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Summary:

In many computer vision decision making problems, e.g. detection or classification, both
the error rates and the evaluation time characterise the quality of a solution. Yet none of the
currently popular learning algorithms such as support vector machines, neural networks
or AdaBoost that are typically employed to train such a decision-making system optimise
(or even consider) the evaluation time explicitly.

The trade-off between decision quality in terms of error rates and the time-to-
decision expressed by the number of measurements has been studied in the 1940’s by
A. Wald. In his theory of sequential decision-making, Wald proved that the optimal se-
quential strategy in terms of the shortest average time to decision (number of measure-
ments used) given predefined error rates is the sequential probability ratio test (SPRT).
However, Wald’s theory is based on measurements that are assumed to be selected and or-
dered a priori. Moreover, it is assumed that either the measurements are class-conditionally
independent or their joint probability density functions are known.

We show how these limitation can be overcome by selecting the relevant measure-
ments by AdaBoost. The joint conditional density of all measurements, whose estima-
tion is computationally intractable, is approximated by the class-conditional response of
the sequence of strong classifiers. The choice is justified by the asymptotic properties of
AdaBoost-trained strong classifiers. The resulting algorithm, called WaldBoost, integrates
AdaBoost-based measurement selection and Wald’s optimal sequential probability ratio
test.

As an application of WaldBoost, we demonstrate how existing (slow) binary deci-
sion algorithms can be approximated by a (fast) trained WaldBoost classifier. The Wald-
Boost learning is used to minimise the decision time of the emulated algorithm while
guaranteeing predefined approximation precision. Moreover, the WaldBoost algorithm
together with bootstrapping is able to efficiently handle an effectively unlimited number
of training examples provided by the implementation of the approximated algorithm.

Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency de-
tectors, are emulated to demonstrate the approach. Experiments show that while the re-
peatability and matching scores are similar for the original and emulated algorithms, a
9-fold speed-up for the Hessian-Laplace detector and a 142-fold speed-up for the Kadir-
Brady detector is achieved.
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Souhrn:

V mnoha rozhodovacı́ch problémech v oblasti počı́tačového viděnı́ (např. u detekce nebo
klasifikace) charakterizuje kvalitu procesu rozhodovánı́ nejen jeho chybovost, ale také
doba výpočtu nutná pro rozhodnutı́. Nicméně žádný z běžných učı́cı́ch se algoritmů jako
jsou neuronové sı́tě, metody SVM nebo Adaboost, které se použı́vajı́ pro učenı́ těchto
rozhodovacı́ch systémů, neoptimalizuje, dokonce ani neuvažuje, dobu nutnou pro rozhod-
nutı́.

Kompromis mezi chybovostı́ rozhodnutı́ a dobou rozhodovánı́ vyjádřenou počtem
měřenı́ byla zkoumána v čtyřicátých letech dvacátého stoletı́ A. Waldem. Ve své teorii
sekvenčnı́ho rozhodovánı́ Wald dokázal, že optimálnı́ sekvenčnı́ strategie, t.j. strategie
s nejkratšı́m průměrnou dobou rozhodnutı́ (reprezentovanou počtem měřenı́), která splnı́
omezenı́ na chybovost, je tzv. Waldův sekvenčnı́ test založený na věrohodnostnı́m poměru.
Omezená aplikovatelnost Waldovy teorie je dána předpokladem, že je a priori známo
pořadı́ jednotlivých měřenı́ a že měřenı́ jsou nezávislá nebo jejich sdružené hustoty
pravděpodobnosti jsou známy.

Přednáška ukazuje, jak lze tato omezenı́ překonat tı́m, že výběr a pořadı́ měřenı́
uskutečnı́me pomocı́ metody strojového učenı́ AdaBoost a nahradı́me odhad vysoko-
rozměrné sdružené hustoty všech měřenı́, který je prakticky výpočetně nerealizovatelný,
posloupnostı́ odezev tzv. silného klasifikátoru. Tato aproximace je opřena o asymptotické
vlastnosti silného klasifikátoru učeného metodou AdaBoost. Výsledná metoda, nazvaná
WaldBoost, integruje algoritmus AdaBoost a Waldův optimálnı́ sekvenčnı́ test založený
na věrohodnostnı́m poměru.

Možnosti metody WaldBoost demonstrujeme na aplikaci, ve které jsou existujı́cı́
(pomalé) binárnı́ rozhodovacı́ algoritmy aproximovány (rychlým) klasifikátorem auto-
maticky naučeným algoritmem WaldBoost. WaldBoost učenı́ minimalizuje dobu rozhodovánı́
vybraných detektorů při zaručené kvalitě aproximace. V úloze se projevı́ výhoda algo-
ritmu WaldBoost, který je pomocı́ tzv. bootstrappingu schopen efektivně zpracovávat
téměř neomezený počet trénovacı́ch přı́kladů, které jsou zı́skany spouštěnı́m aproximovaného
algoritmu.

