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Summary

Exact transformations and decompositions of controllethdyical systems has been inten-
sively studied as an important part of control theory anajiglications. One of the most
important problems in this respect is the so-called examtifack linearization method
which enables to solve the control design for a given noalirsystem via its transforma-
tion into a simpler model, which would be at least partialhebr one. In such a way it
results into the decomposition of the original complexioct@nected nonlinear model into
a number of less complex subsystems with either simple oonaoextions between them.
Typically, each linear part of this decomposition does regighd on the rest of the model
and corresponds to some single output and single input coempwhile the nonlinear
residuum is sufficient to be analyzed only qualitatively.viobsly, this technique signif-
icantly facilitates any further analysis and control desamd therefore deserves a lot of
attention. This problem has been investigated for comtdoflynamical systems relatively
recently, approximately starting 1970’s and it possibigioiated in robotics, known as the
so-called computed torque principle, which is a specifieaafsthe exact feedback lin-
earization technique. Unlike the uncontrolled dynamigatems theory being developed
since much earlier the controlled case is complicated byptesence of an additional con-
trol input variable. The brief survey of this problem will lggzen here, including a list
of problem variations and its history. Moreover, this methall be demonstrated by the
design of the underactuated walking for the simplest urdeated walking robots mod-
els. Underactuated mechanical systems are those havirg segrees of freedom than
actuators what complicates their control design. Nevésfise the underactuated walking
can be viewed as a more natural than the fully actuated orgyrasy the underactuated
walking the angle between the pivot point and the pivot lagmat be directly affected by
some controlled torque. For the mechanical systemsfor the robotic models as well,
there is a natural physical interpretation of linearizirapsformations which makes their
constructions more easy and natural. This is even morecagiydi for the underactuated
walking where the so-called kinetic symmetry combined witpecific type of the under-
actuated variable enables to linearize exactly even lgrgetrof the system than it is usual
for other underatuated systems. The potential of this ambrovill be demonstrated by
the numerical simulations for some simple underactuatettég, including the resulting
walking-like movement animations.



Souhrn

Metoda pfesnych transformaci a dekompozici je v pastddcCtyfech desetiletich inten-
zivné zkoumana i z pohledu teorie a aplikaci automatickfizeni. Jednim z dilezitych
problémd je zde tzv. pfesna zpétnovazebna lineegizeera umoznuje fesit navrh regulace
nelinearniho systému prostfednictvim jeho transice na jednodussi, alespon Castecne
linearni model. Vysledkem je pak dekompozice plivbdmelinearnino a slozité vnitiné
propojeného modelu na fadu jednodussich podsystéutf (plné na sobé nezavislych,
anebo s pomérné jednoduchym propojenim. VétSinaysiédmil je linearni, nezavisi na
ostatnich a je spojena praveé s jednim vybranym vstupgednim vybranym vystupem,
zatimco nelinearni residuum, jenz je jimi ovlivhex® postaci analyzovat jen kvalitativné.
Je zfejmé, Ze tim bude vyznamné usnadnéna dad$yzma syntéza prakticky vSech tloh
automatické regulace, takze si metoda transformace andjedzice nelinearnich modeli
zaslouzi vyznamnou pozornost. Tato metoda je pranBzeystémy teoreticky rozvijena
teprve od sedmdesatych let minulaho stoleti a ma puwaiiticky plivod v robotice, kde
byla jiz dfive pouzivana v pomérné jednoduché aememé varianté jako tzv. princip
vypocteného momentu sily (“computed torque principleNa rozdil od obecné teorie
transformaci nefizenych dynamickych systemurieyla rozvijena mnohem dfive, je
teorie transformaci fizenych systemil komplikow&ftitomnosti vstupni proménné. V
této praci bude podan struény prehled moznychsi@maci i typl cilovych modell, a
tim i bohaté Skaly rtiznych typl presné linearizagtetné historie jejiho vyzkumu od sed-
mdesatych let minulého stoleti. Dale bude tato mep¥ddvedena na navrhu stabilni chlize
pro nejjednodussi modely podaktuovanych kradeficobotli. Podaktuované mechanické
systéemy maji mensi pocet akénich ¢lenll, ney jakpocet jejich stupili volnosti. Je mozné
fici, Ze podaktuovana chilize odpovida pfirozeméze mnohem lépe, nez plné aktuovana,
nebd moment sily plsobici na (hel opérné nohy v bodétdin se zemi nelze pfimo
ovlivnit zadnym pohonem. Pro mechanické systemyds ter robotickych modelech, ma
pfesna castecna linearizace pfirozenou fyzikadterpretaci a hledani pfislusnych trans-
formaci se tak vyrazné zjednoduSuje. To plati j@§t& pro modely kraceni, kde tzv. ki-
neticka symetrie v kombinaci se specifickym podaktugwastupném volnosti umoznuje
transformovat do linearniho tvaru jesté vétsstGaodelu, nez je tomu v pfipadé jinych
podaktuovanych systém{l. Moznosti teto metody budedyedeny na numerickych sim-
ulacich a animacich jednoduché chiize.
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1 Introduction

Exact transformations and decompositions of nonlineatrobsystems constitute perhaps
the most intensively studied and best understood area oftthetural approach to the
nonlinear control theory and systems engineering. The &itmecstructural approach is to
analyze the structure of the controlled dynamical systelespmpose these systems into
subsystems and links between them and to use such a sttunfarenation for a better
control design. Within the linear control theory it resdltato the classification of linear
systems via their canonical forms where perhaps the mostipemt one is the famous
Brunovsky canonical form [6]. The structural theory of naehr systems requires more
sophisticated and abstract mathematical tools as it religbe differential geometry and
notions of invariant submanifolds of differential equao Such an approach is based on
representation of the dynamical systems by vector fieldsef tight hand side, notions of
distributions, co-distributions and conditions for thetegrability known as the Frobenius
and Nagano theorems, [27, 28, 30, 35, 39, 49, 56].

