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Summary
This document provides an overview of the recent results in the research
field of spectrum based analysis and synthesis of time delay systems, which
have been achieved with my considerable contribution. Due to the develop-
ment of modern numerical and optimization methods and with the support
of constantly increasing performance of computers and software, this field of
infinite-dimensional systems has undergone a substantial development in the
last decade. In this text, first, the subject of linear time delay systems is in-
troduced with the focus on the fundamental features of the spectra of poles
of neutral and retarded systems. Even though the spectra of these classes of
delay systems are both infinite, substantial differences exist in the spectrum
distribution and stability. These aspects need to be taken into consideration in
both the analysis and control synthesis of the systems. As anexample of the
retarded time delay system, a model of regenerative chatterin cutting ope-
ration is included. Next, results achieved in the field of spectrum analysis and
computation are outlined. The main result of this research is an original al-
gorithm QPmR for computation of the extensive spectra of quasi-polynomial
characteristic functions of the system. Besides, the extension of the stability
determining Michajlov criterion towards neutral systems is presented. The
first presented results on the spectrum based synthesis are in the subject of
quasi-direct pole placement of retarded systems. The method allows the user
to assign the dominant poles of the closed loop system and to guarantee their
dominance using optimization methods. It is done by shifting the unassigned
rightmost poles from the region of the assigned poles. Consequently, the op-
timization based synthesis of the spectrum is extended to systems controlled
by state derivative (acceleration) feedback. It is shown that arbitrarily small
feedback delays can cause instability if the closed loop neutral dynamics is
not strongly stable. This stability aspect is considered inthe synthesis of the
controller. Besides, the application of filter in the feedback loop is applied
in order to remove neutrality of the system. Both the analysis and control
synthesis are tested on a case study example - model of regenerative chatter.
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Souhrn
Je zńamo, že dopravńı (časov́e) zpǒzděńı má obecňe v řı́dićıch syst́emech
destabilizuj́ıćı efekt - č́ım je časov́a prodleva aǩcńıho źasahu delš́ı, t́ım
obt́ıžněji se syst́em řı́d́ı. Tento jev plat́ı nejenom v technicḱych aplikaćıch
řı́zeńı, ale i v mnoha aspektech každodenńıhoživota. Efekt zpǒzděńı můžeme
nap̌rı́klad pozorovat ve v́yvoji počtu student̊u jednotliv́ych univerzitńıch
obor̊u v závislosti na aktúalńıch mǒznostech jejich uplatňeńı v dańych obo-
rech.
Inaugurǎcńı spis obsahuje p̌rehled aktúalńıch výsledk̊u výzkumu v oblasti
spektŕalńı anaĺyzy a synt́ezy řı́zeńı syst́emů s dopravńım zpǒzděńım, na
kteŕem jsem se v minulých letech v́yrazňe pod́ılel. Text zǎćıná úvodem do
problematiky syst́emů s dopravńım zpǒzděńım, kteŕy je zejḿena zam̌ěren na
spektŕalńı vlastnosti retardovańych a neutŕalńıch syst́emů. Spolěcným aspek-
tem ťechto ťrı́d syst́emů s dopravńım zpǒzděńım, jsou nekoněcná spektra je-
jich vlastńıch hodnot, reprezentujı́ćıch jednotliv́e módy dynamiky. Syst́emy
ale vykazuj́ı významńe rozd́ıly v distribuci spekter ṕolů a v aspektech
týkaj́ıćıch se stability systémů, na kteŕe muśı být brán žretel p̌ri anaĺyze
dynamiky a synt́eze řı́zeńı. V rámci úvodu je prezentov́an model s do-
pravńım zpǒzděńım popisuj́ıćı vzájemńe p̊usobeńı nože a rotuj́ıćıho ob-
robku p̌ri soustrǔzeńı s ćılem simulovat potenciálně vznikaj́ıćı netlumeńe
vibrace, tzv. regenerative chatter. Tento model je dále poǔzit k testov́ańı
navřzeńych spektŕalńıch metod synt́ezy řı́zeńı. Prvńı nosńe t́ema spisu se
zab́yvá výsledky, kteŕe jsem dośahl v oblasti anaĺyzy spektŕalńıch vlastnost́ı
syst́emů se zpǒzděńım. Hlavńım výsledkem je algoritmus QPmR, který byl
navřzen pro v́ypočet rozśahlých spekter kvazi-polynomiálńıch charakteris-
tických funkćı syst́emů se zpǒzděńım. Dále je pak zḿıněno rožśıřeńı apli-
kovatelnosti Michajlovova krit́eria stability na neutrálńı syst́emy. Prvńı z
prezentovańych metod spektŕalńı synt́ezy se zab́yvá synt́ezou stavov́eho re-
gulátoru pomoćı uḿıst’ováńı dominantńıch ṕolů nekoněcného spektra. Do-
minance uḿısťeńych ṕolů je zajǐsťena s vyǔzitı́m optimalizǎcńıch metod, po-
moćı nichž je dosǎzeno izolov́ańı těchto ṕolů od zbytku spektra. Ńasledňe je
spektŕalńı optimalizǎcńı princip aplikov́an na synt́ezu stavov́eho derivǎcńıho
(akcelerǎcńıho) reguĺatoru. V ŕamci anaĺyzy probĺemu je demonstrov́an ne-
gativńı vliv malých dopravńıch zpǒzděńı na stabilitu uzav̌reńeho regulǎcńıho
obvodu v p̌rı́paďe, že neńı zajišťena tzv. silńa stabilita vznikĺeho neutŕalńıho
syst́emu. Tento aspekt je dále zohledňen v synt́ezeřı́zeńı. Jako alternativńı
přı́stup je uvǎzováno zapojeńı filtru do zp̌etńe vazby, s jehǒz pomoćı se od-
strańı neutŕalńı charakter dynamiky systému. Jak analýza vlastnostı́ tak i
synt́ezařı́zeńı stavov́eho reguĺatoru jsou demonstrovány na p̌rı́kladu modelu
interakce nǒze a obrobku p̌ri soustrǔzeńı.
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1 Introduction

This document provides an overview of the results achieved in the spectrum
based analysis and synthesis of time delay systems at which Ihave been in-
volved. The original research results, which were published in a number of
prestigious international journals, have been achieved thanks to an extensive
scientific collaboration, namely with Prof. Pavel Zı́tek (CTU in Prague), Prof.
Wim Michiels (KU Leuven, Belgium), Prof. Vladiḿır Kučera (CTU in Pra-
gue), Prof. Nejat Olgac (University of Connecticut, USA), Associated Prof.
Rifat Sipahi (Northeastern University, Boston USA) and Doc. Didier Henrion
(LAAS CNRS Toulouse, France/CTU in Prague). In order to achieve com-
pactness of the text, the results are presented within a broader research con-
text. All the main results of my collaborative research achieved within the
presented topics are highlighted with symbol# and provided with a reference
to a journal where the results were published. The references are ordered so
that the works [1] - [16] are co-authored by me, while the restare the works
related to the state of the art in the particular fields.

