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Summary

The recent developments in many scientific and engineering disciplines
bring in new challenges for computational science. The Finite Element
Method has become a widely used tool for solving problems described
by partial differential equations. Its application often leads to nonlinear
models of very complex geometries and many degrees of freedom. Such
complex analyses initiate demands for large-scale computing, which
must be feasible from the view of both time and available resources.
This naturally leads to utilization of parallel processing, that allows
not only obtaining results in acceptable time by significantly speeding
up the analysis, but also performing large and complex analyses, which
often do not fit into a single, even well equipped, machine with one
processor unit (regardless of achieved speedup).

The design of parallel algorithms requires the partitioning of the
problem into a set of tasks, the number of which is greater than or
equal to the number of available processors. The partitioning of the
problem can be fixed at runtime (static load balancing) or can change
during the solution (dynamic load balancing). The latter option is of-
ten necessary in order to achieve good load balancing of work among
processors and thus optimal scalability. The load balance recovery is
achieved by repartitioning of the problem domain and transferring the
work (represented typically by finite elements) from one processor to
another. The repartitioning is an optimization problem with multiple
constraints, optimal algorithm should balance the work while minimiz-
ing the work transfer and keeping the sub-domain interfaces as small
as possible.

To illustrate the potential of the parallel adaptive finite element
analysis, the present summary offers two particular examples of non-
linear fracture analysis: 2D simulation of Brazilian splitting test and
3D analysis of anchor pull out.
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Souhrn

Během posledńıho desetilet́ı došlo k výraznému pokroku v mnoha vě-
deckých a inženýrských oborech, které nastolily nové výzvy v numer-
ickém modelováńı. Metoda konečných prvk̊u se stala nejpouž́ıvaněǰśı
numerickou metodou pro řešeńı problémů popsaných systémem parciál-
ńıch diferenciálńıch rovnic. Běžně se použ́ıvá pro řešeńı nelineárńıch
problémů s komplexńı geometríı a mnoha stupni volnosti. Modelováńı
komplexńıch problémů vede přirozeně k rozsáhlým adaptivńım výpoč-
t̊um, které jsou limitovány dostupným výpočetńım časem a dostupnými
výpočetńımi prostředky. To vede k paralelńım výpočt̊um, které ne-
jen umožńı źıskat požadované výsledky v přijatelném čase zrychleńım
výpočtu, ale často také v př́ıpadě rozsáhlých problémů výpočet v̊ubec
provést, neboť i špičkově vybavený standardńı poč́ıtač nemá dostatek
prostředk̊u pro jeho provedeńı.

Návrh paralelńıho algoritmu vyžaduje rozděleńı problému na jed-
notlivé d́ılč́ı úlohy, jejichž počet je větš́ı nebo roven počtu dostupných
výpočetńıch jednotek. Děleńı úlohy může být během řešeńı konstantńı,
nebo se může během řešeńı měnit. Dynamická adaptace děleńı je
často nezbytná pro dosažeńı dobrého vyvážeńı výpočetńı zátěže mezi
výpočetńımi jednotkami a tedy dobré škálovatelnosti algoritmu. Ob-
nova rovnoměrné výpočetńı zátěže vyžaduje nové přerozděleńı a přenos
výpočetńı zátěže z vyt́ıžených výpočetńıch jednotek na méně zat́ıžené.
Rozděleńı či přerozděleńı je obecně v́ıcekriteriálńı optimalizačńı pro-
blém. Optimálńı algoritmus by měl rovnoměrně rozložit výpočetńı
zátěž a minimalizovat vzájemnou komunikaci.

Pro ilustraci potenciálu paralelńıch adaptivńıch výpočt̊u metodou
konečných prvk̊u uvád́ı tato práce dva př́ıklady adaptivńıch nelineárńıch
výpočt̊u tahového porušeńı betonu na paralelńıch poč́ıtač́ıch: dvou-
rozměrnou analýzu brazilského testu v př́ıčném tahu a trojrozměrnou
analýzu vytahováńı kotvy.
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1 Introduction

1.1 Motivation and approaches in parallel adaptive
FEM simulations

The finite element method has become the most powerful tool for struc-
tural analysis. During the last decades, the method has matured to
such a state that it is massively used in practical engineering for the
solution of broad range of problems starting from linear elasticity up
to highly nonlinear transient simulations of the behavior of real ma-
terials and complex structures. However, the quality of the obtained
solution is dependent on many aspects (including the adopted spatial
and time discretization, material model, equation solver and its param-
eters, etc.). Thus it is very important to keep the solution error under
control. This can be conveniently (and usually also most economically)
accomplished by the application of the adaptive analysis.

