
České vysoké učeńı technické v Praze
Fakulta elektrotechnická

Czech Technical University in Prague
Faculty of Electrical Engineering

Doc. Dr. Ing. Michal Pěchouček, M.Sc.

Plánováńı autonomńı akce
v multi-agentńım prostřed́ı

Planning autonomous actions

in multi-agent environment

2

Summary:
Current methods of automated planning and multi-agent coordination, represent
(i) level of sophistication of artificial intelligence embedded in computational sys-
tems and (ii) an important set of techniques that support numerous applications
requiring non-trivial planning and coordination of autonomous robotic and intelli-
gent software systems. Both research fields build on top of and extend the logical
foundations of computer science, results from the game theory, methods of dis-
tributed optimization to name few. There is a strong potential in advancement
of the current state-of-the-art in both fields in coordination, so that methods and
approaches can be designed for (i) planning in semi-trusted distributed environ-
ment, (ii) planning in environment with adversarial behavior and (iii) real-time
planning dynamically changing environment. As there is an application potential
in deployment areas such as civilian air-traffic control, coordination of multiple
unmanned aerial vehicles, provisioning of ad-hoc networking or persistent surveil-
lance in a dynamic environment, the grand challenge of either research field is to
reach out to early adopters, and communicate the research results by means of
scalable software prototypes that can illustrate quality, efficiency and robustness
of the research results with respect to the applications. This paper provides an
introduction to the field of multi-agent planning, analysis of available techniques
and an original abstract, component-based multi-agent planning architecture in
a response to existing distributed planning architecture [9]. Properties of the de-
signed architecture are discussed and illustrated on three selected applications: air
traffic control, production planning and supply chain management.

3

Souhrn:
Metody automatizovaného plánováńı a multi-agentńı koordinace představuj́ı na
jedné straně (i) vysokou mı́ru sofistikovanosti algoritmů umělé inteligence in-
tegrovaných do r̊uzných výpočetńıch systémů ale i (ii) d̊uležitou sadu technik,
které podporuj́ı r̊uzné aplikace vyžaduj́ıćı netriviálńı plánováńı a koordinaci au-
tonomńıch robotických a inteligentńıch softwarových systémů. Obě výzkumné dis-
cipĺıny stavěj́ı na logických základech poč́ıtačových věd (informatiky), rozv́ıjej́ı
výsledky z teorie her, metod distribuované optimalizace a mnoha daľśıch. Existuje
významný potenciál pro rozvoj stavu poznáńı v obou discipĺınách koordinovaně,
tak aby metody a př́ıstupy mohly být použity pro návrh plánovaćıch systémů v
distribuovaných systémech s omezenou mı́rou vzájemné d̊uvěry, v silně kompeti-
tivńıch prostřed́ıch a pro plánováńı v reálném čase, použitelné pro rychle se měńıćı
prostřed́ı. Dı́ky tomu, že existuje významný aplikačńı potenciál v doménách jako
je civilńı ř́ızeńı letového provozu, koordinace bezpilotńıch leteckých prostředk̊u,
udržováńı komunikačńıch ad-hoc śıt́ı, nebo nepřetržitý monitoring dynamicky se
měńıćıho fyzického prostoru, považujeme za největš́ı výzvu v daném oboru propo-
jeńı vědc̊u základńıho výzkumu s pilotńımi uživateli technologie pomoćı škálovatelných
softwarových prototyp̊u, které mohou dokumentovat kvalitu, efektivitu and robust-
nost výsledk̊u základńıho výzkumu s ohledem na aplikace. Práce obsahuje úvod
do oblasti multi-agentńıho plánováńı, rozbor metod a návrh p̊uvodńı, abstraktńı,
komponentově-orientované architektury multi-agentńıho plánováńı jako reakci na
uznávanou architekturu distribuovaného plánováńı [9]. Vlastnosti navržené ar-
chitektury jsou dokumentovány na třech vybraných aplikaćıch: ř́ızeńı letového
provozu, plánováńı výroby a ř́ızeńı odběratelsko-dodavatelských vztah̊u.

4

Kĺıčová slova:
Multi-agentńı systémy, plánováńı, umělá inteligence
Keywords:
Multi-agent system, planning, artificial intelligence

5

Contents

1. Introduction 6
1.1. Challenges in Agent-based Computing 6
1.2. In this paper 8
2. Multi-agent planning 8
2.1. Properties of multi-agent planning scenarios 9
2.2. Component-based multi-agent planning architecture 9
2.2.1. Automated planning 11
2.2.2. Negotiation 12
2.2.3. Acquaintance models 14
2.2.4. Social Commitments 16
2.2.5. Adversarial Reasoning and Adversarial Planning 17
2.3. Abstract Distributed Planning Architecture 18
2.3.1. Non-centrality and multi-party involvement: 19
2.3.2. Dynamic Environments: 20
2.3.3. Semi-trusted and partially accessible environment: 21
2.3.4. Adversarial environment: 21
3. Multi-agent applications and prototypes 22
3.1. Agend-based free-flight planning 22
3.1.1. Planning in AgentFly 22
3.1.2. Collision avoidance (CA) in AgentFly 23
3.2. Agent-based production planning 25
3.3. Agent-based supply chain management 28
4. Conclusion 30
References 31

6

1. Introduction

The research field of autonomous agents and multi-agent systems (also referred
to as agent-based computing, sometimes less precisely as distributed artificial in-
telligence), a sub-field of computer science and artificial intelligence, investigates
the concepts of autonomous decision making, communication and coordination,
distributed planning and learning but also game-theoretic aspects of competitive
behavior or logical formalization of higher level knowledge structures, which repre-
sent interaction attitude of actors in multi-actor environment. Multi-agent system
is a decentralized computational system, often distributed (or at least open to
distribution across multiple hardware platforms), whose behavior is defined and
implemented by means of a complex, peer-to-peer interaction among autonomous
agents, rational and deliberative computational units. The autonomous agent is
a special kind of an intelligent software program, that is capable of highly au-
tonomous rational action, aimed at achieving its private objective. Agent can
exists on its own but often is a component in a multi-agent system. The agent
autonomously decide about its own status and its behavior. The change of the
status or the behavior can be requested but not executed from outside of the
agent. The agent is capable of reactive, real-time response to changes in the envi-
ronment and to the incoming requests. At the same time the agent is intentional
and maintains its own agenda. An important capability is agent social reasoning,
which is a capability to reason about other agents in the community and engage
itself in collaborative action. Agent technology provides a set of tools, algorithms
and methodologies for development of distributed, asynchronous intelligent soft-
ware applications that leverage the above listed theories.

1.1. Challenges in Agent-based Computing

The future trends and current research challenges of agent-based computing are
many. The researchers continue studying approaches and methods of nontrivial
deliberative reasoning in multi-actor, competitive and resource bounded environ-
ment.

One of the hot challenges is the concept of trust and adjustable privacy
management in open environment1. There is a need to design methods that would
support the actors in sharing knowledge, data, experience in the environment with
multiple actors trusting each other differently – in particular the knowledge rep-
resentation methods and reasoning algorithms supporting the actors to analyze
the trade-off between how much of new information can be acquired by knowl-
edge sharing and how much of private information would be disclosed. Related
research challenge investigated currently by the research community is the con-
cept of trust, trust-related knowledge representation methods and algorithms that
model/compute the individual trust (e.g. based on the communication or observed
past behavior).

1By open we mean the environments with a priori (during the design time) unknown set of
actors,

7

The concept of multi-agent systems is very relevant for the field of collective
robotics, coordinated interactions and joint actions of various teams of robots.
As robotics is truly a real-time domain, another grand challenge of agent-based
computing is to study the concepts of resource2-bounded reasoning and interac-
tion. The capability to asses the quality of a decision, a coordinated action or a
plan in different times of computation/interaction process would support efficient,
robust and safe robotics operations. An example of such robotics operation is au-
tonomous aerial vehicles deconfliction where different deconfliction methods need
to be deployed based on actually available time-to-collision.

The internet is a typical, large scale, dynamic multi-actor environment. The
internet, as a complex interaction ecosystem, also integrates various models of ma-
licious and adversarial behavior. An important research challenge of agent-based
computing is to extend the existing strategic algorithms from the cooperative envi-
ronments towards the adversarial environments. Similarly, the existing algorithms
for detecting malicious behavior (such as anomaly detection in network security)
shall be complemented by game-theoretic strategic reasoning capability allowing
to reason about the potential activity of the adversary, while monitoring his/her
behavior.

Important challenge from the AI perspective is the integration of the con-
cepts of multi-agent coordination and negotiation with complex, heavy-duty AI
reasoning such as theorem proving, model checking, state-space search or plan-
ning. While decomposition of such heavy-duty reasoning among multiple reasoners
has been subject of research already, less progress has been made in coordination
among autonomous reasoners by means of sharing complex information about the
progress of their reasoning processes. An instance of such a problem is multi-agent
planning of collision-free air traffic, when individual planners representing individ-
ual aircrafts share partial plans and negotiate about deconfliction maneuvers.

Agent-based computing is an established field of basic research with solid
results and strong application potential. Even though there are important appli-
cations that have been successfully deployed in industry, there is still a gap between
the researchers and early adopters. The early adopters do not communicate their
specific problem sets to the researchers and similarly, the researchers are unable
to convince the early adopter about added value of their basic research contri-
butions with respect to the industrial requirements. One of the possible ways of
bridging this gap is development of scalable multi-agent models of complex dis-
tributed systems that can be used for validation and demonstration of the basic
research achievements. Important challenge in the field of agent based computing
is systematization, component sharing and standardization of development of such
models and demonstrators.

2Mainly computational time.