1.1 Linear time delay systems

Consider the general description of time delay system in theform

ẋ(t)+

N
∑

k=1

Hkẋ(t−τk) = A0x(t)+B0u(t)+

N
∑

k=1

Akx(t−τk)+Bku(t−τk), (1)

wherex(t) ∈ ℜn is the state variable,u(t) ∈ ℜm is the vector of in-
puts, τk, k = 1, 2 . . . , N are time-delays, andHk, A0, Ak, B0, Bk are
real matrices. The system state is determined by function segmentxt(τ) =
x(t+τ), τ ∈ [−T, 0], whereT is the largest time delay. The initial conditions
are given asx0(τ) = x(τ), τ ∈ [−T, 0]. Additionally, the function segment
of inputu0(τ) = u(τ), τ ∈ [−T, 0] needs to be defined as a part of the initial
conditions too.
In the general form, (1) is a system of neutral type. IfHk = 0, k =
1, 2 . . . , N , the system is of retarded type, which is more commonly used
in the engineering applications, e.g. to model heat transfer, chemical and
combustion processes, distributed networks, and even systems in economics
or biology, see e.g. [23] and references therein. The neutral equations can
be used for instance for modeling lossless transmission lines, lossless pro-
pagation phenomenon, combustion systems, it arise in boundary controlled
hyperbolic PDEs when subjected to small feedback delays andin some im-
plementation schemes of predictive controllers [28].
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1.2 System spectrum, stability

Stability of the system (1) can be determined on the basis of the root distribu-
tion of the characteristic equation

M(s) = det

(

s

(

I +
N
∑

k=1

Hke
−sτk

)

−A0 −
M
∑

k=1

Ake
−λτk

)

= 0. (2)

As the equation is transcendental, in general, it has infinitely many roots.
The spectra of both retarded and neutral systems are infinite. For the stability
evaluation purposes, let us define the spectral abscissa of the system, i.e. the
smallest upper bound of the spectrum as

α = max {ℜ(sk), k = 1, 2, ..,∞} . (3)

The system (1) is stable if and only ifα ≤ 0, i.e. all the roots of the equation
(2) are located in the left half of the complex plane. As regards the spectrum
distribution, considerable differences exist between theretarded and neutral
systems. Consider, that all the poles of the system are ordered in a sequence
sk, k = 1, 2, ..,∞ according to their magnitude|sk|. The fundamental diffe-
rences between the retarded and neutral systems can be identified as follows:

• Retarded systems: given a ∈ R, the number of roots satisfying
ℜ(sk) ≥ a is finite. A direct consequence of this property is that the
number of unstable roots is at most finite. Moreover it holds that both
ℜ(sk) → −∞ andℑ(sk) → ∞, (−∞) ask → ∞.

• Neutral systems: there exist sucha ∈ R, b ∈ R, a < b, both finite, that
an infinite number of rootssk is located within the vertical stripa <
ℜ(sk) < b. A direct consequence of this property is that the number of
unstable roots can be infinite. Besides, the spectral abscissaα can be
discontinuous with respect to small changes in the delays. Thus, even
infinitesimally small changes in the delays can cause instability.

Taking into considerations these fundamental spectral features, the retarded
system can be dealt with in a similar way as the high order delay free systems.
The dynamics and stability is determined by the group of dominant, rightmost
roots. However, it is not the case of neutral systems, where the instability can
be caused by the roots on the very high frequencies. Besides,the discontinuity
of α with respect to small delay changes is a risky feature. In order to clarify
this stability aspect, let us define the difference equationassociated to the
system (1) as follows

x(t) =

N
∑

k=1

Hkx(t− τk), (4)
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and its characteristic equation

D(s) = det(I −
N
∑

k=1

Hk exp(−sτk)) = 0. (5)

It can be easily proven, see e.g. [6], that the infinite spectrum of (4), i.e.
the roots of (5) lie within a certain vertical strip of the complex plane
a < ℜ(sk) < b and the spectrum of (1) tend to match the spectrum of (4)
in the high frequencies. In order to deal with the problem of sensitivity of the
spectral abscissa of difference equations and neutral systems and its stability
consequences, the concept of strong stability has been introduced [23, 24]:
The difference equation isstrongly stable if and only if

γ0 < 1, γ0 = max{rσ(
N
∑

k=1

Hk exp(iθk))| θk ∈ [0, 2π], 1 ≤ k ≤ N}, (6)

whererσ denotes the spectral radius. If the strong stability condition is sa-
tisfied, the neutral system has at most finite number of roots located to the
right of the stability boundary. If the condition is not satisfied, the system can
be stable for some delay values. However, stability is not strong as even ar-
bitrarily small variations in the delay values destroy the stability. Obviously,
evaluation of the strong stability by (6) is not an easy task already for more
than two delays. The criterion can either be evaluated numerically via griding
the space of parametersθk, k = 1..N and solving the eigenvalue problem for
every grid point, as it was done in [6, 8]. Recently Henrion and Vyhlı́dal [16]
proposed an approach based on trigonometric polynomial optimization where
the problem is formulated in a form of LMI.

