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Summary

Exact transformations and decompositions of controlled dynamical systems has been inten-
sively studied as an important part of control theory and itsapplications. One of the most
important problems in this respect is the so-called exact feedback linearization method
which enables to solve the control design for a given nonlinear system via its transforma-
tion into a simpler model, which would be at least partially linear one. In such a way it
results into the decomposition of the original complex interconnected nonlinear model into
a number of less complex subsystems with either simple or no connections between them.
Typically, each linear part of this decomposition does not depend on the rest of the model
and corresponds to some single output and single input component, while the nonlinear
residuum is sufficient to be analyzed only qualitatively. Obviously, this technique signif-
icantly facilitates any further analysis and control design and therefore deserves a lot of
attention. This problem has been investigated for controlled dynamical systems relatively
recently, approximately starting 1970’s and it possibly originated in robotics, known as the
so-called computed torque principle, which is a specific case of the exact feedback lin-
earization technique. Unlike the uncontrolled dynamical systems theory being developed
since much earlier the controlled case is complicated by thepresence of an additional con-
trol input variable. The brief survey of this problem will begiven here, including a list
of problem variations and its history. Moreover, this method will be demonstrated by the
design of the underactuated walking for the simplest underactuated walking robots mod-
els. Underactuated mechanical systems are those having more degrees of freedom than
actuators what complicates their control design. Nevertheless, the underactuated walking
can be viewed as a more natural than the fully actuated one, asduring the underactuated
walking the angle between the pivot point and the pivot leg can not be directly affected by
some controlled torque. For the mechanical systems,i.e. for the robotic models as well,
there is a natural physical interpretation of linearizing transformations which makes their
constructions more easy and natural. This is even more applicable for the underactuated
walking where the so-called kinetic symmetry combined witha specific type of the under-
actuated variable enables to linearize exactly even largerpart of the system than it is usual
for other underatuated systems. The potential of this approach will be demonstrated by
the numerical simulations for some simple underactuated devices, including the resulting
walking-like movement animations.
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Souhrn

Metoda přesných transformacı́ a dekompozicı́ je v poslednı́ch čtyřech desetiletı́ch inten-
zivně zkoumána i z pohledu teorie a aplikacı́ automatick´eho řı́zenı́. Jednı́m z důležitých
problémů je zde tzv. přesná zpětnovazebná linearizace, která umožňuje řešit návrh regulace
nelineárnı́ho systému prostřednictvı́m jeho transformace na jednoduššı́, alespoň částečně
lineárnı́ model. Výsledkem je pak dekompozice původnı́ho nelineárnı́ho a složitě vnitřně
propojeného modelu na řadu jednoduššı́ch podsystém˚u, bǔd úplně na sobě nezávislých,
anebo s poměrně jednoduchým propojenı́m. Většina podsystémů je lineárnı́, nezávisı́ na
ostatnı́ch a je spojena právě s jednı́m vybraným vstupema jednı́m vybraným výstupem,
zatı́mco nelineárnı́ residuum, jenž je jimi ovlivňováno, postačı́ analyzovat jen kvalitativně.
Je zřejmé, že tı́m bude významně usnadněna dalšı́ analýza a syntéza prakticky všech úloh
automatické regulace, takže si metoda transformace a dekompozice nelineárnı́ch modelů
zasloužı́ významnou pozornost. Tato metoda je pro řı́zené systémy teoreticky rozvı́jena
teprve od sedmdesátých let minuláho stoletı́ a má svůjpraktický původ v robotice, kde
byla již dřı́ve použı́vána v poměrně jednoduché a omezené variantě jako tzv. princip
vypočteného momentu sı́ly (“computed torque principle”). Na rozdı́l od obecné teorie
transformacı́ neřı́zených dynamických systémů, která byla rozvı́jena mnohem dřı́ve, je
teorie transformacı́ řı́zených systémů komplikována přı́tomnostı́ vstupnı́ proměnné. V
této práci bude podán stručný přehled možných transformacı́ i typů cı́lových modelů, a
tı́m i bohaté škály různých typů přesné linearizace, včetně historie jejı́ho výzkumu od sed-
mdesátých let minulého stoletı́. Dále bude tato metodapředvedena na návrhu stabilnı́ chůze
pro nejjednoduššı́ modely podaktuovaných kráčejı́cı́ch robotů. Podaktuované mechanické
systémy majı́ menšı́ počet akčnı́ch členů, než jak´y je počet jejich stupňů volnosti. Je možné
řı́ci, že podaktuovaná chůze odpovı́dá přirozené chůzi mnohem lépe, než plně aktuovaná,
nebǒt moment sı́ly působı́cı́ na úhel opěrné nohy v bodě kontaktu se zemı́ nelze přı́mo
ovlivnit žádným pohonem. Pro mechanické systémy, a tedy i v robotických modelech, má
přesná částečná linearizace přirozenou fyzikálnı́ interpretaci a hledánı́ přı́slušných trans-
formacı́ se tak výrazně zjednodušuje. To platı́ ještěvı́ce pro modely kráčenı́, kde tzv. ki-
netická symetrie v kombinaci se specifickým podaktuovan´ym stupněm volnosti umožňuje
transformovat do lineárnı́ho tvaru ještě většı́ část modelu, než je tomu v přı́padě jiných
podaktuovaných systémů. Možnosti této metody budou předvedeny na numerických sim-
ulacı́ch a animacı́ch jednoduché chůze.
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Klı́čová slova: Transformace a dekompozice, automatické řı́zenı́, nelineárnı́ systémy, přesná
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1 Introduction

Exact transformations and decompositions of nonlinear control systems constitute perhaps
the most intensively studied and best understood area of thestructural approach to the
nonlinear control theory and systems engineering. The aim of the structural approach is to
analyze the structure of the controlled dynamical systems,decompose these systems into
subsystems and links between them and to use such a structural information for a better
control design. Within the linear control theory it resulted into the classification of linear
systems via their canonical forms where perhaps the most prominent one is the famous
Brunovsky canonical form [6]. The structural theory of nonlinear systems requires more
sophisticated and abstract mathematical tools as it relieson the differential geometry and
notions of invariant submanifolds of differential equations. Such an approach is based on
representation of the dynamical systems by vector fields of their right hand side, notions of
distributions, co-distributions and conditions for theirintegrability known as the Frobenius
and Nagano theorems, [27, 28, 30, 35, 39, 49, 56].