8

1.2. In this paper

In this paper, we have the ambition to generalize our research experience in basic
research in multi-agent planning but also in building planning oriented multi-
agent systems prototypes and applications. This paper lacks formal technical de-
tails, but includes direct references to the work performed by the authors or other
researchers. In this paper we challenge the existing distributed planning architec-
ture provided by Ed Durfee and proposed another, less tightly coupled, component
based approach. The arguments are supported by three different case studies of
implemented multi-agent prototypes. While the technical content (Sections 2, 1
and 4) of the paper is original, the description of the systems and prototypes
(Section 3) have been already published.

2. Multi-agent planning

Planning is a specific instance of computation that performs reasoning about ac-
tions in term of their preconditions, effects and duration. Often, reasoning about
resources, their allocations and schedules is also falsely referred to as planning,
while it shall be more appropriately denoted as resource allocation or scheduling.
The problem of multi-agent planning as a planning activity distributed among
a group of agents has been often discussed in the AI planning and multi-agent
research communities recently (e.g. [9], [7], [12], [5]). Different planning problems
are currently termed as instances of multi-agent planning, namely:

− centralized planning for activities and resources allocated among the commu-
nity of distributed autonomous agents resulting in distributed plan

− planning distributed among several autonomous computational entities aim-
ing at centralized plan construction (or distributed plan construction in the
sense of above) or

− combination of both problems listed above, where agents engage themselves
individually in planing and coordinating their activities, resource sharing and
goal completion.

The computation involved in the first case is an instance of classical centralized
planner, where the biggest challenge is a sophisticated integration of the planning
and resource allocation processes. The second problem set belongs mainly to the
class of problems of parallel computation and distributed problem solving. The
subject of our research and the matter discussed in this paper is the latter. In
our judgement, the challenges of multi-agent planning are in coordination of plan-
ning processes performed by a collective of autonomous agents. The agents either
produce and execute plans targeting their individual objectives, or they negoti-
ate about each agents’ contribution to the global, shared goal. Besides the goal
sharing an important problem in multi-agent planning is also resource sharing, the
coordination of which must be also negotiated.

9

2.1. Properties of multi-agent planning scenarios

The problem of multi-agent planning is relevant in specific scenarios and environ-
ments that have some (not necessarily all) of the following properties:

− Non-centralized communities and multi-party involvement – an environment
hosting agent communities with flat organizational structure, with minimal
centralized coordination and planning, having decentralized planning knowl-
edge, information about the skills of actors, resource availability, knowledge
and goal perception. At the same time the resulting plans cannot be imple-
mented in isolation by a single actor. Coordination and sharing of resources
is required and the goals are set and the planning processes can be initiated
by several actors simultaneously.

− Real-time planning and robustness against changes – a very dynamic environ-
ment where both resource availability and goals are expected to be changing
during the planning and execution phases. Such scenarios require computa-
tionally efficient planning methods and plan representation models that can
be executed in the environment that is dynamically changing.

− Semi-trusted and adversarial environment – an environment with partial
knowledge sharing within the group, where the actors are motivated to keep
a substantial part of their private planning knowledge and resource availabil-
ity information undisclosed. Environment containing non-cooperative actors,
whose goals and motivations go against each other. Environments containing
adversaries, intruders and deceptive agents.

− Varying interaction availability – an environment based on a communication
infrastructure featuring partial and temporal inaccessibility due to e.g. ad-
hoc networking, unreliability of the communication infrastructure or actors’
frequent change of their off-line/on-line status

Such a set of properties of requirements is typical for rescue operations, complex
humanitarian missions, multi-national coalition operations as well as small size
military combat operations. These properties are also very typical for the mobile
robotics problems, UAV free-flight and MANET (Mobile Ad-Hoc) networking sce-
narios. Some of these features are also typical for a completely different set of
application domains such as virtual organizations, social networking but also pro-
duction planning. Adversarial multi-agent planning methods are applicable in e.g.
wargaming scenarios, network intrusion protection applications and various secu-
rity and surveillance applications. A typical adversarial planning benchmark is the
robocup soccer competition containing several leagues for testing various robotic
interactions and coordinated behavior in the environment with a opponent.

2.2. Component-based multi-agent planning architecture

There exists four classes algorithms that are indispensable for design and devel-
opment of a multi-agent planing system: (i) centralized methods of automated
planning, (ii) methods of negotiation and combinatorial auctions, (iii) methods
for representation and maintenance of social knowledge denoted as acquaintance

10

AUTOMATED
PLANNING

NEGOTIATION
METHODS

ACQUAINTANCE
MODELS

SOCIAL
COMMITMENTS

ADVERSARIAL
PLANNING

STRATEGIC
NEGOTIATION

OPPONENT
MODELS

m
o

re
 c

en
tr

a
liz

ed
m

o
re

 a
u

to
n

o
m

o
u

s

Figure 1. Multi-agent planning components in cooperative (left)
and adversarial (right) environment.

models and lastly (iv) social commitments methods. Linkage among these methods
is loose and depends on a particular application or a system (see Figure 2.2 left).
The automated planning methods (that can be complemented with the resource
allocation methods) still play a central role. Unlike in classical planning, here the
planning methods need to be able to work with the negotiation methods in or-
der to learn about skills, availabilities, costs, etc. of the cooperating agents. As
communication explosion in practical applications would be far too large, each
planning algorithm caches in the acquaintance models the information about the
others based on past interaction patterns and observations. Result of the planning
process are not actions but commitments of the individual agents towards the joint
plan. These are represented by means of the social commitments, well researched
knowledge representation mechanisms.

In different environment and scenarios (according to Section 2.1) these com-
ponents would have different importance and different mode of operation. In the
non-cooperative and adversarial environments (see Figure 2.2 right), this architec-
ture needs to be slightly modified and enhanced. The automated planning methods
will need to be replaced with the adversarial planning methods, which instead of
the search through the space of actions perform a search through the game tree
(explained in Section 2.2.5). The negotiation capability will need to include the

11

methods of strategic, non-cooperative negotiation and the methods for acquain-
tance model construction will be based on deployment of the opponent modeling
methods as discussed in Section 2.2.3.

The combination of the cooperative and non-cooperative multi-agent plan-
ning will be suitable in domains, containing a group of cooperative agents wrestling
against another group of cooperative agents (such as robotic soccer).

2.2.1. Automated planning. Methods of automated planning process (i) the in-
formation about the initial state of the agent, (ii) the goal predicate that ought
to be valid in the goal state and (iii) a set of state transition operators, that rep-
resent the actions. The planners provide as a result of their computation a plan,
i.e. partially (some times even totally) ordered set of operators, that, if executed,
guarantee transformation of the world from the initial to one of the goal states.

As automated planning is an important and traditional branch of artificial
intelligence, it produced a remarkable set of various planners suitable for different
planning tasks. The classical approach to planning is based on sophisticated search
methods searching through the state-space of the operators. Examples of such are
linear or nonlinear planners are e.g. STRIPS [17], POPLAN [29] or NONLIN [45].

Lately, there have been established new approaches to planning based on
representation of the planing problem by means of an oriented leveled graph –
Planning graph. The planning graph represents the state space of applicability of
the planning operators and various constraints embedded in the planning prob-
lem. The planning problem is transformed into a much optimized graph analysis
process. As the graph-based planning has been a popular research area, there has
been a wide range of available planners that exploit this idea. GRAPHPLAN, the
first planner based on the planning graphs has been developed by Arvim Brum and
Merrick Furst[2]. DPPLAN is a similar general-purpose planner for STRIPS-like
domains. The search algorithm is based on a variation of Davis-Putnam procedure
(used in the propositional logic) applied on the graphs complemented with several
strategies of choosing the expansion node [1]. LPG is a planner that is based on
local beam search (a particular AI technique), and has been designed to handle
PDDL (Planning Domain Definition Language) [16]. GRAPHPLAN has been ex-
tended by its capability to handle heuristics based on the length of the relaxed
plan in the STAN planner [4].

Besides graph-based representation, the planning problem is often repre-
sented by means of Binary decision diagram (BDD), a data structure that is used
to represent a Boolean function. The BDD planners assume that the planning
problem is represented as an entailment problem in fluent calculus (approach to
’change’ representation in the first order logical calculus, a variation of the situa-
tion calculus). This representation is then mapped onto propositional logic so that
the plan, if it exists, can be reconstructed from models of the propositional for-
mulae. Thus for planning, the various available model-checking algorithms (avail-
able in the AI community) can be used. BDD planners find the shortest plan.
If there is no plan for a particular planning problem, BDD planners can prove

12

non-existence of the plan. BDD planners are able to reuse their results and gen-
erate many solutions for the planning problem, or a subset of its results for the
planning problems with different initial states. Unfortunately, the BDD diagrams
tend to be very complex and thus the process of model-checking, hence planning,
is computationally demanding. BDD planners carry out a symbolic breadth first
search in the reachability tree of the planning problem. There are number of BDD
planners available in the research community. BDDPlan was developed by Hans-
Peter Stoerr at the Dresden University of Technology [43]. MIPS (Model Checking
Integrated Planning System) [10], which is an alternative planner has been devel-
oped at the University of Freiburg, handles STRIPS relations and allows negative
preconditions and universally quantified conditional effects. BDD planning can
be also implemented by a general OBS, an OBDD (ordered BDD) search engine
implemented at CMU [20]. ProPlan (Propositional Planning) is a BDD planner
based on simple breadth-first search developed by Michael Fourman, University of
Edinburgh [14].

An alternative to model-checking as a reasoning mechanism running in BDD
planners is the use of SAT solvers. SAT solvers (e.g. WALKSAT [38] or SATZ [24])
are search-based algorithms that are solving the problem of satisfiability of Boolean
formulas. SAT-based planners encode the planning problem into Boolean formu-
las and solve the satisfiability problem by a selection of SAT solvers. Example
of a SAT-based planner is BLACKBOX planner, developed at the University of
Washington [21].

