1 is a Personal
Computer (PC) equipped with a CP 1616 communication processor by Siemens [31], nodes
N3 and N5 are PCs equipped with CP 1616 as well, node N2 is an IM151-3 remote I/O
device [32] by Siemens, and node N4 is a Sinamics S120 drive [33] by Siemens as well. As
shown in Figure 2, N1 is a Profinet IO (PN IO) controller, the other nodes in the figure
are PN IO devices.

11

P1 P2 P3 P4

N1

PN IO Controller

P1 P2 P3 P4

N5

PN IO Device

P1 P2 P3 P4

N4

PN IO Device

P1 P2 P3 P4

N3

PN IO Device

P1 P2

N2

PN IO Device

link N3-N1

link N1-N3

link N5-N3

link N3-N5

link N1-N2

link N2-N1
link N1-N4

link N4-N1

Figure 2: Topology with 5 nodes

Each communication link between two communication nodes is shown as two way links
representing the full-duplex type of communication.
Figure 3 shows the Profinet IO communication cycle (also called communication

period or send clock), divided into individual communication intervals.3 For the pur-
pose of this paper, the red interval4 is important as it contains the RT Class 3 data
that are forwarded according to a static communication schedule. The RT Class 3 com-
munication is the highest-priority one, and is required to be strictly isochronous. It means
the individual data frames have to be transmitted at time instants, which are equidistant
with respect to the consecutive communication cycles. This type of communication, also
called time-triggered, relies on the ability of individual nodes to send the respective
messages exactly at the pre-determined time instants. To be able to accomplish this, the
nodes’ clocks must be synchronized with such a precision that allows the jitter of the
communication-cycle length to be as low as possible. Therefore, the Precision Transpa-
rent Clock Protocol (PTCP) is used, as defined in IEC 61158. In a typical scenario,
the synchronization frames are sent in every communication cycle and are subject to the
static schedule.
The schedule is computed during the engineering phase and loaded into the individual

nodes. The lower part of Figure 3 shows an example schedule in the form of a Gantt chart,
where each line corresponds to the link used and each task is labeled by its name, message
ID and transmission delay TTD in µs. Like in [30], the inter-message gaps (represented as
grey boxes) are part of the transmission delay, which (e.g. for message 256) is 5.76+0.96 =
6.72µs. However, in the example in this paper, we take the inter-message gap to be
1.12µs so that the resulting value of the TTD would be 6.92µs. Such a value has been
taken from the data generated by the commercial tool in order to use the same input
values for the computation as the commercial tool does. The schedule intentionally breaks
the standard forwarding rules to ensure that no queuing delays occur in the switches
(remember that a special switch is integrated in each node for RT Class 3 communication
and no communication other than the scheduled one is allowed). If it occurred, it would
be blocked by the respective switches. Please note that not all devices are required to
exchange data, as N5 has no data to send to N3, although there is data transfer in the
opposite direction (see Figure 3), for example.

3According to [14], it is also possible for the data to have various periods in the multiples of the
communication cycle. The quality of having periods of various length is called the reduction ratio.
However, we do not deal with this quality in the paper and take all messages (data) to have their
reduction ratio equal to 1.
4The expression red interval is defined in [14] and means the communication interval dedicated for

the RT Class 3 communication. As such, it is used in this paper.

12

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

10 20 30

10 20 30

10 20 30

10

50

20 30

N1 - N4

10 20 30

10 20 30 t [µs]

Cmax

Class 3
(red interval)

Class 2 Class 1/NRT reserve

communication cycle

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76

T
10

: 128, 11.68

Figure 3: Profinet IO communication cycle

4.1 Scheduling Problem Input Parameters

Each switch introduces a considerable delay, composed of port-dependent and bridge-dependent
parameters. An in-depth description of the delay parameters is provided in [14]. The main
points, which are crucial for the specification of the scheduling problem, are presented here.
A link is a communication connection between two nodes and the link delay consists

of the cable delay, the transmit-port delay and the receive-port delay. Another impor-
tant parameter is the bridge delay because it represents the time, which is needed for
a packet to be processed in the bridge. The packet is processed either locally (i.e., the
local device is the recipient of the packet) or it is resent to another port. In the latter
case the cut-through mechanism or the store-and-forward mechanism is used as it
depends on how the schedule for individual messages behaves, as described later. Thus,
the communication link delay TLD between two ports is given as

TLD = TTxD + TCD + TRxD + Tad + TBD, (17)

where TCD = TPD ·L. Here, TPD is the single-bit propagation delay per one meter and L
is the cable length given in meters. The value of TPD usually ranges from 4 to 6 ns per one
meter of cable, the typical value is 5 ns/m. The meaning of the other delay parameters
is as follows: TTxD is the transmit-port delay, TRxD is the receive-port delay, TBD is the
bridge delay. The additional link delay parameter Tad provides a safety margin for the
clock synchronization precision.
The delay parameters for the topology in Figure 2 have been obtained from a real

installation based on Profinet IO nodes, i.e. from the device data sheets called GSDML
(Generic Station Description Meta Language) files. Namely, in the case of the CP-1616
device, the delay parameters are TTxD = 1192ns, TRxD = 363ns and TBD = 1720ns. In

13

the case of the IM151-3 device, the delay parameters are TTxD = 158ns, TRxD = 350ns
and TBD = 2720ns. In the case of the Sinamics S120 device, the delay parameters are
TTxD = 1212ns, TRxD = 418ns and TBD = 1920ns.

link N1 → N3 N1 → N4 N1 → N2 N2 → N1 N3 → N1 N4 → N1 N3 → N5 N5 → N3
TLD [ns] 4875 5130 5862 3841 4875 4895 4875 4875

Table 1: Link delays relating to Figure 2

Based on these parameters and Equation (17), Table 1 can be computed to produce
the resulting link delays for each of the links in the network. For the sake of simplicity,
all links are considered to be 100m long and the TPD is considered to be 6 ns/m. As
in the case of the inter-message gap, we also take the same value as generated with
the commercial tool. The additional link delay is 1µs as described in [14]. All these
computations are based on the worst-case values. Real measured values could be read
out from the devices’ MIBs (Management Information Base), created using the SNMP
protocol (Simple Network Management Protocol), but it is not a mandatory function and
not all Profinet IO devices are required to support it.