The practically motivated aim here is to find suitable exact compensations that leads
to its equivalent and possibly the simplest representation, these representations are usu-
ally called as the canonical, normal or other forms [16, 17, 18, 40, 50, 53, 58]. The ex-
act transformations are also usually combined with the decomposition of the systems into
several subsystem [27, 28, 30, 35], where bigger part can be transformed into some well
understood form while only smaller part is to be studied by more sophisticated method,
specifically designed for this smaller subsystem only. Typical examples here are linear,
or partially linear systems giving the so-called exact feedback linearization problem. Ex-
act compensation then makes it possible to transfer known solutions to various control
problems for these more particular and simple classes of systems to the original, seem-
ingly more complicated models, thereby providing further efficient control design options
[1, 2, 3, 4, 7, 19, 26, 38, 45, 60, 61, 62].

As a matter of fact, the exact feedback linearization principle was first introduced in
robotics, known as the inverse dynamics [48] or computed torque technique [41]. Us-
ing the control theoretic terminology and more detailed definitions introduced later on,
this technique is equivalent to the exact linearization viafeedback transformations only,
without any change of state space variables. See [37] for itsexposition using robotics ter-
minology, while survey [46] demonstrates, in particular, the broad impact of this technique
on the robotic and automatic control community. In the control and systems engineering
community the problem received a lot of attention in the literature and applications begin-
ning with the pioneering works of Korobov [33], Krener [34] and Brockett [5]. Among
numerous results, the key paper of Jakubzyk and Respondek [31] brought the complete
differential geometric insight into the exact linearization problem in terms of distributions
and vector field, while [55] gave their dual interpretation through exact one forms and
co-distributions. After that, further refinements of the problem were introduced and stud-
ied: input-output linearization [29], linearization by output injection useful for observers
design [36], linearization of systems with outputs [22], dynamic feedback linearization
significantly improving its applicability in multi-input multi-output case [20, 21], adaptive
exact feedback linearization [39], up to even more special topics, like time scaling trans-
formations [51], topological controlled systems linearization [11], or global linearization
[8, 9, 27, 50]. Surveys of these and other results can be foundin papers [23, 49, 10] or in
monographs [30, 32, 39, 44]. The exact feedback linearization problem is still subject of
the active research even recently [57].
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Nevertheless, many nonlinear systems, among them those arising in practical applica-
tions, can not be exact linearized due to the presence of singularities in possible transfor-
mations. Still, these systems can be transformed into simpler, yet nonlinear forms, that
enable easier controller design than for the original nonlinear system. Example of such a
situation are the so-called prime form, singular triangular forms or essentially triangular
forms, [12, 13, 14, 15, 40].

The rest of the technical part of this presentation is organized as follows. The next sec-
tion introduces the nonlinear model of the continuous-timecontrolled dynamical system
and its possible transformations and decompositions. Section 3 is devoted to the exact feed-
back linearization method while section 4 applies the partial exact feedback linearization
method to control the underactuated walking. Short final section draws some conclusions
and future outlooks.

2 Nonlinear control systems, their exact transformations
and decompositions

In this section, the idea of the exact system transformations and decomposition will be
introduced in a more technical detail. Denote in the sequel as C∞(M,N) the set of all
smooth mappings between two smooth manifolds1 M,N . A given smooth map is referred
to as the diffeomorphism, if it is also one-to-one.

As a basic control theoretic framework, consider the following continuous-time nonlin-
ear control system havingm inputs andp outputs and described by the system of ordinary
differential equations

ẋ = f(x) +G(x)u, G(x) = [g1(x)| . . . |gm(x)], y = (h1(x), . . . , hp(x))
⊤, (1)

wherex = (x1, . . . , xn)
⊤ ∈ M is the state of the system in some local coordinate chart

of a smoothn-dimensional manifoldM , u = (u1, ..., um)
⊤ ∈ R

m is its input whiley =
(h1(x), . . . , hp(x)) its output andf, g1, ..., gm are smooth vector fields onM .

Many practical goals in natural and engineering systems canbe described by the above
framework. Typical task is to force the output of the system to behave in a desired way
using the input feeded by the available information. The available information may include
the measurements of the system state, but more realistically of its output only. Such an
information is processed and then feeded into the input channels represented by the above
m-variablesu = (u1, ..., um)

⊤. Such a control is called as the feedback one, or also as
the closed loop control. Information processing can be either static (input depends only
on the actual measurements at time of its application), or dynamic (input uses also past
information about measurements). Correspondingly, one can speak about static or dynamic
feedback, furthermore, depending on the extent of the abovementioned measurements one
refers either to the state or output feedback.

Feedback is both the basic notion of the control theory and the instrument for practical
automatic control. It formalizes a natural intuitive idea that any control influence should

1Smooth manifold is the set equipped with the so-called atlasof compatible coordinate charts and some
topology to determine closeness of its points. Roughly saying, locally, there is no difference between general
manifold and the someR

n

space or its open subsets and usually only these manifolds will be considered
here. Nevertheless, there are some important application requiring the state space being globally a more
general smooth manifold thanR

n

, e.g. rigid body dynamics having the part of its state space represented by
the set of all three-dimensional rotations.
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reflect the actual situation of the controlled object and based on it the control action is
aimed to improve that situation. Feedback loop can be also used to adjust preliminary the
structure of the controlled dynamical system to simplify it. Namely, the adjusting feedback
loop can be then combined with the feedback solving the control task for the simplified
system thereby achieving the desired feedback controller for the original more complex
system. In such a way, feedback constitutes the system transformation tool as well.

Another system transformation tool is the change of the state variable. Again, it fol-
lows rather intuitive idea: for practical control purposesonly inputs and outputs are firmly
given, as they represent available control tools and desired control goals, respectively. Nev-
ertheless, the state is necessary only for the mathematicalmodel construction, therefore,
many equivalent states are possible. As a consequence, the change of the state coordinates
leads to another equivalent control system representation, which can be used to control it,
perhaps after some straightforward adaptations.

To be more specific, consider the new state variableξ ∈ N from a new manifoldN ,
related with the original state variablex of (1) via the diffeomorphismD ∈ C∞(M,N):

D : Vξ0 → Ux0
, x = D(ξ). (2)

The new state space - the smooth manifoldN - has the dimensionn as well. Furthemore,
consider the new input variablew = (w1, . . . , wm)

⊤ related with the original input variable
u used by (1) via the smooth feedback (i.e., the state dependent input space transformation):

u = α(x) + β(x)w, α(x) ∈ C∞(Ux0
,Rm), β(x) ∈ C∞(Ux0

, Gl(m,R)). (3)

Here,Gl(m,R) stands for the Lie group2 of all invertible (m × m) matrices having real
elements. Both these transformations are defined on some neighborhoodUx0

of x0 ∈ M
and a neighborhoodVξ0 of ξ0 = D(x0) ∈ N , wherex0 is a selected working state of the
original system. Then system (1) is said to be locally aroundx0 transformed using the state
transformation (2) and the feedback (3) into the following system

ξ̇ = f̃(ξ) + G̃(ξ)w, y = (h̃1(ξ), . . . , h̃p(ξ))
⊤, (4)

f̃ = [
∂D(ξ)

∂ξ
]−1[f(D(ξ)) +G(D(ξ))α(D(ξ))], G̃ = [

∂D(ξ)

∂ξ
]−1G(D(ξ))β(D(ξ)), (5)

h̃i = (hi(D(ξ)), i = 1, . . . , p. (6)

given locally aroundξ0 = D(x0) ∈ N . Alternatively, both (1) and (4-6) are called as the
state and feedback equivalentsystems. If both above neighborhoods coincide withM
andN , respectively, the equivalence is called as the global one.