The practically motivated aim here is to find suitable exachpensations that leads
to its equivalent and possibly the simplest representatizese representations are usu-
ally called as the canonical, normal or other forms [16, 3,40, 50, 53, 58]. The ex-
act transformations are also usually combined with the position of the systems into
several subsystem [27, 28, 30, 35], where bigger part carabsformed into some well
understood form while only smaller part is to be studied byerspphisticated method,
specifically designed for this smaller subsystem only. @agpexamples here are linear,
or partially linear systems giving the so-called exact fesk linearization problem. Ex-
act compensation then makes it possible to transfer knowni®as to various control
problems for these more particular and simple classes ¢émgsto the original, seem-
ingly more complicated models, thereby providing furthiéicEnt control design options
[1,2,3,4,7,19, 26, 38, 45, 60, 61, 62].

As a matter of fact, the exact feedback linearization pplecivas first introduced in
robotics, known as the inverse dynamics [48] or computequirtechnique [41]. Us-
ing the control theoretic terminology and more detailedrddins introduced later on,
this technique is equivalent to the exact linearizationfeedback transformations only,
without any change of state space variables. See [37] fexpssition using robotics ter-
minology, while survey [46] demonstrates, in particulae broad impact of this technique
on the robotic and automatic control community. In the colrind systems engineering
community the problem received a lot of attention in theréitare and applications begin-
ning with the pioneering works of Korobov [33], Krener [34)caBrockett [5]. Among
numerous results, the key paper of Jakubzyk and Respond¢liBught the complete
differential geometric insight into the exact linearipatiproblem in terms of distributions
and vector field, while [55] gave their dual interpretatibmough exact one forms and
co-distributions. After that, further refinements of thelgem were introduced and stud-
ied: input-output linearization [29], linearization bytput injection useful for observers
design [36], linearization of systems with outputs [22]ndgnic feedback linearization
significantly improving its applicability in multi-input miti-output case [20, 21], adaptive
exact feedback linearization [39], up to even more speojaics, like time scaling trans-
formations [51], topological controlled systems lineatian [11], or global linearization
[8, 9, 27, 50]. Surveys of these and other results can be foupdpers [23, 49, 10] or in
monographs [30, 32, 39, 44]. The exact feedback lineadagiroblem is still subject of
the active research even recently [57].



Nevertheless, many nonlinear systems, among them thasegaim practical applica-
tions, can not be exact linearized due to the presence dilsirities in possible transfor-
mations. Still, these systems can be transformed into gmpét nonlinear forms, that
enable easier controller design than for the original maar system. Example of such a
situation are the so-called prime form, singular triangfid@ams or essentially triangular
forms, [12, 13, 14, 15, 40].

The rest of the technical part of this presentation is oghas follows. The next sec-
tion introduces the nonlinear model of the continuous-tooetrolled dynamical system
and its possible transformations and decompositionsid@egis devoted to the exact feed-
back linearization method while section 4 applies the pheixact feedback linearization
method to control the underactuated walking. Short findisedraws some conclusions
and future outlooks.

2 Nonlinear control systems, their exact transformations
and decompositions

In this section, the idea of the exact system transformatand decomposition will be
introduced in a more technical detail. Denote in the seqsél“a()M, N) the set of all
smooth mappings between two smooth manifbltds V. A given smooth map is referred
to as the diffeomorphism, if it is also one-to-one.

As a basic control theoretic framework, consider the foitaypcontinuous-time nonlin-
ear control system having inputs andp outputs and described by the system of ordinary
differential equations

&= f(2) +Gla)u, G(2)=[0(@)|.. lgm(@)], y= (h(2),... . hy(z))", (1)

wherex = (z1,...,2,)" € M is the state of the system in some local coordinate chart
of a smoothn-dimensional manifold/, u = (u4,...,u,)" € R™ is its input whiley =
(hi(z), ..., hy(x)) its output andf, ¢1, ..., g,, are smooth vector fields aly.

Many practical goals in natural and engineering system®eatescribed by the above
framework. Typical task is to force the output of the systenbéhave in a desired way
using the input feeded by the available information. Thelalke information may include
the measurements of the system state, but more realigtmfails output only. Such an
information is processed and then feeded into the inputratlanepresented by the above
m-variablesu = (uy,...,u,)". Such a control is called as the feedback one, or also as
the closed loop control. Information processing can beeeisitatic (input depends only
on the actual measurements at time of its application), aadyc (input uses also past
information about measurements). Correspondingly, onspaak about static or dynamic
feedback, furthermore, depending on the extent of the alm@rgioned measurements one
refers either to the state or output feedback.

Feedback is both the basic notion of the control theory aadrstrument for practical
automatic control. It formalizes a natural intuitive idéat any control influence should

1Smooth manifold is the set equipped with the so-called atla®mpatible coordinate charts and some
topology to determine closeness of its points. Roughlyragylocally, there is no difference between general
manifold and the som®" space or its open subsets and usually only these manifoltbevconsidered
here. Nevertheless, there are some important applicagiguining the state space being globally a more
general smooth manifold thdR", e.qg. rigid body dynamics having the part of its state spapeasented by
the set of all three-dimensional rotations.



reflect the actual situation of the controlled object andedasn it the control action is
aimed to improve that situation. Feedback loop can be aled tesadjust preliminary the
structure of the controlled dynamical system to simplifNamely, the adjusting feedback
loop can be then combined with the feedback solving the obtdask for the simplified
system thereby achieving the desired feedback contrallethie original more complex
system. In such a way, feedback constitutes the systenfdraregion tool as well.

Another system transformation tool is the change of theestatiable. Again, it fol-
lows rather intuitive idea: for practical control purposedy inputs and outputs are firmly
given, as they represent available control tools and diswatrol goals, respectively. Nev-
ertheless, the state is necessary only for the mathematioaél construction, therefore,
many equivalent states are possible. As a consequencéydhgeof the state coordinates
leads to another equivalent control system representatibich can be used to control it,
perhaps after some straightforward adaptations.

