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Summary

This document summarizes novel approach in the analytical design of narrow band finite
impulse response (FIR) filters useful in telecommunication applications. I have published
this topic in four papers [29] - [32] in the IEEE Transactions on Circuits and Systems in
the period 2004-2007. Four types of the FIR filters are considered : the maximally flat
notch FIR filter, the optimal equiripple notch FIR filter, the optimal equiripple DC-notch
FIR filter and the optimal equiripple comb FIR filter. The analytical approach in the
design of each particular filter type consists of three fundamental and new results : dif-
ferential equation for the approximating polynomial of the filter, degree equation of the
filter and an algorithm for the analytical evaluation of the impulse response of the filter.
Each of the presented analytical design procedures starts with frequency specifications of
the filter and ends at the set of the impulse response coefficients without any numerical
recourse. Analytical design procedures produce filters with quantized critical frequencies.
The presented fast analytical procedure for the tuning of FIR filters complements the
analytical design by removing of this limitation. Selected applications of the narrow band
FIR filters in telecommunication technology are mentioned.
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Souhrn

V tomto dokumentu shrnuji nový př́ıstup k analytickému návrhu úzkopásmových č́ıslico-
vých filtru

o
s konečnou impulsńı odezvou (FIR) pro telekomunikačńı aplikace. Tuto pro-

blematiku jsem publikoval v čtyřech př́ıspěvćıch [29] - [32] v časopise IEEE Transactions
on Circuits and Systems v letech 2004-2007. Uvažuji čtyři typy FIR filtru

o
: maximálně

plochý notch FIR filtr, optimálńı notch FIR filtr s stejnoměrným zvlněńım, optimálńı DC-
notch FIR filtr s stejnoměrným zvlněńım a optimálńı hřebenový FIR filtr s stejnoměrným
zvlněńım. Analytický př́ıstup pro každý popisovaný typ filtru zahrnuje tři nové zásadńı
výsledky : diferenciálńı rovnici pro aproximačńı funkci filtru, rovnici pro stupeň filtru a
rekurentńı algoritmus pro výpočet koeficientu

o
impulsńı odezvy filtru. Analytický postup

návrhu filtru vycháźı ze specifikace filtru, výsledkem návrhu jsou koeficienty impulsńı
odezvy filtru bez použit́ı numerických postupu

o
. Analytický návrh FIR filtru

o
vede k filtru

o
m

s kvantovanými polohami kritických kmitočtu
o
. Navržená analytická metoda pro laděńı

FIR filtru
o

odstraňuje toto omezeńı. Zmiňuji vybrané aplikace úzkopásmových č́ıslicových
filtru

o
v telekomunikačńı technice.
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1. Preface

Digital filters represent basic functional block in the digital processing of telecommuni-
cation signals. The design of digital FIR filters looks like a closed chapter in history
of digital signal processing. Reading several textbooks devoted to the DSP a reader is
tempted to think that few numerical methods including Fast Fourier Transform and Re-
mez exchange algorithm implemented by famous Parks-McClellan code [9], is all what is
needed for the FIR filters. Recently only a limited number of closed form solutions is
available. This document deals with analytical design of narrow band digital FIR filters
for telecommunication applications including the class of the optimal filters which can
not be obtained with Remez algorithm at all. My analytical approach to the FIR filters
consists of three fundamental and new results :

1. differential equation for the approximating function

2. degree equation of the filter and

3. analytical algorithm for the coefficients of the impulse response.

The development of the differential equation is novel and its concept is essential. It con-
sequently plays a fundamental role in replacing a spectral transformation by the algebraic
evaluation of the impulse response coefficients. The filter degree is evaluated through the
closed form formulae. It is a novel and non-standard result as the empirical estimation
for the filter degree is frequently used [13], [14]. The solution of the differential equation
provides the recurrence algorithm for the impulse response coefficients refraining from the
Fast Fourier Transform seen indispensable in some attempts in the analytical filter design.
If some analytical design methods are worthy of noting [3], it is to emphasize that there
are always several numerical methods involved. In following the filter design starts with
frequency specifications and ends at the set of the impulse response coefficients without
any numerical recourse. On top of that, the presented analytical approach is extremely
robust and fast. This properties are appreciated in the adaptive filtering.

