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Summary

This document provides an overview of the recent resulthéresearch
field of spectrum based analysis and synthesis of time dgktems, which
have been achieved with my considerable contribution. Dubée develop-
ment of modern numerical and optimization methods and vhiehsupport
of constantly increasing performance of computers andvsod, this field of
infinite-dimensional systems has undergone a substarti@lapbment in the
last decade. In this text, first, the subject of linear timkaygaystems is in-
troduced with the focus on the fundamental features of tleetsp of poles
of neutral and retarded systems. Even though the specttesé ttlasses of
delay systems are both infinite, substantial differencést @xthe spectrum
distribution and stability. These aspects need to be takerconsideration in
both the analysis and control synthesis of the systems. Asample of the
retarded time delay system, a model of regenerative chattewtting ope-
ration is included. Next, results achieved in the field ofcdpen analysis and
computation are outlined. The main result of this reseascmi original al-
gorithm QPmR for computation of the extensive spectra osgpalynomial
characteristic functions of the system. Besides, the sidarof the stability
determining Michajlov criterion towards neutral systerapresented. The
first presented results on the spectrum based synthesia e subject of
guasi-direct pole placement of retarded systems. The rdeithaws the user
to assign the dominant poles of the closed loop system andaiagtee their
dominance using optimization methods. It is done by shyfthe unassigned
rightmost poles from the region of the assigned poles. Gpresgtly, the op-
timization based synthesis of the spectrum is extendedsiess controlled
by state derivative (acceleration) feedback. It is shovat #nbitrarily small
feedback delays can cause instability if the closed loograkdynamics is
not strongly stable. This stability aspect is considerethésynthesis of the
controller. Besides, the application of filter in the feeclbéoop is applied
in order to remove neutrality of the system. Both the analgsid control
synthesis are tested on a case study example - model of ratjeaehatter.



Souhrn

Je zramo, ze dopravh (Casoe) zp@déri ma obece v fidicich sysémech
destabilizuijci efekt - ¢im je Casowa prodleva akniho zasahu dé, tim
obtiznéji se systm¥idi. Tento jev plat nejenom v technickch aplikadéch
fizeri, ale i v mnoha aspektech k@odeniho Zivota. Efekt zp@déri mlizeme
nagdiklad pozorovat ve ¥woji pottu studeri jednotliych univerzitrich
oborli v zavislosti na aktalnich maznostech jejich uplaéri v danych obo-
rech.

Inaugur&ni spis obsahuje fighled aktélnich wsledki vyzkumu v oblasti
spektalni anajjzy a synézy fizeri sysemll s dopravim zpddérim, na
kterem jsem se v mingkch letech yrazré podlel. Text z&ina tvodem do
problematiky systmil s dopravim zpa@zdérim, ktery je zejména zardfen na
spektalni vlastnosti retardovgich a neutalnich syséntl. Spol&€nym aspek-
tem &chto tid sysémil s dopravim zp@dénim, jsou nekonéna spektra je-
jich vlastrich hodnot, reprezentigjch jednotlive mbdy dynamiky. Systmy
ale vykazui vyznamré rozdly v distribuci spekter plii a v aspektech
tykajicich se stability sy&mll, na kteé mu$ byt bran Zetel @i analyze
dynamiky a syréze fizeri. V ramci Gvodu je prezentdn model s do-
praviim zpadérim popisujci vzajemreé plisobef noze a rotuiciho ob-
robku @i soustrzer s dlem simulovat potenéiné vznikajci netlumer
vibrace, tzv. regenerative chatter. Tento model @edpouit k testo\ari
navizerych spektalnich metod syréizy fizeri. Prvri nosré ttma spisu se
zabyva wsledky, kteé jsem doahl v oblasti anglzy spektalnich vlastnost
syseémil se zpdadérim. Hlavrim vysledkem je algoritmus QPmR, kfebyl
navizen pro ypocet rozéhlych spekter kvazi-polynoralnich charakteris-
tickych funkd sysémil se zpddérim. Dale je pak zrinéno roZiferi apli-
kovatelnosti Michajlovova kréria stability na neuédni syseémy. Prvi z
prezentovajich metod spekéini syngezy se zafva synézou stavogho re-
gulatoru pomot umistovari dominantiich polti nekonéného spektra. Do-
minance uristenych polll je zajéna s vyiitim optimaliz&nich metod, po-
mod nich? je dosd@eno izolowari téchto ®Il od zbytku spektra. kled’ je
spektalni optimaliz&ni princip aplikovan na syriézu stavo@ho derivéniho
(akcelerg@niho) reguéitoru. V iamci anayzy probEmu je demonstr@n ne-
gativri vliv malych dopraviich zp@déni na stabilitu uzakerého reguléniho
obvodu v fipack, ze nem zajiSttna tzv. silé stabilita vznikkho neutalniho
sysému. Tento aspekt jeate zohledBn v synézefizer. Jako alternativin
pristup je uvaovano zapojenfiltru do zpétré vazby, s jehb pomogé se od-
strani neut@lni charakter dynamiky sysiu. Jak angka vlastnosttak i
syniézafizen stavoeho regulitoru jsou demonstré@ny na pikladu modelu
interakce née a obrobku p soustrizeri.
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1 Introduction

This document provides an overview of the results achiematde spectrum
based analysis and synthesis of time delay systems at whiabel been in-
volved. The original research results, which were publtisimea number of
prestigious international journals, have been achievadk to an extensive
scientific collaboration, namely with Prof. Pavétek (CTU in Prague), Prof.
Wim Michiels (KU Leuven, Belgium), Prof. Vladiin Kucera (CTU in Pra-
gue), Prof. Nejat Olgac (University of Connecticut, USAkxstciated Prof.
Rifat Sipahi (Northeastern University, Boston USA) and Doiier Henrion
(LAAS CNRS Toulouse, France/CTU in Prague). In order to eahicom-
pactness of the text, the results are presented within albraasearch con-
text. All the main results of my collaborative research aehd within the
presented topics are highlighted with symBaind provided with a reference
to a journal where the results were published. The refeseace ordered so
that the works [1] - [16] are co-authored by me, while the ezstthe works
related to the state of the art in the particular fields.