To be more specific, consider the new state varigbte N from a new manifoldV,
related with the original state variabieof (1) via the diffeomorphisn® € C*>°(M, N):

D: Vg = Uy, = D(¢). (2)
The new state space - the smooth manifdld has the dimension as well. Furthemore,
consider the new input variable = (wy, ..., w,,) " related with the original input variable

u used by (1) viathe smooth feedback( the state dependent input space transformation):
u=a(@) + Bla)w, a(z) € C®(Us,R™), f(z) € C*(Uy, Gl(m,R)).  (3)

Here, GI(m,R) stands for the Lie groudpof all invertible (m x m) matrices having real
elements. Both these transformations are defined on sorgebwhood/,, of x, € M
and a neighborhootl;, of {§, = D(zy) € N, wherexz, is a selected working state of the
original system. Then system (1) is said to be locally arouyiansformed using the state
transformation (2) and the feedback (3) into the followiggtem

E= &) +GOw, y=(E),....hy(E), (4)
f= [ag—f)]l[fw(&)) +G(D(€)a(D(E))], G= [ag—f)]l(;@(&))ﬁ(@(o), (5)
hi = (hi(D(€)), i=1,....p. (6)

given locally around, = D(z,) € N. Alternatively, both (1) and (4-6) are called as the
state and feedback equivalensystems. If both above neighborhoods coincide with
and N, respectively, the equivalence is called as the global one.

System (1) is said to be (locally or globallgecomposabléaf there are the (local or
global) state space transformation (2) and the feedbadu(3) that the transformed system
(4-6) onN, possibly after renumbering its outputs, takes the folimyfiorm

&= 1)+ G, Yt =hM(EY), € ER™, w eR™, y' €R™

&€= +Gu, yP=r(E), €eR™ v eR™, y’ €R”,

GU(EY) = [g1(ED] - 1gm, (EN)],  G*(E1,€%) = [g2(€" €. - - |gm(&h, )],

nmoAng=n, mit+tme=m, p+p=p, y=y", h=[hh}",

1 1 . 1 5 1 1

o=l =G =Bl e

2Lie group is a manifold equipped, in addition to manifold peaties, by the group structure with group
operation being a smooth map. R&k(m, R), the group operation is the usual matrix multiplication.

(7)
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For the local decompositiorg, represents some suitable coordinates chartVorwhile
N = R" for the global decomposition. If it holds in (7) thit = f2(£?), h? = h?(£?)
andg? ., = ... = g2, = 0, than the system is said to lecoupledinto two input-
output mutually independent subsystems. It is obviousyda define decomposition
or decoupling into an arbitrary number of subsystems applyhe above construction
repeatedly. Ifm = p, the decoupling can go on up to the so-called complete inptput
decoupling when each subsystem would correspond to sogle-ginput and single-output
(SISO) system. In such a way, complexly interconnected irmput and multi-output
(MIMO) system can be controlled as a set of independent Sk&@ms, what is clearly
easier.

3 Exact feedback linearization of nonlinear systems

The most straightforward and natural goal for the systemsfamation is the linear sys-
tem, either fully, or partially. If the system can be transied into (partially) linear form
using the above mentioned transformations, then it is datide exact feedback lineariz-
able. Of course, there are many variations of this notiomesof them will be given in
detail in this section, including illustrative exampleslaaome basic results.

Definition 1. System (1) is called locally exact feedback linearizableyat M if itis
locally state and feedback equivalent via the transfomnat2) and the feedback (3) into
the following controllable and observable linear system

£=F¢+Guw, y=HE €€R?, weR™, (8)

where F, G are (n x n), (n x m) and (p x n) matrices, respectively. The system is
called restricted feedback (state) linearizable if it isdieack linearizable with(z) = I,,
(B(z) = Ln,a(x) = 0). If, instead of the linear output relation= H¢&, one has after
transformation still some nonlinear relatign= ﬁ(g) and linear dynamics as in (8), than
the system in question is called as the system with the exaarizable state dynamics.
Simply saying, in case of systems with the exact linearzalyinamics one need not
to consider the output relation relation to be linearizedvadl. Situation described in
Definition 1 is obviously the most desirable one, but not stiséc. Systems with the exact
linearizable state dynamics being useful in many appbcatiare better in this respect,
but even that is often too much to ask. The following optidre, $0-callednput-output
partial exact feedback linearization, is much more realistic and therefore widely used.
Definition 2. System (1) is called locally input-output feedback lineahble atc, € M
if it is locally state equivalent via the transformation @d the feedback (3) into the
following partially linear system

¢ = Fe' + Guw, y= HEY,

: 9
52 — fnl(§17§27w) 51 c Rm’ 52 c RTLQ’ n1+n2 =n, w ERm, ( )

where its linear part given by matricésG, H is the controllable and observable one. The
autonomous dynamical system without input given as

£ = f"(0,€%,0) (10)

is called as theero dynamics Nonlinear system having asymptotically stable zero dy-
namics is called to be theinimum phaseone.
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Notice, that the input-output linearizable system is dggosable into a fully linear
controllable and observable system and some nonlineatuasi called as the zero dy-
namics. In general, the zero dynamics is not completely wided from the fully linear
part and it is influenced by it. Nevertheless, it is hiddemfrthe input output point of
view, i.e. it does not influence the input-output linearizable partnikium phase prop-
erty ensures that this hidden part remains stable eversitisturbed by an exponentially
decaying signal, or bounded if disturbed by bounded sighsh consequence, for the min-
imum phase systems this nonlinear residuum can be ignom&agdine controller design
[7]. Input-output linearizing transformations can be fduhrough straightforward con-
structive algorithm, based on the computation of the stedatlative degree [30, 44].
Moreover, the linear part may be in this case even completplyt-output decoupled [28].

Obviously, for practical purposes it is desirable to havedhkact systems transforma-
tions valid on largest possible domain to be applicable ltp@dsible working regimes of
the plant to be controlled. The most desirable situatiohigrespect is the so-called global
linearization.

Definition 3. System (1) is calledlobally feedback (restricted feedback, state, input-
output) linearizable atry € M to a linear system ofR" if it is at this point locally
linearizable and;, = R". Itis calledglobally linearizable onV/ if U,, = M. System that
is linearizable globally ord/ to a linear system oR" is calledglobally linearizable.