1.3 Introductory example - model of regenerative chatter

The introductory example shows the typical application of time delay systems
in mechanical engineering. One of the most important causesof machining
instability is the so called regenerative chatter effect, [25, 30, 31]. This re-
generative chatter is undesirable due to its adverse effects on surface finish,
machining accuracy and also tool life. Because of some external perturbati-
ons, the tool starts a damped oscillation relative to the workpiece. After a
revolution of the workpiece, the chip thickness will vary atthe tool due to
this wavy surface. Therefore, the cutting force is dependent on the actual and
delayed values of the displacement of the tool. Fig. 1 shows aschematic of
the regenerative chatter problem in question. The tool is assumed to be com-
pliant in both thex andy axis, whilst the workpiece is assumed to be rigid.
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Figure 1: Schematic of a 2-DOF regenerative chatter problem in machining
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Figure 2: Response of system (7) to initial conditionsz(t) = 0, t ∈ [−τ, 0), z(0) =
[0, 0, 10−5, 0]T , x - dashed,y - solid

It has been shown in [25] that the displacements of the tool can be modeled
as a 2-DOF freedom retarded oscillator

ż(t) = A0z(t) +A1z(t− τ) +Bu(t) (7)

wherez = [x, ẋ, y, ẏ]T , x(t), y(t) are displacements of the tool,u(t) =
[ux(t), uy(t)]

T , ux(t), uy(t) are the control inputs of the system, exerted e.g.
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by piezoactuators.,

A0 =









0 1 0 0
−kx

m
−cx
m

−κx

m
0

0 0 0 1

0 0 − ky+κy

m

−cy
m









, A1 =









0 0 0 0
0 0 κx

m
0

0 0 0 0
0 0

κy

m
0









, (8)

B =

(

0 1 0 0
0 0 0 1

)T

,

As the values of parameters, we considerm = 5kg, cx = cy = 1.47kNs/m,
kx = ky = 1.2MN/m for the modal mass, damping and stiffness respectively,
κx = 2MN/m andκy = 1.45MN/m for the cutting force coefficients. The
delayτ = 0.0105s is equal to the period of revolution of the workpieceτ =
2π
Ω , whereΩ is the angular velocity of the workpiece. In Fig. 2, the response of

system (7) to initial conditionsz(t) = 0, t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T

is shown. As can be seen from the increasing amplitudes of theoscillations,
the system is unstable. Further on in the text, this conclusion is confirmed by
the analysis of the spectrum, see Fig. 5, 7. As can be seen in the figures, the
system is unstable with a single couple of unstable polesλ1,2 = 1.5±542.8j,
i.e.α = 1.5.

2 Spectrum analysis and computation

There exists several algorithms and software routines for analysis and com-
putation of the spectrum of time delay systems. The most commonly used are
DDE-biftool [22] andTRACE-DDE [20]. In spectrum computation, discreti-
zation approaches are used as a rule. An alternative to theseapproaches is the
algorithmQPmR proposed by Vyhlı́dal and Źıtek, which is based on mapping
and comprehensive analysis of the system characteristic function [14, 1]. The
algorithms utilizes the results outlined below.
In the analysis, we consider the quasi-polynomial characteristic function of
the system (1) in the following form

M(s) =
N
∑

j=0

pj(s)e
−sαj (9)

whereα0 > α1 > ... > αN−1 > αN = 0 andpj(s) =
∑mj

k=0 pj,ks
k are

polynomials ins of degreemj ≤ n.
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2.1 Spectrum distribution

The spectrum asymptotic distribution features of time delay systems have
already been studied by Bellman and Cooke (1963), [19]. Determining the
principal terms of the system characteristic functionM(s), the distribution
properties of the roots with high magnitudes has been determined. Let us
define

g(s) =
N
∑

j=1

pj,mj
smj (1 + εj(s))e

sϑj (10)

which has the same distribution of zeros as (9), whereϑj = α0 − αj ,
0 = ϑ0 < ϑ1 < ... < ϑN−1 < ϑN , pj,mj

6= 0 (j = 0, 1, ..., N) and
the functionsεj(s) have the propertylim|s|→∞ |εj(s)| = 0. As it has been
shown in [19], with the pointsPj = (ϑj ,mj), we can define theDistribution
diagram. It is constructed as upward convex polygonal lineL over the points
Pj = (ϑj ,mj), see Fig. 3 for demonstration. Let the successive segments of
L be denoted byL1, L2,....LM , numbered from left to right, and letµr denote
the slopes ofLr. For each segment of the spectrum distribution diagramLr

with µr > 0, a retarded chain with infinitely many roots exists. The segments
with µr = 0 correspond to the neutral part of the spectrum, which is located
in a vertical strip of the complex plane. Based on theDistribution diagram
and utilizing further results by Bellman and Cooke [19], Vyhlı́dal and Źıtek
derived the asymptotic exponentials of the retarded root chains as follows:

# Asymptotic exponentials of the root chains(Vyhlı́dal and Źıtek,
IEEE-TAC, 2009 [1])
For large magnitudes ofs = β + jω, β ∈ R, ω ∈ R

+, the asymptotic
curves of the root chains of (10) can be approximated by the asymptotic
exponentials

ω = exp

(

cr − β

µr

)

(11)

wherecr = µr ln |wrk |, andwrk is a zero of the polynomial

fr(w) =

Nr
∑

j=0

p̄jw
m̃j (12)

wherem̃j = m̄j − m̄0, m̄j and p̄j correspond to those pointsPj =
(ϑj ,mj) defined for (10) that lie on the particular segmentLr. Nr + 1
is the number of points on the segmentLr.

11



If the system is neutral,µM = 0, and the characteristic function of the asso-
ciated difference equation to the system (1) is given by

D(s) =

NM
∑

j=0

p̄je
−sᾱj , (13)

where the coefficients̄pj and delays̄α0 > ᾱ1 > ... > ᾱNM
= 0 correspond

to the pointsPj on the segmentLM . Utilizing the results derived in [6], the
safe upper bound for the neutral part of the spectra can be computed in the
following way:

# Safe upper bound of the spectrum of the difference equation(Mi-
chiels and Vyhĺıdal,Automatica, 2005, [6])
The safe upper boundCD of the spectrum of the associated diffe-
rence equation is determined as a single zero of the strictlydecreasing
function

c ∈ R →

NM−1
∑

j=0

∣

∣

∣

∣

p̄j
p̄NM

∣

∣

∣

∣

e−cᾱj − 1. (14)

2.2 QPmR: Quasi-polynomial mapping based rootfinder

The QPmR algorithm has been designed by Vyhlı́dal and Źıtek in [14] and
extended in [1] to compute all zeros of a quasi-polynomial ina given region
D = [βmin, βmax] × j[ωmin, ωmax] of the complex plane. The main idea of
the algorithm is given as follows:

# Quasi-polynomial root mapping (Vyhlı́dal and Źıtek, IEEE-TAC,
2009, [1])
Considers = β + jω, β ∈ R, ω ∈ R

+, the characteristic quasi-
polynomialM(s) can be split intoR(β, ω) = ℜ(M(β + jω)) and
I(β, ω) = ℑ(M(β + jω)). Consequently, the characteristic equation
M(s) = 0 can be split into

R(β, ω) = 0,
I(β, ω) = 0.