1.1 Lineartime delay systems
Consider the general description of time delay system iridima

B(t)+ > Hei(t—7k) = Aox(t)+ Bou(t)+ Y Apx(t—7k) + Bru(t— %), (1)
k=1 k=1

wherez(t) € R" is the state variabley(t) € R™ is the vector of in-
puts, 7,k = 1,2..., N are time-delays, andfy, Ag, Ax, By, By are
real matrices. The system state is determined by functigmeatz;(r) =
x(t+7),7 € [=T,0], whereT is the largest time delay. The initial conditions
are given aso(7) = z(r), 7 € [T, 0]. Additionally, the function segment
of inputug(r) = u(r), € [T, 0] needs to be defined as a part of the initial
conditions too.

In the general form, (1) is a system of neutral type.Hf, = 0,k =
1,2..., N, the system is of retarded type, which is more commonly used
in the engineering applications, e.g. to model heat transfeemical and
combustion processes, distributed networks, and evearagsn economics
or biology, see e.g. [23] and references therein. The neetpaations can
be used for instance for modeling lossless transmissi@s litossless pro-
pagation phenomenon, combustion systems, it arise in @syrabntrolled
hyperbolic PDEs when subjected to small feedback delaysrasdme im-
plementation schemes of predictive controllers [28].



1.2 System spectrum, stability

Stability of the system (1) can be determined on the basiseofdot distribu-
tion of the characteristic equation

N M
M(s) = det <s ([ + ZHWST") — Ao — ZAkew> =0. (2
k=1 k=1

As the equation is transcendental, in general, it has iefininany roots.
The spectra of both retarded and neutral systems are infifttehe stability
evaluation purposes, let us define the spectral abscissa af/stem, i.e. the
smallest upper bound of the spectrum as

a =max {R(s;), k=1,2,..,00}. 3)

The system (1) is stable if and onlydf < 0, i.e. all the roots of the equation
(2) are located in the left half of the complex plane. As rdgahe spectrum
distribution, considerable differences exist betweenrétarded and neutral
systems. Consider, that all the poles of the system areextdera sequence
sk, k = 1,2, .., 00 according to their magnitudey,|. The fundamental diffe-
rences between the retarded and neutral systems can bifiédiess follows:

e Retarded systems given ¢ € R, the number of roots satisfying
R(sk) > ais finite. A direct consequence of this property is that the
number of unstable roots is at most finite. Moreover it holdg both
R(sr) = —oo andS(s) — oo, (—o0) ask — oc.

e Neutral systemsthere exist such € R, b € R, a < b, both finite, that
an infinite number of roots;, is located within the vertical strip <
R(sx) < b. A direct consequence of this property is that the number of
unstable roots can be infinite. Besides, the spectral adaseisan be
discontinuous with respect to small changes in the delayss,Teven
infinitesimally small changes in the delays can cause iilgtab

Taking into considerations these fundamental spectralifes, the retarded
system can be dealt with in a similar way as the high orderydete systems.
The dynamics and stability is determined by the group of eami, rightmost
roots. However, it is not the case of neutral systems, whneréstability can
be caused by the roots on the very high frequencies. Besisediscontinuity
of o with respect to small delay changes is a risky feature. lemtal clarify
this stability aspect, let us define the difference equatissociated to the
system (1) as follows

N
a(t) =Y Hpa(t — ), (4)
k=1



and its characteristic equation

N

D(s) = det(I — Y Hyexp(—s7)) = 0. (5)
k=1

It can be easily proven, see e.g. [6], that the infinite spectof (4), i.e.

the roots of (5) lie within a certain vertical strip of the cplex plane

a < R(sx) < b and the spectrum of (1) tend to match the spectrum of (4)
in the high frequencies. In order to deal with the problemesfsitivity of the
spectral abscissa of difference equations and neutraregsand its stability
consequences, the concept of strong stability has beerdited [23, 24]:
The difference equation &rongly stable if and only if

N
Yo < 1,7 = max{ra(z Hy exp(iby))| 0 € [0,27],1 <k < N}, (6)
k=1

wherer, denotes the spectral radius. If the strong stability céonlits sa-
tisfied, the neutral system has at most finite number of ramatéd to the
right of the stability boundary. If the condition is not sdiged, the system can
be stable for some delay values. However, stability is noingt as even ar-
bitrarily small variations in the delay values destroy ttebgity. Obviously,
evaluation of the strong stability by (6) is not an easy tdséaaly for more
than two delays. The criterion can either be evaluated nigalbrvia griding
the space of parametets, £ = 1..N and solving the eigenvalue problem for
every grid point, as it was done in [6, 8]. Recently Henriod &fyhlidal [16]
proposed an approach based on trigonometric polynomiethattion where
the problem is formulated in a form of LMI.