A very natural goal of the adaptive finite element analysis is to
calculate solution of the governing partial differential equation(s) with
uniformly distributed error not exceeding a prescribed threshold in the
most economical manner. This is achieved by improving the discretiza-
tion in areas where the finite element solution is not adequate. It is
therefore essential to have an assessment of the quality of the approxi-
mate solution and a capability of discretization enrichment. For linear
problems, error analysis of the finite element solution can be devel-
oped in a mathematically rigorous way [2, 37]. In the nonlinear range,
however, rigorous error estimates can be constructed only for a re-
stricted class of problems. A general theory is not available since there
are various sources and forms of nonlinearities. In the linear elastic
case the error arises essentially from the discretization of the domain
(so-called spatial error). In the nonlinear case, the error depends on
the time discretization for history-dependent solids, and a part of the
error is always induced by the incremental-iterative technique. The
path dependency renders the problem more complex and, consequently,
a reliable error estimation becomes more difficult, especially for non-
conventional theories of enriched continua. Nevertheless, considerable
progress has been made in recent years. For instance, Rodriguez-Ferran
and Huerta [29] proposed a sophisticated error estimator for nonlocal
damage models. Ladeveze and coworkers [21, 16] developed a posteriori
estimators based on the error in the constitutive relation, and Comi and
Perego [9] adapted this technique to their nonlocal damage theory [8].
However, the implementation of these complicated estimators requires
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a considerable effort. A simple and convenient alternative to rigorous
error estimators is provided by heuristic error indicators (see [25], for
example). They are often based on physical intuition and insight into
the problem at hand.

There are three main directions of the adaptive discretization en-
richment. The first one, a natural way for most engineers, is the
h-version [5, 10, 12], which refines the computational finite element
mesh while preserving the approximation order of the elements. The
p-version [34] keeps the mesh fixed but increases hierarchically the or-
der of the approximation being used. The hp-version [10, 22, 38] is
a proper combination of h- and p-versions and exhibits an exponen-
tial convergence rate independently of the smoothness of the solution.
However, its implementation is not trivial. Similarly, the treatment of
higher order elements in the p-version is rather complicated, especially
when nonlinear analysis is considered.

The application of adaptivity paradigm can result in computation-
ally very demanding analysis in terms of both computational time and
computer resources (memory, disk space, etc.). These demands can be
alleviated by performing the analysis in a parallel computing environ-
ment. Typical parallel application decreases the demands on memory
and other resources by spreading the task over several mutually inter-
connected computers and speeds up the response of the application by
distributing the computation to individual processors.

The design of parallel algorithms requires the partitioning of the
problem into a set of tasks, the number of which is greater than or
equal to the number of processors. The partitioning of the problem
can be either fixed (static load balancing) or can change during the
solution (dynamic load balancing). The latter option is often necessary
in order to achieve good load balancing of individual processors and
consequently also reasonable scalability.

As the spatial distribution of error prior the remeshing is usually
not uniform, the number of elements can vary significantly between
partitions after a few remeshing steps. This is particularly true for
problems with strong localization, where error is localized into narrow
bands, which leads to enormous refinement in these regions. Thus, the
load rebalancing on the fly is necessary to recover the load balance
and to obtain scalable implementation. The load balance recovery is
achieved by repartitioning the problem domain and by transferring the
work (represented typically by finite elements) from one subdomain to
another.
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1.2 Introduction to parallel computing

Traditional computer codes run on a computer with a single process-
ing unit. The algorithm is translated into a sequence of instructions,
which are executed by a processing unit one by one. On the other
hand, parallel computing is based on premise, that large problems can
be divided into smaller tasks, which are solved concurrently by the si-
multaneous use of multiple computing resources. Parallelization of the
problem reduces the computational time, and, for some cases, it allows
large analyzes to be at least performed.

The existing computer architectures can be classified using Flynn’s
Taxonomy [14] into following four classes:

• Single Instruction, Single Data (SISD) architecture, representing
a computer with single processing unit, capable to perform a sin-
gle instruction on a single data in one clock cycle.

• Single Instruction, Multiple Data (SIMD). This represents a type
of parallel computer, where all processing units perform the same
instruction, but on different data. Typical example is a vector
processor implementing an instruction set containing instructions
that operate on one-dimensional arrays of data. Vector processing
techniques are also quite often used in modern computer graphical
cards.

• Multiple Instruction, Single Data (MISD) concept, where every
processing unit may execute a different instruction, but all units
operate on the same data.