System (1) is said to be (locally or globally)decomposableif there are the (local or
global) state space transformation (2) and the feedback (3)such that the transformed system
(4-6) onN , possibly after renumbering its outputs, takes the following form

ξ̇1 = f 1(ξ1) +G1(ξ1)w1, y1 = h1(ξ1), ξ1 ∈ R
n1 , w1 ∈ R

m1 , y1 ∈ R
p1

ξ̇2 = f 2(ξ) +G2(ξ)w, y2 = h2(ξ), ξ2 ∈ R
n2 , w2 ∈ R

m2 , y2 ∈ R
p2,

G1(ξ1) = [g11(ξ
1)| . . . |g1m1

(ξ1)], G2(ξ1, ξ2) = [g21(ξ
1, ξ2)| . . . |g2m(ξ

1, ξ2)],

n1 + n2 = n, m1 +m2 = m, p1 + p2 = p, y = [y1, y2] , h̃ = [h1, h2]
⊤
,

w =

[

w1

w2

]

, ξ =

[

ξ1

ξ2

]

, f̃ =

[

f 1

f 2

]

, G̃ =

[

g11| . . . |g
1
m1

| 0 | . . . | 0
g21| . . . |g

2
m1

| g2m1+1| . . . |g
2
m

]

.

(7)

2Lie group is a manifold equipped, in addition to manifold properties, by the group structure with group
operation being a smooth map. ForGl(m,R), the group operation is the usual matrix multiplication.
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For the local decomposition,ξ represents some suitable coordinates chart onN , while
N = R

n for the global decomposition. If it holds in (7) thatf 2 = f 2(ξ2), h2 = h2(ξ2)
and g2m1+1 ≡ . . . ≡ g2m ≡ 0, than the system is said to bedecoupled into two input-
output mutually independent subsystems. It is obviously easy to define decomposition
or decoupling into an arbitrary number of subsystems applying the above construction
repeatedly. Ifm = p, the decoupling can go on up to the so-called complete input-output
decoupling when each subsystem would correspond to some single-input and single-output
(SISO) system. In such a way, complexly interconnected multi-input and multi-output
(MIMO) system can be controlled as a set of independent SISO systems, what is clearly
easier.

3 Exact feedback linearization of nonlinear systems

The most straightforward and natural goal for the system transformation is the linear sys-
tem, either fully, or partially. If the system can be transformed into (partially) linear form
using the above mentioned transformations, then it is called to be exact feedback lineariz-
able. Of course, there are many variations of this notion, some of them will be given in
detail in this section, including illustrative examples and some basic results.

Definition 1. System (1) is called locally exact feedback linearizable atx0 ∈M if it is
locally state and feedback equivalent via the transformation (2) and the feedback (3) into
the following controllable and observable linear system

ξ̇ = Fξ +Gw, y = Hξ, ξ ∈ R
n, w ∈ R

m, (8)

whereF,G are (n × n), (n × m) and (p × n) matrices, respectively. The system is
called restricted feedback (state) linearizable if it is feedback linearizable withβ(x) ≡ Im
(β(x) ≡ Im, α(x) ≡ 0). If, instead of the linear output relationy = Hξ, one has after
transformation still some nonlinear relationy = h̃(ξ) and linear dynamics as in (8), than
the system in question is called as the system with the exact linearizable state dynamics.

Simply saying, in case of systems with the exact linearizable dynamics one need not
to consider the output relation relation to be linearized aswell. Situation described in
Definition 1 is obviously the most desirable one, but not so realistic. Systems with the exact
linearizable state dynamics being useful in many applications are better in this respect,
but even that is often too much to ask. The following option, the so-calledinput-output
partial exact feedback linearization, is much more realistic and therefore widely used.

Definition 2. System (1) is called locally input-output feedback linearizable atx0 ∈M
if it is locally state equivalent via the transformation (2)and the feedback (3) into the
following partially linear system

ξ̇1 = Fξ1 +Gw, y = Hξ1,

ξ̇2 = fnl(ξ1, ξ2, w) ξ1 ∈ Rn1 , ξ2 ∈ Rn2, n1 + n2 = n, w ∈ R
m,

(9)

where its linear part given by matricesF,G,H is the controllable and observable one. The
autonomous dynamical system without input given as

ξ̇2 = fnl(0, ξ2, 0) (10)

is called as thezero dynamics. Nonlinear system having asymptotically stable zero dy-
namics is called to be theminimum phaseone.
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Notice, that the input-output linearizable system is decomposable into a fully linear
controllable and observable system and some nonlinear residuum called as the zero dy-
namics. In general, the zero dynamics is not completely decoupled from the fully linear
part and it is influenced by it. Nevertheless, it is hidden from the input output point of
view, i.e. it does not influence the input-output linearizable part. Minimum phase prop-
erty ensures that this hidden part remains stable even if it is disturbed by an exponentially
decaying signal, or bounded if disturbed by bounded signal.As a consequence, for the min-
imum phase systems this nonlinear residuum can be ignored during the controller design
[7]. Input-output linearizing transformations can be found through straightforward con-
structive algorithm, based on the computation of the so-called relative degree, [30, 44].
Moreover, the linear part may be in this case even completelyinput-output decoupled [28].

Obviously, for practical purposes it is desirable to have the exact systems transforma-
tions valid on largest possible domain to be applicable to all possible working regimes of
the plant to be controlled. The most desirable situation in this respect is the so-called global
linearization.

Definition 3. System (1) is calledglobally feedback (restricted feedback, state, input-
output) linearizable atx0 ∈ M to a linear system onRn if it is at this point locally
linearizable andV0 = R

n. It is calledglobally linearizable onM if Ux0
=M . System that

is linearizable globally onM to a linear system onRn is calledglobally linearizable.
All types of global linearization introduced by Definition 2are quite reasonable. Notice

that for global state linearizationUx0
always coincides with the reachable set fromx0. Of

course the case of the global linearization (i.e. when bothV0 = R
n andUx0

= M) is the
most desirable one, but at the same time it is rather restrictive one. Linearization at a given
x0 ∈ M to a linear system onRn covers cases when a nonlinear system is not globally
controllable, but its restriction to the reachable set fromx0 is globally equivalent to a linear
system onRn. This case enables a straightforward application of linearmethods to solve a
particular control goal for the nonlinear system. In the case of global linearization onM ,
one has global controllability of the original nonlinear system, while its linear equivalent is
defined on an open subset ofR

n containing the origin. Nevertheless, this case still remains
better than local linearization whenUx0

is a proper and possibly very small subset ofM .
In the sequel, where no confusion arises, various adjectives for transformations and

feedbacks will be omitted
The above definitions will be illustrated by several examples. First group of examples

aims to demonstrate linearization of systems dynamics, therefore the output relations will
be omitted there as all claims are obviously valid for any output relation.