1.3 Introductory example - model of regenerative chatter

The introductory example shows the typical applicationroétdelay systems
in mechanical engineering. One of the most important caokasachining
instability is the so called regenerative chatter effe2§, [30, 31]. This re-
generative chatter is undesirable due to its adverse eftecsurface finish,
machining accuracy and also tool life. Because of some mat@erturbati-
ons, the tool starts a damped oscillation relative to thekpiece. After a
revolution of the workpiece, the chip thickness will varythé tool due to
this wavy surface. Therefore, the cutting force is depehdeithe actual and
delayed values of the displacement of the tool. Fig. 1 shogshamatic of
the regenerative chatter problem in question. The tooldaragd to be com-
pliant in both thexr andy axis, whilst the workpiece is assumed to be rigid.
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Figure 2: Response of system (7) to initial conditiatis) = 0,¢ € [—7,0), 2(0) =
[0,0,1075,0]7, - dashedy - solid

It has been shown in [25] that the displacements of the taolbeamodeled
as a 2-DOF freedom retarded oscillator
2(t) = Apz(t) + A12(t — 7) + Bu(t) (7)

wherez = [z, @, y, 9|7, 2(t), y(t) are displacements of the toal(t) =
[z (1), uy ()7, us(t), uy(t) are the control inputs of the system, exerted e.g.
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As the values of parameters, we consigler= 5kg, c, = ¢, = 1.47kNs/m,
k. =k, = 1.2MN/m for the modal mass, damping and stiffness respectively
kz = 2MN/m andx, = 1.45MN/m for the cutting force coefficients. The
delayr = 0.0105s is equal to the period of revolution of the workpiece-
%“, whereQ is the angular velocity of the workpiece. In Fig. 2, the resgmof
system (7) to initial conditions(t) = 0,¢ € [—7,0),2(0) = [0,0,107°, 0]

is shown. As can be seen from the increasing amplitudes afgbidlations,
the system is unstable. Further on in the text, this conmfuisi confirmed by
the analysis of the spectrum, see Fig. 5, 7. As can be seen figtires, the
system is unstable with a single couple of unstable pblgs= 1.5+ 542.87,
i.e.a = 1.5.

2 Spectrum analysis and computation

There exists several algorithms and software routinesrfalyais and com-
putation of the spectrum of time delay systems. The most comyrused are
DDE-biftool [22] and TRACE-DDE [20]. In spectrum computation, discreti-
zation approaches are used as a rule. An alternative to éippseaches is the
algorithmQPmR proposed by Vyhbal and Ztek, which is based on mapping
and comprehensive analysis of the system characteristitiéun [14, 1]. The
algorithms utilizes the results outlined below.

In the analysis, we consider the quasi-polynomial charistie function of
the system (1) in the following form

N

M(s) =Y pj(s)e ™ 9)

whereag > o > ... > ay_1 > ay = 0andp;(s) = >_;7 p;rs* are
polynomials ins of degreem; < n.

10



2.1 Spectrum distribution

The spectrum asymptotic distribution features of time yledgstems have
already been studied by Bellman and Cooke (1963), [19]. iDeteng the
principal terms of the system characteristic functiafis), the distribution
properties of the roots with high magnitudes has been datetnLet us
define

N
g(s) = ij»"”j s"™I(1+ 5j(5))ewj (10)
j=1

which has the same distribution of zeros as (9), wh&gre= oy — «;,
0=19p <V < .. <VIn-1 <IN Pjym; #0(j =0,1,...,N) and
the functionss;(s) have the propertyim ;. |;(s)| = 0. As it has been
shown in [19], with the point®; = (¥;, m;), we can define thBistribution
diagram. It is constructed as upward convex polygonal linever the points
P; = (¥;,m;), see Fig. 3 for demonstration. Let the successive segménts o
L be denoted b4, L,,....Lys, numbered from left to right, and let. denote
the slopes otf.,.. For each segment of the spectrum distribution diagkam
with u,. > 0, a retarded chain with infinitely many roots exists. The segi®
with u,. = 0 correspond to the neutral part of the spectrum, which istéata
in a vertical strip of the complex plane. Based on Bigtribution diagram
and utilizing further results by Bellman and Cooke [19], Wigal and 4tek
derived the asymptotic exponentials of the retarded roainshas follows:

# Asymptotic exponentials of the root chains(Vyhlidal and Ztek,
|EEE-TAC, 2009 [1])
For large magnitudes of = 3 + jw, 8 € R,w € RT, the asymptotic
curves of the root chains of (10) can be approximated by thaptotic

exponentials
w:exp(cr_ﬂ) (12)
J
wherec, = u, In |w,, |, andw,, is a zero of the polynomial
N,
folw) =3 pju™ (12)
j=0

wherem; = m; — mo, m; andp; correspond to those poinf3; =
(95, m;) defined for (10) that lie on the particular segment N, + 1
is the number of points on the segmént

11



If the system is neutraly;; = 0, and the characteristic function of the asso-
ciated difference equation to the system (1) is given by

Ny

D(s)=> pje ™%, (13)
=0

where the coefficientg; and delaysyy > &; > ... > aw,, = 0 correspond
to the pointsP; on the segmenk ;. Utilizing the results derived in [6], the
safe upper bound for the neutral part of the spectra can b@wima in the
following way:

# Safe upper bound of the spectrum of the difference equatio(Mi-
chiels and VyHidal, Automatica, 2005, [6])
The safe upper bound'p of the spectrum of the associated diffe-
rence equation is determined as a single zero of the stdettyeasing

function
Npy—a _ )
ceR— Y|P ferem 1, (14)
j:0 pNJVI

2.2 QPmR: Quasi-polynomial mapping based rootfinder

The QPmR algorithm has been designed by Wil and Ztek in [14] and
extended in [1] to compute all zeros of a quasi-polynomia miven region
D = [Bumin, Pmax] X j[Wmin, Wmax] Of the complex plane. The main idea of
the algorithm is given as follows:

# Quasi-polynomial root mapping (Vyhlidal and Ztek, |EEE-TAC,
2009, [1])
Considers = 3 + jw,8 € R,w € RT, the characteristic quasi-
polynomial M (s) can be split intoR(5,w) = R(M (S + jw)) and
I(B,w) = S(M(B + jw)). Consequently, the characteristic equation
M (s) = 0 can be split into

R(va) = 07
I(B,w) = 0.