2. Selected Applications of Narrow Band Digital Filters in Tele-
communication Technology

Notch filter (Chap. 4 and 5) is a versatile type of filter which is generally used either for
the attenuation of the signal or for the separation of a narrow band signal within some
frequency band. Notch filters find numerous applications in telecommunication systems,
wired, wireless, optical etc. They are used in the processing of base band signals, interme-
diate band signals and recently even in the digital processing of RF band signals. Some
applications of the digital notch FIR filters include noise reduction in airborne commu-
nication containing high-amplitude peaks within the audio frequency range, processing
of DTMF signals, frequency-difference detectors in phase-locked-loop, Costas-loop-based
clock and carrier-recovery systems, detectors of useful signals and interference, interference
attenuators, channel separators, local rejectors, protectors from the in or near-band inter-
ference, suppressors of mechanical resonance of MEMS micromirrors in optical switching
and free space communication etc. Notch filters combined with the frequency tuning
option (Chap. 6) are useful in the adaptive notch filtering. An example is the multiple
carrier adaptive notch filter. It is used for ultra selective determination and elimination
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of the narrow band interference within the frequency spectrum of the wide band commu-
nication signal.

DC-notch (zero-frequency notch) filter (Chap. 7) is generally used to remove the
bias in the signal. The DC-notch filters are frequently found in telecommunication sys-
tems. The DC compensation is often required in FM receivers. In the image and video
communication, the DC notch filter is used to compensate for varying and unevenly dis-
tributed illumination in the image area resulting from the process of image acquisition.
The DC-notch filter is used in the spectrally efficient DC-free hierarchical QAM modu-
lation. In optical communication, the DC-notch filter is used to remove the bias and
low frequency components from the light receiver. The DC-notch filter is part of the
ITU-compliant DTMF detector. The typical application of DC notch filter is in direct
conversion receivers to remove the undesired residual offset generated by self-mixing prod-
ucts, and 1/f flicker noise of the down-converted signal.

Comb filters (Chap. 8) are essentially notch filters with deep notches equally spaced
in a band of frequencies. The periodic, deep notches make comb filters ideal for ap-
plications that need to eliminate specific frequency components, usually interferences.
The comb filters find numerous applications in telecommunication systems. In general,
telecommunication systems require the elimination of the power-line frequency and its
harmonics. In the speech communication, the comb-filter structures are used to deter-
mine the echo. In the video communication, the comb filters are used to separate the
luminance and chrominance signals and also to reduce video noise. The comb filters were
employed in LORAN navigation system for the suppression of cross-rate interferences.
Comb filters form the basis of the cascaded integrator-comb (CIC) filters, also known as
Hogenauer filters. CIC filters are commonly used as decimation or interpolation filters
in digital down and up converters. Some applications that use the CIC filter include
software designed radios, cable modems, satellite receivers, 3G base stations and radar
systems. The interleaving and complementary comb filters are extensively applied in the
interchannel decorrelation methods. Comb filters are essential in powerline communica-
tion. However, there are many more applications of the narrow band digital filters in the
telecommunication technology not limited to the examples mentioned above.

3. Basic Terms

I will assume the impulse response h(k), k = 0, ... , N − 1, with odd length N = 2n + 1
and with even symmetry

a(0) = h(n) , a(k) = 2h(n + k) = 2h(n − k) , k = 1 ... n . (1)

The vector a(k) is more useful for further manipulations than the corresponding impulse
response h(k). For brevity I call a(k) the a-vector of the filter. Here and in the following
I will use the transformed variable w [22]

w =
1

2
(z + z−1) (2)

which transforms the z-plane onto a two-leaved w-plane so that the unit circle itself
| z |= 1 is mapped into the real interval −1 ≤ w = cos ωT ≤ 1 along which both leaves
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are interconnected. The transfer function H(z) of a FIR filter of the order N − 1 is

H(z) =
2n∑

k=0

h(k) z−k (3)

= z−n

[
h(n) + 2

n∑
k=1

h(n ± k)
1

2

(
zk + z−k

)]
= z−n

n∑
k=0

a(k) Tk(w) = z−nQ(w)

where Tk(w) is the Chebyshev polynomial of the first kind. The function

Q(w) =
n∑

k=0

a(k) Tk(w) (4)

represents a polynomial in the variable w which on the unit circle z = ejωT reduces to the
real valued zero phase transfer function (ZPTF) Q(w) of the real argument

w = cos(ωT ) . (5)

The ZPTF is formed by the approximating polynomial (AP). The AP has particular form
for each type of filter. The frequency response of the filter H(ejωT ) can be expressed by
the ZPTF

H(ejωT ) = e−jnωTQ(cos ωT ) = z−n Q(w)
∣∣∣
z=ejωT

. (6)

4. Analytical Design of Maximally Flat Notch FIR Filters

Published in : P. Zahradnik, M. Vlček, ”Fast Analytical Design Algorithms for FIR Notch
Filters”. IEEE Transactions on Circuits and Systems I: Regular Papers. Vol. 51, Issue 3, March
2004, pp. 608-623 ([29]).