Přistup je ověřen na dvou detektorech bodů zájmu, tzv. ”Hessian-Laplace ” a ”Kadir-
Brady saliency”. Výsledné emulátory majı́ shodnou opakovatelnost a kvalitu lı́covánı́
jako původnı́ algoritmus, ale emulátor dosáhl 9-násobné zrychlenı́ u detektoru Hessian-
Laplace a 142-násobné zrychlenı́ u detektor Kadir-Brady.
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1. Introduction

Standard learning algorithms like support vector machines, AdaBoost or neural networks
are designed primarily with the objective of error minimisation and generalisation to un-
seen data; small training size performance is a common important concern. Typical eval-
uation methodology for learning algorithms reflects this focus – measures like error rates,
the precision-recall curve or the false positive and the false negative rates are usually
reported.

However, in many practical decision problems, another aspect of the trained clas-
sifier becomes critical – the time-to-decision. Very few approaches consider time-to-
decision as an integral part of the learning task. We present the WaldBoost learning
algorithm, introduced by us in [30], which handles the precision-speed trade-off auto-
matically and produces a quasi-optimal sequential classifier minimising the decision time
while guaranteeing predefined error rates.

Learning to be fast. The history of the formulation of a classification task with time-to-
decision vs. precision trade-off dates back to Wald’s sequential analysis [34]. Wald posed
the problem as a constrained optimisation and found a quasi-optimal solution to it – the se-
quential probability ratio test (SPRT). Wald also showed that on average, a fewer number
of observations is needed to achieve the required error rates in comparison with a deci-
sion strategy making a fixed number of measurements. However, Wald’s theory assumes
knowledge of the class conditional probabilities and it does not consider learning and es-
timation issues. The theory of sequential decision-making has been further developed and
enriched [29] and is now used as a basic and well known tool in statistics.

In 1987, Rivest [26] studied learnability of decision lists (which could be seen as
sequential classifiers) in the context of Boolean functions but without optimising the eval-
uation time. Baker and Nayar [1] looked at the problem of efficiency of classification in
the context of multi-class classification, where the task is to effectively distinguish one
class out of many. To this end, they developed a theory of pattern rejectors which can be
interpreted as sequential classifiers in the class space. A practical learning approach to the
time-to-decision vs. precision trade-off has been proposed by Viola and Jones [33], who
build an ordered set of increasingly complex classifiers that were applied sequentially to
a progressively smaller faction of the data. The ”classifier cascade” method requires the
user to define the complexities of individual classifiers and does not optimise the time vs.
precision trade-off directly. Consequently, many variations on the method have appeared
in the literature [35, 12, 4]. The SoftCascade [3] algorithm presents a systematic but a
rather brute force approach to the precision vs. speed optimisation problem.

Wald’s sequential decisions are based on measurements that are assumed to be se-
lected and ordered a priori. Moreover, it is assumed that either the measurements are
class-conditionally independent or their joint probability density functions are known.
We show how this limitation can be overcome by selecting the relevant measurements
by AdaBoost[28]. The joint conditional density of all measurements, whose estimation
is computationally intractable, is approximated by the class-conditional response of the
sequence of strong classifiers. The choice is justified by the asymptotic properties of
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AdaBoost-trained strong classifiers. The WaldBoost algorithm integrates AdaBoost-based
measurement selection and Wald’s optimal sequential probability ratio test.

The WaldBoost approach has successfully been applied to a number of problems:
face detection [30], on-line tracking [9], and emulation of feature detectors [31]; an
overview of computer vision methods based on the WaldBoost can be found in [19].

Besides introducing the WaldBoost algorithm, its application to the problem of fea-
ture detector emulation is presented. We chose this application since the problem of em-
ulation with a learned system is a novel and general idea, applicable outside the field of
computer vision.

2. WaldBoost
WaldBoost [30] is a greedy learning algorithm which finds a quasi-optimal sequential
strategy minimising the average evaluation time while preserving required quality of the
decision for a given binary-valued decision problem. More formally, WaldBoost finds a
sequential decision strategy S∗ such that

S∗ = arg min
S
T̄S subject to βS ≤ β, αS ≤ α (1)

for specified α and β. T̄S is average time-to-decision expressed in the number of measure-
ments evaluated1, αS is false negative and βS false positive rate of a sequential strategy S.

A sequential decision strategy is a sequence of decision functions S = (S1, S2, . . .)
where St : (x1, . . . , xt)→ {−1,+1, ]}. The strategy S takes one more measurement, xt,
at a time and in step t makes a decision St based on (x1, . . . , xt). The ’]’ sign stands for
a “continue” (still undecided) decision. If a decision is ’]’, xt+1 is measured and St+1 is
evaluated. Otherwise, the output of S is the class returned by St.