2.2.2. Negotiation. The capability to negotiate is absolutely critical for implemen-
tation of any multi-agent planning algorithm in the sense as defined in Section 2.
Negotiation is a capability that allows reaching a mutual understanding on a spe-
cific matter among the group of agents. The specific subject of negotiation can be
task allocation, profit division, shared resources deconfliction or teamwork coordi-
nation. The group of agents can be totally peer-to-peer or it can be hierarchical.
An important property of negotiation is that each agent is fully autonomous and
accepts the result of negotiation if it provides the agent with a profit (increased
individual utility).

The negotiation mechanism is defined by:

1. Negotiation set – a set of possible outcomes from negotiation, where the
negotiation process selects one outcome of the negotiation set

2. Negotiation protocol – a protocol that specifies in which order do the agents
present each other with the bids, what are the required properties of the bid
and what are the properties of a possible counterproposal, should the original
bid be rejected,

3. Deal/stuck identification rule – specification of the circumstances under which
the bid is accepted by the both agents and can be declared as a deal or when
it becomes clear that the deal cannot be achieved and a conflict is declared.

13

Behavior of each agent in the negotiation is defined by a strategy, which selects
the particular bid out of the set of possible bids defined by the 1 and the 2 above.
Very often the strategies are private. There are different game-theoretical tech-
niques that analyze mutual relation of the agents strategies with respect to their
Pareto-efficiency and stability (e.g. Nash equilibrium). Agents may negotiate about
multiple issues at the same time.

Negotiation can be divided into three different classes:
− 1-to-1 negotiation. Here two peer agents are trying to reach mutual agreement

on specific matter matter. The most of the 1-to-1 negotiation techniques are
based on variations of the monotonic concession protocol (MCP) negotiation
protocol [11]. In MCP the agents take turn in proposing each other the bid,
until the utility of the first agent’s bid from the perspective of the second
agent provides better profit than utility of his own bid. If this condition is not
met, the agents may provide each other counterproposals, where each of them
needs to be less profitable than the original bid (uB(δA) < uB(δ′A)). There
exits a specific strategy, known as Zeuthen strategy that specifies under which
conditions it is better for the agent to concede and when he better declare a
conflict deal [18]. The Zeuthen strategy suggest that the agent shall concede
if his opponent’s willingness to risk a conflict is greater than willingness of
that agent. The willingness to risk is a value from 〈0, 1〉 and is defined as
follows:

risktA =

1 if uA(δtA) = 0

uA(δt
A)−uA(δt

B)
uA(δt

A)
otherwise

Provided that the deal δtA provides the agent A with no profit, he better
declares a conflict as he cannot gain anything from the deal. Otherwise the
risk is based on the differences between the utilities of the two specific deals –
the closer they are, the less likely is that the agents would declare the conflict.
The result that MCP provides has got an important property. It maximizes
the product of utilities of the two agents, hence the result is Pareto optimal3.
Consequently the the agents are motivated not to deviate from the deal.

− 1-to-many negotiation. Here, one agent is trying to reach an agreement with
a collective of agents. Typically, the agent denoted as a requestor is trying to
select the agent denoted as a provider, who provides the requester with such
a bid (for the service) so that marginal costs for subcontracting the service
to this particular agent is the least. The 1-to-many negotiation protocols are
often based on the variation of the contract-net-protocol (CNP) [42], which
is computational variation of the seal-bid auction. While for the individual
service this approach is optimal, for the sequences or batches of tasks CNP is
suboptimal. In order to tackle this problem, CNP has been improved recently

3There is no other deal that can provide the one agent with greater utility, while not lowering
the utility of the other.

14

by integrating the backtracking capability in extended-contract-net-protocol
(ECNP) [13] or provisional-agreement-protocol (PAP) [34]. Combination of
bidding for individual bids, clusters of bids, and mere swapping of the bids
have been theoretically studied in [37]. In different settings, where the agents
strategies are private or semi-private, different protocols are recommended.
For example in the Vickery auction, the seal-bid second-price auction is ben-
eficial for the requestor as the rational agents are motivated to bid their true
valuations. Often used are also the English auction, the Dutch auction but
also the All-pay-auction, which is very conservative as it requires the agents
to pay each time they propose the bid (similar to the game of poker).

− Many-to-many negotiations. These negotiation protocols have the objective
to achieve a shared opinion, a shared goal or a mutually accepted task alloca-
tion among a number of peer agents. An obvious approach would be based on
an aggregated 1-to-1 negotiation methods (e.g. as discussed in the Section 3.1)
or multiple parallel runs of 1-to-many negotiation methods. The latter has
been widely used e.g. in the telecommunication industry for load balancing
of the network of signal providers (here each agent can be provider and re-
questor in the sense of CNP at the same time). Besides these methods the
field of agent-based computing is using the various existing voting protocols.
The product of the voting protocols is a social choice function that represents
in the best possible ways the preferences of the individual agents across the
possible outcomes of the voting. The resulting social choice function shall (i)
exits for all possible inputs (individual preferences), (ii) be defined for every
pair of outcomes, (iii) be asymmetric and transitive, (iv) be Pareto-Efficient
with respect to all agents’ preferences, (v) shall be independent of irrelevant
alternatives (looser cannot turn the winner) and (vi) no agent shall be a dic-
tator. There exists the famous Arrows Impossibility Theorem [15] that claims
that no social choice rule satisfies all of these six conditions. The most used
voting protocol is the plurality protocol, where all alternatives are compared
simultaneously. Here introducing an irrelevant alternative splits the major-
ity, which dissatisfy the requirement (v) from above. Another alternative is
the binary protocol where all alternatives are voted pair-wise and the winner
challenges further alternatives. While here the looser cannot turn the winner,
the downside of this method is that its result depends on the initial pairing
and different results can be provided by different pairing. Quite popular vot-
ing protocol is the Borda protocol, that assigns values to outcomes according
to how high are they in someone’s preferences lists. Similar to the plurality
protocol in the Borda the irrelevant alterative may turn the winner.

2.2.3. Acquaintance models. While the previous two components of multi-agent
planning were rather general now we will discuss two very specific research meth-
ods that play an important role in the multi-agent planning. The acquaintance
model represents the agents mutual awareness and collects the information the

15

agents know one about the other - social knowledge [28]. Some of the social knowl-
edge can be shared intentionally, some not. The agent’s social knowledge can be
made available from previous interaction or provided by an independent monitor-
ing mechanisms. We distinguish among different classes of social knowledge:

− Minimal social knowledge – collection of information about all agents that
the respective agent is aware of (the information about their IP physical ad-
dresses, port number, their ACL language they use for communication). The
minimal social knowledge represents minimal and mandatory requirements
for interaction among the agents (provided by e.g. AMS in Jade).

− First level social knowledge – collection of information about the services and
skills that the particular agent provides to the community. This kind of social
knowledge improves the collaborative properties of the multi-agent system.
In the non-collaborative environment the first order social knowledge may be
regarded as a private information with respect to a part of the community.

− Higher level social knowledge – knowledge about agent’s outer characteris-
tics such as of agents awareness of agents’ reliability, maintain and manip-
ulate trust, each other communication, computational and operational load
but also information about price and a completion time. In the adversarial
environments this type of knowledge supports agent’s private knowledge re-
construction, speculation about intentions, other mental models, models of
future agents behavior. In this circumstances it is often referred to as an
opponent model.

There are different ways how the acquaintance models can be constructed
and maintained. Centralized monitoring is easy to implement in multi-agent sys-
tems and it avoids possible duplication and redundancy. However, it may become
a bottleneck in large scale or real-time applications, and is absolutely inappropri-
ate in the applications in the semi-trusted and adversarial environments. In many
multi-agent systems, the acquaintance models are maintained by the dedicated
agents, loosely coupled agents such as middle-agents, brokers, matchmakers, me-
diators, who provide first-level and higher-level social knowledge and negotiate an
effective forms of cooperation. More sophisticated approach to social knowledge
maintenance is by means of direct communication and interactions in the multi-
agent community. Various ’pull models’ (such as periodical revisions) or ’push
model’ (such as subscribe-inform protocol) are available. In the adversarial and
semi-trusted environments social knowledge is often constructed by means of op-
ponent modeling methods based on independent monitoring of the surrounding
agents and using various data-analysis and machine learning methods for general-
ization of appropriate social knowledge.

There have been several specific architectures of the acquaintance model de-
signed in the past – tri-base (3bA) acquaintance model [30], twin-based model [3],
acquaintance model in ARCHON [44]. All of these were collecting primarily the
first level social knowledge and basics of higher level social knowledge. As these
models were build in order to provide an alternative to the social maintenance

16

provided by the dedicated agent, they were maintained mainly individually by
communication.

We have designed a specific negotiation protocol – Incrementally Refined
Acquaintance Model (IRAM), that is used for optimizing the size and the quality of
the acquaintance models and thus providing very efficient while privacy preserving
negotiation and contracting (see Section 3.3 and [35]).

2.2.4. Social Commitments. The social commitment is a knowledge structure de-
scribing an agent’s obligation to achieve a specific goal if a specific condition is
made valid. It also expresses how the agent can decommit from this obligation.
The commitment does not capture description how the committed goal can be
achieved. Individual planning for a goal achievement, plan execution and monitor-
ing is a subject of agents internal reasoning processes and it is not represented in
the commitment. In the context of the planning problem defined in Section 2, we
understand the agent’s specific goal (to which it commits) as an individual action,
a component of the plan, which resulted from the given planning problem. While
typical action in the plan contains only a precondition and an effect, in multi-agent
planning this representation can be extended so that the commitment-related in-
formation is included. The commitments are vital for multi-agent planning as they
increase robustness of the final plan against the changes in the environment.