4.1. Approximation

The AP of the maximally flat (MF) notch FIR filter is the polynomial Ap,q(w)

Ap,q(w) = C(1 − w)p(1 + w)q . (7)

The AP Ap,q(w) fulfils the differential equation

(1 − w2)
dAp,q(w)

dw
+ [p − q + (p + q)w] Ap,q(w) = 0 . (8)

The differential equation (8) is indispensable for the derivation of algorithm for analytical
evaluation of the impulse response. The normalization of the AP Ap,q(w) results in

Ap,q(w) =

[
p + q

2p
(1 − w)

]p [
p + q

2q
(1 + w)

]q

. (9)

The polynomial Q(w) = 1−Ap,q(w) represents the ZPTF of the MF notch FIR filter. For
illustration, the amplitude frequency response 20 log |H(ejωT )| [dB] corresponding to the
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Figure 1: Amplitude frequency response 20 log |H(ejωT )| based on the AP Q(w) = 1−A3,37(w).
The parameters are ωmT = 0.1766 π and ∆ωT = 0.1555 π for a = 20 log(

√
2/2) = −3.0103 dB.

ZPTF Q(w) = 1 − A3,37(w) is shown in Fig. 1. The notch frequency ωmT of the filter is
derived from the minimum value of the ZPTF Q(w)

wm = cos ωmT =
q − p

q + p
. (10)

The notch frequency ωmT (10) of the filter is given by the integer values p and q exclusively.
It is obvious, that for the specified filter length N = 2(p+q)+1, exactly p+q−1 discrete
notch frequencies ωmT are available. The goal in the design of MF notch FIR filter is to
obtain the two integers p and q in order to satisfy the filter specification (notch frequency
ωmT , width of the notch band ∆ωT and attenuation in the passbands a [dB]) as precisely
as possible. The width of the notchband is

∆ωT = π − 2 arccos
√

1 − (1 − 100.05a[dB])
2/n

(11)

and the degree of the filter is

n ≥
log

(
1 − 100.05a[dB]

)
log cos

∆ωT

2

. (12)

I call (12) the degree equation of the MF notch FIR filter. The integer values p and q are

p =
[
n sin2

(
ωmT

2

)]
, q =

[
n cos2

(
ωmT

2

)]
(13)
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Table 1: Analytical Evaluation of the Impulse Response.

given p , q (integer values)

initialization n = p + q
a(n + 1) = 0

a(n) = (−1)p 2(−p−q+1)

(
p + q

2p

)p (
p + q

2q

)q

recursive body
(for k = n + 1 to 3)

a(k − 2) = −(n + k)a(k) + 2(2p − n)a(k − 1)

n + 2 − k
(end loop on k)

a(0) = −(n + 2)a(2) + 2(2p − n)a(1)

2n

impulse response h(n) = 1 − a(0)
(for k = 1 to n)

h(n ± k) = −a(k)/2
(end loop on k)

where the square brackets stand for the rounding. The AP Ap,q(w) of the degree n = p+q
can be expressed using Chebyshev polynomials of the first kind Tk(w)

Ap,q(w) =
n∑

k=0

a(k) Tk(w) . (14)

Based on the differential equation (8) a simple recursive algorithm for the evaluation of
the impulse response h(k) with the length N = 2(p + q) + 1 was deduced (Tab. 1).

4.2. Design Procedure

The design procedure is as follows :

1. Specify the notch frequency ωmT , maximal width of the notchband ∆ωT and ma-
ximal attenuation in the passbands a [dB] as demonstrated in Fig. 1.