Analytic solution of the set (15) is possible only for the msinple
guasi-polynomials. Application of standard numericalagtpn solvers
is possible, but it is often limited by the complexity of theoplem.
In QPmR algorithm, the zero-level curve tracing algorittsrapplied
in order to approximate the contours in the plghe w described by

(15)
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(15). Consequently, the intersection points of the corstawne determi-
ned providing the first approximation of the root positioRmally, the
accuracy of the root is increased by applying lieton’s method.

The Quasipolynomial rootfind€)PmR described above has been implemen-
ted as a Matlab function. Next to determining the positiothefroots, it also
performs the additional analysis of the spectrum: detangithe asymptotic
exponentials of the root chains, computing spectrum of Hseciated diffe-
rence equation and its safe upper bound, if the system isatetibe rootfin-
der has become one of the tools for the spectrum analysixédlter, there
are more than 15 references to the papers [14] and [1] on th&/é® of
Science). For example, in [9] (Olgac, Vytial and SipahiS CON, 2008), the
method was applied to determine the stability maps in thaydgbmain. The
following example demonstrates the application of the r@tlym.

2.2.1 Example - application of QPmR algorithm
Consider the following quasi-polynomial

M(s) = (s* +2s%) + (0.5s* — 3)e™* + (0.65* + 0.85%)e =2+

0.65%e73% 4+ (=353 + s2)e ™ + (352 — 4)e 65 e85, (16)

The task is to compute all the roots located in the regionrgiesd € [—6, 4]
andw € [0,150]. The results are shown in Fig. 3, which consists of quasi-
polynomial zeros, asymptotic exponentials of the root mfiasafe upper
bound and zeros of the associated difference equation.

2.3 Michajlov criterion for neutral systems

It is well known that for stability assessment of delay free aetarded sys-
tems, Michajlov criterion can be used [33]. The method, Wwhicbased on
direct application of the argument increment principleeais whether the
right half of the complex plane is free of function zeros.
Consider the characteristic functidd (s) of the system is of polynomial or
retarded quasi-polynomial form. Then the system is stdlded only if the
Michajlov criterion

Y

Tli)noloAarg M(w)lwep,rn = ny: 17)

is satisfied. However, as has been shown by \ddiland 4tek in [2], the
criterion cannot be directly applied to neutral quasi-polyials as the limit
at infinity does not exist. Consequently, the modificationhef criterion for
evaluating stability of the neutral systems has been pexpas follows:

13
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Figure 3: Result of the QPmR Matlab function applied to the quasipolynoh@l (
Black dots - quasi-polynomial zeros, solid lines - asymptotic exponenfigiegoot
chains, dashed line - safe upper bound, crosses - zeros of th@adsddalifference
equation

# Madification of Michajlov criterion for neutral systems (Vyhlidal
and Ztek, | EEE TAC, 2009b, [2])
Consider a system (1) with characteristic quasi-polynor(@3. If
M (jw) # 0 for anyw € RT, the function)M (s) has no zeros in the
right half of thes-plane if and only if the argument df/ (jw) (begin-
ning at zero fow = 0) reaches the increment far— oo lying within
the band given by the condition

ng = < Aarg M(w)lueo,o0) < ny + & (18)
where

Npar—a
$ = arcsin g

=0

_’”D . (19)
PNy
The symbols in (19) have the same meaning as in (13). Obvi-

ously, the necessary condition for determining the anplés that

Zf\%*l pi—] < 1. In fact, this is the strong stability condition for
M

scalar systems [23, 6].

14
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Figure 4: The transformation (21) of (2@), € [0, 2000], dash-dotted line - stability
sector determined by the vertex andlgright - a part of the rightmost zeros of (20)

If the condition (18) is satisfied, system (1) is stable amdstiability is strong
(insensitive to small changes in the delays).

2.3.1 Example - Michajlov criterion application

Let us investigate the stability of the system with the cbemastic quasi-
polynomial

M(s) = s*(1+0.23¢™° — 0.25¢™ ™ 4 0.3e™*)+

+5%(1.3 - 0.3e7°%) +2.25 +1 — 0.7e"". (20)
By applying the mapping
M(s)
Q(s) = W: (21)
it can be seen from the hodograph in Fig. 4 that, obviously
35— ® < AargQ(w)luepor) < 35 + (22)

where® = arcsin(0.23 4+ 0.25 4 0.3) = 51.3°. Thus the condition (18) is
satisfied. As alsa// (jw) # 0 for the whole frequency range, the system is
stable with all roots in the left half of the complex planes siee right part of
Fig. 4.
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3 Quasi-direct pole placement

The quasi-direct pole placement method proposed in [5]dpifed by the
classical pole placement method for systems without delBgsn — th
order SISO systems, the pole placement method allows thgnassnt of
n poles to desired positions and, accordingly, the gain walhfea state
feedback controller are computed, see e.g. [26]. As it has lslown in
[10, 11, 15, 27, 32, 33], the same idea can be applied to atljastlyna-
mics of time delay systems. However, such a direct assighofgioles has
considerable limitations induced mainly by the infiniteteys’s spectrum and
the limited degrees of freedom in the controller paramgiacs.