Michael Wooldridge in [47] defines the commitments formally as follows:

(Commit A ψ ϕ λ),
λ = {(ρ1, γ1), (ρ2, γ2), . . . , (ρk, γk)}, (1)

where A denotes a committing actor, ψ is an activation condition, ϕ is a
commitment goal, and λ is a convention. The convention is a set of tuples (ρ, γ)
where ρ is a decommitment condition and γ is an inevitable outcome. The conven-
tion describes all possible ways how the commitment can be dropped. Generally
speaking, the actor A has to transform the world-state in such a way that the ϕ
goal becomes true if ψ holds and any γ has not been made true yet. The actor is
allowed to drop the commitment if and only if ∃i : ρi which is valid. A decommit-
ment is allowed provided that γi is made true. A formal definition in modal logic
(working with the models of mental attitudes like Believes, Desires, Intentions,
[40], and temporal logic where the operator AG denotes an the inevitability) as
defined in [47] follows:

(Commit A ψ ϕ λ) ≡
((Bel A ψ)⇒ AG((Int A ϕ)
∧(((Bel A ρ1)⇒ AG((Int A γ1))) x γ1)
. . .
∧(((Bel A ρk)⇒ AG((Int A γk))) x γk)

) x
∨
i

γi).

(2)

17

This definition is used in a declarative way. Provided that whatever the agent
does during a specific behavior run complies with the above defined commitment,
the expression 2 is valid throughout the whole duration of the run.

There are different commitments widely used in the multi-agent community:
− Minimal social commitment – contains the least binding type of decommit-

ment rule requiring the agents to notify the members of the team about its
inability to achieve the commitment, should it decide to drop the commit-
ment.

− Relaxation - is a special decommitment, triggering a new negotiation round
aimed at replacing the commitment with a new relaxed commitment (such
later due time, increased resources requirements, or lower quality of service).

− Delegation - by using this type of commitments the agent shall be able to
find some other agent who will be able to complete its commitment on the
original agent’s behalf. It is possible that such a commitment will contain
unbound variables representing the need to search for an agent suitable for
delegation.
Formal work linking commitments and planning in a general manner has not

been yet elaborated. However, we managed to perform statical measurement of
the different decommitment strategies in overstressed scenarios [46].

2.2.5. Adversarial Reasoning and Adversarial Planning. While adversarial rea-
soning/planning is set slightly separate from the core of the multi-agent planning
research, it is a relevant approach satisfying the adversarial property of the target
problem set and deployment environment. Adversarial reasoning is loosely defined
as reasoning about motivations, intentions and behavioral patterns of the adver-
sary, with the objective to perform an action that would maximize own profit or
neutralize the adversary. Adversarial reasoning is also known as opponent modeling,
an activity that construct the opponent model, a knowledge structure containing
high-level social knowledge. Adversarial planning is understood as planning activ-
ity producing plans leading towards the goal with consideration of the interference
of actions of the adversaries.

The most of the methods for adversarial planning are based on sophisti-
cated methods of adversarial tree or game tree search. Formally, the game tree is
a perfect- or imperfect-information game representation in the extensive form4.
According to [39], the perfect-information game tree is represented by (i) a set of
players, (ii) set of actions, (iii) set of nonterminal choice nodes, (iv) set of terminal
choice nodes, (v) the action function, which assigns to each choice node a set of
possible actions, (vi) the player function, which assigns to each nonterminal node
a player who makes next turn, (vii) the successor function, which maps a choice
node and an action to a new choice node and (viii) finally a real-valued utility
function for the player on the terminal nodes.

4differs from the normal form and various induced normal forms representations in a sense that
it only represent the combination of actions of the agents with the associated utility

18

Provided that the utility function of the opponent is known, assuming oppo-
nent’s rationality with respect to its utility function and assuming that the agents
take turn in performing the actions, the game tree is an appropriate representation
of the course of interaction in the game. The dominant strategy (such as strategy
of the agent, that cannot be outperformed by any other strategy with respect to
the utility of the terminal node) can be determined by searching the game tree,
by e.g. Minimax algorithm [8].

The real adversarial interactions are slightly more complex than suggested
in the previous paragraph. First, actors do not need to keep the turns in which
they take actions and they can act concurrently (an example of such a game is
asynchronous chess). Besides, the complex real interactions include multiple play-
ers (solved by extending the minimax algorithm to maxn algortihm [27]). Also
only partial knowledge about the non-deterministic outcome of the action func-
tion. The research community has made tremendous progress in this direction
by providing formalism for modeling the games with incomplete information (e.g.
Baeysian games [19]). While in the academic games, symmetry of the utility func-
tion is assumed (games denoted as zero-sum games, where the total sum of the
agents utilities remain constat throughout the game), in real complex games, the
utility is asymmetric (non-zero sum). Also the utility function of the players does
not need to be identical, but it is also only partially related.

The critical research challenge for deployment of the adversarial planning in
the multi-agent domains such as robocup soccer or intrusion detection is the la-
tency of the response. These domains are typical for voluminous, nontrivial game
trees and requirement for near to real-time response. There are various novel game-
tree representations that consider the computational challenges of game-tree search
algorithms, such as graphical games [22], action graph games (AGG) [6] or Mul-
tiagent influence diagrams (MAIDs) [23]. An alternative way how to deal with
adversarial planning complexity is to adopt richer opponent models and problem
solving heuristics. Provided that there exist an opponent modeling algorithm that
identifies the goals of the opponents, an original algorithm Goal-based Game Tree
Search (GB-GTS) reduces the game-tree substantially and thus allows the algo-
rithm to searcher in a greater depth of the tree [25]. Agent Subset Adversarial
Search (ASAS) algorithm reduces the game tree by putting limits on the number
of interaction agents during the game [26].

2.3. Abstract Distributed Planning Architecture

The classical work of Durfee [9] provides an abstract architecture for distributed
planning that fits in parts the requirements listed in Section 2.1 and will be used
as a reference for further discussion. Durfee divides the planning process into five
loosely coupled separate phases, namely:

1. task decomposition, when a shared goal or user defined task is understood by
one or several agents and the decomposition of the shared goal into tasks is
provided (usually by a single agent),

19

2. subtask delegation, when the individual tasks are allocated to the agents,
usually based on background knowledge about agents skills and capabilities

3. conflict detection, when the tasked agents confront the requests with their
real skills and capabilities, but importantly with their plans and already
made commitments (with the intention to identify conflicts if they exist)

4. individual planning, when the individual agents deploy centralized planning
algorithms to plan the course of their actions aimed at achieving the requested
task (this phase may also result in a conflict should no plan exist) and

5. plan merging, coordination of the individual plans of the agents so that the
use of resources in the environment (such as space) is non-conflicting.
As mentioned earlier, the abstract distributed planning architecture matches

the requirements for multi-agent environments only partially. In this section we
will provide a thorough discussion of the extend to which the present architecture
is suitable for the defined problem set.

2.3.1. Non-centrality and multi-party involvement: The requirements for non-
centrality and flat hierarchy of actors and the requirements for multi-party involve-
ment are the chief bottlenecks in deployment of the Durfee’s distributed planning
architecture. Durfee assumes that there is a single actor who is responsible for
decomposition phase of one task. In contrary, these requirements assumes not
only that there is no agent who can perform the requested task, but mainly that
there is no agent who can plan how the requested task shall be performed. Con-
sequently, the task decomposition and subtask delegation phases can be hardly
implemented by a centralized algorithms. While task decomposition phase is con-
cerned with availability of the problem solving knowledge for planning, subtask
delegation phase needs the right amount of social knowledge that is needed for an
appropriate resource allocation.

Non-centrality and multi-party involvement is a vital multi-agent property
and is supported by the two multi-agent planning components: negotiation and
acquaintance models. In the task decomposition phase these requirements are
addressed by the contract net protocol or various auctioning algorithms. Non-
centrality is however more critical in the subtask delegation phase. The appro-
priate choice of the subtask delegation mechanism depends on availability and
the quality of social knowledge. Should social knowledge be available in a good
quality to the agent, who is charged with the subtask delegation process, the clas-
sical centralized automated planning and/or resource allocation methods shall be
used. Otherwise the subtask delegation problem is to be solved by negotiation as
explained in Section 2.2.2. The request is rejected during the conflict phase pro-
vided the it does not match with the agents capabilities, resource availabilities or
collaboration preferences. Conflict may arise due to (i) usage of imprecise social
knowledge (caused e.g. by confidentiality reasons, resources overestimation, etc.)
used during task decomposition and subtask delegation phases, (ii) agents deliber-
ate overconstraining its responsibility during the subtask decomposition process,
or (iii) very frequent changes of agents availability (and thus changes of social

20

knowledge) since the task decomposition and subtask delegation phases (in case
of very dynamic, real-time domains).

We claim that social knowledge availability affects implementation of the
proposed multi-agent planning architecture. Let us investigate the two extreme
cases:
− There is high quality of higher level social knowledge available, providing very

precise information about available resources. In such situations splitting task
decomposition and subtask delegation is inefficient and both processes will
be be implemented by a single algorithm.

− Only minimal social knowledge is available which results in the phase of
subtask delegation being implemented by means of negotiation. During this
process the agents will avoid conflicting deals. In such situations the phase
conflict detection will be embedded within the subtask delegation phase.
This argument gives an impression that the Durfee’s multi-agent planning

architecture will be based on the separate task decomposition, subtask delegation
and conflict detection processes in all but the listed two extreme cases. However,
if the amount and quality of available social knowledge requires at least small
amount of interaction in the phases subtask delegation phases (it is unlikely that
any sperate phase conflict detection will be required as the conflicts will be avoided
during the phase subtask delegation. On the other hand, if there is no negotiation
and interaction required during the subtask delegation phase there is no reason
for splitting task decomposition and subtask delegation. Consequently splitting
the phases is reasonable only in the case where social knowledge availability is
different in various situations and within different teams of agents.

2.3.2. Dynamic Environments: The requirements for planning architecture to sup-
port very dynamic environment requires the computational process to be well bal-
anced between the particular phases of the multi-agent planning process. Even
though the process of planning in the presented environment is not performed in
critical-time and very often there is enough time for the use of some of the classi-
cal heavy duty planners, for replanning (which may occur frequently) the minimal
amount of computation and communication shall be assured.