• Multiple Instruction, Multiple Data (MIMD) architecture, where
every processing unit may execute a different instruction sequence
operating on a different data set. This is the most common type
of parallel computer.

In terms of memory distribution, the parallel computers can be
divided into shared, distributed, and hybrid memory systems [4], see
Fig. 1. In the shared memory system, the main memory with a single
address space is shared between all processing units which can directly
address and access the same logical memory. Any modification in a
memory location caused by one processor is visible to all other proces-
sors. The globally accessible memory is the main advantage, as can
facilitate the programming to the great extent. On the other hand, the
link between memory and processing units is not scalable for increas-
ing number of processing units. Distributed memory refers to the fact
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(a) (b) (c)

Figure 1: Parallel Computer Memory Architectures: (a) shared mem-
ory, (b) distributed memory, and (c) hybrid architecture. Dark rectan-
gle represents memory, light rectangle processing unit, and line com-
munication network.

that the memory is physically distributed. Processors have their own
local memory, which does not map to another processor, so there is no
concept of global address space across all processors. When a processor
needs to access data in another processor, it is usually the task of the
programmer to explicitly define how and when data is communicated.
The cost of communication compared to local memory access can be
very high. On the other hand, the advantage is that the overall memory
is scalable with processors. A Typical hybrid system consists of several
shared memory units forming large-scale distributed memory system.
This type of system seems to be the most promising architecture for
future systems.

Despite the variety of available platforms, there exists a common
programming model based on message passing paradigm, which is avail-
able on most hardware platforms. The message passing is a form of
communication based on sending and receiving messages. Nowadays,
the Message Passing Interface (MPI) [15, 33] has become de facto stan-
dard. MPI libraries are highly portable and are available on virtually
all parallel computing platforms, from shared memory systems to dis-
tributed workstation clusters. These factors, together with a relatively
easy to learn interface are the main factors of MPI success; many sci-
entific libraries like PETSc [3], ScaLAPACK [6] employ MPI for the
message-passing communication.

The design of parallel algorithms requires the partitioning of the
problem into a set of tasks which are assigned to individual processors.
In general, one can distinguish two basic approaches: functional and
domain decomposition. The former uses decomposition based on the
work that must be performed, so that each task represents a portion
of the overall work. In the latter, the focus is on data set which is
decomposed. In this approach, each processor works on a different
portion of the overall data. Domain decomposition is often used in finite
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Figure 2: Amdahl’s law.

element simulations, where the computational mesh is decomposed into
a set of non-overlapping partitions, assigned to individual processors.

The increased performance in terms of time is one of the most im-
portant and expected goals of parallel computing. The efficiency of a
parallel algorithm is often measured by a speedup which is defined as
fraction of the solution time required on a single (serial) processor and
the solution time of a parallel task. Optimally, one would expect linear
speedup, where doubling the processing units should halve the compu-
tational time. However, the optimal speedup is hard to achieve, due to
many reasons: the parallelization usually induces costly communication
and synchronization, potentially some parts of the algorithm could not
be partitioned, etc. One possibility to asses the potential speedup is
the Amdahl’s law, originally formulated by Gene Amdahl [1] (see also
Fig. 2).

S(n) =
T (1)

T (n)
=

s + p

s + p/n
=

1

s + p/n
(1)

where S is the speed-up of the program, n is a number of processors,
p is a parallel fraction of the program, and s = 1 − p is a serial (non
paralellizable) fraction of the program. The time spent by the parallel
fraction decreases with number of processors, while the time needed by
serial fraction remains constant. For increasing number of processors
the serial part will limit the achieved speedup and computation cannot
scale to match availability of computing power as the machine size
increases. For example, if the serial fraction of an algorithm is 5% (s =
0.05), one can’t achieve better speedup than 20, regardless the number
of available processors. The Amdahl’s law predictions are not very
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Figure 3: Gustafson’s law.

optimistic and have caused many frustrations. The key assumptions
behind Amdahl’s law are fixed problem size and size of the sequential
section independent of the number of processors. The possible remedy
has been proposed by Gustafson’s law [17] which does not make these
assumptions. Today, it is clear that for many problems the Amdahl’s
assumption of fixed problem size does not apply. In many problems,
the model resolution and thus the amount of work required can scale
with the number of available processors. From a particular parallel
simulation, one can construct a hypothetical serial computation (see
Fig. 3) and compute speedup as

S(n) =
T (1)

T (n)
=

s′ + np′

s′ + p′
= s′ + np′ (2)

where n is the number of processors, p′ is the parallel fraction of the
model, and s′ is the serial fraction. One can see, that with increasing
problem size, the speedup obtained through parallelisation increases,
because the parallel work scales with problem size. In some sense,
the Gustafson’s law has given a new optimism to the community, as
the Amdahl’s predictions were quite pessimistic. The Amdahl’s and
Gustafson’s laws are compared in Fig. 4.