We consider a general retarded system of the form

T T
z(t) = /0 dA(T) z(t — 1) + /0 dB(T) u(t — 1), (23)

wherex € R" is the vector of state variables, € R is the system’s input,
7 is the delay variable, which is constrained by the relatioe + < T.
The functional matrices — A(7) € R"*", r — B(r) € R"*! describe
the distribution of the delay and cover both multiple lumgedintwise) and
distributed delays, [33]. Consider a feedback controlfehe form

u(t) = —Kx(t), (24)
where K := [k ko --- kp] contains the controller parameters to be de-

termined. The stability properties of the feedback syst2&) and (24) are
determined by the roots of the characteristic equation

M(s) = det <sf A(s Zk B(s > (25)

where A(s fo exp(s7)dA(7), B(s) = fOT exp(s7)dB(r). Under the
condmondet(sl A())) # 0, the characteristic equation can be written as

det([ ZP k;B(s)(sI — A(s))~ ) 0
& 1- P (sI — A(s)) "' B(s)k; = 0.

Assigning a real pole to the locatieryields the following constraint on the
gain values:

icl Ae)) ' Ble) k; = 1.

Jj=1
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In this way, assigning < m < p polesto\y, ..., A, eventually results in a
set ofm constraints which can be written in the form

SK = R, (26)

whereS € R™*P andR € R™*!. Using the singular value decomposition
S = UXV*, where(-)* denotes the complex conjugate transpose, condition
(26) can be transformed into the following form

YL=U'R (27)
whereL = V*K. LettingL = [l; -+ ], U*R = [ -+ 7p]T, 2 =
[diag(o1, .. .,0.,) 0], and assuming th& is of full (row) rank, we finally get
the following expression for the parametéysj = 1,...,m, corresponding
to the assigned poles,i = 1..m:

lh = ¥1/o1,
lo = Tafoo,

(28)
lm = fm/-am.

# Controller parameterization (Michiels, Vyhlidal and Ztek, J Pro-
cess Contr., 2010, [5])
Assume thafS has full row rank. Considering parametéys. . ., [,, as

fixed according to (28), anigl,+1, . . . , [, being kept as free parameters,
one obtains a parametrization of all controllers that assigpoles to
Ayevey Ame

The next step of the pole placement procedure is as followsure thatn
poles are assigned as described in (28). Thus, the paramgeter. , [, are
fixed and the parametels.,. .., [, are available for further adjustment of
the system’s spectrum. Applying the algorithm describefBR], the para-
meters,,,11,...,l, are to be used to push the other rightmost poles as far as
possible to the left. However, unlike in [32], where the sp@bscissar is
minimized, we minimize instead the function

a(lms1s .-, lp) =sup {R(N) :

det(A\T—AN)=3P_; kj(lmy1,elp) BOV)) 0 (29)
7 (A=Xy) - ‘

Technically, the evaluation af is rather straightforward. First, the rightmost
characteristic roots of (23) and (24) are computed. In the skep, thein-
variant characteristic rootsy, ..., A, are removed from the spectrum and
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the objective function is obtained as= sup,-,,(R()\;)). In order to per-
form the minimization task for the objective function (2@hich is, in gene-
ral, non-smooth and non-convex, hybrid algorithm HANSQ] [@®mbining
BFGS and gradient sampling optimization method can be udeel overall
algorithm can then be summarized as follows:

# Algorithm - Quasi-direct pole placement (Michiels, Vyhlidal and
Zitek, J Process Contr., 2010, [5])
Consider feedback system (23) and (24).

1. Selectpoles,..., \,, m < nto be assigned.
. Compute the parametdss. . ., [, as described in (28).
. Minimize the function(l,,, 41, ...,1,) = &(lmt1,-- -, 1p)-

. Ifmina < mini<j<m,» R(A;), accept the result and transforin
to K by K = VL. In the other case (that is, the assigned poles
cannot be separated from the remainder of the spectrunajtsel
different assigned poles and go to step (1).

A WODN

3.1 Example - quasi-direct pole placement

Consider the model of the regenerative chatter given byT(ig. task is to
perform pole placement for the system using the state fe#dba

uy(t) = —Kz(t). (30)

Assigning the couple of poles » = —100+ ;600 as described in the Quasi-
direct pole placement algorithm, we obtain gain parameters

K = [1.9301 - 10°,1.3249 - 10%,1.4555 - 10°,1.0631 - 10°]

resulting in favorable improvement of the system stabibity demonstrated
in Figures 5, 6. As can be seen from the spectrum, the systeindean safely
stabilized andx = —131.5 < R(\12). Thus, the assigned poles are truly
the dominant poles. The considerable improvement can assebn in the
response to initial conditiongt), ¢ € [—7,0), 2(0) = [0,0,107>,0]" in Fig.

6, when compared with unstable system response in Fig. 2id retmark that
the H AN SO algorithm [29] was applied to perform the optimization task
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4 State derivative feedback

This section presents results achieved in the spectrund laasdysis and syn-
thesis of state derivative feedback with small feedbackydeThe motivation
for state derivative feedback comes from controlled vibrasuppression of
mechanical systems [17, 18]. In vibration control probleatcelerometers
are typically used for measuring the system motion. As dtrasuaelerations
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and velocities are the sensed variables as opposed toaispdats.