To find the optimal sequential strategy S∗ to the problem (1), the WaldBoost al-
gorithm employs the AdaBoost algorithm [28] for measurement selection and Wald’s
sequential probability ratio test (SPRT) [34] for finding thresholds which are used for
decision-making. The SPRT, a quasi-optimal solution of the problem (1), is very simple –
in each step, the likelihood ratio is compared with a fixed threshold. SPRT is a sequential
strategy S∗ defined as:

S∗t =

+1, Rt ≤ B
−1, Rt ≥ A
], B < Rt < A

(2)

where Rt is the likelihood ratio

Rt =
p(x1, ..., xt|y = −1)
p(x1, ..., xt|y = +1)

. (3)

The constants A and B are set according to the required error of the first kind α and
error of the second kind β. Optimal A and B are difficult to compute in practice, but tight
bounds are easily derived.

1In many cases, the time (cost) required to obtain different measurements varies significantly. In such cases,
the number of measurements is not a good surrogate for time-to-decision. The generalization of WaldBoost to
measurements with different costs is thus of interest.
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FIGURE 1. The domain-partitioning weak classifier. The response of
feature q(x) on object x is partitioned into bins j = 1, . . . ,K. The
leftmost and the rightmost bins cover respective half-spaces. In each
bin j, the response of the weak classifier h(x) is computed from the
sum of positive (W j

+) and negative (W j
−) weights of training samples

falling into the bin. To avoid numerical problems, a smoothing factor ε
is used [28].

Such test is easy to evaluate for i.i.d. measurements where the likelihood ratio is easy
to estimate. However, when the measurements are not i.i.d., the likelihood ratio estimation
easily becomes intractable and the ordering of the measurements has to be specified. To
overcome these problems, WaldBoost uses the AdaBoost algorithm as a measurement
selector and also for projecting measurements (see equation 4) to a 1D subspace where
likelihood ratio estimation is tractable. This is justified by the fact that the response of
AdaBoost, ft(x), converges to the likelihood ratio [7].

The AdaBoost algorithm greedily selects weak classifiers h(t) : X → R which are
combined linearly into a strong classifier

fT (x) =
T∑

t=1

h(t)(x). (4)

The domain-partitioning weak classifiers [28] are used, each one based on a single (vi-
sual) feature (see Figure 1). The response of the weak classifiers found by the AdaBoost
algorithm are used as measurements for the sequential strategy in the WaldBoost algo-
rithm.

The input of the learning algorithm (Algorithm 1) is a pool of positive and negative
samples P , a set of features F - the building blocks of the classifier, and the bounds on
the final false negative rate, α, and the false positive rate, β. The output is an ordered set
of weak classifiers h(t), t ∈ {1, . . . , T} (i.e. measurements) and a set of SPRT thresholds
θ
(t)
A , θ(t)B optimising (1) for all lengths t = 1, . . . , T . The thresholds are applied directly
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Algorithm 1 WaldBoost Learning
Input:

• sample pool P = {(x1, y1), ..., (xm, ym)}; xi ∈ X , yi ∈ {−1, 1},
• set of features F = {qs},
• desired final false negative rate α and false positive rate β,
• the number of iterations T .

Sample randomly the initial training set T from the pool P
For t = 1, ..., T

1. Find h(t) by AdaBoost using F and T and add it to the strong classifier

ft(x) =
t∑

r=1

h(r)(x)

2. Find decision thresholds θ(t)A and θ(t)B for ft using P
3. Bootstrap: update the sample pool P and sample a new training set T

end
Output: ordered set of weak classifiers h(t) and

thresholds θ(t)A and θ(t)B .

to the strong classifier response ft (not to the likelihood ration as in SPRT) and are set to
±∞ if no threshold was found in some learning step.

In the learning stage, the selection of a weak classifier is by far the most time con-
suming operation. To keep the speed and memory requirements of the training process
acceptable, a subset T is sampled out of the large sample pool P; the selection of the best
weak classifier is based on T . The SPRT thresholds are efficiently computed on the whole
pool.

The sequential nature of the WaldBoost classifier also affects the sample pool and
the training set during the learning. In each round, the already decidable samples in the
pool (see explanation for WaldBoost evaluation below) are removed from the learning
process and a new training set T is sampled from the reduced pool.

During evaluation of the classifier (Algorithm 2) on a new sample x, one weak
classifier is evaluated at time t and its response is added to the strong classifier response
function ft. It is then compared to the corresponding thresholds and the sample is either
classified as positive or negative, or the next weak classifier is evaluated and the process
continues

St(x) =


+1, ft(x) ≥ θ(t)B

−1, ft(x) ≤ θ(t)A

continue, θ
(t)
A < ft(x) < θ

(t)
B .

(5)

If a sample x is not classified even after evaluation of the last weak classifier, a user
defined threshold γ is imposed on the real-valued response fT (x).

In our interest point detection application of WaldBoost, an arbitrary number of
both positive and negative samples is available for bootstrapping. However, when positive
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Algorithm 2 WaldBoost Classification

Given: h(t), θ(t)A , θ(t)B , γ (t = 1, . . . , T )
Input: a classified object x.