Example 1. The systemẋ1 = x1 + u, ẋ2 = u exp(x2), wherex = (x1, x2)
⊤ ∈

M = R2, u ∈ R, has globally state linearizable dynamics onM but this dynamics is
not globally exact feedback linearizable to a linear systemonR

2. Actually, linearizing at
x0 = (0, a)⊤, a ∈ R, diffeomorphism isx = (ξ1 + ξ2,− ln(a − ξ1))

⊤ and is defined only
for ξ1 < a. Nevertheless, its image is the wholeR2.

Example 2. The systemẋ1 = x1 + u(x1 + x2), ẋ2 = ux2 wherex = (x1, x2)
⊤ ∈

M = R
2, u ∈ R, has the globally state linearizable dynamics to a linear system onR2 at

anyx0 ∈ {x ∈ R
2 | x2 6= 0, x1 = 0}, but this dynamics is not globally linearizable onM .

Actually, diffeomorphismD : R2 → {x ∈ R
2 | ax2 > 0}, D = (aξ2 + aξ1, a)

⊤ exp ξ1,
linearizes the system atx0 = (0, a)⊤. This system is not globally controllable: reachable
set from(0, 1)⊤ (resp.(0,−1)⊤) is an open halfplanex2 > 0 (resp.x2 < 0).

Example 3.The systeṁx = f(x)+ug(x), x ∈ M = R
2 \{0}, u ∈ R, wheref(x) =

−(1/2) ln(x21+x
2
2)(−x2, x1)

⊤, g(x) = x, is locally everywhere onM state linearizable, but
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it does not have globally linearizable in any sense of Definition 2 dynamics. Linearizing
map for its dynamics is in this case

x = D(ξ) = exp ξ1

[

cos ξ2
sin ξ2

]

, D : R2 → R
2 \ {0},

that is local diffeomorphism at anyξ ∈ R
2 but is not globally invertible.

Example 4.The system onM = R
2

ẋ1 = sin x2 cos x2 + u exp(−x1) sin x2 (11)

ẋ2 = −(sin x2)
2 + u exp(−x1) cosx2, (12)

is locally state linearizable everywhere, but it is not globally linearizable in any sense of
Definition 2. One can easily see that the dynamics of the system (11) is transformed into a
linear system defined onR2 \ {0} by the smooth mapx = D(ξ), where

D−1(x) = exp x1

[

cosx2
sin x2

]

, D−1 : R2 → R2 \ {0},

that is a local diffeomorphism, but not globally one-to-one. Considering the original non-
linear system on{x = (x1, x2)

⊤ ∈ R
2 | x2 ∈ (−π/2, π/2)} and the linearized one on

R
2 \ {ξ = (ξ1, ξ2)

⊤ ∈ R
2 | ξ1 > 0} gives the one-to-one correspondence. Note that both

these sets are not invariant with respect to the corresponding systems.
Example 5.The system onM = R

2

ẋ1 = 2x1 + u(1 + x2), ẋ2 = x2 + u,

has globally state linearizable dynamics since its linearizing diffeomorphismx = D(ξ) =
(ξ1 + (1/2)ξ22, ξ2)

⊤ is the global diffeomorphism ofR2 onto itself.
Previous examples concentrated on the state linearizationcase only, in particular, in

order to illustrate briefly the main obstructions for the global linearization of systems that
are locally everywhere linearizable. In Example 1 one can observe that the vector field
(1, exp x2)

⊤ is notcomplete, i.e. its integral curves are not defined for all time moments,
in fact, they escape to infinity in a finite time. It will be seenin the sequel that the com-
pleteness of a certain collection of vector fields is necessary for the linearized system to be
defined on the wholeRn. Example 3 illustrates the basic topological property necessary for
the global linearization:the simple connectednessof M that is obviously violated there.
Simple connectedness usually guarantees that the linearizing diffeomorphism is globally
one-to-one. Nevertheless, as indicated by Example 4, it is not true that the system, locally
everywhere linearizable on a simply connected manifoldM , is also globally linearizable
onM .

The unrestricted feedback may provide several different linearizing transformations
which makes this case even more complicated, as illustratedby the following example and
results.

Example 6.Consider the following planar system with two inputs:

ẋ = exp(−x1)
[

(cosx2,− sin x2)
⊤u1 + (sin x2, cosx2)

⊤u2
]

, ∀x = [x1, x2]
⊤ ∈ R

2.

Both mutually commuting vector fields on the right-hand sideof this system are not com-
plete, the system has locally state linearizable dynamics around any point, but it is not

11



globally state linearizable in any sense of Definition 2. On the other hand, the above sys-
tem has easily globally linearizable dynamics using the unrestricted feedback:

v =

[

v1
v2

]

= exp(−x1)

[

cos x2 sin x2
− sin x2 cosx2

] [

u1
u2

]

.

Proposition 1. Consider the planar single-input system of the form

ẋ1 = u

ẋ2 = f0(x2) + f1(x2)x1, f0(0) = 0.

It is

1. locally both restricted and unrestricted feedback linearizable around the origin if and
only if f1(0) 6= 0;

2. globally restricted feedback linearizable if and only iff1(x2) 6= 0 ∀x2 ∈ R and
(0, f1)

⊤ is complete vector field;

3. globally unrestricted feedback linearizable if and onlyif f1(x2) 6= 0 ∀x2 ∈ R.

Observe, that for the class of systems considered in Proposition 1 locally there is no
difference between restricted and unrestricted feedback linearizability (of course in each
case the system is linearized using different transformations). At the same time, application
of the unrestricted feedback substantially enlarges possibilities for the global linearization.

Theorem 1. Single-input nonlinear system (1) has globally unrestricted feedback lin-
earizable dynamics onM if and only if it is globally state equivalent to the following
system

ẋ = f(x) + g(x)u, x = (x1, ..., xn)
⊤ ∈ R

n,

g = (g1(x), 0, ..., 0)
⊤ , f = (f1(x), f2(x), f3(x2, ..., xn), ..., fn(xn−1, xn))

⊤ (13)

and

g1(x) 6= 0,
∂fj
∂xj−1

6= 0 ∀x ∈ R
n, j = 2, ..., n.