2 Parallelization Concept

The adopted parallelization strategy is based on domain decomposition
concept, in which the mesh is decomposed into a set of non-overlapping
sub-domains, which are assigned to individual processors. In general,
one can distinguish between two dual partitioning approaches. With
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Figure 4: Comparison of Amdahl’s and Gustafson’s laws.

Figure 5: Node cut partitioning.

respect to the character of a cut, dividing the problem mesh into par-
titions, one can distinguish between node-cut and element-cut strate-
gies [20]. In the node-cut strategy (see Figure 5), the elements are
uniquely assigned to individual partitions by leading the cut along el-
ement sides. Nodes on these element sides are shared by two or more
adjacent partitions and are called shared nodes. In the element-cut
strategy (see Figure 6), the nodes are uniquely assigned to individual
partitions by running the cut across elements.

It is clear that the partitioning of the problem requires modifica-
tion of standard sequential code in terms of additional data exchange.
For example, in the node cut approach, contributions from individual
partitions to shared nodes must be assembled. This data exchange can
be done quite efficiently because for a given mesh and its partitioning
the individual communication maps, setuped initially on each parti-
tion, do not change, unless the problem is subjected to repartitioning

12



Figure 6: Element cut partitioning.

to recover the load balance and/or mesh refinement. In such a case,
the communication maps have to be appropriately updated. From the
computational point of view, the node-cut strategy is usually considered
more efficient due to the smaller amount of interprocessor data transfer
and because the duplicated processing of shared elements is avoided.
Therefore, only the node-cut strategy is considered thereafter.

The partitioning is an optimization problem with multiple con-
straints. To be optimally load-balanced, the partitioning should take
into account a number of factors. Firstly, the computational work on
each subdomain should be balanced, so that no processor will be wait-
ing for others to complete. The computational work is typically related
to elements, and can be, for example, computed as a sum of compu-
tational weights of individual elements, which expresses the amount of
numerical work (number of operations) associated with each element
compared to the selected reference element. Secondly, in order to re-
duce the communication among partitions, the interface between the
partitions should be minimal. Other constraints can reflect the dif-
ferences in the processing power of individual processors or may be
induced by the topology of the network. See Fig. 7 illustrating the
domain decomposition of real engineering structure.

The graph partitioning problem is generally NP-complete. How-
ever, in recent years a lot of attention has been focused on developing
suitable heuristics and many powerful mesh (re)partitioning algorithms
which can facilitate this task have been developed. Algorithms based
on spectral methods [27, 32] have been shown to be reasonably effi-
cient for partitioning of unstructured problems in many applications,
but they have a relatively high computational complexity. Geomet-
ric partition methods [18, 13] are quite fast but they typically provide
worse partitioning than other (more expensive) methods. Recently, a
number of researchers have investigated a class of multilevel graph par-
titioning algorithms that have a moderate computational complexity
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Figure 7: Domain decomposition of nucler power plant containment.
Partitions artificially shifted.

and provide excellent (even better than spectral) partitioning [19, 36].

3 Adaptivity

3.1 General concept

The traditional nonlinear finite element analysis is typically based on a
fixed mesh and interpolation order, where both the mesh density as well
as interpolation order are usually controlled by user experience. The
adaptive analysis, on the other hand, allows to control solution error
by automatically refining or coarsening the mesh (h-adaptivity), ad-
justing the interpolation order (p-adaptivity), or both (hp-adaptivity).
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The solution error is usually evaluated using suitable a posteriori error
estimation.

The adaptive nonlinear analysis consists of several steps. The com-
putation starts with initial discretization with usual incremental solu-
tion procedure. After reaching the equilibrium state, an a posteriori
error estimation is performed, in order to evaluate the error distribu-
tion. If the obtained error level is still acceptable, the analysis continues
with the next load increment on the existing mesh. If the evaluated
error exceeds a limit defined by the user, the required mesh density
is determined from the error distribution and a new spatial discretiza-
tion is generated. After that the primary unknowns (displacements)
and state variables are transferred from the old to the new mesh. The
type of internal variables transferred depends on the material model
used. For instance, for the isotropic damage model, adopted in the
presented study, it is sufficient to transfer the damage variable (or, al-
ternatively, the maximum equivalent strain). After the mapping, the
internal variables together with the strains computed from the mapped
displacement field are used to update the internal state of each integra-
tion point (to ensure local consistency). Once the transfer is finished,
the old mesh is deleted and the mapped configuration is brought into
global equilibrium by iteration at the last achieved value of the load-
ing parameter. Afterward, the solution continues with the next load
increment.