For t = 1, . . . , T
If ft(x) ≥ θ(t)B , classify x to the class +1 and terminate
If ft(x) ≤ θ(t)A , classify x to the class −1 and terminate

end
If fT (x) > γ, then classify x as +1 else classify x as −1.

samples were bootstrapped, i.e. early positive classification was allowed in equation (5),
all early positive decisions had confidence close to θ(t)B and precise localisation via the
non-maximum suppression algorithm (see Section 4) was not possible. Thus, we adopted
the same asymmetric version of WaldBoost as used in [30], i.e. setting β to zero. The
strategy becomes

St(x) =

{
−1, ft(x) ≤ θ(t)A

continue, θ
(t)
A < ft(x)

(6)

and only decisions for the negative class are made early during the sequential evaluation
of the classifier. A (rare) positive decision can only be reached after evaluating all T
classifiers in the ensemble. For problems where the non-maximum suppression algorithm
is not applied, the strategy (5) can be used directly.

3. Emulating a binary-valued black box algorithm with WaldBoost
The main idea of the this application of WaldBoost is to look at an existing algorithm
as a black box performing some useful binary decision task. The black box algorithm
is run on a large dataset of images which provides almost unlimited number of training
samples which are used to train a sequential classifier emulating the black box algorithm
behaviour. The user’s optimisation effort is thus transformed into a much simpler task of
finding a suitable set of features which are used in the WaldBoost training.

The main components of the proposed learning system are shown in Figure 2. The
black box algorithm provides positive and negative outputs that form a labelled training
set. The WaldBoost learning algorithm (see Section 2) builds a classifier sequentially and
when new training samples are needed, it bootstraps the training set by running the black
box algorithm on new images. Only the samples undecided by the current classifier are
used for further training. The result of the process is a WaldBoost sequential classifier
which emulates the original black box algorithm.

The training loop uses the fact that the black box algorithm can provide practically
unlimited number of labelled training samples. Note that this is in contrast to commonly
used human labelled data which are difficult to obtain. The bootstrapping technique [32]
is used to effectively update the training set.
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FIGURE 2. The proposed learning scheme.

In the context of fast black box algorithm emulation, what distinguishes training for
different algorithms is the feature set F . A suitable set has to be found for every emulated
algorithm. The set F can be very large and does not need to be homogeneous. It may
contain Haar-like features [33], LBP [25, 8], histograms of gradients, etc. The WaldBoost
algorithm selects a suitable subset while optimising the time-to-decision. WaldBoost min-
imises the average number of evaluated measurements which is the same as minimisation
of time-to-decision only when computational complexity of the different types of fea-
tures is (roughly) the same. The condition is satisfied by the feature set F adopted in the
experiments.

Learning interest point detectors. There has been much work on the general interest
point detection problem [24]. To our knowledge, learning techniques have been applied
only to the parameter tuning, not to the whole process of interest point detector design.
Lepetit and Fua [16] treated interest points matching as a classification problem, learning
the descriptor. Rosten and Drummond [27] used learning techniques to find parameters of
a hand-designed tree-based Harris-like corner classifier. Their motivation was to speed-up
the detection process, but the approach is limited to the Harris corner detection. Martin
et al. [18] learnt a classifier for edge detection, but without considering the decision time
and with significant manual tuning. They tested a number of classifier types with the
conclusion that a boosted classifier was comparable in performance to other classifiers
and was preferable for its low model complexity and low computational cost.

The most closely related approach to our method is that of Dollár et al. [5] who use
learning techniques to train an edge detector. The paper shows impressive examples of
applications of such detector. Nevertheless, Dollár et al. were primarily concerned with
the accuracy of the detector and did not consider speed. There has also been high interest
in speeding up various interest point detectors manually, i.e. without training. Grabner
et al. proposed a fast version of the SIFT detector [10] and Bay et al. proposed a fast
approximation-based interest point detector called SURF [2].
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FIGURE 3. Overlap definition for the non-maximum suppression
scheme. For details, see the text.

4. Emulated scale invariant interest point detectors
In order to demonstrate the approach, two similarity-invariant interest point detectors have
been chosen: (i) Hessian-Laplace [23] detector, which is a state of the art similarity-
invariant detector, and (ii) Kadir-Brady [14] saliency detector, which has been found
valuable for categorisation, but is about 100× slower than the Hessian-Laplace detector.
Binaries of both detectors were downloaded from the web page [21]. We follow standard
test protocols for evaluation as described in [24]. Both detectors are similarity-invariant
(not affine), which can be easily implemented by running a sequential test at each position
and scale in the scanning window approach [33].

For both detectors, the set F includes the Haar-like features proposed by Viola and
Jones [33], plus a centre-surround feature from [17], which has been shown to be useful
for blob-like structure detectors [10]. Haar-like features were chosen for their high eval-
uation speed (due to integral image representation) and because they have a potential to
emulate the Hessian-Laplace detections [10]. The only difference to the original Viola and
Jones feature set is that the feature response is not normalised by a window standard devi-
ation since the intensity contrast is important for both Hessian-Laplace and Kadir-Brady
detectors.