If in addition there exists a constantε > 0 such that

|
∂fj
∂xj−1

| > ε ∀x ∈ R
n, j = 2, ..., n,

then the above system is globally unrestricted feedback linearizable,i.e. the corresponding
linear system is defined on the wholeRn.

Input-output linearization can be illustrated as follows.
Example 7.Consider the system

ẋ1 = x1+x2+x
3
2, ẋ2 = x22+x3, ẋ3 = u−x4−x

5
4, ẋ4 = (x1+x2+x

3
2)

2−x4, y = x1. (14)

The input-output linearization transformations can be found using the so-called relative
degree. Roughly saying, the relative degree is the number oftime derivations of the output
along trajectories3 of the system before the input explicitly appears. The corresponding

3Recall, that the time derivative of the functionh(x) along trajectories of some systemẋ = f(x)+ g(x)u
is the expressionhx(x)ẋ = hx(x)(f(x) + g(x)u), i.e. the full time derivative of the time functionh(x(t))
with x(t) being a trajectory of the systeṁx = f(x) + g(x)u.

12



expressions then serve to define exact transformations simplifying the system structure.
Namely, defineξ1, ξ2, ξ3, v as the first, second, third and fourth time derivatives of the
output along trajectories of (14), respectively:

ξ1 := x1, ξ2 := x1 + x2 + x32, ξ3 := x1 + x2 + x32 + (1 + 3x22)(x
2
2 + x3), v := y(3) =

x1+x2+x
3
2+(1+3x22)(x

2
2+x3)+6x2(x

2
2+x3)

2+(1+3x22)(u−x4−x
5
4+2x2(x

2
2+x3)).

This means that the relative degree is equal to3 and therefore the above algorithm de-
termines3 components of the new state and the feedback transformationintroducing the
new input variablev. To have the full coordinate change, one has to select the remaining
component of the state in any way, such that the overall transformation is one-to-one, e.g.
ξ4 := x4. With these new coordinates, one has the exactly transformed system representa-
tion as follows

ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = v, ξ̇4 = −ξ4 + ξ22 .

Therefore, the zero dynamics (see Definition 2) of the system(14) is

ξ̇4 = −ξ4,

i.e., it is exponentially stable and system (14) is therefore theminimum phase one. This
means that one can concentrate on its linear subsystem only and ignore its nonlinear one-
dimensional part. In terms of decomposition terminology, the system (14) is decomposable
into3-dimensional linear controllable and observable part and the exponentially stable one-
dimensional residuum influenced only by the signalξ2 from that linear part.

In the next section, the input-output linearization and decomposition will be demon-
strated on a more practically motivated example taken from the undeactuated walking.

4 Application of exact decompositions and transforma-
tions in underactuated mechanical systems

Mechanical systems are the challenging research area with adirect path to important appli-
cations in robotics where many techniques can be directly tested and applied thanks to their
physical interpretation. The well-known example in this respect is the energy as a possi-
ble source of Lyapunov function to study stability and design their control [47]. Moreover,
mechanical system have a special structure as they are usually described by even number of
state variables, where the first half of them are the so-called generalized coordinates while
the second half are the generalized velocities. Another crucial feature is that mechanical
models are usually obtained using the Euler-Lagrange formalism [25].

These specific features of the mechanical systems enable also efficient use of the pre-
sented technique of the exact transformations and decompositions. Actually, this technique
is a kind of natural continuation of studies of symmetries inmechanical systems [42].

The special role is in this respect played by the so-called underacuated mechanical sys-
tems being counterpart of the fully actuated ones. Fully actuated mechanical systems are
those having the same number of degrees of freedom and actuators. In this case, the exact
feedback linearization technique has been widely used since long time ago. As already
noted in the introduction, this technique was known in robotics even before general results
on exact feedback linearization appeared and it was called as computed torque, or inverse
dynamics technique [37, 41, 48].
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On the other hand, in case of theunderatucated mechanical systems, i.e. the systems
which are not fully actuated, the exact feedback linearization is not so straightforward
and only partial exact feedback linearization may be achieved. Efficient control of under-
actuated mechanical systems constitutes one of the most challenging problems of recent
decades, see [4, 24, 43, 54, 60, 61] and references therein. Reliable and economic walking
is a typical example of studies involving both control and robotic communities.

Many of these results rely on the partial feedback linearization technique combined
with decomposition into blocks according to each input component. One of the simplest
underactuated mechanical systems is the Acrobot. Despite being a seemingly simple sys-
tem, the Acrobot comprises many important features of underactuated walking robots hav-
ing degree of underactuation equal to one. Every mechanicalsystem, including the Ac-
robot, straightforwardly enables certain auxiliary output having relative degree equal to
two4 which gives a two-dimensional exact feedback linearizablesubsystem and a two-
dimensional nonlinear zero dynamics, see e.g. [54]. Nevertheless, it turns out that specific
features of the walking like underactuated systems allows athree-dimensional exact feed-
back linearizable part of its four-dimensional subsystem containing the non-actuated part.
First, these ideas were presented in [45] and further developed in [26], but they had not
been used for the control design until series of results [1, 2, 3, 19, 62]. Moreover, any
walking-like mechanical system havingn degrees of freedom andn − 1 actuators can
be decomposed and exactly transformed inton − 2 two-dimensional linear systems, one
three-dimensional linear system and a residual one-dimensional nonlinear dynamics. Sum-
marizing, of total2n states,2× (n−2)+3 = 2n−1 can be exactly transformed into linear
models and only one dimension remains to be described nonlinearly. In other words, more
general configurations can be exactly decomposed into Acrobot model and a fully actuated
mechanical system which can be treated by the well-known computed torque technique.
Thanks to the exact decomposition and transformation method, one can say that Acrobot
comprises all peculiarity of underactuated walking and knowing how to control Acrobot
walking directly opens way to the control of the general underactuated walking like con-
figurations.

The rest of this section will be therefore devoted to the Acrobot model partial exact
feedback linearization and its application to tracking of awalking-like trajectory. The Ac-
robot depicted on Figure 1 is a special case of ann-link chain withn−1 actuators attached
by one of its ends to a pivot point through an unactuated rotary joint. Such a system can
be modeled by the well-known Euler-Lagrange approach, see [25]. The corresponding
Lagrangian is as follows

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V (q) (15)

whereq denotes ann-dimensional vector on the configuration manifoldQ andD(q) is the
inertia matrix,K is the kinetic energy andV is the potential energy of the system. The
resulting Euler-Lagrange equation is















d
dt

∂L
∂q̇1

− ∂L
∂q1

d
dt

∂L
∂q̇2

− ∂L
∂q2

...
d
dt

∂L
∂q̇n

− ∂L
∂qn















=













0
τ2
...
τn













= u, (16)

4As the inputs are torques, any function of positions has relative degree equal to two or more.
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Figure 1: The Acrobot.

whereu stands for the vector of external controlled forces. As already indicated, system
(16) is the so-calledunderactuated mechanical system having degree of underactuation
equal to one, see [54]. Moreover, the underactuated angle isthe angleq1 at the pivot point
and the inertia properties of the configuration are independent of this very angleq1. It
will be shown that this combination, typical for all walking-like systems, is the key factor
enabling the existence of the three-dimensional exact linearizable subsystem.