2. Calculate the minimum degree n (12).

3. Calculate the integer values p and q (13).

4. Evaluate the impulse response h(k) analytically (Tab. 1).

5. Check the notch frequency (10).

6. If required, tune the notch frequency to the proper value (Sec. 6).

It is worth of noting that a substantial part of coefficients of the impulse response h(k)
of the MF notch FIR filter exhibits negligible values. From this fact follows the possible
large abbreviation of the impulse response of the MF notch FIR filter by the rectangular
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Figure 2: Amplitude frequency response 20 log |H(ejωT )| [dB].

Table 2: Impulse Response h(k).

k h(k) k h(k)
14 74 -0.000002 30 58 0.012289
15 73 -0.000003 31 57 0.002278
16 72 0.000000 32 56 -0.019427
17 71 0.000018 33 55 -0.027483
18 70 0.000037 34 54 -0.003357
19 69 0.000010 35 53 0.042804
20 68 -0.000111 36 52 0.048063
21 67 -0.000245 37 51 -0.009353
22 66 -0.000101 38 50 -0.075616
23 65 0.000537 39 49 -0.065324
24 64 0.001173 40 48 0.029196
25 63 0.000480 41 47 0.106554
26 62 -0.002149 42 46 0.068113
27 61 -0.004302 43 45 -0.053105
28 60 -0.001388 44 0.880514
29 59 0.007135

windowing without significant deterioration of the frequency properties of the filter as
emphasized in [25].

Example of the design.
Design the MF notch FIR filter specified by ωmT = 0.35 π and ∆ωT = 0.15 π for
a = −3.0103 dB.
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Using the proposed design procedure we get n = [43.8256] → 44 (12), p = [11.9644] → 12
and q = [31.8610] → 32 (13). The actual filter parameters are ωmT = 0.3498 π and
∆ωT = 0.1496 π. The impulse response h(k) with the length N = 89 (Tab. 2) was evalu-
ated analytically (Tab. 1). The amplitude frequency response 20 log |H(ejωT )| [dB] of the
MF notch FIR filter is shown in Fig. 2.

5. Analytical Design of Equiripple Notch FIR Filters

Published in : P. Zahradnik, M. Vlček, ”Fast Analytical Design Algorithms for FIR Notch
Filters”. IEEE Transactions on Circuits and Systems I: Regular Papers. Vol. 51, Issue 3, March
2004, pp. 608-623 ([29]).

5.1. Approximation

The GP of the equiripple (ER) notch FIR filter is the Zolotarev polynomial [24]

Zp,q(u|k) =
(−1)p

2





H(u − p

n
K(κ))

H(u +
p

n
K(κ))




n

+


H(u +

p

n
K(κ))

H(u − p

n
K(κ))




n
 (15)

which approximates zero value in two disjoint intervals. H (u ± (p/n) K(κ)) is the Ja-
cobi’s Eta function, K(κ) is the quarter-period given by the complete elliptic integral of
the first kind of the Jacobi’s elliptic modulus κ. The degree of the Zolotarev polynomial is
n = p+q. The indices p and q emphasize that p counts the number of zeros right from the
maximum wm and q corresponds to the number of zeros left from the maximum wm. The
extremal values of the Zolotarev polynomial alternate between -1 and +1 (q + 1)-times
in the interval (−1, ws) and (p + 1)-times in the interval (wp, 1). Assuming the conformal
transformation [2], [8] between the u and the w domain

w =
sn2(u)cn2

(
p

n
K(κ)|κ

)
+ cn2(u)sn2

(
p

n
K(κ)|κ

)

sn2(u) − sn2

(
p

n
K(κ)|κ

) (16)

I denote Zp,q(w) = Zp,q(u|κ) the Zolotarev polynomial in the w-domain. The Zolotarev
polynomial Zp,q(w) satisfies the linear differential equation

(w − wp)(w − ws)(w − wm)

[
(1 − w2)

d2Zp,q(w)

dw2
− w

dZp,q(w)

dw

]
− (17)

[
(w − wp)(w − ws)−(w − wm)(w − wp + ws

2
)
]
(1 − w2)

dZp,q(w)

dw
+n2(w − wm)3Zp,q(w)=0 .