All types of global linearization introduced by Definitiora2e quite reasonable. Notice
that for global state linearizatidii,, always coincides with the reachable set fropn Of
course the case of the global linearizatiae.(when bothly = R" andU,, = M) is the
most desirable one, but at the same time it is rather res#&iohe. Linearization at a given
xo € M to a linear system o™ covers cases when a nonlinear system is not globally
controllable, but its restriction to the reachable set frgys globally equivalent to a linear
system orR". This case enables a straightforward application of limegthods to solve a
particular control goal for the nonlinear system. In theecaglobal linearization o/,
one has global controllability of the original nonlineassm, while its linear equivalent is
defined on an open subset®f containing the origin. Nevertheless, this case still rermai
better than local linearization whén,, is a proper and possibly very small subseflof

In the sequel, where no confusion arises, various adjectwetransformations and
feedbacks will be omitted

The above definitions will be illustrated by several exaraplérst group of examples
aims to demonstrate linearization of systems dynamicsetbiee the output relations will
be omitted there as all claims are obviously valid for anypautelation.

Example 1. The systemi; = x; + u, iy = uexp(zy), Wherex = (z1,25)" €
M = R?, u € R, has globally state linearizable dynamics dhbut this dynamics is
not globally exact feedback linearizable to a linear systeri®*. Actually, linearizing at
zo = (0,a)",a € R, diffeomorphismisc = (£; + &, —In(a — &))" and is defined only
for & < a. Nevertheless, its image is the whaté.

Example 2. The systemi; = x1 + u(zy + 23), @9 = uzy Wherexr = (z1,25)" €
M = R? u € R, has the globally state linearizable dynamics to a lineatesyonR? at
anyz, € {x € R* |z, # 0,2, = 0}, but this dynamics is not globally linearizable oh.
Actually, diffeomorphisn®D : R? — {z € R* | azy > 0}, D = (a&s + a&y,a)" exp &y,
linearizes the system at, = (0,a)". This system is not globally controllable: reachable
set from(0,1)" (resp.(0,—1)") is an open halfplane, > 0 (resp.z, < 0).

Example 3. The systemt = f(z)+ug(z), v € M = R*\ {0}, u € R, wheref(z) =
—(1/2) In(z3+23)(—z2,71) ", g(x) = x, is locally everywhere od/ state linearizable, but

10



it does not have globally linearizable in any sense of Defini2 dynamics. Linearizing
map for its dynamics is in this case

cos &y
sin 52

z="D() =exp&

| om0,

that is local diffeomorphism at arfye R? but is not globally invertible.
Example 4. The system o/ = R?

1 = sinxgcoszy + uexp(—w)sin xy (11)

iy = —(sinazy)? 4 wexp(—uy)cos z,, (12)

is locally state linearizable everywhere, but it is not @iy linearizable in any sense of
Definition 2. One can easily see that the dynamics of the sy&ié) is transformed into a
linear system defined dR® \ {0} by the smooth map = D(¢), where

COS T9

1 .
D (z) = expay [ in

] , D' R? = R?\ {0},
that is a local diffeomorphism, but not globally one-to-o@®nsidering the original non-
linear system of{z = (z1,25)" € R?* | 2y € (—7/2,7/2)} and the linearized one on
R?\ {¢€ = (£,&)T € R? | & > 0} gives the one-to-one correspondence. Note that both
these sets are not invariant with respect to the correspgrayistems.

Example 5. The system o/ = R?

1 =2z +u(l +x9), Io=1x9+u,

has globally state linearizable dynamics since its liredagi diffeomorphisme = D(§) =
(&1 + (1/2)€2,&,)T is the global diffeomorphism d&? onto itself.

Previous examples concentrated on the state linearizaéisa only, in particular, in
order to illustrate briefly the main obstructions for thelzdblinearization of systems that
are locally everywhere linearizable. In Example 1 one caseole that the vector field
(1,expz,) " is notcomplete i.e. its integral curves are not defined for all time moments,
in fact, they escape to infinity in a finite time. It will be seinthe sequel that the com-
pleteness of a certain collection of vector fields is neagdsathe linearized system to be
defined on the whol®". Example 3 illustrates the basic topological property seagy for
the global linearizationthe simple connectednesef M that is obviously violated there.
Simple connectedness usually guarantees that the limegaddfeomorphism is globally
one-to-one. Nevertheless, as indicated by Example 4, dtisrae that the system, locally
everywhere linearizable on a simply connected manifaldis also globally linearizable
on M.

The unrestricted feedback may provide several differemdrizing transformations
which makes this case even more complicated, as illustatéide following example and
results.

Example 6. Consider the following planar system with two inputs:

T = exp(—z1) [(cos Ty, — sin o) " uy + (sin sy, cos $2)TU2:| , Vo = [21, 75" € R

Both mutually commuting vector fields on the right-hand éliéhis system are not com-
plete, the system has locally state linearizable dynanmasral any point, but it is not

11



globally state linearizable in any sense of Definition 2. @& ¢ther hand, the above sys-
tem has easily globally linearizable dynamics using thesinicted feedback:

v | (—a1) COSX9  Sinxs Uy
U= Vg — Pl —sinTs COS T Uy |
Proposition 1. Consider the planar single-input system of the form
i‘l = u
ty = fo(r2) + fi(w2)zy, fo(0) =0.
It is

1. locally both restricted and unrestricted feedback lizedle around the origin if and
only if f1(0) # 0;

2. globally restricted feedback linearizable if and onlyfifz,) # 0 Vz, € R and
(0, f1) T is complete vector field;

3. globally unrestricted feedback linearizable if and dfly; (z2) # 0 Yz, € R.

Observe, that for the class of systems considered in Prtiomodi locally there is no
difference between restricted and unrestricted feedbaeladizability (of course in each
case the system is linearized using different transfoonaji At the same time, application
of the unrestricted feedback substantially enlarges pibsiis for the global linearization.

Theorem 1. Single-input nonlinear system (1) has globally unrestddieedback lin-
earizable dynamics o/ if and only if it is globally state equivalent to the followgn
system
= f(z) + g(x)u, == (21,...,2,) €R",

(f

9= (g1(z),0 >T,f (@), fo(@), f3(T2, ooy @n) oy fu(@amr,2a)) T (13)

and of,
gl(l‘) 7é07 ) !