3.2 Parallel adaptivity

The parallel implementation of the adaptive strategy brings in an addi-
tional level of complexity. In order to obtain scalable implementation,
it is necessary to parallelize all steps involved. Particularly, the parallel
mesh generation is quite chalenging. The new mesh should be gener-
ated in parallel and partitioned as close as possible to the old mesh
partitioning in order to make the transfer of variables local as much
as possible within a given partition to avoid costly communication. In
general, the newly generated mesh and its partitioning will not exactly
respect interpartition boundaries of the old mesh, which implies the
need for the nonlocal (remote) data access. This fact complicates the
transfer because it requires the adaptation of existing local operators
and induces additional interpartition communication.

The spatially optimal overlap of the new and old partitions is im-
portant as many transfer operators are based on local projection so that
the remote data access can be completely avoided when the new mesh
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partitioning coincides exactly with the old one. This fact is the main
motivation for the implementation of locality preserving subdivision
based remeshing, that allows to profit from local transfer on each parti-
tion. However, keeping the old and new partitions coinciding can result
in dramatic load imbalance between partitions after a few remeshing
steps. This is especially true for problems with strong localization,
where error is localized into narrow bands that are in turn subjected to
the most progressive refinement. To make the implementation scalable,
a load balance recovery is necessary. The error evaluation and possible
mesh adaptation can be performed before or after the load balance re-
covery. The first approach requires more communication (balancing is
done on refined grid, so more data need to be moved), but can profit
from the fact that load balance is recovered on the adapted grid which
will be used in subsequent solution steps. The latter approach is less
demanding in terms of communication (provided that the mesh will be
refined), but the load balance recovery is based on information from the
old mesh, so it may be less optimal, compared to the first approach. In
the examples presented in this paper, both approaches are compared.

The above mentioned remeshing approach is based on a subdivision
approach using the longest edge bisection algorithm [28] designed for
triangular meshes. This approach does not generally require an inter-
action with an external meshing package and can be performed directly
within the analysis tool, which eliminates overhead related to spawning
the external meshing. On the other hand, within the analysis tool, only
limited (if even any) interaction with the original geometrical model is
available, which may complicate handling of curved boundaries and
specification of boundary conditions on the refined mesh.

The remeshing itself is performed in multiple loops, the number of
which depends on the required refinement level (rate) evaluated from
the local error estimate. The elements designated for the refinement
are symbolically bisected by introducing a new node on the longest
edge. The symbolic bisection propagates to neighbor element sharing
the longest edges. During the traversal, on each processed element,
the longest edge is again bisected. The propagation stops, when the
longest edge is the longest also for the neighbor element (see Fig. 8).
This bisection propagation is proved to be finite and usually reasonably
localized. After the symbolic bisection is completed the actual element
subdivision takes place. The longest edge bisection will ensure that the
quality of the refined mesh will not significantly deteriorate even if the
bisection is performed repeatedly.

The remeshing strategy as described above is valid for a serial com-
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Figure 8: Mesh refinement using symbolic bisection: (a) initial mesh
(darker triangles are designated for refinement) with midside nodes
(full circles) introduced during symbolic bisection, (b) refined mesh
after subdivision of initial mesh.

putation. When considering distributed parallel implementation, one
has to take into account that the symbolic bisection may propagate
across shared boundaries of individual subdomains. It is therefore nec-
essary for each newly created midside node to identify whether it is
located on the shared boundary of local subdomain. If it is this case,
this information has to be passed to neighboring partition to further
propagate the bisection. The complete parallel algorithm suitable for
implementation, as well as its extension into 3D has been described
in [26].

When the subdivision is completed, the final mesh may be op-
tionally smoothed using Laplacian smoothing. The smoothing can be
generally performed in parallel. However, if also shared interpartition
nodes are to be smoothed, some additional communication between the
processors is required. In the current implementation, only the non-
shared nodes may be subjected to the smoothing, which implies that
the smoothing is performed in parallel but only locally on each parti-
tion without any communication. As a consequence, the overall shape
of individual partitions remain unchanged during the remeshing. This
is an important prerequisite for efficient remapping of the state from
the old mesh to the new one. Since these meshes are mutually and en-
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tirely covering each other, the remapping is performed also in parallel
but only locally on each partition without exchange of any data.