ID path TTD [ns] r̃ [ns] d̃ [ns] ẽ [ns]
256 N2 → N3 5760 5000 20000 11000
257 N3 → N2 5760 15000 40000 15000
258 N1 → N3 5760 15000 – –
259 N3 → N1 5760 20000 35000 –
128 N3 → {N1,N2,N4,N5} 11680 5000 {–,–,–,18000} {–,17675,17675,15000}

Table 2: Messages for the network in Figure 2

In order to be able to generate the message schedule, the messages to be communicated
must be known a priori. For our example, the messages are given in Table 2.
The table contains messages with process data (message IDs from 256 to 259), and

a time-synchronization message (having the message ID 128). Of course, only the RT
Class 3 communication (i.e., messages being in the red interval) is taken into account.
The length of the messages is given by the application. The length of the synchroni-

zation information is 114 bytes, as defined by [14], and let us assume that the length of
the process data is 40 bytes. 5

In addition, 32 bytes are added to form the Ethernet-frame head and tail [34]. The-
refore, the synchronization messages are expected to be 146 bytes long and the process
data messages are expected to be 72 bytes long.
The message transmission delay TTD is the time to transmit all the bits of a

message from the transmit queue to the communication link. TTD = l · bTD, where l is the
message length in number of bits, and bTD is the single-bit transmission delay, which
is 10 ns in our case.
The schedule, resulting from the parameters in Tables 1 and 2, is shown in Figure 3. It

can be seen that N3 acts as a clock master as it is the source node of the synchronization
message denoted as 128. This message is also an example of multicast communication as
it is forwarded by every switch that receives it. Other messages are unicast, for example
message 256 is forwarded just by N1 to reach N3. Columns r̃, d̃ and ẽ represent the
constraints required by the application engineer and are explained later in Section 4.2.

5The latter requirement is useful in cases when less than 40 bytes of data are required to be transmitted,
but the minimum length of the Ethernet frames (72 bytes) must be kept.

14

4.2 Problem Statement

The objective of this paper is to find a time-triggered message schedule for the red interval
(see Figure 3), which is based on a list of messages created in the engineering system,
and on the network topology composed of individual switches and communication links
among them as described in the previous section. To be able to propose the scheduling
algorithm compliant with the IEC standard [14], the following rules are kept:

1. The maximum length of the red interval, given by the application requirements,
defines the upper limit by which time the communication must be completed. At
the beginning of the red interval there is a safety margin of 5µs (see [14]).

2. The messages on the same link are separated with a minimum inter-message gap,
which is at least 960 ns (see [34]) but a commonly used value is 1120 ns. This
inter-message gap is added to TTD for the message-schedule computations.

3. As soon as the first bit of a message is received on a port (i.e., TLD after it was
sent from the previous node) and the message is to be forwarded to another link,
it is forwarded. Such a mechanism is known as a cut-through mechanism and
can be seen on message 256 in Figure 3. There may also be messages, which cannot
be sent out immediately after their first bit is received because the outgoing port
is busy at that time. Such behavior is common in ordinary Ethernet switches and
causes unpredicted delays in the communication with such switches. However, with
IRT switches, an outgoing port of a switch may be busy intentionally because the
offline schedule says so. In such a case, a message may be delayed in the switch but
the delay is always the same and is counted on for the rest of the communication
cycle. We call such a situation (partial) store-and-forward mechanism, as is
demonstrated on message 257 in Figure 3. Having a look at tasks T4 and T5 relating
to message 257 in Figure 3 on links N3 −N1 and N1 −N2, respectively, we can see
that T5 is processed by node N1 (i.e. message 257 is sent from node N1) after a
time, which is longer than TLD because the outgoing port is busy processing task
T11. This situation is contrary to processing message 256 in tasks T2 and T3 where
no delay occurs.

4. If the link delay TLD is greater than the message transmission time TTD, the re-
spective message will be processed by one communication node at a time. However,
if TLD < TTD, two nodes may process a different part of the same message at the
same time.

5. The synchronization message does not have to be sent at the beginning of the inter-
val. It can be planned anywhere within the interval if the synchronization message
arrives at a device at equidistant time.

Furthermore, the scheduling of output messages in the red interval may be intentionally
deferred (e.g. to accommodate future extensions of the computation time of the controller
application). Therefore, the scheduling problem is extended by the message release date
r̃ (specifying the earliest moment when the first bit of the message is sent from the source
node), the message deadline d̃ (specifying the latest moment the last bit of the message
is received by the destination node), and the message end-to-end deadline ẽ (specifying
the maximum time passing from the moment the first bit of the message was sent from the
source node, to the moment the last bit of the message is received by the destination node).

15

Please note that this definition of the end-to-end deadline does not involve the processing
time in the source and destination nodes. In this context, it is worth remembering that
several tasks may constitute a message if the message is sent through several nodes to
reach the destination node.
Parameters r̃ and d̃ form a fixed time-window for a message, whereas ẽ constitutes a

relative time-window to deliver the message at the destination, relative to the time it is
sent by the source node. The time constraint given by ẽ is redundant when ẽ ≥ d̃ − r̃,
otherwise it cannot be replaced by d̃, since the instant when the message is sent by the
source node is not a-priori known.