More precisely, (16) leads for the Acrobot case to a dynamic equation of the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = u = [0, τ2]
⊤ (17)

whereD(q) is the inertia matrix,C(q, q̇) contains Coriolis and centrifugal terms,G(q)
contains gravity terms andu stands for the vector of external forces. These right hand side
terms take the following particular form:

D(q) =

[

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ2 + θ3 cos q2 θ2

]

, (18)

C(q, q̇) =

[

−θ3 sin q2q̇2 −(q̇2 + q̇1)θ3 sin q2
θ3 sin q2q̇1 0

]

, (19)

G(q) =

[

−θ4g sin q1 − θ5g sin (q1 + q2)
−θ5g sin (q1 + q2)

]

, (20)

where the configuration vector(q1, q2) consists of angles defined on Fig. 1 and

θ1 = (m1+m2)l
2
1+I1, θ2 = m2l

2
2+I2, θ3 = m2l1l2, θ4 = (m1+m2)l1, θ5 = m2l2. (21)

The crucial property here is the above-mentioned mentionedkinetic symmetry meaning
that the inertia matrixD(q) depends only on the second variableq2.
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As explained earlier, the partial exact feedback linearization method is based on a sys-
tem transformation into a new system of coordinates that display the linear dependence
between an auxiliary output and a new input. From a theoretical point of view, the me-
chanical system dynamics is described by ann-dimensional state-space equation. Static
state-feedback linearization using a suitable output function of relative degreer yields a
linear subsystem of dimensionr. In other words, the maximal feedback linearization prob-
lem consists in finding a linearizing function with maximal relative degree. In case of the
Acrobot, the mentioned kinetic symmetry combined withq1 being the underactuated angle
enables to find a functiony(q, q̇) with relative degree 3 that transforms the original system
(17) by a local coordinate transformationz = T (q, q̇) of the form

z1 = y, z2 = ẏ, z3 = ÿ, z4 = f(q, q̇), (22)

into a new input/output linear system with the one-dimensional nonlinear zero dynamics:

ż1 = z2, ż2 = z3, ż3 = α(q, q̇)τ2 + β(q, q̇) = w, ż4 = ψ1(q, q̇) + ψ2(q, q̇)τ2. (23)

As a matter of fact, there are two independent functions having relative degree 3 and trans-
forming the system into the desired form (23), namely

σ =
∂L

∂q̇1
= (θ1 + θ2 + 2θ3 cos q2)q̇1 + (θ2 + θ3 cos q2)q̇2, (24)

p = q1 +
q2
2
+

2θ2 − θ1 − θ2
√

(θ1 + θ2)2 − 4θ23
arctan





√

θ1 + θ2 − 2θ3
θ1 + θ2 + 2θ3

tan
q2
2



 . (25)

The reasons for the existence of these functions having relative degree equal to 3 have the
following nice physical interpretation. Actually, by (16)

σ̇ =
d

dt

∂L

∂q̇1
=
∂L

∂q1

and therefore by (15)

σ̇ = −
∂V (q)

∂q1
= G1(q)

asD(q) ≡ D(q2) by (18). In other words,̇σ has relative degree 2,i.e. σ has relative
degree 3. Moreover, by straightforward differentiation itholdsṗ = d11(q2)

−1σ, i.e. ṗ has
relative degree 2,i.e. p should have relative degree 3 as well. Indeed, as promised earlier,
in the above evaluation it is crucial, that the non-actuatedangle is exactly the same one as
the one with respect which there is a kinetic symmetry. At thesame time, this feature is
typical for the walking like movement, where the pivot pointis underactuated. One can
therefore expect that this type of partial exact feedback linearization of order three would
play important role for underactuated walking strategies.

The zero dynamics of (23) can be used to investigate internalstability when the cor-
responding output is forced to be zero. For the simplest cases y = Cp or y = Cσ the
resulting zero dynamics is only critically stable. However, considering the output function
y = C1p(q) + C2σ(q, q̇) one gets the following zero dynamicsṗ + C1[C2d11(q2)]

−1p = 0
which is asymptotically stable wheneverC1/C2 is positive,d11(q2) being the correspond-
ing part of the inertia matrixD in (17). Unfortunately, the corresponding transformations
have a complex set of singularities, unlessC1 is very small, which is not suitable for prac-
tical purposes.
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It was shown in [19] that the above functionsp, σ having maximal relative degree 3 can
be used in a slightly different way. Namely, the following transformation can be defined:

ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈. (26)

Notice that by (24)-(25) and some straightforward but laborious computations the follow-
ing relation holds:

ṗ = d11(q2)
−1σ, (27)

whered11(q2) = (θ1 + θ2 + 2θ3 cos q2) is the corresponding element of the inertia matrix
D in (17). Applying (26), (27) to (17) gives the Acrobot dynamics in the following partial
exact linearized form

ξ̇1 = d11(q2)
−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4, ξ̇4 = α(q)τ2 + β(q, q̇) = w (28)

with the new coordinatesξ and the inputw being well defined wheneverα(q)−1 6= 0. An
important feature here is that the set of all possible transformations singularities (i.e., the
set whereα(q)−1 = 0) depends only on the position anglesq1, q2, but not on velocities.
Moreover, this set has practically favorable properties, as will be shown later on.