If in addition there exists a constant> 0 such that

20Vz eR",j=2,...,n

Tj—1

| —— 0f; \>5Vx€R” j=2,.
O
then the above system is globally unrestricted feedbaekfinablej.e. the corresponding
linear system is defined on the wh@®eé.
Input-output linearization can be illustrated as follows.
Example 7.Consider the system

. 3 2 . 5 342
1 = r1+wotmy, T = 5413, T3 = u—r4—xy, T4 = (T1+Totxs) —x4, y = 1. (14)

The input-output linearization transformations can benfbusing the so-called relative
degree. Roughly saying, the relative degree is the numkenefderivations of the output
along trajectoriesof the system before the input explicitly appears. The spoeding

3Recall, that the time derivative of the functi6r) along trajectories of some system= f(z) + g(z)u
is the expressioh, (x)& = hy(z)(f(z) + g(x)u), i.e. the full time derivative of the time functioh(z(t))
with z(¢) being a trajectory of the systein= f(z) + g(z)u.
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expressions then serve to define exact transformationdifimg the system structure.
Namely, define, &, &3, v as the first, second, third and fourth time derivatives of the
output along trajectories of (14), respectively:

§1:=x, & =21 + 29 + :1:;’, E3 =11 + X9 + a:;’ +(1+ 3953)(953 + x3), v = y(g) =

Ty + 2o+ 25+ (1+323) (05 +23) + 622(23 + 23)° + (14 323) (u — 24 — 2 + 239 (25 + 23)).

This means that the relative degree is equal &nd therefore the above algorithm de-
termines3 components of the new state and the feedback transformati@maucing the
new input variable). To have the full coordinate change, one has to select thainemy
component of the state in any way, such that the overall fitamstion is one-to-one, e.g.
&, := x4. With these new coordinates, one has the exactly transtbeystem representa-
tion as follows

=6 =8 &=v &= —&+ 6.
Therefore, the zero dynamics (see Definition 2) of the sy¢fethis

54 = _547

i.e., it is exponentially stable and system (14) is thereforentit@mum phase one. This
means that one can concentrate on its linear subsystem oahligaore its nonlinear one-
dimensional part. In terms of decomposition terminolobg,system (14) is decomposable
into 3-dimensional linear controllable and observable part heagkponentially stable one-
dimensional residuum influenced only by the sigpdrom that linear part.

In the next section, the input-output linearization andaseposition will be demon-
strated on a more practically motivated example taken fleerundeactuated walking.

4 Application of exact decompositions and transforma-
tions in underactuated mechanical systems

Mechanical systems are the challenging research area witba path to important appli-
cations in robotics where many techniques can be directgtieand applied thanks to their
physical interpretation. The well-known example in thispect is the energy as a possi-
ble source of Lyapunov function to study stability and degteir control [47]. Moreover,
mechanical system have a special structure as they ardyudestribed by even number of
state variables, where the first half of them are the so-atgiaeralized coordinates while
the second half are the generalized velocities. Anotheariarfeature is that mechanical
models are usually obtained using the Euler-Lagrange fismd25].

These specific features of the mechanical systems enableféitsent use of the pre-
sented technique of the exact transformations and decotigmss Actually, this technique
is a kind of natural continuation of studies of symmetriemechanical systems [42].

The special role is in this respect played by the so-calletbtacuated mechanical sys-
tems being counterpart of the fully actuated ones. Fullyaed mechanical systems are
those having the same number of degrees of freedom and @stubt this case, the exact
feedback linearization technique has been widely useddomg time ago. As already
noted in the introduction, this technique was known in raiso¢ven before general results
on exact feedback linearization appeared and it was cafl@d@mputed torque, or inverse
dynamics technique [37, 41, 48].
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On the other hand, in case of thederatucated mechanical systems.e. the systems
which are not fully actuated, the exact feedback lineaomais not so straightforward
and only partial exact feedback linearization may be a@udeEfficient control of under-
actuated mechanical systems constitutes one of the md&tradiag problems of recent
decades, see [4, 24, 43, 54, 60, 61] and references therdiabRR and economic walking
is a typical example of studies involving both control andotic communities.

Many of these results rely on the partial feedback lineéinmatechnique combined
with decomposition into blocks according to each input congnt. One of the simplest
underactuated mechanical systems is the Acrobot. Desgpig la seemingly simple sys-
tem, the Acrobot comprises many important features of laadeated walking robots hav-
ing degree of underactuation equal to one. Every mechasysdém, including the Ac-
robot, straightforwardly enables certain auxiliary outpaving relative degree equal to
two* which gives a two-dimensional exact feedback linearizablesystem and a two-
dimensional nonlinear zero dynamics, see e.g. [54]. Nbetgss, it turns out that specific
features of the walking like underactuated systems allothsee-dimensional exact feed-
back linearizable part of its four-dimensional subsystemtaining the non-actuated part.
First, these ideas were presented in [45] and further dpeelan [26], but they had not
been used for the control design until series of results [B, 249, 62]. Moreover, any
walking-like mechanical system havingdegrees of freedom and — 1 actuators can
be decomposed and exactly transformed imte 2 two-dimensional linear systems, one
three-dimensional linear system and a residual one-diimiealsnonlinear dynamics. Sum-
marizing, of totaln states? x (n —2)+3 = 2n — 1 can be exactly transformed into linear
models and only one dimension remains to be described reamlin In other words, more
general configurations can be exactly decomposed into Atrmbdel and a fully actuated
mechanical system which can be treated by the well-knownpcbed torque technique.
Thanks to the exact decomposition and transformation ndethioe can say that Acrobot
comprises all peculiarity of underactuated walking andvking how to control Acrobot
walking directly opens way to the control of the general uadaiated walking like con-
figurations.