5 Formalization of Profinet IO IRT scheduling as a
RCPS/TC problem

This section describes an algorithm which finds a schedule of messages on communication
links in a time-triggered network while minimizing the schedule length and respecting
all temporal and resource constraints. Each unicast message may be seen as a chain of
tasks executed on communication links starting at the source node and ending at the
destination node. In a similar way, each multicast message is seen as a tree of tasks. As a
result, each port of a node contains a list of tasks to be processed and for each task there
is a start time, i.e., an instant, when the message is to be sent. This principle is used in
Profinet IO IRT as described in Section 4 and there is a commercial design tool deriving
such start times. Due to the tree topology (line topology, which is typical in industrial
settings, is a special case of a tree) of the Profinet IO IRT communicating nodes, the
routing of messages is determined, thus the routing is not subject to the discussed opti-
mization and each task is assigned to a dedicated link. The objective of this work is to
make a documented optimization algorithm, which is further able to incorporate various
constraints, thus being able to solve more complex problems than the algorithm in the
commercial tool. The key idea is to formulate the Profinet IO IRT scheduling problem in
terms of the Resource Constrained Project Scheduling with Temporal Constraints mini-
mizing the schedule makespan Cmax, where each communication link is a resource, each
transmission of a particular message on a particular link is a task, Cmax is the length
of the schedule and temporal constraints are used to describe r̃, d̃ and ẽ. Therefore, the
scheduling algorithm first generates the instance of PS |temp|Cmax from the input data
(such as the data in Tables 1 and 2), then the problem is solved and finally a result is
interpreted in terms of the start times of the tasks executed on the communication links.

5.1 PS |temp|Cmax problem

The set of n tasks T = {T1, . . . Ti, . . . Tn} with temporal constraints is given by a task-on-vertex
graph G [35]. A message transmission over the communication link corresponding to task
Ti is represented by vertex Ti on graph G and has a non-negative duration corresponding
to pi, the processing time of the task. The scheduling problem is to find a feasible sche-
dule (s1, s2, . . . sn), satisfying the temporal constraints and resource constraints,
while minimizing the makespan Cmax. The value of Cmax corresponds to the minimum
required length of the red interval in the case of Profinet IO.
Temporal constraints between the vertices are represented by a set of directed edges.

Each edge from vertex Ti to vertex Tj is labeled by a weight wij, which constrains the

16

start times of the tasks Ti and Tj by the inequality

sj − si ≥ wij. (18)

There are two kinds of edges: the edges with positive weights and the edges with
negative weights, but Equation (18) holds for both of them. The edge with a positive
weight wij (giving the minimum time lag), indicates that sj , the start time of Tj, must
be at least wij time units after si, the start time of Ti. The positive weights wij are used
to represent:

• precedence relation (wij = pi, i.e., Tj starts when Ti is completed at the earliest)
is used for example, when the output product of Ti serves as the input of Tj

• overlapping precedence relation (wij ≤ pi, i.e., Tj starts pi − wij time units
before the completion of Ti at the earliest) is used, for example, when the Profinet
node uses a cut-through mechanism (e.g. communication of message 256 over the
network in Figure 2 starts the transmission on link N1 → N3 before the reception
on link N2 → N1 is completed)

• release date r̃j of task Tj (wij = r̃j and si = 0).

The edge, from vertex Tj to vertex Ti with a negative weight wji (giving the maximum
time lag), indicates that sj must be no more than |wji| time units after si. Therefore,
each negative weight wji represents d̃j(si), a deadline of Tj depending on si, such that
d̃j(si) = si + |wji|+ pj . Consequently:

• when Tj is the last task of the message and Ti is the first task of the same message,
the edge with a negative weight may be used to represent the required end-to-end
deadline ẽji = |wji|+ pj

• when si = 0 (i.e., Ti is the task scheduled at time 0), the edge with a negative weight
may be used to represent the absolute deadline d̃j = |wji|+ pj .

The non existence of a cycle with positive length is a necessary condition for the
existence of a feasible schedule. Moreover, the solving algorithms have to consider the
resource constraints preserving two tasks to be executed on the same resource (com-
munication links in our case) at once. Two disjoint cases can occur for any unordered
couple of tasks Ti and Tj executed on the same resource:
(i) task Tj is followed by task Ti and the corresponding constraint is si − sj ≥ pj
(ii) task Ti is followed by task Tj and the corresponding constraint is sj − si ≥ pi.
The exclusive OR relation between both cases leads to a non-convex representation of the
set of feasible solutions (see ILP formulation in the Annex where enabling/disabling of
the first/second case is handled by the decision variable xij).
A suboptimal solution of the RCPS/TC problem can be found by an Iterative Resource

Scheduling (IRS) heuristic [36] which has proven good performance on several industrial
size benchmarks. For a given upper bound of schedule length, the heuristic constructs a
schedule according to the priority of tasks while the number of scheduling steps is limited
by the budget. If a feasible schedule is found, the tasks are shifted to the left side, such
that the time constraints and order (given by the values of decision variables xij) of the
tasks is maintained. Furthermore, the improved schedule is used to update the upper
bound. On the other hand, if a feasible schedule is not found within the given limit of

17

scheduling steps (i.e. budget) the schedule lower bound is increased. The best solution is
searched iteratively using the bisection method over the interval given by the lower and
upper bounds. As a task priority, we use the longest path from the task i to the end of
the schedule.

5.2 Algorithm Description

The first step of the algorithm may be illustrated as a construction of the oriented graph G
in Figure 4 from the data in Tables 1 and 2. Each communication link between two nodes
is taken as one resource, which can execute the tasks to be scheduled. A task execution
corresponds to a transmission of a message on the respective link. An assignment of the
tasks to the resources is determined by the path traversed by the message. Since the
routing in the tree topology is deterministic, each task is assigned to a specific resource
(e.g. see Figure 4 where T2 is assigned to the link 2-1). A unicast message corresponds to
a chain of tasks and a multicast message corresponds to a tree of tasks.