4.1 Effect of small delays in the feedback loop

It is well known that small delays systematically originétem the latency
effect of implementing the measurements and control astioccurring, e.g.,
as a consequence of computational delays, delays arisingAD-DA con-

version or communication delays. As a rule, such delaysemngsmall com-
pared to the dominant modes of the system, which justifieegbest them
in the feedback design in most applications. However, iteen shown in
our papers [4, 8] that such delays cannot always be safelgcted if state
derivatives are used for feedback, as even arbitrarily Isimgllementation
delays may cause instability. We consider the delay freeesy the form

#(t) = Az(t) + Bu(t), (31)

wherez € R"™ is the vector of state variables,c R« is the vector of inputs
and A, B are constant coefficient matrices. The proportional-@¢ikie (PD)
state controller is considered as follows

ut) = —K, x(t) — Kq i) (32)

whereK, € R™*™ andK,; € R™*™ are the feedback gain matrices. The
closed loop system (31)-(32) is given by

i(t) = (I + BEKg) "\ (A — BK,)z(t) (33)

Obviously, then eigenvalues of the matri¥ + BK ) ~! (A—BK,,) determine

the stability and the dynamic behavior. As it has been shonitdalelazis and
Valasek [17, 18], the necessary condition for stabilizabilityhe system (31)

is thatdet(A) # 0, i.e. the system does not have a pole at the origin of the
complex plane.

Consider that delays appear in the feedback paths of themy(&tl)-(32) as
follows: a delayr,, on thek-th component of input, 1 < k& < n,,, a delay

Tz, In the measurement of thieth component ofi, and a delayr,, in the
measurement of theth component of, 1 <! < n. The closed-loop system
becomes

@(t)+ Y BEy»  KaFa(t — u, — 7a)) =
k=1 =1

Az(t) =Y BEx Y KyFa(t — 7, —72), (34)
k=1 =1
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whereE), = [ef ;] € R™>*"™ andF; = [f} ;] € R"*" satisfy

. 1, i=j=k l 1, i=j=1

Ci.;j { 0, otherwise * “%J { 0,  otherwise ’ (35)

fork =1,...,n, andl = 1,...,n. Notice that ifK; # 0, the system (34)
is a time-delay system of neutral type, which induces coragibns w.r.t.
stability issues. As it has been discussed above, the sstafjlity needs
to be guaranteed for neutral systems. Even if the closed $ysfem (33)
is stable, the stability can be lost due to small delays insthge derivative
feedback paths. However, as it has been shown in [7], if dig@sies in the
delays occur, the strong stability condition needs to beifiealdas follows:

# Strong stability condition on the gain parameters(Michiels W., T.
Vyhlidal, P. 4tek, H. Nijmeijer and D. HenriorSl CON, 2009, [7])
Assume the system (31) is stabilized with the control law).(§2he
feedback gairf, is such that

~Yo(Kq) := max {a <— ZBEk ZKdFvlei(uker)) .
k=1 =1
el 2™, velo, 2"} <1, (36)

then the exponential stability of the closed-loop systemolsist aga-
inst small feedback delays.

4.2 Filtered derivative feedback

From the practical point of view, the neutrality induced by state derivative
feedback should be considered as the worst (limit) case wieehave both
the ideally true model and the ideal controller. In pragtamy filtering effect
in the feedback loop is likely to remove the neutrality. Tisislemonstrated
on using the application of filtered derivative feedback:

# Filtered state derivative feedback(Vyhlidal T., W. Michiels, P. Ziek
and P. McGaharContr. Eng. Practice, 2009, [4])
When applying a first order filter to (32), the controller beesm

Ta(t) + ult) = —K, x(t) — Kq @(t) (37)

whereT = 1/wy is the time constant of the filter, ang} is its cutoff
frequency.
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The closed loop system under the influence of the feedbaelyslghen
changes from (34) to

+Z[ LR O}z(tm)[’g _O%I}z(m

+§‘:{0 B(J)Ek }Z(t_m)zn:[ _HO(F 8};:(15—7%),

k=1 k=1 O
(38)

with £, 1 < k < n, andFy, 1 < k < n defined in (35). This system
corresponds to the degenerate case where the charactienistiion of
the associated difference equatibs) = 1. If K; andT are such that
the delay free system is asymptotically stable, the stglidipreserved
for small values of the delays.

Although stability is always preserved for sufficiently dhtkelays, the ma-
ximal allowable delays tend to zero @&s— 0 whenevery,(K,) > 1. This

implies an inherent trade-off in determining the cut-offifuency of the filter:
in order not to affect the nominal, delay free behavior toacimthe cut-off
frequency should be sufficiently large. However, if the cfitfrequency is
too large, then the delay margin may be unacceptably small.

4.3 State derivative feedback design for retarded systems

As a possible way of the state derivative feedback desigim@ation based
spectral synthesis can be applied, similarly as in the @ecth quasi-direct
pole placement. As the nominal system, let us consider tiaeded system

of the form
M

z(t) = Aox(t) + Z Apz(t — 1) + Bu(t) (39)
k=1
wherex(t) € R* A, € ", k =0,1,...,M, B € ®*™ andr;, >
0, k=1,..., M, are time delays. We consider a state derivative feedback of
the form
u(t) = —Kz(t). (40)

Consider that delays appear in the feedback paths of thersy@9)-(40).
If we assume that there is a delay, on thek-th component of input,
1 < k < n, and a delayr;, in the measurement of tieth component of:
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then the closed-loop system becomes:
Ny n M
#(t)+ > BEp Y KFRa(t—1u, — 7)) =Y Aw(t—m)  (41)
k=1 =1 k=1

whereEj, = [ef;] € R™>*"« andF; = [f,] € R"*" are defined as in
(35). Analogously as in (34), the system (41) is of neutrpktyThus, even if
the system is stabilized by the feedback control law (4@ stinong stability
condition (36) needs to be satisfied in order to preservéligyator small

delay changes in the feedback loop.

4.3.1 The optimization problem

Let us define the spectral abscissa as the real part of thienaghroot of the
system (39)
a(K) :=sup {R(sx),k =1,2,..,00}.