(15)

Analytic solution of the set (15) is possible only for the most simple
quasi-polynomials. Application of standard numerical equation solvers
is possible, but it is often limited by the complexity of the problem.
In QPmR algorithm, the zero-level curve tracing algorithm is applied
in order to approximate the contours in the planeβ × ω described by
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(15). Consequently, the intersection points of the contours are determi-
ned providing the first approximation of the root positions.Finally, the
accuracy of the root is increased by applying theNewton’s method.

The Quasipolynomial rootfinderQPmR described above has been implemen-
ted as a Matlab function. Next to determining the position ofthe roots, it also
performs the additional analysis of the spectrum: determining the asymptotic
exponentials of the root chains, computing spectrum of the associated diffe-
rence equation and its safe upper bound, if the system is neutral. The rootfin-
der has become one of the tools for the spectrum analysis (altogether, there
are more than 15 references to the papers [14] and [1] on the ISI Web of
Science). For example, in [9] (Olgac, Vyhlı́dal and Sipahi,SICON, 2008), the
method was applied to determine the stability maps in the delay domain. The
following example demonstrates the application of the algorithm.

2.2.1 Example - application of QPmR algorithm

Consider the following quasi-polynomial

M(s) = (s4 + 2s2) + (0.5s4 − 3)e−s + (0.6s4 + 0.8s2)e−2s+
0.6s2e−3s + (−3s3 + s2)e−4s + (3s2 − 4)e−6s + e−8s.

(16)

The task is to compute all the roots located in the region given byβ ∈ [−6, 4]
andω ∈ [0, 150]. The results are shown in Fig. 3, which consists of quasi-
polynomial zeros, asymptotic exponentials of the root chains, safe upper
bound and zeros of the associated difference equation.

2.3 Michajlov criterion for neutral systems

It is well known that for stability assessment of delay free and retarded sys-
tems, Michajlov criterion can be used [33]. The method, which is based on
direct application of the argument increment principle, checks whether the
right half of the complex plane is free of function zeros.
Consider the characteristic functionM(s) of the system is of polynomial or
retarded quasi-polynomial form. Then the system is stable if and only if the
Michajlov criterion

lim
r→∞

∆argM(ω)|ω∈[0,r) = n
π

2
. (17)

is satisfied. However, as has been shown by Vyhlı́dal and Źıtek in [2], the
criterion cannot be directly applied to neutral quasi-polynomials as the limit
at infinity does not exist. Consequently, the modification ofthe criterion for
evaluating stability of the neutral systems has been proposed as follows:
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Figure 3: Result of the QPmR Matlab function applied to the quasipolynomial (16).
Black dots - quasi-polynomial zeros, solid lines - asymptotic exponentials of the root
chains, dashed line - safe upper bound, crosses - zeros of the associated difference
equation

# Modification of Michajlov criterion for neutral systems (Vyhlı́dal
and Źıtek,IEEE TAC, 2009b, [2])
Consider a system (1) with characteristic quasi-polynomial (9). If
M(ω) 6= 0 for anyω ∈ R

+, the functionM(s) has no zeros in the
right half of thes-plane if and only if the argument ofM(ω) (begin-
ning at zero forω = 0) reaches the increment forω → ∞ lying within
the band given by the condition

n
π

2
− Φ ≤ ∆argM(ω)|ω∈[0,∞) ≤ n

π

2
+ Φ (18)

where

Φ = arcsin





NM−1
∑

i=0

∣

∣

∣

∣

p̄j
p̄NM

∣

∣

∣

∣



 . (19)

The symbols in (19) have the same meaning as in (13). Obvi-
ously, the necessary condition for determining the angleΦ is that
∑NM−1

i=0

∣

∣

∣

p̄j

p̄NM

∣

∣

∣
≤ 1. In fact, this is the strong stability condition for

scalar systems [23, 6].
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Figure 4: The transformation (21) of (20),ω ∈ [0, 2000], dash-dotted line - stability
sector determined by the vertex angleΦ; right - a part of the rightmost zeros of (20)

If the condition (18) is satisfied, system (1) is stable and the stability is strong
(insensitive to small changes in the delays).

2.3.1 Example - Michajlov criterion application

Let us investigate the stability of the system with the characteristic quasi-
polynomial

M(s) = s3(1 + 0.23e−s − 0.25e−πs + 0.3e−4s)+
+s2(1.3− 0.3e−5s) + 2.2s+ 1− 0.7e−7s.

(20)

By applying the mapping

Q(s) =
M(s)

1 + |M(s)|1.1 , (21)

it can be seen from the hodograph in Fig. 4 that, obviously

3
π

2
− Φ ≤ ∆argQ(ω)|ω∈[0,∞) ≤ 3

π

2
+ Φ (22)

whereΦ = arcsin(0.23 + 0.25 + 0.3) = 51.3◦. Thus the condition (18) is
satisfied. As alsoM(ω) 6= 0 for the whole frequency range, the system is
stable with all roots in the left half of the complex plane, see the right part of
Fig. 4.
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3 Quasi-direct pole placement

The quasi-direct pole placement method proposed in [5] is inspired by the
classical pole placement method for systems without delays. For n − th
order SISO systems, the pole placement method allows the assignment of
n poles to desired positions and, accordingly, the gain values of a state
feedback controller are computed, see e.g. [26]. As it has been shown in
[10, 11, 15, 27, 32, 33], the same idea can be applied to adjustthe dyna-
mics of time delay systems. However, such a direct assignment of poles has
considerable limitations induced mainly by the infinite system’s spectrum and
the limited degrees of freedom in the controller parameter space.
We consider a general retarded system of the form