5.2.1 Unicast Messages

Vertex T2 in graph G in Figure 4, representing task T2, corresponds to the transmission of
message 256 over link 2-1 and T3 corresponds to the transmission of the same message over
link 1-3. In a similar way, T4 and T5 correspond to the transmission of message 257 over
lines 3-1 and 1-2, T6 corresponds to message 258 and finally T7 corresponds to message 259.
The dummy task T1, preceding all other tasks, corresponds to the event which indicates
the start of the schedule. Tasks T2 . . . T7 are executed on the corresponding lines and task
T1 is executed on a dummy resource. The processing time of tasks are p2 = . . . = p7 = 6880
and p1 = 0. All unicast messages, in this example, have the same transmission delay of
5760 ns (see Table 2) and the inter–message time of 1120 ns.
The link delay (see Table 1) is represented as an edge with positive weight TLD inter-

connecting the tasks of the given message in the chain corresponding to the path from
the source to the destination node. The release date of a message is represented as an
edge with weight r̃ID from T1 to the first task of the message. The deadline of a message
d̃j = |wji|+ pj is represented as an edge with weight −(d̃ID − pj) from Tj , the last task of
the message, to T1 scheduled at time 0. The required end-to-end deadline of a message is
represented as an edge with weight −(ẽID − pj) from Tj , the last task of the message, to
Ti, the first task of the message.

5.2.2 Multicast Messages

The lower part of graph G in Figure 4 includes the synchronization message 128, which
must be present in the final schedule. This is a multicast message and it is defined by
the source node N3 and a set of the destination nodes {N1, N2, N4, N5}.
The multicast tree of message 128 consists of the tasks T8, T9, T10, T11, T12. Task T8 is

the dummy root of the tree (see the nodes connected by positive edges in Figure 4). Each
link on the path from the source node to the destination node in Figure 2 corresponds to
the task on the path from the root task to the leaf task in Figure 4.
The requirement to forward the synchronization message promptly by each switch may

be expressed by the required end-to-end deadline ẽ related to each destination vertex of
the multicast message while using an edge with negative weight.
Graph G representing both unicast and multicast messages is given by W , the adja-

cency matrix of weights wi,j, as shown in Figure 5. In W , wi,j = −∞ if there is no edge

18

T3

1 - 3

6880

T2

2 - 1

6880

3841

4875

5000

5000

- 4120

- 8120

- 13120

- 33120

- 28120

15000

15000

20000

T5

1 - 2

6880

T4

3 - 1

6880

T6

1 - 3

6880

T7

3 - 1

6880

T1

0

256

257

258

259

4875

4875

- 4875

- 4875
- 2200

- 5200

0

0

T11

1 - 2

12800

T12

1 - 4

12800

T9

3 - 1

12800

T10

3 - 5

12800

T8

0

128

Figure 4: Graph of unicast and multicast messages for Fig. 2

in G from Ti to Tj . Each feasible schedule has to satisfy the resource constraints (at most
one message is transmitted over the communication link at given time) and the temporal
constraints (Equation 18 holds for all weights in the adjacency matrix W).
Therefore, the scheduling algorithm, which takes the parameters in Tables 1 and 2

as the input and generates the vector of start times s as the output, consists of two
phases. The first phase takes the algorithm inputs and creates graph G, characterized by
the processing time p of the tasks, the assignment a of tasks to links, and the adjacency
matrix W . The second phase, computing the solution of the PS |temp|Cmax problem,
takes p, a,W and finds s. The resulting schedule of the example is shown in Figure 3,
where the dummy tasks are omitted.

6 Application Point of View

This section shows how the temporal constraints can be used by an application engineer
to influence the timing of the messages with respect to the application demands. Three
different application problems are defined by the temporal constraints: (1) prolongation of
the computation time available for the controller application (see Subsection 6.1), (2) re-
transmission of messages without hold-up in the switch (see Subsection 6.2), and (3) ad-

19

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
T1 −∞ 5000 −∞ 15000 −∞ 15000 20000 5000 −∞ −∞ −∞ −∞
T2 −∞ −∞ 3841 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T3 −13120 −4120 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T4 −∞ −∞ −∞ −∞ 4875 −∞ −∞ −∞ −∞ −∞ −∞ −∞
T5 −33120 −∞ −∞ −8120 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T6 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T7 −28120 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T8 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 0 −∞ −∞
T9 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4875 4875
T10 −5200 −∞ −∞ −∞ −∞ −∞ −∞ −2200 −∞ −∞ −∞ −∞
T11 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −4875 −∞ −∞ −∞ −∞
T12 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −4875 −∞ −∞ −∞ −∞

Figure 5: Adjacency matrix of weights wi,j

ding new messages and nodes into the original schedule (see Subsection 6.3). However,
other application requirements can be fulfilled by formulating them in terms of the message
scheduling as shown in Section 5.

6.1 Controller Application

In a typical control application, an input-data message is sent within the red interval from
an input device to a controller, where the control algorithm is computed, and consequently
the output-data message is sent within the next red interval from the controller to an
output device. The control algorithm runs with a constant period equal to the length of
the communication cycle TDC , but the processing time of the control algorithm is shorter
than TDC .
For a given input-output delay (consisting of the transmission of inputs → com-

putation → transmission of outputs) it is often required to have the computation part
as long as possible. This requirement may be accomplished by moving the input-data
messages into an earlier part of the red interval (using deadline d̃), while the output-data
messages must be moved to its later part (using release date r̃).
Placement of the messages in the communication cycle may be useful in other situati-

ons as well, not only when we need to prolong the computation time of the main controller
application. As an example, we have a situation when we use a PC, which does not contain
the special Ethernet switch needed by Profinet IRT. Integration of such a device may be
solved by dedicating a time window at the beginning of the communication cycle, which
is used to send data from the PC to another node, which fully supports Profinet IRT.
Therefore, the deadlines of the messages transmitted by the PC must be shorter than the
release dates of the messages transmitted by the other node.