For the entropy-based Kadir-Brady saliency detector emulation, however, the Haar-
like features were not sufficiently accurate. To overcome this we introduced “variance”
features based on the integral images of squared intensities. They are computed as an
intensity variance in a given rectangle.

An essential part of a detector is the non-maximum suppression algorithm. Here
the input to the non-maximum suppression differs from that obtained in the original detec-
tors. Instead of having a real-valued feature response over whole image, sparse responses
are returned by the WaldBoost detector. The accepted positions get the real-valued confi-
dence value fT , but the rejected positions have the “confidence” ft around the θ(t)A value
depending on the time t when they have been rejected. These values are incomparable,
thus a typical quadratic interpolation and a local maximum search cannot be applied. In-
stead, the following algorithm is used.

Any two detections are grouped together if their overlap is higher than a given
threshold (parameter of the application). Only the detection with maximal fT in each
group is preserved. The overlap computation is schematically shown in Figure 3. Each
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detection is represented by a circle inscribed to the corresponding scanning window (Fig-
ure 3, left). For two such circles, let us denote the radius of the smaller circle as r, the
radius of the bigger one as R, and the distance of the circle centres as dc. Exact overlap
can be easily computed in two cases. First, when the circle centres coincide, the over-
lap is o = r2/R2. It equals to one for two circles of the same radius and decreases as
the radiuses become different. Second, when two circles have just one point in common
(dc = r+R), the overlap is zero. These two situations are marked by blue dots in Figure 3,
right. Linear interpolation (blue solid line in Figure 3, right)

o =
r2

R2

(
1− dc

r +R

)
(7)

is used to approximate the overlap between these two states.

5. Results
Two detectors are emulated in the experiments: Hessian-Laplace [23] and Kadir-Brady [14]
saliency detector. The Hessian-Laplace is a state-of-the-art detector of blob-like structures
used in many applications. Its simplicity allows transparent analysis of obtained results.
The Kadir-Brady detector incorporates entropy measure to find salient regions. It shows
rather poor results in classical repeatability tests [24] but has been successfully used in
several recognition tasks [6, 36]. However, its main weakness for practical applications
is its very long computation time in order of minutes per image. Standard versions of
the detectors provided by their authors were downloaded from the interest point detection
web page [21].

To collect positive and negative samples for training, an emulated detector is run on
a set of images of various sizes and content (nature, urban environment, hand drawn, etc.).
To create the sample pool we used 1300 images randomly chosen from the non-skin image
database introduced in [13]. The detector assigns a scale to each detected point. Square
patches of the size twice the scale were used as positive samples. Negative samples were
collected from the same images at positions and scales not covered by positive samples.

The size of the training set T was 10,000 (half positive and half negative samples)
in all experiments. The training set was sampled from the pool P by the quasi-random
weighted sampling + trimming method (QWS+) [15]. The QWS+ sampling has been
shown to reduce the variance of hypothesis error estimate and to improve the classifier
performance compared to other sampling strategies. Moreover, with QWS+ sampling,
AdaBoost performance becomes relatively insensitive to the training set size.

5.1. Hessian-Laplace emulation
The Hessian-Laplace detector was used with threshold 1000 to generate the training set.
The value was empirically chosen to achieve similar number of detections as in [24]. The
same threshold was used throughout all the experiments for both learning and evaluation.

The detector has been assessed in standard tests proposed by Mikolajczyk et al. [24].
The ground truth is given by a homography between the first and the other images in the
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sequence. The tests are based on two measures: (i) the repeatability measure, (ii) the
matching score.

(i) Repeatability measure. To assess the quality of an interest point detector in
varying acquisition conditions of the same scene the repeatability measure is used [24].
The measure is defined for two sets of elliptical regions – one set for one image. It is
computed as the ratio between the number of region-to-region correspondences and the
smaller of the number of regions in the pair of images. The mutual correspondence of two
regions is claimed when the overlap error is smaller than some threshold. The measure
takes into account several other technical issues such as uniqueness of matches and is
fully defined by a Matlab script [21]. In all experiments, the overlap error threshold is
fixed to 40 % as in most of the experiments in [24].

(ii) The matching score test aims at predicting performance of the detectors in
matching and correspondence finding applications. The matching score, defined in [24],
is the number of correct matches divided by the smaller number of correspondences in the
common part of the two images. A pair of elliptical regions is counted as a correct match
if (1) their overlap error is smaller than 40 %, and (2) their descriptors are sufficiently
similar (for details, see [24]).

Selection of the false negative rate α. The value of α balances the trade-off be-
tween WaldBoost detector speed and precision. Figure 4a-c shows performance of the
detector for several α values on the BOAT sequence. The value of α also significantly
influences the number of detections before the final thresholding by γ (Figure 4d).

For a certain range of α values, it is possible to set the final threshold γ (Algo-
rithm 2) to reach the number of correspondences similar to that of the emulated detector
(Figure 4b). With such threshold γ, the repeatability and the number of correct corre-
spondences is almost identical for all tested values of α throughout the test sequence
(Figure 4c).