The rest of this section will be therefore devoted to the Aotamodel partial exact
feedback linearization and its application to tracking efaking-like trajectory. The Ac-
robot depicted on Figure 1 is a special case af-dimk chain withn — 1 actuators attached
by one of its ends to a pivot point through an unactuatedygtant. Such a system can
be modeled by the well-known Euler-Lagrange approach, 38e [The corresponding
Lagrangian is as follows

1

L(qg,§)=K—-V = §(JTD((J)Q —V(q) (15)

whereq denotes am-dimensional vector on the configuration manif@ddand D(q) is the
inertia matrix, K is the kinetic energy antl’ is the potential energy of the system. The
resulting Euler-Lagrange equation is

d490L _ oL

dtog 0 0
d4of _ oL TQ
o 0 _
©o = = u, (16)
4oL _ oc ;
dt Ogn Oqn n

4As the inputs are torques, any function of positions hagiveldegree equal to two or more.
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Figure 1: The Acrobot.

wherew stands for the vector of external controlled forces. Asatlyeindicated, system
(16) is the so-calledinderactuated mechanical system having degree of underactuation
equal to one, see [54]. Moreover, the underactuated angie isngle;; at the pivot point
and the inertia properties of the configuration are indepenhdf this very angley;. It
will be shown that this combination, typical for all walkitige systems, is the key factor
enabling the existence of the three-dimensional exacatinable subsystem.

More precisely, (16) leads for the Acrobot case to a dynampi@gon of the form

D(q)i+ C(q,4)q+G(q) =u=[0,7]" (17)

where D(q) is the inertia matrix,C(q, ¢) contains Coriolis and centrifugal term&,q)
contains gravity terms andstands for the vector of external forces. These right hashel si
terms take the following particular form:

| 0140y +205c0sq; Oy + O5cosqo ]
D(q) = Oy + 05 cos o 0y |’ (18)
N [ —0;sin @292 — (g2 + ¢1)03sin gy ]
O(Qa q) - i 03 Sin q2q‘1 0 ) (19)
| —bugsing — b5gsin (¢ + ¢2)
Gla) = —0sgsin (q1 + q2) ’ (20)

where the configuration vectéd,, ¢») consists of angles defined on Fig. 1 and
91 = (m1+m2)lf+h, (92 = m2l§+[2, 93 = mglllz, 94 = (m1+m2)l1, (95 = m2l2. (21)

The crucial property here is the above-mentioned mentidigetic symmetry meaning
that the inertia matrixD(¢) depends only on the second varialple
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As explained earlier, the partial exact feedback lineéinzamethod is based on a sys-
tem transformation into a new system of coordinates thadlaysthe linear dependence
between an auxiliary output and a new input. From a thealepioint of view, the me-
chanical system dynamics is described byratimensional state-space equation. Static
state-feedback linearization using a suitable outputtfanf relative degree yields a
linear subsystem of dimensienIn other words, the maximal feedback linearization prob-
lem consists in finding a linearizing function with maximalative degree. In case of the
Acrobot, the mentioned kinetic symmetry combined withbeing the underactuated angle
enables to find a function(q, ¢) with relative degree 3 that transforms the original system
(17) by a local coordinate transformation= 7'(q, ¢) of the form

Z = y7 Zy = ?7 Z3 = ?7 24 = f(Q7 q)7 (22)

into a new input/output linear system with the one-dimenaimonlinear zero dynamics:

21 = Z9, 22 = Z3, 23 = a(Qa Q)TQ + B(Q7 q) = w, 24 = wl(Q7 q) + wQ((L Q)TQ' (23)

As a matter of fact, there are two independent functionsrttprelative degree 3 and trans-
forming the system into the desired form (23), namely

oL
g = % = (Ql + 02 + 203 COS (]2)@1 + (02 + 03 COS QQ)QQ, (24)
1

205 — 0, — 0 101 + 0y — 26
P = ¢+t L + 21 2  arctan DLt~ 2% tan 2 | . (25)
2 \/(01 +0,)2 — 462 01 + 05 + 205 2
The reasons for the existence of these functions havinguweldegree equal to 3 have the

following nice physical interpretation. Actually, by (16)

_doc_oc
CT @0 oq

and therefore by (15)

as D(q) = D(q2) by (18). In other wordsg has relative degree 2e. ¢ has relative
degree 3. Moreover, by straightforward differentiatiohdldsp = dy1(¢2) o, i.e. p has
relative degree 4,e. p should have relative degree 3 as well. Indeed, as promigédrea
in the above evaluation it is crucial, that the non-actuategle is exactly the same one as
the one with respect which there is a kinetic symmetry. Atgame time, this feature is
typical for the walking like movement, where the pivot poisitunderactuated. One can
therefore expect that this type of partial exact feedbawédrization of order three would
play important role for underactuated walking strategies.

The zero dynamics of (23) can be used to investigate intestahility when the cor-
responding output is forced to be zero. For the simplestscase Cp ory = Co the
resulting zero dynamics is only critically stable. Howewwmsidering the output function
7 = C1p(q) + Cyo(q, ¢) one gets the following zero dynamigst C;[Cadi1(q2)]'p = 0
which is asymptotically stable whenew@y/C, is positive,d;;(¢2) being the correspond-
ing part of the inertia matridD in (17). Unfortunately, the corresponding transformagion
have a complex set of singularities, unléssis very small, which is not suitable for prac-
tical purposes.
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It was shown in [19] that the above functiomsr having maximal relative degree 3 can
be used in a slightly different way. Namely, the followingrisformation can be defined:

S=p, &=o0 &=0, &=0. (26)

Notice that by (24)-(25) and some straightforward but ladngs computations the follow-
ing relation holds:

p=dilg) "o, (27)

wheredy;(g2) = (01 + 02 + 205 cos ¢2) is the corresponding element of the inertia matrix
D in (17). Applying (26), (27) to (17) gives the Acrobot dynamin the following partial
exact linearized form

51 = d11(¢]2)71§2, 52 = &3, 53 = &4, 54 = CV(CI)TQ + ﬁ(Q7 Q) =w (28)

with the new coordinate$ and the inputv being well defined whenever(q)~! # 0. An
important feature here is that the set of all possible t@nsétions singularities.¢., the
set wheren(q)~! = 0) depends only on the position angl@sg., but not on velocities.
Moreover, this set has practically favorable propertissyéi be shown later on.