4 Dynamic Load Balancing

The load balancing is a process of recovering the load balance in terms
of work redistribution among participating processors. There are in
general two basic reasons causing a load imbalance between individ-
ual subdomains: (i) problem and application related reasons, such as
switching from linear to nonlinear response followed by increased com-
putational demands in certain regions or local adaptive refinement, and
(ii) external factors, caused by resource reallocation, typical in nonded-
icated cluster environments, where individual processors are shared by
different applications and users, leading to a variation in the allocated
processing power.

Once the imbalance has been detected, the amount of work (typ-
ically attributed to elements) that should be migrated between indi-
vidual partitions to recover the load balance has to be determined.
This task itself is relatively complicated because it is an optimization
problem constrained by many factors. These include requirements for
minimal work transfer, minimal interface size that has direct influence
on the amount of interpartition data exchange, for example. After the
elements to be migrated on each partition have been identified, the
work transfer is performed, followed by the update of the internal data
structure to reflect the changed topology.

The work transfer involves not only the migrating elements them-
selves, but also data needed to maintain the overall consistency. The
load balancing typically consists of following tasks (described in next
subsections): (i) load monitoring, keeping track of the solution pro-
cess and detecting load imbalance, (ii) load rebalancing, responsible
for determining the work redistribution to recover load balance, and
(iii) load transfer itself, implementing physical work migration. Several
advanced techniques have been developed, which monitor the memory,
network, and CPU utilization and availability statistics [11, 35] from
which imbalance can be detected and individual processor weights for
repartitioning algorithm can be derived.

4.1 Load Monitoring

The load monitoring is responsible for detecting a potential imbal-
ance between participating processors. During execution, the processor
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loads are continuously monitored, the eventual imbalance is detected
and the decision whether to initiate redistribution of work is made. This
decision is derived from the relative and absolute imbalance of individ-
ual processors and from an estimate (prediction) whether the cost of
load balancing does not exceed the cost of continuing the computation
on existing partitioning with load imbalance.

In the present study, a simple implementation of a load monitor,
based on run-time measurements of the wall-clock time consumed by
computational tasks on individual processors, is adopted. The differ-
ences in wall-clock times2 recorded on individual CPUs are considered
as imbalance and the updated processing powers (weights) are made
proportional to the number of processed equivalent elements3 per unit
time. An alternative technique is based on measuring the “wait” times
of the processors involved in the computation. These “wait” times mea-
sure how long each CPU remains idle while all other processors work
on the same task.

4.2 Load Balancing

Work transfer calculation determines the amount of work that should
be ideally transferred from one computer to another. The work trans-
fer matrix is not unique, because generally an infinite number of work
transfer matrices can satisfy the load balance. Additional criteria are
necessary to calculate the work transfer matrix. For example, the min-
imum of the total transferred work can be required, preferably between
neighboring processors, in order to preserve locality.

The traditional partitioning is limited in the sense that it assumes
only a single quantity to be load balanced (see [31] for a survey of
parallel static and dynamic single-constraint partitioning algorithms).
However, many important types of multi-phase simulations require that
multiple quantities are load-balanced simultaneously. This is because
synchronization steps exist between the different phases of the compu-
tations, and so each phase should be individually load balanced.

In order to minimize the work transfer between the old and new
partitions, it is desirable to reuse the existing partitioning as much as
possible, which is often referred to as an adaptive repartitioning. Since
the discretizations used in large-scale simulations are often too large
to fit in the memory of a single processor, the repartitioning should
be made in parallel. A parallel (re)partitioner can take advantage of
the increased memory capacity of parallel machines and improves the
overall performance. Several parallel load (re)balancing libraries have
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been developed in recent years, notably ParMETIS (adopted in present
work), by Karypis et all [30], JOSTLE, by Walshaw et all [36], and
Zoltan [7], developed at Sandia National Labs, that provides also data
management services.

4.3 Load Transfer

The load transfer phase is responsible for data migration. First, the
data to be sent to individual remote partitions have to be identified,
followed by their serialization into a communication buffer and initial-
ization of the send operation. This is followed by receiving migrated
data from remote partitions and by the final update of the internal data
structure.