The objective is to stabilize the system via minimizing tpectral abscissa
a(K). However, the constrainiy(K) < 1 needs to be satisfied as well. A
solution of this synthesis problem can be found by solvirggabnstrained
optimization problem

II}}IIO& (K) ,subject to vo(K) < 7, (42)

wherey < 1. In practical applications, due to robustness reasonshogld
avoid settings o for which~,(K) is close tol even. On the other hand, too
small choice ofy value would result in too conservative solution. From our
experience it is advisable to set [0.6, 0.9]. Since the available methods for
eigenvalue optimization problems [21, 32] can only deahwihconstrained
problems, a natural way to handle the constraint in (42) istmsf using a
barrier method, as outlined below.

# Neutral spectrum optimization using barrier method (Vyhlidal, Mi-
chiels, McGahan,MA J. Math. Contr. and Opt., 2010, [3])
The spectrum optimization problem with the aim to strondgbglize
the system (39) by the state derivative feedback contr(ligy can be
formulated as follows:

1. Find a a feasible point, i.e. gain values satisfying thestm@int. If
the feasible set is nonempty such a point can be found byrgplvi

m}%n Yo(K). (43)
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2. Solve in the next step theconstrained optimization problem
min {f(K)}, f(K) = a(K) = rlog (= 10(K))  (44)
wherer > 0 is a small number.

For the optimization task of the objective function, whishin general
non-smooth and non-convex, the combined BFGS - gradienplgzgnm
algorithm based on the code HANSO can be used, see [29]. Let us
remark that the optimization routines work with the gram(ﬁwo(K)

and . , .
Va(K) + ————V(K), 45
(K)+ —— ey V() (45)
that needs to be determined, e.g. numerically using metfiditite
differences.

4.4 Example - state derivative feedback design

Consider the model of the regenerative chatter given by (ff) a/couple of
dominant unstable poles and a controller of the form

u(t) = —K2(t), (46)

where K € R?** is the feedback gain. Let us recall that the signalg in
are considered as measured by acceleration and velociprseffirst, let us
minimize the spectral abscised k) in the space of parametefs with not
paying attention to the strong stability criterion (36).itdsthe optimization
tool HANSO, we achieve results given in the first row of thel&ah As can
be seen, the system has been safely stabilized. Howevesysihem is not
strongly stable aso(K) = 1.850. Secondly, let us minimize the objective
function (44), considering, (K p) < 0.8 and thebarrier parameter r = 0.1.
For the evaluation of the gradient of the objective functiés), notice, that
Va(K) is computed analytically and the gradieVity,(KXp) is computed
numerically by the method of finite differences. For the mmiziation task,
again, the HANSO algorithm is used. The results are givehérsecond row
of Table 1. In this case, the nominal system is both asyngatibyistable and
the stability is strong with respect to small feedback delay

For the analysis of the final settings given in Table 1, we jol®a comparison
of the spectrum distributions in Fig. 7. Next to the nomiriased loop system
(without feedback delays) we consider closed loop systethérform (41)
with the following small delays in the feedback loops

Tu, =€2107°, 7, =27 107°, 7, = 1077,

Ty =310"% 7 =v2107°, 7 =210"° 47
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Figure 7: Rightmost spectra of the regenerative chatter model. Speofrthe no-
minal system (7) [crosses]; spectrum of the closed loop systend€))eqith no fe-
edback delays) witli(,, [black circles] anf withK; [x]; spectrum of the closed loop
system (7)-(46) and with small feedback delays (47) with [circles] and withK ¢
[squares]; spectrum of the closed loop system (7)-(48) (filterredalve feedback)
with Ky andTy = 0.00005 [triangles]

Minima Yo K
234.24  —0.507 —795.64 0.899]

a(K) = —56.5  1.850 K“:{200.05 —0.51229 —344.76 1.506
1.3 —0.728  9.28 —0.135}

J(K) = —55.18  0.784 Kf:{—13.3 —0.623 —31.26  0.728

Table 1:Results of the state derivative feedback design by eigenvalue optimizéion
HANSO. First row - minimization of spectral abscissasecond row - minimization
of the functiory in (44)

As it has already been mentioned, the uncontrolled nomiystem is un-
stable due to a couple of poles located to the right of theldgtaboundary.
As can be seen, both applied optimization approaches ahiery similar
distribution of the spectra. In both cases, the real parfswfrightmost po-
les are located close to the spectral abscissa, whereassthef the infinite
spectrum follows the asymptotic root chain of the retardestesn. If small
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Figure 8: Spectral abscissa of the closed loop system (7)-(48) @iltelerivative fe-
edback with settind(,) considering feedback delays (47) with respect to the value of
the time constant of the filtéF

Figure 9: Response of the closed loop system (7)-(46) consideratthéek delays
(47) to the initial conditions(t) = 0,t € [—,0), 2(0) = [0,0,107°,0]"

feedback delays are introduced, the distribution of paidke (so far) domi-
nant region change only slightly in both cases. Howeveradt, the stability
is preserved only for the case with settiit. The other case witl, be-
comes unstable, with infinitely many unstable roots and leetsal abscissa
changes fromnx = —56.5 to a = 7288, see the new rightmost spectrum in
Fig. 7 - right. As it has been described in Section 4.2, therabty of the
system can be removed by applying the filtered derivativdidfaek

Tra(t) + u(t) = K3(t). (48)