Replanning as a typical capability needed in dynamic environments needs to
be addressed from three perspectives:
− replanning prevention – The use social commitment allows construction of

such plans that are resilient to specific types of changes in the environment in
such a way that changes of the courses of actions, that respond to the changes
in the environment, happens during the execution phase and no replanning
is required (such as delegation or relaxation classes of decommitments – see
Section 2.2.4).

− replanning organization – If replanning needs to be performed, backtracking
in the Durfeee architecture suggests that replanning is solved first in the phase
of individual planning. If no solution is found, the deployment of the revised
subtask delegation process within a limited subgroup of collaborating actors

21

is recommended. If no other delegation can be found, new decomposition
shall be produced. In spite that this approach of localized replanning may
produce suboptimal solutions, it has proved to be very efficient in the time
critical domains (such as air-traffic control, see Section 3.1.

− replanning efficiency – The algorithms deployed in the phase of individual
planning need to be highly efficient in order to be used for replanning in
time critical domains. Thus such a a subset of automated planning algo-
rithms listed in Section 2.2.1 that complies with this requirements needs to
be selected.

In conclusion the Durfee’s distributed planning architecture as such does not
support the process of monitoring and thus replanning capability in very dynamic
environment. From the suggested multi-agent planning components the social com-
mitments algorithms and efficient automated planning algorithms support such
environments.

2.3.3. Semi-trusted and partially accessible environment: The requirements for
partial knowledge sharing and coping with varying interaction availability are
linked in the sense that either requirement makes it possible to share needed
knowledge only partially. The planning knowledge needed for task decomposition,
the social knowledge in the subtask delegation phase, or even information about
activity status needed for the plan merging phase are shared only in parts.

The more trusted and more accessible the community of agents is the more
we can use the negotiation methods listed in Section 2.2.2 in combination with
the automated planning methods listed in Section 2.2.1. With decreasing trust
or connectivity, each of the agents need to build its own acquaintance model (by
means of methods listed in Section 2.2.3) and use them for reasoning when the
particular instance of knowledge is unavailable. The Durfee multi-agent planning
architecture does not support directly these properties of the planning problem,
however all the phases but delegation and plan merging are unaffected by interac-
tion unavailability.

2.3.4. Adversarial environment: As noted previously, adversarial planning is not
in the center of the multi-agent planning research. As the Durfee abstract archi-
tecture has been oriented mainly towards cooperative planning and cooperative
execution of the resulting plans, it does not support this requirement. This re-
quirement is fully supported by the methods listed in Section 2.2.5.

Let us distinguish two different noncooperative settings of the communities.
If the non-cooperative relationship is established among all pairs of the members
of the multi-agent community, the adversarial planning methods need to present in
the individual planning phase. Strategic reasoning is also expected in the conflict
detection and plan merging phases. If non-cooperative relationship is established
only among a subset of all pairs of the agents, meaning that there are cooper-
ative subgroups with the system, adversarial planning needs to affect also task
decomposition and delegation phases.

22

3. Multi-agent applications and prototypes

In the following we reflect on three original industry driven multi-agent planning
applications in order to demonstrate and discuss the concept of loosely couples
planning components listed in the Section 2 and inappropriateness of the Durfee
abstract planning architecture introduced in Section 2.3. The following three sec-
tions introduce in turn the three applications while in the Section 4 we provide a
brief analysis.

3.1. Agend-based free-flight planning

In cooperation with the US Air Force, the US ARMY and the Federal Aviation
Administration (FAAA) the researchers in the Agent Technology Center, Czech
Technical University, have developed AgentFly - a scalable, agent based technology
for free-flight simulation, planning and collision avoidance. In AgentFly each flying
asset is representing as a specific software container hosting multiple intelligent
software agents. Each agent either models a specific functionality of a platform
hardware, such as sensory capability, dynamic flight control or communication or
encapsulates an intelligent decision making technology that supports planning or
collision avoidance capability. Such an architecture supports three principal use-
cases of the AgentFly system: (i) multi-agent modeling and simulation of free
flight, (ii) control of free-flight unmanned aerial platforms and (iii) Alternative
approach to planning supporting civilian air traffic control.

AgentFly is designed so that there is no centralized component needed and
all the planning and collision avoidance is based on sensory capability of the flying
asset and their distributed (peer-to-peer) decision making capability. As such the
planning and collision avoidance agents can be directly deployed onto hardware
platforms and thus can support real free-flight exercise of the unmanned aerial
assets. AgentFly system is based on AGLOBE multi-agent technology which sup-
ports seamless migration from the computational simulation towards hardware
deployment. Previously, an AGLOBE-based model of ground robotic scenario has
been successfully migrated towards RoboCup soccer environment.

The most promising direction of AgentFly exploitation is in the area of air-
traffic planning. Currently Federal Aviation Authority (FAA) is interested in test-
ing the AgentFly planning capacity for the civilian air traffic in heavily overloaded
traffic across the whole National Air Space (NAS). The whole idea behind multi-
agent approach to air traffic planning is based on (i) relaxation of the planning
problem and (ii) multi-agent flight simulation. Instead of planning a collision-free
operation for a high number of aircrafts, there is a flight-plan constructed for
each individual aircraft without consideration of possible collisions. Subsequently,
such an operation is simulated in AgentFly environment, possible collisions are
detected and solved either by individual re-planning or by means of peer-to-peer
negotiations.

3.1.1. Planning in AgentFly. Each agent has its own path planner component
which provides the smooth flight plan trajectory respecting all constraints given

23

Figure 2. Path-planning example in a mountainous environment.

by the airplane model and its goals (mission). Goals for the airplane and requests
for collision avoidance maneuvers are transformed to a sequence of way-points
where each way-point can has specified time and cruise speed restrictions beside
its position. The planner prepares the detailed description of the flight corridor -
graphical description and cruise speed changes in time. Internally, the path plan-
ning process is running in two coupled phases: (i) spatial and (ii) time planning.
During the first phase the spatial part respecting position restrictions of the out-
put flight trajectory is prepared using Accelerated A* (AA*) algorithm [41], see
Figure 3.1. The AA* is suitable for fast planning in the large environments where
exists many operational restrictions like no-flight zones, minimal flight levels, dy-
namic zones from non-cooperative collision avoidance as described below. Defined
airspace is kept in the tree where each inner node is defined as a composition or
transformation operator and leafs keep zone definitions which use the geometri-
cal description, height map and octant tree representations. Using composition of
such zones in tree very complex airspaces can be modeled. In the second phase
the planner plans the cruise speed changes mapping them to the prepared spatial
part of the trajectory. The time planning goal is to fit all given time and cruise
speed restrictions. There exists the loop between both phases in order to be able
to handle also limit cases, e.g. airplane cannot slow down more below its minimal
cruise speed thus the spatial part has to be made longer.

3.1.2. Collision avoidance (CA) in AgentFly. No matter whether used for sim-
ulation, planning or real hardware control, the capability of AgentFly to au-
tonomously avoid collisions is in a centre of its research contribution and is critical
for its commercial exploitation. AgentFly features three classes of collision avoid-
ance mechanisms:

− Rule-based CA (RBCA) algorithm is a domain dependent algorithm based on
the Visual Flight Rules defined by FAA. Upon the collision threat detection,

24

the collision type is determined on the basis of the angle between the direction
vectors of the concerned aircrafts. Each collision type has a predefined fixed
maneuver which is then applied in the re-planning process. Visual flight rule-
based changes to flight plans are done by both assets independently because
the second asset detects the possible collision with the first asset from its
point of view. This mechanism has been implemented in AgentFly for the
testing purposes. The added value of the below listed collision avoidance
mechanisms was measured against rule-based CA.

− Iterative peer-to-peer CA (IPPCA) algorithm deploys multi-agent negoti-
ation aimed at finding the pareto-optimal CA maneuver. Software agents
hosted by each asset generate a set of viable CA maneuvers (by means of
the planning mechanism described above) and compute costs associated with
each maneuver (based on e.g. the total length of the flight plan, time devia-
tions for mission way-points, altitude changes, curvature, flight priority, fuel
status, possible damage or type of load). The agents negotiate such a combi-
nation of maneuvers that minimizes their joint cost associated with avoiding
the collision.

− Multi-party CA (MPCA) algorithm extends the above presented CA algo-
rithm by allowing several assets to negotiate about collective CA avoidance
maneuvers. While the quality of the overall plan based on the utility-based
CA is strongly affected by the order in which the collisions occur and are
solved, multi-party CA is has been designed to minimize the effects of CA
maneuvers causing conflicts in future trajectories with other flying assets.
While requiring substantially more computational and communication re-
sources for solving a single encounter, this strategy has shown to provide
more efficient free-flight collision free trajectories in longer runs.

− Non-cooperative CA algorithm supports collision avoidance in the case when
communication between aircrafts is not possible. Such a situation can arise
e.g. when on-board communication devices are temporarily unavailable or
when an asset avoids a hostile flying object. This class of algorithms is based
on modeling/prediction the future airspace occupancy of the non-cooperative
object and representing its possible future positions it in terms of dynamic
no-flight zones. Based on this information, the algorithm performs continuous
re-planning using the previously described planning algorithm.