Increasing α leads to faster evaluation (Figure 4a) but also to less detections (Fig-
ure 4d) before imposing the final threshold γ. In some applications it may be useful to
produce more detections by changing the γ threshold.

Similarly to the original detector, the WaldBoost emulator imposes a threshold on
the classifier response. We set α to 0.2 as a compromise: the classifier is already very fast
(see Table 1) and yet the user can still control the number of detections by changing the
γ threshold similarly to the original detector (Figure 4e). Thus the value α = 0.2 is used
in all following experiments. The final threshold γ is the same in all experiments and is
set empirically so that the detector produces similar number of detections as the original
Hessian-Laplace detector.

Classifier length. Empirically we set the length of the classifier to T = 20 (number
of weak classifiers). Longer classifiers slow down the evaluation (see Figure 4a) and do
not bring significant improvement in performance.

Repeatability. The repeatability measure of the trained WaldBoost detector has
been compared with the original Hessian-Laplace detector on standard image sequences
with variations in scale and rotation, blur, affine deformation, light change and JPEG com-
pression from [20]. The results are shown in Figure 5. The WaldBoost detector achieves
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(a) (b) (c)

α 0.02 0.05 0.1 0.2 0.4
]det 11472 9427 7106 4203 2624

threshold 500 1000
]det 3549 2207

(d) (e)

FIGURE 4. Selecting the false negative rate α. (a) The average evalu-
ation speed for several values of α. All compared detectors are able to
achieve similar number of correspondences (b) and repeatability score
(c) – measured for T = 20 for all detectors on the BOAT sequence.
(d) The number of detections of the WaldBoost emulator on the first
image from the BOAT sequence as a function of the α parameter, (e)
the number of detections of Hessian-Laplace as a function of the final
threshold.

similar repeatability and number of correspondences as the original Hessian-Laplace de-
tector.

Matching score. For the same sequences, the matching score of the trainer and the
trainee is shown in Figure 6. The WaldBoost detector achieves slightly better matching
score than the original algorithm.

Speed. The WaldBoost classifier evaluates on average 1.7 features per examined
position and scale. Unsurprisingly, this is much less than any reported speed for face
detection [30]. The evaluation times are compared in Table 1. The WaldBoost emulator is
about nine times faster than the Hessian-Laplace detector with a rather careful design [22].

Classifier structure. The Hessian-Laplace detector finds blob-like structures. The
structure of the trained WaldBoost emulation should reflect this property. As shown in
Figure 7, the first selected weak classifier is of the centre-surround type and gives high
responses to blob-like structures with high contrast between central part and its surround-
ing (the feature value is average intensity in the central part minus average intensity in the
surrounding part).

Coverage. The output of the trained WaldBoost emulation of Hessian-Laplace is
compared to the original algorithm in Figure 8a. As in the repeatability experiment two
sets of detections are compared – the original detections and the WaldBoost emulator
detections (with γ = −∞). Since the comparison works on a single image, the ground
truth transformation matrix is identity.
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FIGURE 5. Repeatability comparison of the Hessian-Laplace detector,
its WaldBoost emulation and the SURF detector on Mikolajczyk’s
dataset.

The white circles show the original detections with a correspondence found among
the WaldBoost detections. The black circles show the original detections not found by
WaldBoost. Note that most of the missed detections have a correct detection nearby, so
the corresponding image structure is actually found. The percentage of repeated detections
of the original algorithm is 80 %.

The WaldBoost detector may seem to miss consistently the large regions. Figure 8c
shows manually found WaldBoost regions close to the original detections – the “tree blob”
is in fact detected. The real problem is in the correspondence overlap computation. To
compute the overlap of two detected points, Mikolajczyk [24] first normalises their scale
to 30 pixels. This way, the problem of unnecessary large regions which would almost al-
ways have large overlaps is avoided. However, as shown in Figure 8d, this normalisation
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FIGURE 6. Matching score comparison of the Hessian-Laplace detec-
tor, its WaldBoost emulation and the SURF detector on Mikolajczyk’s
dataset.

returns small overlap when large regions are only slightly misplaced. This problem is gen-
eral and appears in all region detection papers which use the Mikolajczyk’s repeatability
measure. To conclude, the real emulation accuracy is in fact higher than 80 %.

Rotational invariance. One of the properties of the emulated Hessian-Laplace de-
tector which should be preserved is its rotational invariance. A learning approach can
achieve rotational invariance with non-rotationally invariant features by introducing syn-
thetically rotated positive samples into the training set. The results in Figure 10 (top row)
show that the rotational invariance is preserved even without introducing synthetic train-
ing samples. This is probably a consequence of the large training pool which is available.
Instead of introducing rotated samples synthetically, the statistics are covered by collect-
ing huge number of samples.
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FIGURE 7. Top row. First centre-surround and variance feature found
in WaldBoost Hessian-Laplace (left) and Kadir-Brady (right) emulated
detectors. The background image is visualised as E(|xi − 127.5|) and
E(xi) respectively, where E() is the average operator and xi is the i-th
positive training example. Bottom row. Bin responses in the correspond-
ing domain-partitioning weak classifiers (see Figure 1).