ẋ(t) =

∫ T

0

dA(τ) x(t− τ) +

∫ T

0

dB(τ) u(t− τ), (23)

wherex ∈ R
n is the vector of state variables,u ∈ R is the system’s input,

τ is the delay variable, which is constrained by the relation0 ≤ τ ≤ T .
The functional matricesτ 7→ A(τ) ∈ R

n×n, τ 7→ B(τ) ∈ R
n×1 describe

the distribution of the delay and cover both multiple lumped(pointwise) and
distributed delays, [33]. Consider a feedback controller of the form

u(t) = −Kx(t), (24)

whereK := [k1 k2 · · · kp] contains the controller parameters to be de-
termined. The stability properties of the feedback system (23) and (24) are
determined by the roots of the characteristic equation

M(s) = det

(

sI −A(s)−
p
∑

j=1

kjB(s)

)

= 0, (25)

whereA(s) =
∫ T

0
exp(sτ)dA(τ), B(s) =

∫ T

0
exp(sτ)dB(τ). Under the

conditiondet(sI −A(λ)) 6= 0, the characteristic equation can be written as

det
(

I −
∑p

j=1 kjB(s)(sI −A(s))−1
)

= 0

⇔ 1−
∑p

j=1(sI −A(s))−1B(s)kj = 0.

Assigning a real pole to the locationc yields the following constraint on the
gain values:

p
∑

j=1

(cI −A(c))−1B(c) kj = 1.

16



In this way, assigning0 ≤ m ≤ p poles toλ1, . . . , λm eventually results in a
set ofm constraints which can be written in the form

SK = R, (26)

whereS ∈ R
m×p andR ∈ R

m×1. Using the singular value decomposition
S = UΣV ∗, where(·)∗ denotes the complex conjugate transpose, condition
(26) can be transformed into the following form

ΣL = U∗R (27)

whereL = V ∗K. Letting L = [l1 · · · lp]
T , U∗R = [r̄1 · · · r̄m]T , Σ =

[diag(σ1, . . . , σm) 0], and assuming thatS is of full (row) rank, we finally get
the following expression for the parameterslj , j = 1, . . . ,m, corresponding
to the assigned polesλi, i = 1..m:



















l1 = r̄1/σ1,
l2 = r̄2/σ2,
...

...
lm = r̄m/σm.

(28)

# Controller parameterization (Michiels, Vyhĺıdal and Źıtek, J Pro-
cess Contr., 2010, [5])
Assume thatS has full row rank. Considering parametersl1, . . . , lm as
fixed according to (28), andlm+1, . . . , lp being kept as free parameters,
one obtains a parametrization of all controllers that assign m poles to
λ1, . . . , λm.

The next step of the pole placement procedure is as follows. Assume thatm
poles are assigned as described in (28). Thus, the parameters l1, . . . , lm are
fixed and the parameterslm+1, . . . , lp are available for further adjustment of
the system’s spectrum. Applying the algorithm described in[32], the para-
meterslm+1, . . . , lp are to be used to push the other rightmost poles as far as
possible to the left. However, unlike in [32], where the spectral abscissaα is
minimized, we minimize instead the function

ᾱ(lm+1, . . . , lp) = sup {ℜ(λ) :
det(λI−A(λ)−

∑p

j=1
kj(lm+1,...,lp)B(λ))

Πm
j=1

(λ−λj)
= 0

}

.
(29)

Technically, the evaluation of̄α is rather straightforward. First, the rightmost
characteristic roots of (23) and (24) are computed. In the next step, thein-
variant characteristic rootsλ1, . . . , λm are removed from the spectrum and
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the objective function is obtained as̄α = supi>m(ℜ(λi)). In order to per-
form the minimization task for the objective function (29),which is, in gene-
ral, non-smooth and non-convex, hybrid algorithm HANSO [29] combining
BFGS and gradient sampling optimization method can be used.The overall
algorithm can then be summarized as follows:

# Algorithm - Quasi-direct pole placement (Michiels, Vyhĺıdal and
Zı́tek,J Process Contr., 2010, [5])
Consider feedback system (23) and (24).

1. Select polesλ1, . . . , λm, m < n to be assigned.

2. Compute the parametersl1, . . . , lm as described in (28).

3. Minimize the function(lm+1, . . . , lp) 7→ ᾱ(lm+1, . . . , lp).

4. If min ᾱ < min1≤j≤m ℜ(λj), accept the result and transformL
to K by K = V L. In the other case (that is, the assigned poles
cannot be separated from the remainder of the spectrum), select
different assigned poles and go to step (1).

3.1 Example - quasi-direct pole placement

Consider the model of the regenerative chatter given by (7).The task is to
perform pole placement for the system using the state feedback

uy(t) = −Kz(t). (30)

Assigning the couple of polesλ1,2 = −100±j600 as described in the Quasi-
direct pole placement algorithm, we obtain gain parameters

K =
[

1.9301 · 105, 1.3249 · 102, 1.4555 · 106, 1.0631 · 103
]

,

resulting in favorable improvement of the system stability, as demonstrated
in Figures 5, 6. As can be seen from the spectrum, the system has been safely
stabilized and̄α = −131.5 < ℜ(λ1,2). Thus, the assigned poles are truly
the dominant poles. The considerable improvement can also be seen in the
response to initial conditionsz(t), t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T in Fig.
6, when compared with unstable system response in Fig. 2. Letus remark that
theHANSO algorithm [29] was applied to perform the optimization task.
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Figure 5: Rightmost spectrum of the regenerative chatter model (7), crosses - open
loop system spectrum, dots - closed loop system spectrum controlled by (30), assigned
poles:λ1,2 = −100± j600.
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Figure 6: Response of the closed loop system (7)-(30) to initial conditionsz(t) =
0, t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T , x - dashed,y - solid

4 State derivative feedback

This section presents results achieved in the spectrum based analysis and syn-
thesis of state derivative feedback with small feedback delays. The motivation
for state derivative feedback comes from controlled vibration suppression of
mechanical systems [17, 18]. In vibration control problems, accelerometers
are typically used for measuring the system motion. As a result accelerations
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and velocities are the sensed variables as opposed to displacements.