Even though that AgentFly can compare effectiveness of various CA methods
in different scenarios, the free-flight dynamic environments are rarely suited for use
of a single CA algorithm at all times. Therefore AgentFly features efficient multi-
layer collision avoidance architecture that provides sophisticated mechanisms for
flexible selection of an appropriate CA algorithm in various situations. This ar-
chitecture features meta-reasoning process that analyze time-to-collision and esti-
mated time requirements for each individual CA avoidance method with respect
to efficiency of the collision avoidance process needed. The multi-layer collision
avoidance architecture avoidance module works in the fully decentralized manner

25

Figure 3. Collision avoidance solution after several IPPCA iter-
ations in 3D (b) and in 2D (d) for the superconflict setup of 10
airplanes. Visualization of negotiation 3D (a) and 2D (c).

and does not utilize any central planner for the collision avoidance of physical
entities. The architecture is domain independent and therefore is ready for the
deployment in the autonomous vehicles like airplanes, robots, cars, submarines,
etc. Deployment scenarios and selected experimental results

AgentFly system has been used for validation and testing of decentralized col-
lision avoidance by comparing the selected properties (quality of solution, required
computational and communication resources, etc.) of given algorithms. Algorithms
are often benchmarked in complicated collision cases, e.g. super conflict scenario
where airplanes are located in the circle, all are flying to opposite side of the circle
implying the multi-collision of all airplanes in the circle center (in super conflict
scenarios (see Figure 3.1.2 as an example)). For comprehensive test results refer
to [41] and [33].

3.2. Agent-based production planning

There has been a notable deployment of agent based systems in the manufacturing
domain. In several applications the concept of agents has been used for modeling
and simulation of the manufacturing process, exceptionally also for real-time pro-
duction process control. Important manufacturing application area is production

26

planning. This concept has been successfully applied for planning manufacturing
processes [32]. The European car company SkodaAuto, a member of the Volkswa-
gen group, requested deployment of multi-agent planning technologies for planning
their mass-production of car engines. Technology deployment has been coordinated
by Gedas, s.r.o., (T-System software company) who implemented the final prod-
uct, while the Gerstner Laboratory of the Czech Technical University in Prague
(CTU), and CertiCon a.s. have contributed by the design, prototype development,
and technical experience.

The factory layout consisted of three closely linked assembly lines (ZK line,
RUMPF line, and ZP4 line), two operational storage units (Vehicle store and Con-
veyor store) and a final products storage capacity. The factory manufactures daily
up to 2000 pieces of engine heads for 2 and 4 cylinder 1200 cm3 engines, 2000
pieces of 3 cylinder RUMPF engines, or 1200 pieces of finished 3 and 4 cylinder
1200 cm3 engines (with 66% manufactured for sale). The engines can be assem-
bled either from parts produced in the factory or from parts purchased externally.
The functionality requirements for the final planning system were to provide a
detailed production plans for a six weeks period, so that storage requirements and
consequently also storage cost throughout the production chain were minimized,
production type uniformity was maximized, tooling changes were minimized, and
any unnecessary handling of products between successive steps of the produc-
tion process was be minimized. The system shall be also open to integration with
production monitoring and management tools and allow further system reconfig-
uration according to changes in the production processes themselves and support
real-time re-planning in the case of demand changes or production anomalies.

Due to very high complexity of the planning problem and several nonlin-
ear constrains a classical operational research methods cannot be used. Instead,
the planning problem has been decomposed into high-level planning and low-level
planning processes. The former represents the solution to a substantially relaxed
planning problem based linear programming. A coarse, 6-weeks semi-optimal pro-
duction plan is provided as a result of the high-level planning. This plan however
does not comply with the various non-linear local production constrains such as
knowledge of late arrival of material, rump-up and completion phase of a daily pro-
duction (respecting the different numbers of shifts), change of tooling, and many
others.

During the low-level planning the production process is simulated by a multi-
agent system to detect conflicts and inconsistencies in the high-level plan (see the
diagram in Figure 3.2). The planning agent sends the high-level production plans
to the agents representing the physical entities on the shop floor. The agents use
their local resource allocation mechanisms to assign appropriate processes and con-
tinually consult dependencies among them. Detected inconsistencies trigger local
re-planning algorithms. All agents receive their goals prescribed by the high-level
plan. The difference between the necessary and the nominal load defines replan-
ning priority. The agent with the highest priority performs replanning (by means

27

ZK LINE
RUMPF

LINE
ZP4 LINE

VEHICLE
STORE

CONV.
STORE

FINSIH
PARTS

LP PLANNER

high-level planning

low-level planning

broadcasting
replanning priority

low-level replanning

low-level replanning

low-level replanning

high-level plan

replanning priority

request for
replanning

request for
replanning

request for
replanning

request for
replanning

changed
low-level plan

changed
low-level plan

evaluation of changed
low-level plan

new request for
replanning

non-conflicting plan

plan merging

Figure 4. Integration of high-level and low-level planning and
replanning by means of agent interaction.

of classical search methods) so that all constrains are satisfied, and requests appro-
priate changes from the agents whose plans are linked by resources. These agents
perform replanning in the same manner. The revised plans are sent back to the
requestor. This process can be iterated until the changes in the plans of the indi-
vidual agents comply with all the predefined non-linear constrains. Even though
this negotiation process has not been theoretically proved for cycles’ avoidance,
practical experiments have validated its operation.

The described production planning system in SkodaAuto is an important part
of a modular Manufacturing Execution System (MES), which is designed to cover
in successive steps all of the eleven areas of functional model of MES. Besides nec-
essary interfaces between the company ERP systems, the developed MES system
contains modules supporting quality management, production surveillance, pro-
duction scheduling, and long term planning. All these components have been fully
tested and have been introduced to real manufacturing process . For the imple-
mentation of our current long term planner, a free third party linear programming
based solver (LP PLANNER) was used, together with the communication and
data transformation wrapper. The whole scheduling takes less than 1 second on a

28

standard PC (with 28 days, 50 products, and 3 machines considered). This com-
pletely satisfies the performance requirements. The short-term scheduler has been
fully developed at Gedas, s.r.o. One of the most difficult tasks was to make the
decision concerning the granularity of the agents in the design phase. Only a small
group of ”heavy-duty” planning agents each capable of carrying out complex plan-
ning tasks has been designed. The key deployed agent concept in this case study
is distributed planning (mainly on the different levels of planning granularity and
different level of compliance to the imposed constrains) and negotiation among
the agents when resolving the conflicts and mutual replanning interdependencies.

3.3. Agent-based supply chain management

While above we discuss the use of agent based planning on intra-enterprize level
of the the factory decision making process, the concept of agent-based planning is
equally good for planning and coordinating interaction among the various mem-
bers of complex supply chains (such as procurement, logistics, virtual enterprize
formation and supply chain management).

In ATG we have been investigating the use of multi-agent techniques sup-
porting coordinated action in Request-based Virtual Organizations for dynamic
multinational clusters of ERP/CRM value chain actors. The Request-based Vir-
tual Organization (RBVO) is a special kind of Virtual Organization [36]. A for-
mation of a RBVO is based on a negotiation between independent actors willing
to cooperate. Individual actors are motivated to join the Virtual Organization
to increase their business opportunities and to be able to participate on larger
scale contracts. The individual value chain actors act as service providers mainly
for consulting, software implementation, installation and customization, training
and maintenance. The motivation is to find best suitable consortium of service
providers to meet customer requirements such as cost, expected quality of service
based on experience in industrial domain and appropriate ERP solution, geograph-
ical location or language.

The domain of RBVOs organizes multi-party interaction in the environments
that are non-centralized and with flat organizational and heavily relies on strong
multi-party involvement. A project cannot be implemented in isolation by a sin-
gle actor, RBVO formation can be initiated by several actors simultaneously. An
important property of this domain set is that it requires partial knowledge shar-
ing.The actors in the environment are motivated to keep a substantial part of their
private planning knowledge and resource availability information undisclosed.

The process of RVBO composition in competitive, semi-trusted environments
has been solved by original contracting algorithm that is based on use of incremen-
tally refined acquaintance models (IRAM) – the model that the actor is maintain-
ing about potential collaborators [31]. In fully trusted competitive environments
there are used classical approaches based on combinatorial auctions and contract
net protocols. Individual requestors bid for different parts of RVBO, based on
competencies and services required. The way the potential project is decomposed
into particular services depends on costs and availabilities of services provided by

29

Figure 5. Amount of communication (with IRAM – solid line,
without – dashed line.

different providers. If this information is unavailable (uninformed decomoposition),
the requestor uses specific heuristic that guides a decomposition process (the mini-
mal amount of RVBO members, balanced allocation of services, etc.). On the other
hand, if the information about costs and services is available (fully informed de-
composition), the requestor can evaluate each particular decomposition and select
such that optimizes cost or deadlines.

The IRAM algorithm provides means to partially informed decomposition,
typical for semi-trusted communities. There the bidders provides only partial in-
formation about their costs and availability. This partial information is used for
building approximate acquaintance model, modeling the information used in fully
informed decomposition. IRAM not only allows computing of an approximate de-
composition, that is used for initiating one round of the contract-net protocol (seal-
bid auction), but it can be also adapted should this round of negotiation terminate
with a conflict deal5 and improved for the next decomposition.

The IRAM algorithm has been tested on several RVBO formation scenarios.
Empirically it has been validated that the IRAM algorithm (i) reduces the number
of communication rounds and (ii) provides efficient tradeoff between the amount
of disclosed information and quality of the resulting RVBO. This is documented
e.g. on the Figure 5, that shows that total proposal communication by IRAM de-
creases with time, while fully informed decomposition requires substantially more
communication in order to find an optimal RVBO.

5At least one of the bidder is not available to provide the service and thus the resulting RVBO
would not be complete.

30

4. Conclusion

Multi-agent planning as defined in Section 2 represent important research challenge
with a notable application potential. While there are strong research results in the
communities of automated planning and multi-agent systems, given by their long-
term tradition, the communication between these research subfield is limited. The
community lacks formal models of the problem and abstract architectures with
proven properties that can guide the multi-agent planning systems designers and
developers.

In the presented paper we have challenged the only available general multi-
agent planning architecture. Based on the well defined requirements for a multi-
agent planning system, we came to a conclusion that the Durfee’s architecture
answers these challenges only in part. The requirements for non-centrality and
multi-party involvement has been supported by subtask delegation and plan merg-
ing phases if done in decentralized manner. The presented architecture does not
support in any way the requirements for fast replanning, real-time planning or
opportunistic planning. While all the phases but delegation and plan merging are
unaffected by interaction unavailability, the Durfee’s planning architecture does
not address this critical issue. The fact that the respective architecture cannot
solve planning problems in adversarial environment is not surprising as the archi-
tecture has been designed primarily for cooperative environments.