6.2 Synchronization Messages using the Cut-Through Mecha-
nism

The scheduling of the synchronization messages can utilize the end-to-end deadline pa-
rameters for the messages to be forwarded without any additional delay. In the case of
a hardware-based time stamping, which inserts the actual time value in the outgoing
message, the delay is measured autonomously and is capable of adapting to any additi-
onal hold-up in the switch. However, the time-stamping mechanism is not standardized.
Thus, for safety reasons, it is convenient to forward the synchronization message using
the cut-through mechanism in every device. The instant delay necessary to recognize

20

the destination is hidden in the TBD parameter, which TLD is composed of. Thus, the
end-to-end deadline values for each synchronization message ensure no hold-up occurs.

6.3 Rescheduling - Adding New Messages and Nodes into the
Original Schedule

Several important parameters, like sampling periods, controller constants, priorities of
the controller application tasks, are usually tuned at different levels of the application
development cycle. Application engineers are usually quite reluctant to change them, once
they have proven to be correct in the industrial environment. Nevertheless, the users, very
often, require an extension of the system that includes additional messages and nodes.
Such an addition usually leads to a change in the schedule when the scheduling algorithm
is applied, as explained in Section 5. It means that the start time of a task in the new
schedule may be different from the one in the original schedule. Therefore, some kind of
temporal isolation is needed to keep the tasks in their original positions.

case ID path TTD [ns] r̃ [ns] d̃ [ns] ẽ [ns]
1 260 N4 → N3 5760 5000 – –
1 261 N3 → N5 5760 5000 25000 –
1 262 N5 → N3 5760 5000 15000 10000
1 263 N2 → N1 5760 5000 – –
1 264 N4 → N5 5760 5000 – 35000
2 260 N6 → N5 5760 5000 35000 –
2 261 N4 → N6 5760 5000 35000 –
2 128 N3 → N6 11680 5000 – 12800

Table 3: Additional messages

The PS |temp|Cmax formalism offers a straightforward solution to this problem. Task
Ti, present in the original schedule at start time si, is fixed in its position by adding one
edge with a positive weight of si from T0 to Ti and by adding one edge with a negative
weight of −si from Ti to T0. The additional messages are represented by additional tasks
in the usual way as was shown in Subsection 5.2.

6.3.1 Adding New Messages

Let us illustrate this process on the original schedule shown in Figure 3 where the start
times of the original tasks are:

s = [0, 5000, 8841, 17800, 22675, 15721, 24680, 5000, 5000, 5000, 9875, 9875]ns

In the first case (given in the upper part of Table 3), five additional messages are
considered. The adjacency matrix, representing the graph with the original tasks fixed at
their start time and additional tasks T13 to T20 corresponding to the additional messages,
is shown in Figure 6.
The schedule of the first case is shown on the left side of Figure 7 (the original tasks

are represented by white rectangles and additional tasks by grey rectangles).

6.3.2 Adding New Nodes and Messages

In the second case, the new node 6 (CP-1616 device) is joined to node 3, with a link delay
of TLD = 4895 ns in both directions. Additional messages are given in the lower part of

21

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
T1 −∞ 5000 8841 17800 22675 15721 24680 5000 5000 5000 9875 9875 5000 −∞ 5000 5000 5000 5000 −∞ −∞
T2 −5000 −∞ 3841 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T3 −8841 −4120 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T4 −17800 −∞ −∞ −∞ 4875 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T5 −22675 −∞ −∞ −8120 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T6 −15721 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T7 −24680 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T8 −5000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T9 −5000 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4875 4875 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T10 −5000 −∞ −∞ −∞ −∞ −∞ −∞ −2200 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T11 −9875 −∞ −∞ −∞ −∞ −∞ −∞ −4875 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T12 −9875 −∞ −∞ −∞ −∞ −∞ −∞ −4875 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
T13 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4895 −∞ −∞ −∞ −∞ −∞ −∞
T14 −∞
T15 −∞
T16 −∞
T17 −∞
T18 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4895 −∞
T19 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4875
T20 −∞

Figure 6: Adjacency matrix with original and additional tasks

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

N4 - N1

N5 - N3

10 20 30

10 20 30

10 20 30

10

5

20 30

N1 - N4

10 20 30

10 20 30

10 20 30

10 20 30 t [µs]

Cmax

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76 T

19
: 264, 5.76 T

14
: 260, 5.76

T
15

: 261, 5.76 T
20

: 264, 5.76T
10

: 128, 11.68

T
17

: 263, 5.76

T
18

: 264, 5.76

T
16

: 262, 5.76

T
13

: 260, 5.76

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

N3 - N6

N4 - N1

N6 - N3

10 20 30

10 20 30

10 20 30

10

5

20 30

N1 - N4

10 20 30

10 20 30

10 20 30

10 20 30

10 20 30 t [µs]

Cmax

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76 T

16
: 261, 5.76

T
14

: 260, 5.76T
10

: 128, 11.68

T
18

: 128, 11.68

T
15

: 261, 5.76

T
13

: 260, 5.76

T
17

: 261, 5.76

Figure 7: Schedules with additional messages and additional nodes (left - new messages,
right - new nodes and new messages)

Table 3. The messages are added in the same way as for the first case. The schedule of
the second case is shown on the right side of Figure 7.

7 Conclusions

Our work related to the time-triggered protocols has the following contributions and
consequences:

1. formulation of a project scheduling problem with take-give resources,

2. solution of the problem by efficient heuristic,

3. a formal proof of the time symmetry mapping,

4. formulation of the problem as an instance of RCPS/TC, while creating a graph of
tasks,

22

5. evaluation of the proposed solution on benchmarks, with up to 1000 tasks,

6. solution and evaluation of three different application problems (prolongation of the
computation time available for the controller application, retransmission of the syn-
chronization message without hold-up in the switch, and addition of new messages
into the original schedule),

Further, we have used similar scheduling approach to IEEE 802.15.4/ZigBee beacon-enabled
cluster-tree WSNs with the following contributions:

1. A formulation of the scheduling problem by a cyclic extension of RCPS/TC. Using
this formulation, the users are not restricted to a particular implementation but they
can make a similar extension to any of the algorithms solving this type of problem.