The individual FEM components on each partition have typically
local numbering, which allows using a fast direct array-based access to
each component during the solution phase. For similar reasons, a local
numbering of equations exists on each partition. However, the data
migration requires a unique identification of individual components and
unknowns. Therefore, the global numbering of individual components
and unknowns is introduced. During packing and unpacking operations
the mapping from local to global numbering (and vice versa) is needed.
A typical example is the element migration to a remote partition, where
the information about its geometry (node numbers) has to be packed
as well, so the local node numbers have to be mapped to corresponding
global ones before sending.

5 Examples

To illustrate the capabilities and performance of the parallel adaptive
load-balancing framework, the results of two analyzes of nonlinear frac-
ture mechanics problems are presented. In both examples, h-adaptive
analysis has been used together with heuristic error indicator based on
attained damage level. The PETSc [3] (solution of the linearized sys-
tem) and ParMETIS [19] ((re)partitioning) libraries have been used.
Both examples have been computed using the OOFEM solver [24, 23],
developed by the author.

In order to assess the behavior and performance of the proposed
methodology, the case study analyzes were run without the dynamic
load balancing (static partitioning was employed, marked as “nolb”)
and with dynamic load balancing performed before (“prelb”) or after
(“postlb”) the error assessment.
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Figure 9: Brazilian test.

5.1 Brazilian splitting test

This test is a standard technique for determination of the tensile strength
of concrete. A cylindrical specimen is loaded along its vertical diame-
tral plane. The compressive load, transferred to the specimen via steel
bearing plates at the top and bottom sides, induces tension stress in
the horizontal direction leading finally to the rupture of the specimen
along the loading plane. Due to the double symmetry, the analysis it-
self is performed only on the quarter of the specimen under plain strain
conditions, see Fig. 9. The concrete behavior is described by the non-
local scalar damage model, while the steel bearing plates are assumed
to be linearly elastic. The nonlinear problem was solved incrementally
in 40 time steps. During the solution the initial coarse mesh consisting
of 220 elements was gradually refined up to 8763 elements.

The problem has been solved on workstation cluster composed of
office-based PCs (Dell Optiplex) with single core CPUs at 3.4 GHz,
interconnected by gigabit ethernet and on SGI Altix 16-node machine
with dual core CPUs running at 1.3 and 1.5 GHz, interconnected by the
NUMAflex architecture (NUMAlink 3 with 3.2 GB/s and NUMAlink 4
with 6.4 GB/s bidirectionally). Parallel nonlinear adaptive simulations
have been performed using 2, 4, 6, and 8 processors. In each run with
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Figure 10: Brazilian test: solution times and speedups on workstation
cluster.

the dynamic load balancing, the balancing was enforced either at each
time step or at each second or fourth time step. The obtained solution
times (averaged over two or three analysis runs) and corresponding
speedups (relative to 2 CPUs) are summarized in Figures 10 and 11.

The results on cluster reveal quite poor scalability. On the other
hand, the effect of the dynamic load balancing is quite apparent. When
no load balancing is applied the solution times are slightly increasing
with the number of CPUs, which is the direct consequence of heavy
imbalance due to the localized refinement (five levels of subdivision in
the fracture process zone were necessary) resulting in dramatic increase
of number of elements in one or a few subdomains. With the dynamic
load balancing, this effect is alleviated, which results in some speedup.

22



Figure 11: Brazilian test: solution times and speedups on SGI Altix.

The dynamic load balancing applied before the adaptive remeshing per-
forms generally better than that performed after the remeshing. This
indicates that the cost of the rebalancing on the adaptively refined mesh
is relatively large compared to the gain that the next time step is solved
on the balanced refined mesh. Note, that for such a small-scale analysis
the communication cost (further increased by nonlocality of the used
material model) is clearly the dominating factor. The same analysis
on SGI Altix reveals much better scalability and attained speedups,
caused by much faster communication on this platform, compared to
the workstation cluster.
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Figure 12: Anchor pullout test: geometry

5.2 Anchor pullout

The geometry and setup of the test are shown in Fig. 12. The an-
chor is located close to the boundary, requiring full 3D analysis with
only one plane of symmetry. As the steel anchor is pulled out of con-
crete, the crack surface is initiated at the anchor head and starts to
propagate towards the boundary as the loading increases. To model
concrete fracture, an anisotropic, non-local damage based model has
been used. The original mesh consists of 16772 linear tetrahedral el-
ements and 1456 nodes, which was subsequently refined in 20 steps
into a final mesh with 125400 elements and 22441 nodes. For the so-
lution of the linearized system, PETSc library has been used (sparse,
coordinate based storage scheme (compressed row format), conjugate
gradient iterative solver with incomplete Cholesky preconditioner).