Our view to multi-agent planning is component-oriented. We argue that the
firm structure of decision making process as designed by Durfee can be generalized
only to a limited extent. Therefore we propose the 4 (5) pivotal families of plan-
ning and agent-based computing methods from which a planning system ought by
composed.

The automated planning component, of which we have provided a brief review
in the paper, represent a centralized algorithm of any multi-agent planning system
irrespective of the specialized requirements listed in the Section 2.1. The negoti-
ation component enables non-centrality and multi-party involvement as much as
it supports local interaction if some actors becomes temporarily inaccessible (re-
quirement addressing for varying interaction availability). The acquaintance mod-
els component provide methods that address the same requirement in addition
to coping with semi-trusted attitudes among the agents. The social commitments
component makes the planning robust to changes. It needs to be said though that
the use of social commitments presents additional requirement on the methods se-
lected from the automated planning component. Slightly separate requirements for
operation in adversarial environment is being handled by the adversarial reasoning
methods.

In the paper we have also provided three different representative of multi-
agent planning applications:

− Agent based free-flight planning. The presented system emphasized require-
ments for fast replanning and robustness against changes in the environment.
As centralized collision free planning is a complex computational exercise and

31

would prevent hardware deployment of the concept, the scenario also required
decentralization and multi-party involvement. These requirements were ad-
dressed well by the variant of the monotonic concession protocol (an instance
of the negotiation component) and the Accelerated A* planning algorithm (as
an instance of automated planning component). The presented application
cannot be implemented by the Durfee planning architecture as there is not
subtask decomposition and delegation in this planning problem. The vehicles
have their own private goals and objectives.

− Agent-based production planning. Our experience with production planning
does not match with the challenges listed in Section 2.1. It can be imple-
mented by means of a centralized planner (which was the original expec-
tation of the sponsor). However, classical linear programming cannot have
been used due to nonlinear properties of the problem specification and ran-
domized planning methods did not provide good transparency for the users.
The multi-agent application has been supported by a centralized planner (an
instance of the automated planning component) on a relaxed specification of
the problem complemented by a multi-agent simulation and conflict resolu-
tion process (an instance of the negotiation component).

− Agent-based supply chain management. In the field of supply chain manage-
ment the application required the capability to deal with semi-trusted actors
and with partially undisclosed data. Similarly, the requirement for varying
interaction availability can play a role with small enterprize with unreliable
connection to the Internet. Centralized approach as well as Durfee planning
architecture were not suitable here. The used IRAM algorithm is an instance
of acquaintance models based component and had been the core of the im-
plemented application.

References

[1] M. Baioletti, S. Marcugini, and A. Milani. Dpplan: an algorithm for fast solutions
extraction from a planning graph. In 5th International Conference on Artificial In-
telligence Planning and Scheduling (AIPS2000), Breckenridge, CO, USA, 2000.

[2] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, (90):281–300, 1997.

[3] W. Cao, C.-G. Bian, and G. Hartvigsen. Achieving efficient cooperation in a multi-
agent system: The twin-base modeling. In P. Kandzia and M. Klusch, editors, Coop-
erative Information Agents, number 1202 in LNAI, pages 210–221. Springer-Verlag,
Heidelberg, 1997.

[4] A. I. Coles, M. Fox, and A. J. Smith. A new local-search algorithm for forward-
chaining planning. In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS 07), 2007.

[5] Mathijs M. de Weerdt, André Bos, J.F.M. Tonino, and Cees Witteveen. A resource
logic for multi-agent plan merging. Annals of Mathematics and Artificial Intelligence,

32

special issue on Computational Logic in Multi-Agent Systems, 37(1–2):93–130, Jan-
uary 2003.

[6] Navin Bhat Department, Navin A. R. Bhat, and Kevin Leyton-brown. Computing
nash equilibria of action-graph games. In In Proceedings of the 20th Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI, pages 35–42. AUAI Press,
2004.

[7] Marie E. DesJardins and Michael J. Wolverton. Coordinating a distributed planning
system. AI Magazine, 20(4):45–53, 1999.

[8] Claude G. Diderich. A bibliography on minimax trees. SIGACT News, 24(4):82–89,
1993.

[9] Edmund H. Durfee. Distributed problem solving and planning. In Gerhard Weiß,
editor, A Modern Approach to Distributed Artificial Intelligence, chapter 3. The MIT
Press, San Francisco, CA, 1999.

[10] S. Edelkamp and M. Helmert. The model checking integrated planning system
(mips). AI Magazine, 22(3):67–71, 2001.

[11] Ulle Endriss. Monotonic concession protocols for multilateral negotiation. In AAMAS
’06: Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, pages 392–399, New York, NY, USA, 2006. ACM Press.

[12] Eithan Ephrati and Jeffrey S. Rosenschein. A heuristic technique for multiagent
planning. Annals of Mathematics and Artificial Intelligence, 20(1–4):13–67, 1997.

[13] Klaus Fischer, Jörg P. Muller, Markus Pischel, and Darius Schier. A model for co-
operative transportation scheduling. In Proceedings of the First International Con-
ference on Multiagent Systems., pages 109–116, Menlo park, California, June 1995.
AAAI Press / MIT Press.

[14] M. P. Fourman. Propositional planning. In Workshop on Model Theoretic Approaches
to Planning, AIPS 2000, Breckenridge Colorado, 2000.

[15] John Geanakoplos. Three brief proofs of arrow’s impossibility theorem. Economic
Theory, 26(1):211–215, July 2005.

[16] A. Gerevini, A. Saetti, and I. Serina. An approach to temporal planning and schedul-
ing in domains with predicatable exogenous events. Journal of Artificial Intelligence
Research (JAIR), 25(187-231), 2006.

[17] Robert Givan and Thomas Dean. Model minimization, regression, and propositional
strips planning. In IJCAI, pages 1163–1168, 1997.

[18] J.C. Harsanyi. Approaches to the bargaining problem before and after the theory of
games: a critical discussion of zeuthen’s, hick’s, and nash’s theories. Econometrica,
(24):144–157, 1956.

[19] Nathanael Hyafil and Craig Boutilier. Regret minimizing equilibria and mechanisms
for games with strict type uncertainty. In In Proceedings of the 20th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-04, pages 268–277. AUAI Press,
2004.

[20] R. M. Jensen, M. M. Veloso, and M. H. Bowling. In proc. of ecp01. In 2001, OBDD-
based optimistic and strong cyclic adversarial planning.

[21] H. Kautz and B. Selman. Unifying sat-based and graph-based planning. In Proceed-
ings of IJCAI-99, Stockholm, 1999.

33

[22] Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game
theory, 2001.

[23] Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and
solving games. In IJCAI, pages 1027–1036, 2001.

[24] C. Li and M. Anbulagan. Principles and Practice of Constraint Programming, chap-
ter Look-Ahead Versus Look-Back for Satisfiability Problems, pages 341–355. 1997.

[25] Viliam Lisý, Branislav Bošanský, Michal Jakob, and Michal Pěchouček. Goal-based
adversarial search - searching game trees in complex domains using goal-based heuris-
tic. In Joaquim Filipe, Ana Fred, and Bernadette Sharp, editors, Proceedings of
ICAART 2009 - First International Conference on Agents and Artificial Intelli-
gence, pages 53–60, Porto – Portugal, 2009. INSTICC (Institute for Systems and
Technologies of Information, Control and Communication), INSTICC Press.

[26] Viliam Lisy, Branislav Bosansky, Roman Vaculin, and Michal Pechoucek. Agent
subset adversarial search for complex domains. In submitted to: Ninth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS2010), YEAR
= 2010,.

[27] Carol Luckhart and Keki B. Irani. An algorithmic solution of n-person games. In
AAAI, pages 158–162, 1986.

[28] V. Mař́ık, M. Pěchouček, and O. Štěpánková. Social knowledge in multi-agent sys-
tems. In M. Luck, V. Mař́ık, and O. Štěpánková, editors, Multi-Agent Systems and
Applications, LNAI. Springer-Verlag, Heidelberg, 2001.

[29] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceed-
ings of the Ninth National Conference on Artificial Intelligence (AAAI-91), pages
634–639, 1991.

[30] M. Pěchouček, V. Mař́ık, and O. Štěpánková. Role of acquaintance models in agent-
based production planning systems. In M. Klusch and L. Kerschberg, editors, Co-
operative Infromation Agents IV - LNAI No. 1860, pages 179–190, Heidelberg, July
2000. Springer Verlag.

[31] Michal Pěchouček, Vladimı́r Mař́ık, and Jaroslav Bárta. Role of acquaintance mod-
els in agent’s private and semi-knowledge disclosure. Knowledge-Based Systems,
(19):259–271, 2006.

[32] Michal Pechoucek, Martin Rehak, Petr Charvat, and Tomas Vlcek. Agent-based
approach to mass-oriented production planning: Case study. IEEE Transactions on
Systems, Man, and Cybernetics, Part C, 37(3):386–395, May 2007.

[33] Michal Pěchouček and David Šǐslák. Agent-based approach to free-flight planning,
control, and simulation. IEEE Intelligent Systems, 24(1):14–17, Jan./Feb. 2009.

[34] Don Perugini, Dale Lambert, Leon Sterling, and Adrian Pearce. Agent-based global
transportation scheduling in military logistics. In AAMAS ’04: Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1278–1279, Washington, DC, USA, 2004. IEEE Computer Society.