4.1 Effect of small delays in the feedback loop

It is well known that small delays systematically originatefrom the latency
effect of implementing the measurements and control actions, occurring, e.g.,
as a consequence of computational delays, delays arising from AD-DA con-
version or communication delays. As a rule, such delays are very small com-
pared to the dominant modes of the system, which justifies to neglect them
in the feedback design in most applications. However, it hasbeen shown in
our papers [4, 8] that such delays cannot always be safely neglected if state
derivatives are used for feedback, as even arbitrarily small implementation
delays may cause instability. We consider the delay free system in the form

ẋ(t) = Ax(t) +Bu(t), (31)

wherex ∈ R
n is the vector of state variables,u ∈ R

nu is the vector of inputs
andA, B are constant coefficient matrices. The proportional-derivative (PD)
state controller is considered as follows

u(t) = −Kp x(t)−Kd ẋ(t) (32)

whereKp ∈ R
nu×n andKd ∈ R

nu×n are the feedback gain matrices. The
closed loop system (31)-(32) is given by

ẋ(t) = (I +BKd)
−1(A−BKp)x(t) (33)

Obviously, then eigenvalues of the matrix(I+BKd)
−1(A−BKp) determine

the stability and the dynamic behavior. As it has been shown by Abdelazis and
Valá̌sek [17, 18], the necessary condition for stabilizability of the system (31)
is thatdet(A) 6= 0, i.e. the system does not have a pole at the origin of the
complex plane.
Consider that delays appear in the feedback paths of the system (31)-(32) as
follows: a delayτuk

on thek-th component of inputu, 1 ≤ k ≤ nu, a delay
τẋl

in the measurement of thel-th component ofẋ, and a delayτxl
in the

measurement of thel-th component ofx, 1 ≤ l ≤ n. The closed-loop system
becomes

ẋ(t) +

nu
∑

k=1

BEk

n
∑

l=1

KdFlẋ(t− τuk
− τẋl

) =

Ax(t)−
nu
∑

k=1

BEk

n
∑

l=1

KpFlx(t− τuk
− τxl

), (34)
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whereEk = [eki,j ] ∈ R
nu×nu andFl = [f l

i,j ] ∈ R
n×n satisfy

eki,j =

{

1, i = j = k
0, otherwise

, f l
i,j =

{

1, i = j = l
0, otherwise

, (35)

for k = 1, . . . , nu andl = 1, . . . , n. Notice that ifKd 6= 0, the system (34)
is a time-delay system of neutral type, which induces complications w.r.t.
stability issues. As it has been discussed above, the strongstability needs
to be guaranteed for neutral systems. Even if the closed loopsystem (33)
is stable, the stability can be lost due to small delays in thestate derivative
feedback paths. However, as it has been shown in [7], if dependencies in the
delays occur, the strong stability condition needs to be modified as follows:

# Strong stability condition on the gain parameters(Michiels W., T.
Vyhlı́dal, P. Źıtek, H. Nijmeijer and D. Henrion,SICON, 2009, [7])
Assume the system (31) is stabilized with the control law (32). If the
feedback gainKd is such that

γ0(Kd) := max

{

α

(

−
nu
∑

k=1

BEk

n
∑

l=1

KdFle
i(µk+νl)

)

:

~µ ∈ [0, 2π]nu , ~ν ∈ [0, 2π]n} < 1, (36)

then the exponential stability of the closed-loop system isrobust aga-
inst small feedback delays.

4.2 Filtered derivative feedback

From the practical point of view, the neutrality induced by the state derivative
feedback should be considered as the worst (limit) case whenwe have both
the ideally true model and the ideal controller. In practice, any filtering effect
in the feedback loop is likely to remove the neutrality. Thisis demonstrated
on using the application of filtered derivative feedback:

# Filtered state derivative feedback(Vyhlı́dal T., W. Michiels, P. Źıtek
and P. McGahan,Contr. Eng. Practice, 2009, [4])
When applying a first order filter to (32), the controller becomes:

T u̇(t) + u(t) = −Kp x(t)−Kd ẋ(t) (37)

whereT = 1/ωf is the time constant of the filter, andωf is its cutoff
frequency.
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The closed loop system under the influence of the feedback delays then
changes from (34) to

ż(t) +

n
∑

k=1

[

0 0
1
T
KdFk 0

]

ż(t− τẋk
) =

[

A 0
0 − 1

T
I

]

z(t)+

+

nu
∑

k=1

[

0 BEk

0 0

]

z(t− τuk
)

n
∑

k=1

[

0 0
− 1

T
KpFk 0

]

z(t− τxk
),

(38)

with Ek, 1 ≤ k ≤ nu andFk, 1 ≤ k ≤ n defined in (35). This system
corresponds to the degenerate case where the characteristic function of
the associated difference equationD(s) = 1. If Kd andT are such that
the delay free system is asymptotically stable, the stability is preserved
for small values of the delays.

Although stability is always preserved for sufficiently small delays, the ma-
ximal allowable delays tend to zero asT → 0 wheneverγ0(Kd) > 1. This
implies an inherent trade-off in determining the cut-off frequency of the filter:
in order not to affect the nominal, delay free behavior too much the cut-off
frequency should be sufficiently large. However, if the cut-off frequency is
too large, then the delay margin may be unacceptably small.

4.3 State derivative feedback design for retarded systems

As a possible way of the state derivative feedback design, optimization based
spectral synthesis can be applied, similarly as in the section on quasi-direct
pole placement. As the nominal system, let us consider the retarded system
of the form

ẋ(t) = A0x(t) +
M
∑

k=1

Akx(t− τk) +Bu(t) (39)

wherex(t) ∈ ℜn Ak ∈ ℜn×n, k = 0, 1, . . . ,M , B ∈ ℜn×nu , andτk >
0, k = 1, . . . ,M , are time delays. We consider a state derivative feedback of
the form

u(t) = −Kẋ(t). (40)

Consider that delays appear in the feedback paths of the system (39)-(40).
If we assume that there is a delayτuk

on thek-th component of inputu,
1 ≤ k ≤ nu and a delayτẋl

in the measurement of thel-th component oḟx
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then the closed-loop system becomes:

ẋ(t) +

nu
∑

k=1

BEk

n
∑

l=1

KFlẋ(t− τuk
− τẋl

) =

M
∑

k=1

Akx(t− τk) (41)

whereEk = [eki,j ] ∈ R
nu×nu andFl = [f l

i,j ] ∈ R
n×n are defined as in

(35). Analogously as in (34), the system (41) is of neutral type. Thus, even if
the system is stabilized by the feedback control law (40), the strong stability
condition (36) needs to be satisfied in order to preserve stability for small
delay changes in the feedback loop.