To determine the region where the transformation (28,26) can be applied, one has to
express it explicity. Straightforward computations show that

ξ =











ξ1
ξ2
ξ3
ξ4











= T (q1, q2, q̇1, q̇2) :=











T1
T2
T3
T4











, (29)











T1
T3
T2
T4











=











p(q1, q2)
θ4g sin q1 + θ5g sin(q1 + q2)

Φ2(q1, q2)

[

q̇1
q̇2

]











(30)

wherep, σ are given by (24,25) andΦ2 by (35) later on. Furthermore, denote

φ =

[

φ1(ξ1, ξ3)
φ2(ξ1, ξ3)

]

, (31)

whereφ1, φ2 are such that

T1(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ1, T3(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ3. (32)

It obviously holds by (29-30) that

∂[ξ1, ξ3, ξ2, ξ4]
⊤

∂[q⊤, q̇⊤]⊤
=

[

Φ1(q1, q2) 0
Φ3(q, q̇) Φ2(q1, q2)

]

, q := [q1, q2]
⊤, (33)

Φ1(q1, q2) =

[

1 θ2+θ3 cos q2
θ1+θ2+2θ3 cos q2

θ4g cos q1 + θ5g cos(q1 + q2) θ5g cos(q1 + q2)

]

, (34)

Φ2(q1, q2) =

[

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ4g cos q1 + θ5g cos(q1 + q2) θ5g cos(q1 + q2)

]

, (35)

17



Φ3(q, q̇) =

[

∂Φ2

∂q1
q̇
∂Φ2

∂q2
q̇

]

=

[

0 −2q̇1θ3 sin q2 − q̇2θ3 sin q2
−θ4gq̇1 sin q1 − θ5g(q̇1 + q̇2) sin(q1 + q2) −θ5g(q̇1 + q̇2) sin(q1 + q2)

]

. (36)

Moreover, by (31,32) it obviously holds that

∂φ(ξ1, ξ3)

∂[ξ1, ξ3]⊤
= Φ−1

1 (q1, q2) =





θ5g cos(q1+q2)
s(q)

−θ2−θ3 cos q2
s(q)(θ1+θ2+2θ3 cos q2)

−θ4g cos q1−θ5g cos(q1+q2)
s(q)

1
s(q)



 , (37)

s(q) := detΦ1 = g
(θ1 + θ3 cos q2)θ5 cos(q1 + q2)− (θ2 + θ3 cos q2)θ4 cos q1

(θ1 + θ2 + 2θ3 cos q2)
. (38)

In other words, the coordinate change (29,30) is locally invertible at each point where

s(q) 6= 0. (39)

Indeed, by (17,18) the inertia matrixD(q) > 0, moreover,w = α(q, q̇)τ2 + β(q, q̇) and
[

T3
w

]

=
d

dt

[

T2(q, q̇)
T4(q, q̇)

]

= Φ2(q)

[

q̈1
q̈2

]

+ Φ3(q, q̇)q̇ =

Φ2(q)D
−1(q)

[[

0
τ2

]

− C(q, q̇)q̇ −G(q)

]

+ Φ3(q, q̇)q̇.

As a consequence, the aboveα(q, q̇), β(q, q̇) introduced in (28) are as follows

α(q, q̇) =
detΦ2

detD(q)
, (40)

β(q, q̇) =
detΦ2

detD(q)
(−C2(q, q̇)q̇ −G2(q)) (41)

−
(θ2θ4g cos(q1)− θ3θ5g cos(q2) cos(q1 + q2))(C1(q, q̇)q̇ +G1(q))

detD(q)
(42)

−θ4gq̇
2
1 sin q1 − θ5g(q̇1 + q̇2)

2 sin(q1 + q2), (43)

whereΦ2 is given by (35). By virtue of [10] and the references therein, the coordinate
change (30) is globally invertible on any open set where (39)holds and which is both
connected and simply connected. In other words, the Acrobotmodel is state and feedback
equivalent to system (28) on any such set. Fig. 2 depicts someof these sets.

In the sequel one can therefore concentrate on the study of system (28). This system is
almost linear, but there is a nonlinearityd11(q2)−1 in the first row that depends onq2 only.
To keep consistently new variables, this nonlinearity should be expressed in coordinates
ξ asd−1

11 (φ2(ξ1, ξ3)), φ2 is given by (31,32). Such an expression is a quite complicated
one, but one can use its certain favorable qualitative properties. Namely, straightforward
computations give

amin ≤ d11(q2)
−1 ≤ amax, (44)

amin =
1

m2(l1 + l2)2 +m1l21 + I1 + I2
, amax =

1

m2(l1 − l2)2 +m1l21 + I1 + I2
, (45)

amax − amin =
4l1l2m2(m2(l1 + l2)

2 +m1l
2
1 + I1 + I2)

−1

(m2(l1 − l2)2 +m1l21 + I1 + I2)
, (46)
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Figure 2: Singularities and possible regular set of coordinate change (30). Heres(q) is
given by (38), whileyCOM(q) stands for the vertical distance of the Acrobot centre of
mass from the ground. Notice, that in real application this distance should obviously be
significantly bigger than zero.

i.e. amax − amin is quite small and therefore the nonlinearityd11(q2)−1 is actually varying
in a quite narrow range. Therefore, its derivative also evolves in a favorable way, namely

∂[d11(q2)
−1]

∂q2
= (2θ3 sin q2)d11(q2)

−2, |
∂[d−1

11 ]

∂q2
| ≤ 2θ3a

2
max. (47)

To ensure exponential tracking of a given walking-like trajectory some additional qualita-
tive prpoerties ofd−1

11 (φ2(ξ1, ξ3)) should be developed. Namely, assume that an open-loop
control generating a suitable single step reference trajectory is given on the time interval
[0, T ] in partial exact linearized coordinates (28). Therefore, our task is to track the follow-
ing reference system

ξ̇ref1 = d−1
11 (q

ref
2 )ξref2 , ξ̇ref2 = ξref3 , ξ̇ref3 = ξref4 , ξ̇ref4 = wref . (48)

To demonstrate the strength of the exact feedback transformation technique by analyzing
partially linear form (28). Namely, subtracting (48) from (28) one has (pute := ξ − ξref ):

ė1 = d−1
11 (φ2(ξ1, ξ3))ξ2 − d−1

11 (φ2(ξ
ref
1 , ξref3 ))ξref2 , ė2 = e3, ė3 = e4, ė4 = w − wref .

Straightforward computations based on Taylor expansions give

ė1 = µ2(t)e2 + µ1(t)e1 + µ3(t)e3 + o(e) (49)

ė2 = e3, ė3 = e4, , ė4 = w, (50)

µ1(t) = ξref2 (t)
∂[d−1

11 ]

∂q2

∂φ2

∂ξ1
(qref2 (t)), µ2(t) = d−1

11 (q
ref
2 (t)), (51)

µ3(t) = ξref2 (t)
∂[d−1

11 ]

∂q2

∂φ2

∂ξ3
(qref2 (t)), qref2 (t) = φ2(ξ

ref
1 (t), ξref3 (t)), q2 ∈ [0, 2π). (52)

By (44-47) for every walking-like step there are some constantsB,R > 0 such that

|µ1(t)| ≤ 2θ3a
2
max(θ4 + θ5)

R

B
, (53)

19



|µ3(t)| ≤ 2θ3a
2
max

R

B
, 0 < amin ≤ µ2(t) ≤ amax. (54)

ConstantsB,R characterize minimal distance from transformations singularities and max-
imal velocity of walking. So, closer to singularity and faster to walk would create more
difficulties in design due to higher values ofµ3(t). Singularities correspond to points where
Acrobot is difficult to control from basic mechanical reasons while faster walking is ob-
viously a more challenging task. Therefore, the above dependence might have been intu-
itively expected. More precisely, these constants are defined as follows

∀t ≥ 0 |s(φ2(ξ
ref)(t))| ≥ B > 0, |ξref2 (t)| ≤ R, ∀t ≥ 0, (55)

whereφ2 is given by (31,32) ands(q) by (38). Moreover, it turns out that for any given
reference trajectoryqref(t), the functionsµ1,2,3 can be quite easily computed numerically
using formulas (51-52). Summarizing, one has to stabilize the linear time-varying system
(49-50) using a linear feedback. One option is to use the quadratic stability concept that
would ensure the existence of a single linear feedback and a single quadratic Lyapunov
function for all possible values of the three-dimensional parameter[µ1(t), µ2(t), µ3(t)], t ∈
[0, T ] whereT > 0 is the time duration of a single step reference trajectory.