2. A solution of cyclic extension of RCPS/TC by an Integer Linear Programming
(ILP), where a grouping of Guaranteed Time Slots (GTS) leads to very efficient
ILP model having a few decision variables.

3. An application of this methodology to a specific case of IEEE 802.15.4/ZigBee
cluster-tree WSNs.

References

[1] P. Brucker, A. Drex, R. Möhring, K. Neumann, and E. Pesch, “Resource-constrained
project scheduling: Notation, classification, models, and methods,” European Jour-
nal of Operational Research, vol. 112, no. 1, pp. 3–41, 1999.

[2] K. Neumann, C. Schwindt, and J. Zimmermann, Project Scheduling with Time
Windows and Scarce Resources. Springer, 2003.

[3] P. Pedreiras and L. Almeida, “The FTT-Ethernet protocol: Merging flexibility, ti-
meliness and efficiency,” in Proceedings of the 14th Euromicro Conference on
Real-Time Systems (ECRTS’02), 2002.

[4] J.-D. Decotignie, “A perspective on Ethernet as a fieldbus,” in 4th Int. Conference
on Fieldbus Systems and Their Applications (FeT’01), 2001.

[5] R. A. d. M. Valentim, A. H. F. Morais, G. B. Brandao, and A. M. G. Guerreiro, “A
Performance Analysis of the Ethernet Nets for Applications in Real-Time: IEEE 802.3
and 802.3 1Q,” in 2008 6TH IEEE INTERNATIONAL CONFERENCE ON
INDUSTRIAL INFORMATICS, VOLS 1-3, IEEE. IEEE, 2008, Proceedings
Paper, pp. 919–924.

[6] S.-K. Kweon, K. G. Shin, and G. Workman, “Achieving real-time communication
over Ethernet with adaptive traffic smoothing,” 6th IEEE Real Time Technology
and Applications Symposium (RTAS’00), vol. 00, p. 90, 2000.

[7] L. L. Bello, G. A. Kaczynski, and O. Mirabella, “Improving the real-time behavior of
Ethernet networks using traffic smoothing,” IEEE Trans. Industrial Informatics,
vol. 1, no. 3, pp. 151–161, 2005.

23

[8] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-triggered
Ethernet (TTE) design,” 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05), vol. 00,
pp. 22–33, 2005.

[9] J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A proposal for a generic
real-time Ethernet system,” IEEE Trans. on Industrial Informatics, vol. 5, no. 2,
pp. 75–85, May 2009.

[10] O. D. D. S. (DDSIG), “Data-distribution service for real-time systems (DDS),”
http://portals.omg.org/dds.

[11] Ethernet Powerlink V2.0, Communication Profile Specification, Ethernet
Powerlink Standardization Group.

[12] L. Seno, S. Vitturi, and C. Zunino, “Analysis of Ethernet powerlink wireless extensi-
ons based on the IEEE 802.11 wlan,” IEEE Trans. on Industrial Informatics,
vol. 5, no. 2, pp. 86–98, May 2009.

[13] J.-L. Scharbarg, F. Ridouard, and C. Fraboul, “A probabilistic analysis of end-to-end
delays on an AFDX avionic network,” IEEE Trans. on Industrial Informatics,
vol. 5, no. 1, pp. 38–49, Feb. 2009.

[14] IEC committee SC65C, Application Layer protocol for decentralized peri-
phery and distributed automation, version 2.2, Specification for PRO-
FINET, IEC 61158-6-10/FDIS. IEC, October 2007.

[15] ——, Application Layer services for decentralized periphery and dis-
tributed automation, version 2.2, Specification for PROFINET, IEC
61158-6-10/FDIS. IEC, October 2007.

[16] J. Jasperneite and J. Feld, “Profinet: an integration platform for heterogeneous in-
dustrial communication systems,” in 10th IEEE Conference on Emerging Tech-
nologies and Factory Automation, vol. 1, Sept. 2005.

[17] Siemens Simatic, “Isochrone Mode, Function Manual. 03/2006,” document number
A5E00223279-02.

[18] U. Lauther, “An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background,” GI-Tage, vol. 22, pp. 219–230, 2004.

[19] F. Dopatka and R. Wismueller, “A top-down approach for realtime
industrial-Ethernet networks using edge-coloring of conflict-multigraphs,” in
International Symposium on Power Electronics, El. Drives, Automation
and Motion, 2006.

[20] W. Herroelen, B. D. Reyck, and E. Demeulemeester, “Resource-constrained project
scheduling : A survey of recent developments,” Computers and operations re-
search, vol. 25, no. 4, pp. 279–302, 1998, Elsevier.

[21] C. Schwindt, Resource Allocation in Project Management. Springer, 2005.

24

[22] B. Franck, K. Neumann, and C. Schwindt, “Truncated branch–and–bound,
schedule-construction, and schedule-improvement procedures for
resource-constrained project scheduling,” OR Spektrum, vol. 23, no. 3, pp.
297–324, August 2001.

[23] A. Cesta, A. Oddi, and S. F. Smith, “A constraint-based method for project schedu-
ling with time windows,” Journal of Heuristics, vol. 8, no. 1, pp. 109–136, 2002.

[24] T. B. Smith, “An effective algorithm for project scheduling with arbitrary temporal
constraints,” in Proceedings of the 19 th National Conference on Artifi-
cial Intelligence. (2004). San Jose, California, USA: AAAI Press, Menlo Park,
California, 2004, pp. 544–549.

[25] J. Terada, H. Vo, and D. Joslin, “Combining genetic algorithms with squeaky-wheel
optimization,” in GECCO ’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation. New York, NY, USA: ACM Press,
2006, pp. 1329–1336.

[26] A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and no-wait con-
straints,” European Journal of Operational Research, vol. 143, no. 3, pp. 498
– 517, 2002.

[27] P. Brucker and T. Kampmeyer, “Cyclic job shop scheduling problems with blocking,”
Annals of Operations Research, vol. 159, no. 1, pp. 161–181, 2008.