4.3.1 The optimization problem

Let us define the spectral abscissa as the real part of the rightmost root of the
system (39)

α(K) := sup {ℜ(sk), k = 1, 2, ..,∞} .

The objective is to stabilize the system via minimizing the spectral abscissa
α(K). However, the constraintγ0(K) < 1 needs to be satisfied as well. A
solution of this synthesis problem can be found by solving the constrained
optimization problem

min
K

α (K) , subject to γ0(K) < γ, (42)

whereγ < 1. In practical applications, due to robustness reasons, we should
avoid settings ofK for whichγ0(K) is close to1 even. On the other hand, too
small choice ofγ value would result in too conservative solution. From our
experience it is advisable to setγ ∈ [0.6, 0.9]. Since the available methods for
eigenvalue optimization problems [21, 32] can only deal with unconstrained
problems, a natural way to handle the constraint in (42) consists of using a
barrier method, as outlined below.

# Neutral spectrum optimization using barrier method (Vyhlı́dal, Mi-
chiels, McGahan,IMA J. Math. Contr. and Opt., 2010, [3])
The spectrum optimization problem with the aim to strongly stabilize
the system (39) by the state derivative feedback controller(40) can be
formulated as follows:

1. Find a a feasible point, i.e. gain values satisfying the constraint. If
the feasible set is nonempty such a point can be found by solving

min
K

γ0(K). (43)
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2. Solve in the next step theunconstrained optimization problem

min
K

{f(K)} , f(K) = α(K)− r log (γ − γ0(K)) (44)

wherer > 0 is a small number.

For the optimization task of the objective function, which is in general
non-smooth and non-convex, the combined BFGS - gradient sampling
algorithm based on the code HANSO can be used, see [29]. Let us
remark that the optimization routines work with the gradients ~∇γ0(K)
and

~∇α(K) +
r

γ − γ0(K)
~∇γ0(K), (45)

that needs to be determined, e.g. numerically using method of finite
differences.

4.4 Example - state derivative feedback design

Consider the model of the regenerative chatter given by (7) with a couple of
dominant unstable poles and a controller of the form

u(t) = −Kż(t), (46)

whereK ∈ R
2×4 is the feedback gain. Let us recall that the signals inż

are considered as measured by acceleration and velocity sensors. First, let us
minimize the spectral abscissaα(K) in the space of parametersK with not
paying attention to the strong stability criterion (36). Using the optimization
tool HANSO, we achieve results given in the first row of the Table 1. As can
be seen, the system has been safely stabilized. However, thesystem is not
strongly stable asγ0(K) = 1.850. Secondly, let us minimize the objective
function (44), consideringγ0(KD) < 0.8 and thebarrier parameter r = 0.1.
For the evaluation of the gradient of the objective function(45), notice, that
∇α(K) is computed analytically and the gradient∇γ0(KD) is computed
numerically by the method of finite differences. For the minimization task,
again, the HANSO algorithm is used. The results are given in the second row
of Table 1. In this case, the nominal system is both asymptotically stable and
the stability is strong with respect to small feedback delays.
For the analysis of the final settings given in Table 1, we provide a comparison
of the spectrum distributions in Fig. 7. Next to the nominal closed loop system
(without feedback delays) we consider closed loop system inthe form (41)
with the following small delays in the feedback loops

τu1 = e2 10−5, τu2 = 2π 10−5, τx = 10−5,

τy = 3 10−5, τẋ =
√
2 10−5, τẏ = 2 10−5 (47)

24



−700 −600 −500 −400 −300 −200 −100 0

−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

ℜ (λ)

−60 −40 −20 0

0

500

1000

1500

ℜ (λ)

ℑ
(λ

)

0 5000 10000
−2

−1

0

1

2

3

4

5
x 10

6

ℜ (λ)

ℑ
(λ

)

Figure 7: Rightmost spectra of the regenerative chatter model. Spectrum of the no-
minal system (7) [crosses]; spectrum of the closed loop system (7)-(46) (with no fe-
edback delays) withKα [black circles] anf withKf [x]; spectrum of the closed loop
system (7)-(46) and with small feedback delays (47) withKα [circles] and withKf

[squares]; spectrum of the closed loop system (7)-(48) (filterred derivative feedback)
with Kf andTf = 0.00005 [triangles]

Minima γ0 K

α(K) = −56.5 1.850 Kα =

[

234.24 −0.507 −795.64 0.899
200.05 −0.51229 −344.76 1.506

]

f(K) = −55.18 0.784 Kf =

[

11.3 −0.728 9.28 −0.135
−13.3 −0.623 −31.26 0.728

]

Table 1:Results of the state derivative feedback design by eigenvalue optimizationvia
HANSO. First row - minimization of spectral abscissaα; second row - minimization
of the functionf in (44)

As it has already been mentioned, the uncontrolled nominal system is un-
stable due to a couple of poles located to the right of the stability boundary.
As can be seen, both applied optimization approaches achieved very similar
distribution of the spectra. In both cases, the real parts offew rightmost po-
les are located close to the spectral abscissa, whereas the rest of the infinite
spectrum follows the asymptotic root chain of the retarded system. If small
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Figure 8: Spectral abscissa of the closed loop system (7)-(48) (filterred derivative fe-
edback with settingKα) considering feedback delays (47) with respect to the value of
the time constant of the filterTf
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Figure 9: Response of the closed loop system (7)-(46) considering feedback delays
(47) to the initial conditionsz(t) = 0, t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T

feedback delays are introduced, the distribution of poles in the (so far) domi-
nant region change only slightly in both cases. However, in fact, the stability
is preserved only for the case with settingKf . The other case withKα be-
comes unstable, with infinitely many unstable roots and the spectral abscissa
changes fromα = −56.5 to α = 7288, see the new rightmost spectrum in
Fig. 7 - right. As it has been described in Section 4.2, the neutrality of the
system can be removed by applying the filtered derivative feedback