However, the time constant of the filter needs to be large gimaa move
the spectral abscissa behind the stability boundary. In &igve show the
dependence of the spectral abscissa of the closed looprsysth K, with
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Figure 10: Response of the closed loop system (7)-(48) considexgutpéck delays
(47) to the initial conditions:(t) = 0,t € [—7,0),2(0) = [0,0,107°,0]F, T}y =
0.00005

respect to the time constant of the filtEf. As can be seen, the closed loop
system is stabilized fdf’y > 0.00003. In Fig. 7 the spectrum of closed loop
system (7)-(46) with settind<,,, 7y = 0.00005 and with feedback delays
(47) is shown. As can be seen, the dominant poles stayey &ase to the
spectrum of the nominal case. The results of the spectrusdasalysis are
confirmed by the system responses to the initial conditiginy = 0,¢ €
[~7,0),2(0) = [0,0,10~2,0]7 under the influence of feedback delays (47).
As can be seen in Fig. 9, the response with strongly stabbtbéesk K ¢, is
stable. It also applies if the strongly unstable setiihgwith stabilizable first
order filter withTy = 0.00005 is applied, see Fig. 10. However, as can be
seen in Fig. 11, fof’y = 0.000024, the response is unstable due to emerging
high-frequency oscillations.

4.5 Remark onp-stability

As it results form both the spectrum and response basedsimalythe above
example, the application of the filter, which turns the dyie@nirom neutral
to retarded-like one, can stabilize the closed loop systéim strongly un-

stable derivative feedback. However, the value of the timmestant of the
filter needs to be designed properly as not every value &tabithe system.
Obviously, for the given case study of the model of regenerahatter, most
likely, already the filter embedded in the smart accelenasiensors, which
is not modeled in fact, would remove the dangerous highaeeqy oscillati-
ons. On the other hand, it needs to be emphasized that thétuston cannot
be generalized. As has been demonstrated in (Michiels,idfghlet.al,SI -
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Figure 11: Response of the closed loop system (7)-(48) considexgutpéick delays
(47) to the initial conditions(t) = 0,t € [—,0), 2(0) = [0,0,107°,0]%, Ty =
0.000024

CON, 2009, [8]), in some cases, unmodeled dynamics (neglectedtar or
sensor dynamics) can have destabilizing effect even if #eeyd are not con-
sidered in the feedback loop. In the mentioned paper, tHemof p-stability
is introduced under which the closed loop system (31)-(@0pbust against
small modeling and implementation errors. For examples, ghiown that the
system (31) with an odd number of unstable polesdiee(—A) < 0 cannot
be safely stabilized by state derivative feedback eveniff @équipped with
a low-pass filter. Besides, the necessary conditiopfstabilizability by the
filtered state derivative feedback with small valuesIpfis that the matrix
(—I — BK,) has all eigenvalues in the left half of the complex plane.

5 Conclusions

The main results | have achieved in the subject of spectruseanalysis
and synthesis can be summarized as follows. Since the begiphmy re-
search carrier, | have focused on developing algorithmsgectrum analysis
and computation. Our algorithm QPmR for computation of ghecsrum of
quasi-polynomials has received considerable attentichencommunity of
time delay systems and has become one of the standard toapdotrum
computation. | have also achieved interesting resultsénfiibquency based
analysis, for example in the extension of Michajlov staypitiriterion for ap-
plication to neutral systems. In collaboration with Pradvel Zitek and Prof.
Wim Michiels, we have achieved original results in the spgutbased syn-
thesis of state and state-derivative feedback controllérs presented optimi-
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zation based quasi-direct pole placement method for SISDded systems
is a direct extension of classical pole placement algorittwwards the sys-
tems with infinite spectrum. In this method, the infinite dimsi®nal system
is controlled by static state feedback as usual, which méieesontroller im-
plementation much easier compared to implementing theifurad feedback.
The same applies also for presented state derivative fekdalzsign, which
is motivated by using accelerometers to measure the systgiarmparticu-
larly in vibration suppression control systems. Surpghbinas it results from
the theoretical analysis, even infinitesimally small femdbdelays, e.g. of
communication origin, may play important role in the clodedp system
stability. Therefore, the concept of strong stability retzbe taken into con-
sideration in the feedback design. Next it is demonstradtat] in some cases,
the neutrality induced by small feedback delays can be rechby a first or-
der filter. The results are demonstrated on the model of exgéwe chatter
in machining.

5.1 Further research

As regards my actual and further research in the field, the maections
are the following. Currently, the assessment of stronglgtabriterion using
polynomial optimization approaches is being solved. Thekwdll also con-
tinue in studying the synthesis and control design of segdlback, both pro-
portional and derivative. Particular attention will begb#o the practical eva-
luation of the derived results. Recently, we have alsoedaid work in the
subject of delay based signal shapers for compensatingsinallle oscilla-
tory modes of flexible structures with the aim to involve spganethods in
their design.

5.2 Projects

Next to the theory of time delay systems done in the framewbtke project
Centre for Applied Cybernetics, | have also participated in two EU projects.
The pastEU-FP6 Project SEAT focused on developing Smart technologies
for stress free air travel. Within this project, we have deed a concept of
local microclimate control in the area of aircraft passemwjeh the possibi-
lity of local temperature and relative humidity adjustmeitek, Vyhlidal,
etal.,Buildingand Env., 2010, [12]). The currently runningU-FP7 project
Climate for culture focuses on the analysis of microclimate in historical bu-
ildings under the influence of climate change. Our role irpitogect, in which

I am a work package leader and a member of Steering Commigt®ejesign
energy efficient non-invasive mitigation measures for ogtimate control in
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historical interiors, following the directions set up initgk, Vyhlidal, Buil-
ding and Env., 2009, [13]). Next, | am also involved in the industrial proj
MPO TIP of Pike Automation company focused on the optimaawf in-
dustrial furnaces.
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