[28] P. Laborie, “Algorithms for propagating resource constraints in ai planning and sche-
duling: existing approaches and new results,” Artif. Intell., vol. 143, no. 2, pp.
151–188, 2003.

[29] R. Seifert, The Switch Book. Wiley Computer Publishing, 2000.

[30] M. Popp, Industrial Communication with PROFINET. PROFIBUS Nutze-
rorganisation, 2007.

[31] Simatic Net CP1616/1604 Operating Instructions, Siemens, 01 2009, docu-
ment No. C79000-G8976-C218-03, available online.

[32] ET 200S distributed I/O Interface module IM151-3 PN HIGH SPEED,
Siemens, 07 2009, document No. A5E01584179-02, available online.

[33] Sinamics S120 Drive functions, Siemens, 11 2009, document No.
6SL3097-4AB00-0BP0, available online.

[34] IEEE, 802.3 Standard: Part 3 – Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications.
The Institute of Electrical and Electronics Engineers, Inc., New York, 2005.

[35] B. Roy, “Graphes et ordonnancement,” Revue Francaise de Recherche Opérati-
onnelle, vol. 4, no. 25, pp. 323–333, 1962.

[36] Z. Hanzálek and P. Šůcha, “Time symmetry of project scheduling with time windows
and take-give resources,” 4th Multidisciplinary International Scheduling Conference:
Theory and Applications. Dublin. August, 2009.

25

8 Doc. Dr. Ing. Zdeněk Hanzálek

Zdeněk Hanzálek graduated in Electrical Engineering at the Czech Technical University
(CTU) in Prague in 1990. He obtained his PhD degree in Industrial Informatics from the
Universite Paul Sabatier Toulouse and PhD degree in Control Engineering from the CTU.
He worked on optimization of parallel algorithms at LAAS CNRS - Laboratoire d’Analyse
et d’Architecture des Systemes in Toulouse (1992 to 1997) and on discrete event dynamic
systems at LAG INPG - Institut National Polytechnique de Grenoble (1998 to 2000).
From 2005, he holds a position of Associated Professor at the CTU, where he founded
and coordinated the Industrial Informatics Group focusing on scheduling, combinatorial
optimization algorithms, real-time control systems and industrial communication proto-
cols. From 2011, he serves as Senior Manager of newly established Mechatronics group
at Porsche Engineering Services s.r.o. in Prague. He has been involved in many inter-
national research projects (e.g. ARTIST2, FRESCOR, OCERA) and industrial contracts
(e.g. Skoda, UniControls, UNIS, AZD, Volkswagen, Rockwell, Air Navigation Services).
Zdenek is currently a deputy head at the Department of Control Engineering at CTU,
a head of Industrial Informatics Group. He is teaching master course on Combinatorial
Optimization with 120 students per year. In 2011 Zdeněk got “Award for an Excellent
Research Achievement” from the rector of the Czech Technical University.

Recent journal papers:

• Čapek, R. - Šůcha, P. - Hanzálek, Z.: Production Scheduling with Alternative Pro-
cess Plans, European Journal of Operational Research, article in press, Elsevier,
doi:10.1016/j.ejor.2011.09.018.

• Špinka, O. - Holub, O. - Hanzálek, Z.: Low-Cost Reconfigurable Control System for
Small UAVs. IEEE Transactions on Industrial Electronics, Volume 58, Number 3,
Pages 880-889, March 2011 doi: 10.1109/TIE.2009.2030827.

• Sojka, M.- Pisa,P. - Faggioli, D. - Cucinotta, T. - Checconi, F. - Hanzalek, Z. -
Lipari, G.: Modular Software Architecture for Flexible Reservation Mechanisms on
Heterogeneous Resources, Journal of Systems Architecture, 2011, vol. 57, no. 4, p.
366-382, doi:10.1016/j.sysarc.2011.02.005, Elsevier.

• Kelbel, J. - Hanzálek, Z.: Solving production scheduling with earliness/tardiness
penalties by constraint programming. Journal of Intelligent Manufacturing, 2011,
vol. 22, no. 4, p. 553-562, doi 10.1007/s10845-009-0318-2, Springer.

• Šůcha, P., Hanzálek, Z.: A Cyclic Scheduling Problem with an Undetermined Num-
ber of Parallel Identical Processors. Computational Optimization and Applicati-
ons, Volume 48, Number 1, p. 71-90, January 2011, doi: 10.1007/s10589-009-9239-4,
Springer.

• Waszniowski, L. - Hanzálek, Z. - Doubrava, J.: Aircraft Control System Validation
via Hardware-in-the Loop Simulation, Journal of Aircraft, vol. 48, issue: 4, Pages:
1466-1468 , July-August 2011, doi: 10.2514/1.C031229, AIAA.

26

• Trdlička, J. - Hanzálek, Z.: Distributed Algorithm for Real-Time Energy Optimal
Routing based on Dual Decomposition of Linear Programming. International Jour-
nal of Distributed Sensor Networks, Vol. 2012, 13 pages, 2012.

• Hanzálek, Z. - Burget, P. - Šůcha, P.: Profinet IO IRTMessage Scheduling with Tem-
poral Constraints. IEEE Transactions on Industrial Informatics, Volume 6, Number
3, Pages 369 - 380, August 2010.

• Hanzálek, Z. - Jurčík, P.: Energy efficient scheduling for cluster-tree Wireless Sen-
sor Networks with time-bounded data flows: application to IEEE 802.15.4/ZigBee.
IEEE Transactions on Industrial Informatics. doi: 10.1109/TII.2010.2050144, Vo-
lume 6, Number 3, Pages 438 - 450, August 2010.

• Špinka, O. - Akesson, J. - Hanzálek, Z. - Arzen, K.: Open Physical Models in Control
Engineering Education. International Journal of Electrical Engineering Education,
2010, vol. 47, no. 4, p. 448-459, Manchester University Press.