Tf u̇(t) + u(t) = Kż(t). (48)

However, the time constant of the filter needs to be large enough to move
the spectral abscissa behind the stability boundary. In Fig. 8, we show the
dependence of the spectral abscissa of the closed loop system with Kα with
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Figure 10: Response of the closed loop system (7)-(48) considering feedback delays
(47) to the initial conditionsz(t) = 0, t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T , Tf =
0.00005

respect to the time constant of the filterTf . As can be seen, the closed loop
system is stabilized forTf > 0.00003. In Fig. 7 the spectrum of closed loop
system (7)-(46) with settingKα, Tf = 0.00005 and with feedback delays
(47) is shown. As can be seen, the dominant poles stayed fairly close to the
spectrum of the nominal case. The results of the spectrum based analysis are
confirmed by the system responses to the initial conditionsz(t) = 0, t ∈
[−τ, 0), z(0) = [0, 0, 10−5, 0]T under the influence of feedback delays (47).
As can be seen in Fig. 9, the response with strongly stable feedbackKf , is
stable. It also applies if the strongly unstable settingKα with stabilizable first
order filter withTf = 0.00005 is applied, see Fig. 10. However, as can be
seen in Fig. 11, forTf = 0.000024, the response is unstable due to emerging
high-frequency oscillations.

4.5 Remark onp-stability

As it results form both the spectrum and response based analysis in the above
example, the application of the filter, which turns the dynamics from neutral
to retarded-like one, can stabilize the closed loop system with strongly un-
stable derivative feedback. However, the value of the time constant of the
filter needs to be designed properly as not every value stabilizes the system.
Obviously, for the given case study of the model of regenerative chatter, most
likely, already the filter embedded in the smart acceleration sensors, which
is not modeled in fact, would remove the dangerous high-frequency oscillati-
ons. On the other hand, it needs to be emphasized that this conclusion cannot
be generalized. As has been demonstrated in (Michiels, Vyhlı́dal, et.al,SI-
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Figure 11: Response of the closed loop system (7)-(48) considering feedback delays
(47) to the initial conditionsz(t) = 0, t ∈ [−τ, 0), z(0) = [0, 0, 10−5, 0]T , Tf =
0.000024

CON, 2009, [8]), in some cases, unmodeled dynamics (neglected actuator or
sensor dynamics) can have destabilizing effect even if the delays are not con-
sidered in the feedback loop. In the mentioned paper, the notion of p-stability
is introduced under which the closed loop system (31)-(40) is robust against
small modeling and implementation errors. For example, it is shown that the
system (31) with an odd number of unstable poles, i.e.det(−A) < 0 cannot
be safely stabilized by state derivative feedback even if itis equipped with
a low-pass filter. Besides, the necessary condition forp-stabilizability by the
filtered state derivative feedback with small values ofTf is that the matrix
(−I −BKd) has all eigenvalues in the left half of the complex plane.

5 Conclusions

The main results I have achieved in the subject of spectrum based analysis
and synthesis can be summarized as follows. Since the beginning of my re-
search carrier, I have focused on developing algorithms forspectrum analysis
and computation. Our algorithm QPmR for computation of the spectrum of
quasi-polynomials has received considerable attention inthe community of
time delay systems and has become one of the standard tools for spectrum
computation. I have also achieved interesting results in the frequency based
analysis, for example in the extension of Michajlov stability criterion for ap-
plication to neutral systems. In collaboration with Prof. Pavel Źıtek and Prof.
Wim Michiels, we have achieved original results in the spectrum based syn-
thesis of state and state-derivative feedback controllers. The presented optimi-
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zation based quasi-direct pole placement method for SISO retarded systems
is a direct extension of classical pole placement algorithmtowards the sys-
tems with infinite spectrum. In this method, the infinite dimensional system
is controlled by static state feedback as usual, which makesthe controller im-
plementation much easier compared to implementing the functional feedback.
The same applies also for presented state derivative feedback design, which
is motivated by using accelerometers to measure the system motion, particu-
larly in vibration suppression control systems. Surprisingly, as it results from
the theoretical analysis, even infinitesimally small feedback delays, e.g. of
communication origin, may play important role in the closedloop system
stability. Therefore, the concept of strong stability needs to be taken into con-
sideration in the feedback design. Next it is demonstrated that, in some cases,
the neutrality induced by small feedback delays can be removed by a first or-
der filter. The results are demonstrated on the model of regenerative chatter
in machining.

5.1 Further research

As regards my actual and further research in the field, the main directions
are the following. Currently, the assessment of strong stability criterion using
polynomial optimization approaches is being solved. The work will also con-
tinue in studying the synthesis and control design of state feedback, both pro-
portional and derivative. Particular attention will be paid to the practical eva-
luation of the derived results. Recently, we have also started to work in the
subject of delay based signal shapers for compensating undesirable oscilla-
tory modes of flexible structures with the aim to involve spectral methods in
their design.

5.2 Projects

Next to the theory of time delay systems done in the frameworkof the project
Centre for Applied Cybernetics, I have also participated in two EU projects.
The pastEU-FP6 Project SEAT focused on developing Smart technologies
for stress free air travel. Within this project, we have designed a concept of
local microclimate control in the area of aircraft passenger with the possibi-
lity of local temperature and relative humidity adjustment, (Zı́tek, Vyhĺıdal,
et al.,Building and Env., 2010, [12]). The currently runningEU-FP7 project
Climate for culture focuses on the analysis of microclimate in historical bu-
ildings under the influence of climate change. Our role in theproject, in which
I am a work package leader and a member of Steering Committee,is to design
energy efficient non-invasive mitigation measures for microclimate control in
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historical interiors, following the directions set up in (Zı́tek, Vyhĺıdal, Buil-
ding and Env., 2009, [13]). Next, I am also involved in the industrial project
MPO TIP of Pike Automation company focused on the optimization of in-
dustrial furnaces.

6 References

6.1 Key publications of T. Vyhĺıdal
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[2] V YHL ÍDAL , T., ZÍTEK , P., Modification of Mikhaylov Criterion for Neutral
Time-Delay Systems.IEEE Transactions on Automatic Control. 2009, vol. 54,
no. 10, p. 2430-2435.
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