Scale invariance. Similarly, the detector invariance to scale changes has been tested.
The emulated detector achieves similar scale invariance as the original algorithm as shown
in Figure 10 (bottom row).

Comparison to SURF. The WaldBoost emulator has been compared with the SURF
detector [2] which is a simplification of the Hessian-Laplace detector, manually designed
for maximum speed. The SURF is commonly used as a good compromise between speed,
accuracy and repeatability.

The comparison of the repeatability and the matching score of all three detectors
is shown in Figure 5 and Figure 6. All the detectors has been set to produce similar
number of detections on the first image of the EAST SOUTH sequence. Neither of the fast
detectors approximates the original detector perfectly. Yet, both could be said to achieve
similar statistics as the original Hessian-Laplace detector, deviating slightly at different
sequences.

The evaluation speeds of the detectors are compared in Table 1. The WaldBoost de-
tector achieves similar evaluation speed as the manually tuned SURF detector. However,
since most of the computational components are the same in both detectors, the average
evaluation time T̄S∗ = 1.7 for WaldBoost and T̄S∗ = 3 for SURF suggests that further
code optimisation of the WaldBoost detector could lead to even faster implementation.

An important difference between the SURF detector and the Hessian-Laplace Wald-
Boost emulator is that the first one is a simplification while the other is an emulation. The
SURF produces different set of regions compared to the Hessian-Laplace detector. This
could be verified by computing the coverage score as in Figure 8. For the SURF detec-
tor only 49.7 % coverage is reached compared to 80 % of the WaldBoost detector. The
difference in detectors outputs is shown in Figure 9.

The WaldBoost emulator of the Hessian-Laplace detector is able to detect points
with similar repeatability and slightly higher matching score while keeping the rotational
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< 40% > 40%overlap error

scale
normalisation

(c) (d)

FIGURE 8. Comparison of the outputs of the original and WaldBoost-
emulated (a) Hessian-Laplace and (b) Kadir-Brady saliency detectors.
The white circles show repeated Hessian-Laplace detection. The black
circles highlight the original detections not found by the WaldBoost de-
tector. Note that for most of missed detections there is a nearby detec-
tion on the same image structure. The accuracy of the emulation is 80 %
for Hessian-Laplace and 90 % for Kadir-Brady saliency detector. Note
that the publicly available Kadir-Brady algorithm does not detect points
close to image edges. (c) Missed Hessian-Laplace detections (left) and
manually found corresponding WaldBoost detections (right). (d) They
are not found as correspondences, because Mikolajczyk’s overlap func-
tion prefers smaller detections (see the discussion in the text).

and scale invariance of the original detector. Moreover, the WaldBoost emulator was able
to increase nine times the speed of detection compared to the original detector. When
compared to the manually tuned SURF detector, similar repeatability, matching score and
evaluation speed characteristics are reached. However the WaldBoost detector emulates
the Hessian-Laplace detector significantly more closely.

5.2. Fast saliency detector
The emulation of the Kadir-Brady saliency detector [14] uses the same image pool for
training as the WaldBoost Hessian-Laplace emulator. The saliency threshold of the origi-
nal detector was set empirically to 2 to collect a sample pool of a reasonable size. Higher
value of threshold also helps to limit the positive examples only to those with higher
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(a) (b) (c)

FIGURE 9. Comparison of Hessian-Laplace (a), its WaldBoost emula-
tor (b) and SURF detector (c) outputs on the first image from the BOAT
sequence. WaldBoost returns similar distribution of points as the emu-
lated Hessian-Laplace. The SURF points are distributed differently.
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FIGURE 10. Rotation and scale invariance of the WaldBoost Hessian-
Laplace emulator. Top row: Repeatability on rotated first images from
(a) BOAT, and (b) EAST SOUTH sequences for the Hessian-Laplace de-
tector (HL) and its WaldBoost emulator (WB). Bottom row: Repeata-
bility on scaled first images from (c) BOAT, and (d) EAST SOUTH se-
quences.

saliency. As opposed to the Hessian-Laplace emulation, where rather low threshold was
chosen, it is meaningful to use only the top most salient features from the Kadir-Brady
detector since its response corresponds to the importance of the feature.
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Hessian-Laplace Kadir-Brady

original 0.9s 1m 48s

SURF 0.09s —

speed-up 10× —

Ts∗ 3 —

WaldBoost 0.10s 0.76s

speed-up 9× 142×
Ts∗ 1.7 2.2

TABLE 1. Speed comparison on the first image (850×680) from the
BOAT sequence. The speed-up on another images is similar.

The Haar-like feature set was extended by the “variance” feature described in Sec-
tion 4. The training was run for T = 20 (training steps) with α = 0.2 and β = 0 as in the
Hessian-Laplace experiment.