• Trdlička, J. - Hanzálek, Z.: Distributed Multi-Commodity Network Flow Algorithm
for Energy Optimal Routing in Wireless Sensor Networks. Radioengineering. 2010,
vol. 2010, no. 4, p. 579-588. ISSN 1210-2512.

• Waszniowski, L. - Krákora, J. - Hanzálek, Z.: Case Study on Distributed and Fault
Tolerant System Modelling Based on Timed Automata. Journal of Systems and
Software. Volume 82, Issue 10, October 2009, Pages 1678-1694, Elsevier.

• Krákora, J. - Hanzálek, Z.: FPGA Based Tester Tool for Hybrid Real-Time Systems.
Microprocessors and Microsystems - Embedded Hardware Design. November 2008,
vol. 32, no. 8, p. 447-459, doi:10.1016/j.micpro.2008.07.003, Elsevier Science.

• Šůcha, P., Hanzálek, Z.: Deadline Constrained Cyclic Scheduling on Pipelined Dedi-
cated Processors Considering Multiprocessor Tasks and Changeover Times, Mathe-
matical and Computer Modelling, Volume 47, Issues 9-10, May 2008, p. 925-942,
doi:10.1016/j.mcm.2007.05.009, Pergamon-Elsevier Science.

• Waszniowski, L. - Hanzálek, Z.: Formal Verification of Multitasking Applications
Based on Timed Automata Model, Real-Time Systems, Volume 38, Number 1, Ja-
nuary, 2008, p. 39-65, doi: 10.1007/s11241-007-9036-z, Springer.

• Šůcha, P., Hanzálek, Z., Heřmánek, A., Schier, J.: Scheduling of Iterative Algorithms
with Matrix Operations for Efficient FPGA Design - Implementation of Finite Inter-
val Constant Modulus Algorithm, The Journal of VLSI Signal Processing, Volume
46, Number 1, January, 2007, p. 35-53, doi:10.1007/s11265-006-0004-y, Springer.

More than 50 conference papers and 3 chapters in monographs.

27

Selected projects:

• ADORES - ADaptive scheduling and Optimization algorithms for distributed Real-time
Embedded Systems - GACR P103/12/1994, 2012-15

• NewTechno - Optimized Production of Electro Contact and Harness Material for
Future Vehicles - Eureka OE09004 . Framework for Real-time Embedded Systems
based on COntRacts - FP6 IST-034026 FRESCOR

• Modular FLY-BY-WIRE Control System for Light Aircraft - Tandem framework -
Ministry of Industry and Trade of the Czech Republic .

• Embedded Systems Design - NoE in FP6 - IST-004527 ARTIST2

• Open Components for Embedded Real-time Applications IST 35102 OCERA

• Global Communication Architecture and Protocols for new QoS services over IPv6
networks - IST 32696 GCAP

• Intensive Fish Culture Optimisation - IST 31080 IFiBO

• Participation in the evolution of the standardization for embedded software for
automotive industry - Czech Academy of Sciences

Industry Cooperation and Products:

• European Train Control System - commercialized via AZD to Czech Railways

• ORTE - open source implementation of RTPS communication protocol .

• Train Communication Network in VxWorks - via UniControls Ltd. to Alstom

• TORSCHE Scheduling Toolbox for Matlab - freely available

• Petri Net Matlab toolbox - freely available

• TDCS scheduling tool for IEEE 802.15.4/ZigBee beacon-enabled cluster-tree WSNs

• Personnel Scheduling for Air Navigation Services of the Czech Republic

• QoS management and performance evaluation of CAN-CAN gateway - Volkswagen

• Processor Expert Embedded Real-Time Target for Matlab/Simulink - UNIS

Chair in Conference Committees:

• EUROSYS 2013, European Professional Society on Computer Systems Conference,
Prague, April 2013.

• Euromicro Conference on Real-Time Systems 2008, Prague, July 2-4.

• IEEE Workshop on Parallel and Distributed Real-Time Systems 2007, In con-
junction with IPDPS 2007, Long Beach, California, USA, March 26-27.

28

• IEEE Workshop on Parallel and Distributed Real-Time Systems 2006, In con-
junction with IPDPS 2006, Island of Rhodes, Greece, April 25-26.

Member in Program Committees:

• RTSS 11, IEEE Real-Time Systems Symposium

• RTAS 11, IEEE Real-Time and Embedded Technology and Applications Symposium

• ECRTS 10, ECRTS 09, ECRTS 07, ECRTS06, ECRTS05, Euromicro Conference on
Real-Time Systems

• WPDRTS 06, WPDRTS 05, IEEE Workshop on Parallel and Distributed Real-Time
Systems

• WFCS 10,WFCS08, WFCS 06,WFCS 04,WFCS 2000, IEEE International Workshop
on Factory Communication Systems

• ETFA07, ETFA 06, ETFA 05, IEEE International Conference on Emerging Tech-
nologies and Factory Automation

• RTCSA 2010, IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications

• CACSD 06, CACSD 04, IEEE International Symposium on Computer Aided Control
Systems Design

• IFAC 05, IFAC world congress

Summer Schools and National Events:

• Embedded systems colloquium Prague 2005, 2007, 2008, 2009, 2010, 2011

• Embedded RTLinux Intro 2007 Summer School, Prague, June 18-22

• ARTIST2 Graduate Course on Embedded Control Systems 2006, Prague, April 3-7

• IFAC Summer School on Control, Computing and Communication 2005, Prague,
June 27 - July 1

Lectures:

• Combinatorial Optimization

• Distributed Control Systems

• Scheduling

Graduated PhD. students:

• Supervised by Zdeněk: Přemysl Šůcha, Jan Krákora, Petr Jurčík, Michal Kutil,
Ondřej Špinka and Michal Sojka.

• Co-supervised by Zdeněk: Josef Čapek, Miroslav Dub, Libor Waszniowski, Ondřej
Dolejš, Martina Svádová a Pavel Burget.

29