To determine the region where the transformation (28,26)kmaapplied, one has to
express it explicity. Straightforward computations shbatt

51 Tl
52 . . T2
- =T s 42, 41, = ) 29
§ & (Ch q2, q1 CJQ) T ( )
54 T4
T (a1, )
T3 _ O4gsinq; + 059 Sin(% + (]2) (30)
& sz(éh CIQ) @
T, ’ G2

wherep, o are given by (24,25) andl, by (35) later on. Furthermore, denote

| 416, E)
6= [@(&7&) ] , (31)

whereg,, ¢, are such that

T1(¢1(§1,§3)7¢2(§1,§3)) =&, T3(¢1(€1,€3)7¢2(§1,§3)) =&3. (32)
It obviously holds by (29-30) that

Ol&1, 83,80, &4) T Q1(qr,q2) O T
: = . . q:=lq, , 33
Alg",q"]" P3(q,q9)  P2(q1, q2) ¢:= o g (33)
!
b , = 01+02+203 cos g2 2+ 3 COS q2 34
@, a2) l 019 cos i + 059 cos(qy + q2)  B5g cos(q + ga) ] (34)
01 + 05 + 205 cos ¢ 05 + 05 cos qg
d = 35
21, 4) [ 019 cos g1 + Osg cos(qi + q2) G59cos(q1 + ¢o) (35)
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. 0P, .| 0y ]
D3(q,q) = | =—=q¢| =—=¢q| =
3(¢,4) [8(11 q‘ 90,
0 —2105 8in gy — Gobs sin gy | (36)
—01gq1sinqr — 059(¢1 + do) sin(q1 + q2)  —059(¢1 + do) sin(q1 +q2) |
Moreover, by (31,32) it obviously holds that
00(61,6) _ g1 acege) el
= B0 ) = | e O | @D)
T 1 ) 049 cos g1 —059 cos(q1+q2) 1 ’
8[517&3] : 2 s(;) — s(a) |
5(q) 1= det®, = g (01 + 05 cos q2)05 cos(q1 + q2) — (02 + 03 cos q2)04 cos ¢ (38)

(91 + 02 + 203 COS QQ)
In other words, the coordinate change (29,30) is locallgithisle at each point where

s(q) # 0. (39)
Indeed, by (17,18) the inertia matriX(q) > 0, moreoverw = «(q, §)™» + 5(q, ¢) and
T d | T )
e D e | L]+ e
®5(q) D (q) H 702 ] —C(q,9)4 — G(Q)] + ®3(q, )¢
As a consequence, the abavgy, ¢), ((q, ¢) introduced in (28) are as follows
N detq)g
det®
8(0.) = gy (~Cala. )i - Galo) @1
(02049 cos(q1) — 03059 cos(gz) cos(qr + ¢2))(C1(g, 4)§ + G1(q)) (42)
detD(q)
—04943 sin g1 — 059(g1 + 622)2 sin(q1 + q2), (43)

where ®, is given by (35). By virtue of [10] and the references theré¢ie coordinate
change (30) is globally invertible on any open set where {88)ls and which is both
connected and simply connected. In other words, the Acnotoatel is state and feedback
equivalent to system (28) on any such set. Fig. 2 depicts sdthese sets.

In the sequel one can therefore concentrate on the studtaray(28). This system is
almost linear, but there is a nonlinearity; (¢) ! in the first row that depends ap only.
To keep consistently new variables, this nonlinearity $thdae expressed in coordinates
¢ asdi (¢2(&1,&3)), 9o is given by (31,32). Such an expression is a quite complicate
one, but one can use its certain favorable qualitative ptgse Namely, straightforward
computations give

Amin S dn(Qz)fl S Amaz (44)

1 1
min — y Umaz — ) 45
“ mg(l1+l2)2+m1l%+ll+]2 4 mg(ll —l2)2+m1l%+11+]2 ( )
Uy — Uy = 4l1l2m2(m2(l1 + l2)2 + mll% + [1 + [2)_17 (46)

(mg(ll — l2)2 + mll% + ]1 + IQ)
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gy [rad]

Figure 2: Singularities and possible regular set of co@tirchange (30). Hergq) is
given by (38), whileycon(q) stands for the vertical distance of the Acrobot centre of
mass from the ground. Notice, that in real application thssashce should obviously be
significantly bigger than zero.

I.8. maz — Amin 1S qQuite small and therefore the nonlineandty (¢,) ! is actually varying
in a quite narrow range. Therefore, its derivative alsoww®In a favorable way, namely

Adi1(g2) "]

. ol
= (205 sin go)d 2 < 26542 47
9 (203 sin go)d11(g2) ", | 9 | < 205a,,,, (47)

To ensure exponential tracking of a given walking-likeagcapry some additional qualita-
tive prpoerties ofl;;' (¢2(&1, &3)) should be developed. Namely, assume that an open-loop
control generating a suitable single step reference t@jgcs given on the time interval

[0, T in partial exact linearized coordinates (28). Therefors,task is to track the follow-

ing reference system

=g e, g7 =g, g7 =g

o =l (48)

)

To demonstrate the strength of the exact feedback tranafamtechnique by analyzing
partially linear form (28). Namely, subtracting (48) fro@8) one has (put := ¢ — ¢7¢/):

é1 = di (9a(&1,63))6n — di (9a(E1 5T Jea = €3, €3 = €4, e =w — 0™

Straightforward computations based on Taylor expansioes g

é1 = ,ug(t)eg + M1 (t)el + ,ug(t)eg + 0(6) (49)
€y = €3, €3=¢€4,, €4=1W, (50)
0 dl_l1 0 2/ re —1/ re
in0) = 670 BB (g1 1), ) = a5 1), 5D

) = €40 SIEL (I0) (0 = 02670670, @ € 0.27). (62

By (44-47) for every walking-like step there are some camist&, R > 0 such that

R

1 (2)] < 205024, (04 + 95)57 (53)
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|M3(t)| S 203(1371@33%7 0< Amin S M?(t) S Amaz - (54)
Constantd3, R characterize minimal distance from transformations dengfies and max-
imal velocity of walking. So, closer to singularity and fasto walk would create more
difficulties in design due to higher valuesof(t). Singularities correspond to points where
Acrobot is difficult to control from basic mechanical reasawvhile faster walking is ob-
viously a more challenging task. Therefore, the above dégrere might have been intu-
itively expected. More precisely, these constants are eefs follows

VE> 0 |s(ga(E7) ()] > B >0, |69 (#)] <R, ¥t >0, (55)

where, is given by (31,32) and(q) by (38). Moreover, it turns out that for any given
reference trajectory™/(t), the functions, » 3 can be quite easily computed numerically
using formulas (51-52). Summarizing, one has to stabihedinear time-varying system
(49-50) using a linear feedback. One option is to use the ratiacstability concept that
would ensure the existence of a single linear feedback andgéesquadratic Lyapunov
function for all possible values of the three-dimensiorsabmetef; (t), u2(t), us(t)], t €
[0, T] whereT > 0 is the time duration of a single step reference trajectory.