[35] Michal Pěchouček; Jan Doubek; Jǐŕı Vokř́ınek; Martin Rehák. Incrementaly re-
fined acquaintance model (iram) for request-based virtual organization formation.
In Vladimı́r Mař́ık; Jeffrey M. Bradshaw; Joachim Meyer; William A. Gruver; Petr
Benda, editor, Distributed Human-Machine Systems 2008, pages 182–187. IEEE
SMC, IEEE, 2008.

34

[36] Robert Roberts, Adomas Svirskas, and Brian Matthews. Request based virtual or-
ganisations (RBVO): An implementation scenario. In Collaborative Networks and
their Breeding Environments, volume 186 of IFIP, pages 17–25. Springer, 2005.

[37] T. Sandholm. Contract types for satisficing task allocation: I theoretical results. In
Proceedings of the AAAI Spring Symposium, 1998.

[38] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing.
In Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfi-
ability, 1995.

[39] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, New York, NY,
USA, 2008.

[40] M. P. Singh, A. S. Rao, and M. P. Georgeff. Multiagent Systems A Modern Approach
to Distributed Artificial Intelligence, chapter Formal Methods in DAI: Logic Based
Representation and Reasoning, pages 201–258. MIT Press, Cambridge, MA., 1999.

[41] David Šǐslák, Přemysl Volf, and Michal Pěchouček. Accelerated a* path planning.
In Sierra Castelfranchi Decker, Sichman, editor, Proceedings of 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages
1133–1134, Hungary, May 2009.

[42] R. G. Smith. The contract net protocol: High level communication and control in
a distributed problem solver. In IEEE Transactions on Computers, C-29(12):1104–
1113, 1980.

[43] H.-P. Störr. Planning in the fluent calculus using binary decision diagrams. AI Mag-
azine, 22(3):103–106, 2001.

[44] Wittig T. ARCHON: An Architecture for Multi-agent System. Ellis Horwood, Chich-
ester, 1992.

[45] A Tate, J Hendler, and M Drummond. A review of ai planning techniques. In J Allen,
J Hendler, and A Tate, editors, Readings in Planning, pages 26 – 49, San Mateo,
1999. Kaufmann.

[46] Jǐŕı Vokř́ınek, Antońın Komenda, and Michal Pěchouček. Decommitting in multi-
agent execution in non-deterministic environment: Experimental approach. In Pro-
ceedings of The Eight International Conference on Autonomous Agents and Multia-
gent Systems, 2009.

[47] M. Wooldridge. Reasoning about Rational Agents. Intelligent robotics and au-
tonomous agents. The MIT Press, 2000.

Michal Pěchouček – 2008 Curriculum Vitae

born June 29, 1972 in Kolin, Czech Republic, nationality Czech, married, three daughters

Present Affiliation

Associate professor at Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical
University in Prague (CTU),
Head of the Agent Technology Center, Deputy Head of Department, Head of Open Informatics
Programme

Education

Engineering degree (eq. to M.Sc.) in Technical Cybernetics at Czech Technical University in Prague (1995)
M.Sc. in IT: Knowledge based systems, University of Edinburgh (1996)
PhD in Artificial Intelligence and Biocybernetics at Czech Technical University in Prague (1998)

Past Visiting Affiliations

 Visiting scientist at Artificial Intelligence Application Institute, University of Edinburgh, Royal
Society of Edinburgh grant holder (2006)

 Visiting professor at State University of New York - University of Binghamton, lecturing a full
semester course on Agent Technologies and Multi-Agent Systems (2003)

 Visiting postdoctoral researcher at the University of Calgary, Supported by Nortel Chair for
Intelligent Manufacturing (2000)

Track Record in Research and Technology Transfer

Principal Investigator of the following research projects to Air Force Research Laboratory, NY
AFOSR/EOARD:

 Agent-based Computing in Distributed Adversarial Planning, FA8655-07-1-3083 (2007-2008)

 Autonomous Agents for UAV Air-Traffic Control, FA8655-04-1-3044-P00001 (2005-2007)

 Modeling agents autonomy and agents’ in adversarial environment, FA8655-04-1-3044 (2004-05)

 Meta-reasoning and Monitoring in the Multi-Agent Systems FA8655-02-M4056 (2002-2003)

 Agents Inaccessibility in Multi-agent Systems FA-8655-02-M-4057 (2002-2004)

 Acquaintance Models in Operations Other Than War Coalition Formation F61775-00-WE043
Multi-Agent Systems in Communication, investigator, F61775-99-WE099 (1999 - 2000)

Principal Investigator of the research projects to CERDEC US Army NJ:

 Reflective-Cognitive Adaptation for Network Intrusion Detection Systems, subcontract provided
to Masaryk University (2008-2009)

 Distributed Planning and Coordination of Team-oriented Activities in a Dynamic Environment,
W911NF-08-1-0041, subcontract provided to University of Edinburgh (2008)

 Distributed Planning and Coordination of Team-oriented Activities N62558-06-P-0353,
subcontract provided to University of Edinburgh (2006-2007)

 Cooperative Adaptive Mechanism for Network Protection N62558-07-C-0001, subcontract
provided to Masaryk University (2007)

 Modeling Individual, Collaborative and Adversarial Reflection in MAS N62558-05-C-0028 (05-07)

 Reflective/Cognitive Agent in Distributed Decision Making N62558-04-C-6001 (2004-2005)

 Modeling in Multi-agent Systems: A Technology Primer, co-pi, N62558-03-0819, (2004)

Principal Investigator of the research projects to Naval Research Laboratory, ONR/NRL:

 Meta-reasoning and Adjustable Autonomy in Computational MAS N00014-06-1-0232 (2005-08)

 Robot coordination using PIM, subcontract awarded by Florida IHMC, US N00014-06-1 (2007)

 Meta-reasoning for Modeling and Simulation in Multi-Agent Systems N00014-03-1-02 (2003-05)

Principal Investigator the following industrial research contracts

 BAE systems, Bristol, UK: Deployment of the AGENTFLY multi-agent system as a test-bed for
reactive, probabilistic collision avoidance strategies (2007-2008)

 DENSO Automotive, GmbH: Agent based diagnostics in vehicle electronics (2005-2007)

 CADENCE Design Systems: A/GLOBE multi-agent system deployment for design process and
assessment modeling (2006)

Local Coordinator of the European Commission FP5 and FP6 RTD Projects:

 CONTRACT - Contract Methods for Verifiable Cross-Organizational Networked Business
Applications (2006-2008)

 PANDA - Collaborative Process Automation Support using Service Level Agreements (2006-2008)

 ExtraPLANT/EUTIST-AMI IST project, agent-based solution for supply chain management (03-04)

 ExPlanTech IST project, development of production planning multi-agent system (2000-2002)

 MPA GROWTH project, agent-based modular planning and simulation architecture (2002-2003)

Expert reviewer to EC in research and technology transfer projects (WIDE, SpiderWin, FluidWin – since
2004), Reviewer to projects funded by NOW – Netherlands Organisation for Scientific Research and IWT
– the Research Funding and Innovation Stimulation Agency of the Flanders.

Principal Investigator of the subcontract provided by Institute for Human and Machine Cognition within
the framework of HYRES project funded by NASA - development of an agent based root-cause detection,
in hydrogen production facility (2003)

Coordination of the consulting project to GEDAS in cooperation with CERTICON, a.s. aimed the design of
the agent based solution for engine manufacturing in SKODAAuto (2004)

Consulting to Rockwell Automation Research Center in Prague, design of the agent-based
reconfiguration shipboard automation for the chilling system (2002)

PhD Committee member and an opponent on PhD thesis submitted to University of Edinburgh and
Blekinge Institute of technology

Membership, Awards and Honorary Affiliation

Honorary/Visiting Member of Artificial Intelligence Application Institute, University of Edinburgh (since
2005)
Member of Advisory Board of Center for Advanced Information Technologies (CAIT), State University of
New York (SUNY) in Binghamton (since 2005)
Member of the AgentLinkIII European Coordinating Action management committee, responsible for an
industrial take up of agent technology (2004-2006)

The 2007 Engineering Academy of the Czech Republic Main Prize for AGLOBE multi-agent technology
(for collective of authors)
The 2007 CIA (Cooperative Information Agents) Workshop Best Paper Award nomination (for collective
of authors)

The 2006 DARPA Award for Best Industrial and Applied Paper at AAMAS 2006 (for collective of authors)
The 2005 Czech Technical University Chancellor Research Team Award to the Agent Technology Group,
The 2005 IEEE/WIC/ Intelligent Agent Technology Best Demo Award (for collective of authors)
The 2004 CTU Chancellor Award (3rd main prize) for excellence in industrial deployment of research
The 2004 CIA (Cooperative Information Agents) System Innovation Award (for collective of authors)
Best paper award at EMSCR 1998 (for collective of authors)
Siemens Dissertation Award 1998

Chairman of EUMAS AB (European Workshop on Multi-Agent Systems Advisory Board) (2004-2006)
AAMAS 2006 (Autonomous Agents and Multi-Agent Systems) senior program committee member;
AAMAS 2005/2006 (Autonomous Agents and Multi-Agent Systems) industry track co-chair; KSCO2002
(Knowledge Systems for Coalition Operation), KSCO 2004 co-chair; HoloMAS (Industrial Application of
Holonic and Multi-Agent Systems) 2000 - 2002 co-chair; CEEMAS (Central and Eastern European
Conference on Multi-Agent Systems) 2003, 2005 co-chair; program committee member of ESAW, ECAI
(European Conference on Artificial Intelligence), CIA (Cooperative Information Agents), AAMAS
(Autonomous Agents and Multi-Agent Systems),

Excalibur Alumni - Association of Czech Graduates of British Universities, founding member and
chairman;
Member of CSKI –Czech Society for Cybernetics and Informatics (an ECCAI member);
Member of Academic Senate, Faculty of Electrical Engineering, Czech Technical University

Publications

List of publications and SCI references is available upon request. For selected publications see
http://agents.felk.cvut.cz/publications/pechoucek

38