The problem has been solved on SGI Altix 4700 machine installed at
CTU computing centre. Similarly to previous example, to assess the be-
haviour and performance of the proposed methodology, the case study
analyzes were run without the dynamic load balancing (static partition-
ing was employed) and with dynamic load balancing performed before
or after the error assessment. The obtained solution times (averaged
over two or three analysis runs) and corresponding speedups (relative
to 4 CPUs) are summarized in Figure 13.

The achieved results reveal that the effect of the dynamic load bal-
ancing is quite substantial. When no load balancing is applied the
solution times are decreasing with the number of CPUs only slightly,
which is the direct consequence of heavy imbalance due to the localized
refinement resulting in dramatic increase of number of elements in one
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Figure 13: Anchor pullout test: solution times and speedups .

or a few subdomains. With the dynamic load balancing, this effect
is alleviated. The obtained speedup of the load-balanced computation
is showing clear linear trend, indicating a very good scalability of the
parallel agorithm. Also, the absolute values of attained speedups are
very good.

6 Conclusions

This work presents a glimpse into our recent work on the development
of finite element framework for parallel adaptive load balanced compu-
tations. It begins with the introduction into the parallel computing,
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outlining the existing parallel computer architectures and approaches
to parallel algorithm design. The parallelization concept, based on
domain decomposition is presented. The approaches to domain par-
titioning are outlined, together with discussion on concepts of static
and dynamic load balancing. In the next part, a general framework for
parallel adaptive finite element computations is described and conse-
quently discussed.

Particular attention is given to dynamic load balancing, as the con-
tinuous workload recovery is often necessary for optimal use of available
resources and achieving reasonable parallel scalability. Finally, the po-
tential and performance of parallel adaptive approach is demonstrated
and discussed on two examples of nonlinear fracture analysis of con-
crete specimens. The presented examples clearly demonstrate that the
dynamic load balancing is an essential part of any parallel adaptive
simulation.
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[9] C. Comi and U. Perego. Finite element strategies for damage
assessment up to failure. In Proceedings of the Sixth National
Congress SIMAI, Italy, 2002.

[10] A.W. Craig, M. Ainsworth, Z.J. Zhu, and O.C. Zienkiewicz. H and
hp version error estimation and adaptive procedures from theory
to practice. Engineering with Computers, 5:221–234, 1989.

[11] K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D.
Teresco, J. Faik, J.E. Flaherty, and L.G. Gervasio. New chal-
lenges in dynamic load balancing. Applied Numerical Mathemat-
ics, 52(2–3):133–152, 2005.

[12] P. Diez and A. Huerta. A unified approach to remeshing strategies
for finite element h-adaptivity. In Publication CIMNE, volume 132.
Barcelona, 1998.

[13] C. Farhat. A simple and efficient automatic fem domain decom-
poser. Computers and Structures, 28:579–602, 1988.

[14] M. Flynn. Some computer organizations and their effectiveness.
IEEE Trans. Comput., C-21, 1972.

[15] Message Passing Interface Forum. MPI: A message-passing inter-
face standard. Technical report, University of Tennessee, 1995.

27



[16] L. Gallimard, P. Ladeveze, and J.P. Pelle. Error estimation and
adaptivity in elasto-plasticity. International Journal for Numerical
Methods in Engineering, 39:189–217, 1996.

[17] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM,
31(5):532–533, 1988.

[18] M.T. Heath and P. Raghavan. A cartesian parallel nested dissec-
tion algorithm. SIAM Journal on Matrix Analysis and Applica-
tions, 16(1):235–253, 1995.

[19] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scien-
tific Computing, 20(1):359–392, 1999.

[20] P. Krysl and Z. Bittnar. Parallel explicit finite element solid dy-
namics with domain decomposition and message passing: Dual
partitioning scalability. Computers and Structures, 79(3):345–360,
2001.

[21] P. Ladeveze and D. Leguillon. Error estimate procedure in the fi-
nite element method and application. SIAM Journal of Numerical
Analysis, 20:485–509, 1983.

[22] J.T. Oden, L. Demkowitz, W. Rachowitz, and T.A. Westermann.
Towards a universal h-p adaptive finite element strategy, part 2.
a posteriori error estimation. Computer Methods in Applied Me-
chanics and Engineering, 77:113–180, 1989.

[23] B. Patzák. OOFEM home page. http://www.oofem.org, 2000.

[24] B. Patzák and Z. Bittnar. Design of object oriented finite element
code. Advances in Engineering Software, 32(10-11):759–767, 2001.
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