To perform this plan define the stat¢t) = e(¢) as the error signal and consider the
following open-loop continuous time-varying linear syste

pi(t) pe(t) ps(t) O 0
i(0) = Azt + Bu(t), AW =| o o o o |.B=|,] 6
0 0 0 0 1

The tracking problem consists in finding the state-feedloackrolleru(t) = Kxz(t), K =
[Ky, Ky K3 K4, producing the following exponentially stable closed-l@ystem

pa(t) pa(t) pa(t) 0O

. 0 0 1 0
t=(A+BK)x = 0 0 0 1

K, K, K5 K,

x, (57)

where bounds for(t) = (u1(t), ua(t), us(t)) are given by (53)-(54).

Despite entries of:(¢) are known functions, the appealing idea is to treat them as
unknown disturbances satisfying the above mentioned given constraints. If cairsts
are tight enough, one can think about solving quadratidlgtabonditions and design a
unique feedback stabilizing such an “uncertain” systemvi@isly, such a feedback would
be at the same time solving our tracking problem.

To pursue such an idea, one can obtain LMI conditions for thedcptic stability
as follows. Recall here that the quadratic stability is dipalar case of robust stabil-
ity, valid for arbitrarily fast time-variation of the undain parameters and certified by
a unigue quadratic-in-the-state parameter-independgqunov function. Consider the
well-known Lyapunov inequality to be solved for all valuds;dt) by finding a suitable
symmetric positive definite matriX and a vectors’:

(A(p)+BK)"S+5(A(u) + BK) <0, S=5T=0. (58)
Such a problem is in fact bilinear with respect to the unkne®n’. Denoting

Q=5"'Y=KS" (59)
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gives the following LMI condition for quadratically stalzing feedback design:

A(p)Q+BY +(A(n)Q+BY)" 20, Q>0 (60)
see e.g. [52, Section 5.2]. Notice that pai(u), B) is controllable if and only if
paps + p2 7 0. (61)

Obviously, if the set of possible values pfcontains, or stays close to, the singular set
given by (61), LMI (60) becomes infeasible, or almost infbkes

1.45

H,

Figure 3: Trajectory.(t) and its convex hull.

As already indicated, values pft) during a given single step can be computed numeri-
cally. A detailed account of approximate modeling of ttie) trajectory and corresponding
LMI conditions used to generate a stabilizing feedback gambe provided as follows.

To demonstrate the above approach to tracking feedbacgrdeke so-called pseudo-
passive walking trajectory, developed in [19] can be usedeflB, the pseudo-passive
walking trajectory is the one which is produced by the zertual inputw, i.e. by the real
torquer, = —f/a, whereq, 5 are given by (28). By physical considerations it means
that the pseudo-passive trajectory maintains the constsed of the center of mass of
the whole Acrobot. For such a trajectory, the time varyingies p; » 5(t) were com-
puted numerically with high precision using the same Actqiio/sical parameters as in
[19]. In [2], these entries were embedded in various kindafvex polytopic sets and
the corresponding LMI problems were solved, thereby obigithe quadratic stability of
the error dynamics with various degrees of conservatisne. cbiniresponding results were
thoroughly compared in numerical experiments and simutati
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The best results were achieved in [2] as follows. It was chéssample the trajectory
at time instants;, and to letA; = A(u(t;)) fori = 1,..., N. The corresponding uncer-
tainty model is the polytopic convex hull of thé vertices. TakingV = 279 equidistant
time instants, the resulting convex hull is a polytope Wit vertices and44 facets in
the parameter space. Even though it is not guaranteed thaethuine trajectory.(t) is
contained in this polytope, it is very close to the actuahesrhull of the trajectory. The
convex hull can be seen on Fig. 3. Solving e design LMIs (see [2] for more details)
the state-feedback matrix is obtain&d= 103 - (—3.3407 —2.0073 —0.29683 —0.024386)
having the Euclidean norm9087 - 10°.

Applying the feedback computed based on these gains arsidrared to original coor-
dinates one obtains asymptotically stable tracking of deugdo-passive walking trajectory.
To illustrate this approach more transparently, Figureahsthe animation of the Acrobot
walking-like single-step trajectory with the above stigedback gain matrix torque satu-
ration of £10Nm. These animation shows that the above computed strategg hee
intuitive interpretation: to make up the missing speed efpivot angle, which is under-
actuated, the Acrobot speeds and then brakes the swindhgbly creating the missing
torque at the pivot point.

f)..>6
Q-
.----
=
&--

|

Figure 4: Animation of a single step with sampling tim@8s. The dashed line is the
reference, the full line represents the controlled Acrahotel.

5 Conclusions

The method of the exact transformations and decompositibnsenlinear controlled dy-
namical systems has been presented, including its theakét@sics and history of its re-
search and applications development. This method has bmeortrated in detail on
the appealing problem of the underactuated walking desigthe simplest walking-like
mechanical systems known as the Acrobot. These resultsuha® fpotential to be ex-
tended to any reasonable general underactuated wallkiagdnfigurations via their spe-
cial decomposition into a fully actuated system and sonteaiAcrobot-like model. As a
consequence, the control for general system would be glstfaiward combination of the
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Acrobot control and the well-known computed torque techaidrhis new idea is currently
a subject of an intensive research of the author, his callesignd students.
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