Publicly available version of Kadir-Brady detector has several drawbacks which
need to be considered in the experimental evaluation. Due to relatively wide search for
local maximum in the scale space, detections near the image border are not detected. This
results in a strip around image border where no detections are returned (see Figure 8b).
Also the scale range of detections is limited. In all following experiments, WaldBoost
emulator detections are filtered by the same restrictions for the comparison reasons. How-
ever, the WaldBoost emulator of the Kadir-Brady detector does not have these restrictions
inherently.

Repeatability and matching score. The same experiments as for the Hessian-
Laplace detector have been performed. The repeatability and the matching score of the
Kadir-Brady detector and its WaldBoost emulation on BOAT and EAST SOUTH sequences
are shown in Figure 11. Similar performance to the teacher is reached for similar number
of correspondences and correct matches on both sequences.

Speed. The main advantage of the emulated saliency detector is its speed. The clas-
sifier evaluates on average 2.2 features per examined location and scale. Table 1 shows
that the emulated detector is about 142× faster than the original detector.

Classifier structure. Our early experiments showed that the Haar-like features are
not suitable to emulate the entropy-based saliency detector. With the variance features,
the training was able to converge to a reasonable classifier. In fact, the variance feature
is chosen for the first weak classifier in the WaldBoost ensemble (see Figure 7). The bin
responses of the weak classifier show that higher variations are preferred.

Coverage. The outputs of the WaldBoost saliency detector and the original algo-
rithm are compared in Figure 8b. The coverage of original detections is 90 %.

Rotational and scale invariance. Invariance to rotation and scale changes of the
WaldBoost emulator and the Kadir-Brady detector are compared in Figure 13. Due to
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FIGURE 11. Repeatability comparison of the Kadir-Brady detector
and its WaldBoost emulation on Mikolajczyk’s dataset.

very different approaches in computing the detectors responses (Haar-like features vs. en-
tropy), the WaldBoost emulator is not able to reach perfect rotation invariance on images
rotated by 90 degrees but is able to keep similar rotational invariance otherwise. More-
over, the feature-based approach of the WaldBoost emulator results in slightly better scale
invariance of the detector. This can be probably explained by the instability of the entropy
based Kadir-Brady detector especially at small scales where the probabilities are difficult
to estimate. It is shown also in [11] that their difference-of-Gaussians detector is more
robust to a range of transformations than the Kadir-Brady detector.

To conclude, the WaldBoost training is able to emulate Kadir-Brady detector gener-
ally with similar repeatability, matching score and robustness to rotation changes, while
improving slightly its scale invariance. But, most importantly, the decision times of the
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FIGURE 12. Matching score comparison of the Kadir-Brady detector
and its WaldBoost emulation on Mikolajczyk’s dataset.

emulated detector are about 142 times lower than that of the original algorithm. That
opens new possibilities for using the Kadir-Brady detector in time sensitive applications.

6. Conclusions and future work
We have presented a method for learning sequential two-class classifiers with decision
quality and evaluation time trade-off. The method – a learning algorithm called Wald-
Boost – enlarges SPRT’s applicability to problems with dependent measurements and
removes the limitations of SPRT to a priori ordered measurements and known joint prob-
ability densities. Asymptotic properties of the AdaBoost learning algorithm are exploited
for selection and ordering of relevant measurements that are subsequently processed by
SPRT.
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FIGURE 13. Rotation and scale invariance of the WaldBoost Kadir-
Brady emulator. Top row: Repeatability on rotated first images from (a)
BOAT, and (b) EAST SOUTH sequences for the Kadir-Brady detector
(Kadir) and its WaldBoost emulator (WB). Bottom row: Repeatability
on scaled first images from (c) BOAT, and (d) EAST SOUTH sequences.

One possible application of the WaldBoost algorithm, a framework for speeding up
existing binary decision processes by learning their WaldBoost emulators, was presented.
Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detector,
served as examples of emulated algorithms. The experiments show similar repeatability
and matching scores of the original and emulating algorithms. For both, the Hessian-
Laplace and the Kadir-Brady detectors, the WaldBoost emulation improved significantly
the speed. The emulator was nine times faster for the Hessian-Laplace detector and about
142 times faster for the Kadir-Brady detector. In the case of the Kadir-Brady detector
this speed-up opens new possibilities for using the detector in time sensitive applications.
For the Hessian-Laplace detector, the achieved speed is similar to SURF, a commonly
used Hessian-like fast detector; the WaldBoost emulator approximates the output of the
Hessian-Laplace detector more precisely.

The proposed emulation approach is general and can be applied to other algorithms
as well. For future research, an interesting extension of the methodology would be to train
an emulator which not only guarantees output similar to an existing algorithm but which
also possesses some additional quality like insensitivity to certain acquisition conditions
(e.g. motion blur) or maximum performance in a particular environment or task.

Returning to the WaldBoost framework, future research will include generalization
to multiclass decision problems as well as consideration of measurements with variable
costs.
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