To perform this plan define the statex(t) = e(t) as the error signal and consider the
following open-loop continuous time-varying linear system

ẋ(t) = A(t)x(t)+Bu(t), A(t) =











µ1(t) µ2(t) µ3(t) 0
0 0 1 0
0 0 0 1
0 0 0 0











, B =











0
0
0
1











. (56)

The tracking problem consists in finding the state-feedbackcontrolleru(t) = Kx(t), K =
[K1 K2 K3 K4] , producing the following exponentially stable closed-loopsystem

ẋ = (A+BK) x =











µ1(t) µ2(t) µ3(t) 0
0 0 1 0
0 0 0 1
K1 K2 K3 K4











x, (57)

where bounds forµ(t) = (µ1(t), µ2(t), µ3(t)) are given by (53)-(54).
Despite entries ofµ(t) are known functions, the appealing idea is to treat them as

unknown disturbancessatisfying the above mentioned given constraints. If constraints
are tight enough, one can think about solving quadratic stability conditions and design a
unique feedback stabilizing such an “uncertain” system. Obviously, such a feedback would
be at the same time solving our tracking problem.

To pursue such an idea, one can obtain LMI conditions for the quadratic stability
as follows. Recall here that the quadratic stability is a particular case of robust stabil-
ity, valid for arbitrarily fast time-variation of the uncertain parameters and certified by
a unique quadratic-in-the-state parameter-independent Lyapunov function. Consider the
well-known Lyapunov inequality to be solved for all values of µ(t) by finding a suitable
symmetric positive definite matrixS and a vectorK:

(A (µ) +BK)T S + S (A (µ) +BK) � 0, S = ST ≻ 0. (58)

Such a problem is in fact bilinear with respect to the unknownsS,K. Denoting

Q = S−1, Y = KS−1 (59)
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gives the following LMI condition for quadratically stabilizing feedback design:

A (µ)Q+BY + (A (µ)Q+BY )T � 0, Q ≻ 0, (60)

see e.g. [52, Section 5.2]. Notice that pair(A(µ), B) is controllable if and only if

µ1µ3 + µ2 6= 0. (61)

Obviously, if the set of possible values ofµ contains, or stays close to, the singular set
given by (61), LMI (60) becomes infeasible, or almost infeasible.
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Figure 3: Trajectoryµ(t) and its convex hull.

As already indicated, values ofµ(t) during a given single step can be computed numeri-
cally. A detailed account of approximate modeling of theµ(t) trajectory and corresponding
LMI conditions used to generate a stabilizing feedback gaincan be provided as follows.

To demonstrate the above approach to tracking feedback design, the so-called pseudo-
passive walking trajectory, developed in [19] can be used. Briefly, the pseudo-passive
walking trajectory is the one which is produced by the zero virtual inputw, i.e. by the real
torqueτ2 = −β/α, whereα, β are given by (28). By physical considerations it means
that the pseudo-passive trajectory maintains the constantspeed of the center of mass of
the whole Acrobot. For such a trajectory, the time varying entries µ1,2,3(t) were com-
puted numerically with high precision using the same Acrobot physical parameters as in
[19]. In [2], these entries were embedded in various kind of convex polytopic sets and
the corresponding LMI problems were solved, thereby obtaining the quadratic stability of
the error dynamics with various degrees of conservatism. The corresponding results were
thoroughly compared in numerical experiments and simulations.
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The best results were achieved in [2] as follows. It was chosen to sample the trajectory
at time instantsti, and to letAi = A(µ(ti)) for i = 1, . . . , N . The corresponding uncer-
tainty model is the polytopic convex hull of theAi vertices. TakingN = 279 equidistant
time instants, the resulting convex hull is a polytope with274 vertices and544 facets in
the parameter space. Even though it is not guaranteed that the genuine trajectoryµ(t) is
contained in this polytope, it is very close to the actual convex hull of the trajectory. The
convex hull can be seen on Fig. 3. Solving theH2 design LMIs (see [2] for more details)
the state-feedback matrix is obtainedK = 103 ·(−3.3407−2.0073−0.29683−0.024386)
having the Euclidean norm3.9087 · 103.

Applying the feedback computed based on these gains and transformed to original coor-
dinates one obtains asymptotically stable tracking of the pseudo-passive walking trajectory.
To illustrate this approach more transparently, Figure 4 shows the animation of the Acrobot
walking-like single-step trajectory with the above state-feedback gain matrix torque satu-
ration of±10Nm. These animation shows that the above computed strategy hasa nice
intuitive interpretation: to make up the missing speed of the pivot angle, which is under-
actuated, the Acrobot speeds and then brakes the swing leg, thereby creating the missing
torque at the pivot point.

Figure 4: Animation of a single step with sampling time0.08 s. The dashed line is the
reference, the full line represents the controlled Acrobotmodel.

5 Conclusions

The method of the exact transformations and decompositionsof nonlinear controlled dy-
namical systems has been presented, including its theoretical basics and history of its re-
search and applications development. This method has been demonstrated in detail on
the appealing problem of the underactuated walking design for the simplest walking-like
mechanical systems known as the Acrobot. These results has future potential to be ex-
tended to any reasonable general underactuated walking-like configurations via their spe-
cial decomposition into a fully actuated system and some virtual Acrobot-like model. As a
consequence, the control for general system would be a straightforward combination of the
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Acrobot control and the well-known computed torque technique. This new idea is currently
a subject of an intensive research of the author, his colleagues and students.
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1997 Čelikovsḱy Sergej, Nijmeijer H.:On the relation between local controllability and stabiliz-
ability for a class of nonlinear systems,IEEE Transactions on Automatic Control, 42 (1997),
pp. 90-94.
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1999 Čelikovsḱy Sergej, Aranda-Bricaire E.:Constructive nonsmooth stabilization of triangular
systems,Systems and Control Letters36 (1999), pp. 21-37.
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