The band edges wp and ws correspond to

wp = 2 sn2
(

q

n
K(κ)|κ

)
− 1 , ws = 1 − 2 sn2

(
p

n
K(κ)|κ

)
. (18)

The position of the maximum value ym = Zp,q(wm) is

wm = ws + 2
sn

(
p

n
K(κ)|κ

)
cn

(
p

n
K(κ)|κ

)

dn
(

p

n
K(κ)|κ

) Z
(

p

n
K(κ)|κ

)
. (19)
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The integer values p, q, n = p + q and the real valued elliptic modulus κ are related by
the partition equation

p

n
K(κ) +

q

n
K(κ) = F (ϕs|κ) + F (ϕp|κ) = K(κ) . (20)

Function F (φ|κ) is the incomplete elliptic integral of the first kind of Jacobi’s elliptic
modulus κ. The goal in the approximation of the ER notch FIR filter is to obtain the
three parameters p, q and κ in order to satisfy the specified notch frequency ωmT , width
of the notchband ∆ωT and the attenuation in the passbands a [dB] (Fig. 3) as precisely
as possible. The degree of the Zolotarev polynomial is expressed by the degree equation

n ≥
ln(ym +

√
y2

m − 1)

2σmZ( p
n
K(κ)|κ) − 2Π(σm, p

n
K(κ)|κ)

(21)

where the auxiliary parameter σm is

σm = F


arcsin


 1

κ sn
(

p
n

K(κ)|κ
)

√
wm − ws

wm + 1


 |κ


 . (22)

The maximum value (maximizer) ym of the Zolotarev polynomial

ym = cosh 2n
(
σmZ(

p

n
K(κ)|κ) − Π(σm,

p

n
K(κ)|κ)

)
(23)

is related to the attenuation in the passbands a [dB]

a [dB] = 20 log

(
1 − 2

ym + 1

)
. (24)

The ZPTF of the ER notch FIR filter is

Q(w) = 1 − Zp,q(w) + 1

ym + 1
. (25)

Based on the differential equation (17) the algorithm for the evaluation of the a-vector of
the Zolotarev polynomial

Zp,q(w) =
n∑

k=0

a(k)Tk(w) (26)

and of the impulse response h(k) was developed (Tab. 3).

5.2. Design Procedure

The design procedure is as follows :

1. Specify the notch frequency ωmT , width of the notchband ∆ωT and the maximal
attenuation in the passband a [dB] as demonstrated in Fig. 3.

2. Calculate the band edges

ωpT = ωmT − ∆ωT

2
, ωsT = ωmT +

∆ωT

2
. (27)
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Figure 3: Amplitude frequency response 20 log |H(ejωT )| [dB] based on the Zolotarev polynomial
Z6,9(w). The parameters are ωpT = 0.3506 π, ωmT = 0.4006 π, ωsT = 0.4507 π, ∆ωT = 0.1001 π
and a = −3.2634 dB.

3. Evaluate the Jacobi’s elliptic modulus κ

κ =

√
1 − 1

tan2(ϕs) tan2(ϕp)
(28)

for the auxiliary parameters ϕs and ϕp

ϕs =
ωsT

2
, ϕp =

π − ωpT

2
. (29)

4. Calculate the rational values p/n and q/n (20).

5. Determine the required maximum value ym (23).

6. Calculate the minimum degree n using the degree equation (21).

7. Calculate the integer values p and q defining the Zolotarev polynomial Zp,q(w)

p =

[
n

F (ϕs|κ)

K(κ)

]
, q =

[
n

F (ϕp|κ)

K(κ)

]
(30)

where the square brackets stand for the rounding.

8. Calculate the actual attenuation in the passbands a [dB] (24) for the corresponding
maximal value ym (23).

9. Calculate the actual width of the passband

∆ωT = arccos(wp) − arccos(ws) . (31)

10. For p, q and κ evaluate the impulse response h(k) analytically (Tab. 3).
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Table 3: Analytical Evaluation of the Impulse Response.

given p , q (integers), κ (real)
initialisation n = p + q

wp = 2 sn2

(
q

n
K(κ)|κ

)
− 1 , ws = 1 − 2 sn2

(
p

n
K(κ)|κ

)
, wa =

wp + ws

2

wm = ws + 2
sn

(
p

n
K(κ)|κ

)
cn

(
p

n
K(κ)|κ

)

dn
(

p

n
K(κ)|κ

) Z
(

p

n
K(κ)|κ

)

α(n) = 1 , α(n + 1) = α(n + 2) = α(n + 3) = α(n + 4) = α(n + 5) = 0

body
(for m = n + 2 to 3)

8c(1) = n2 − (m + 3)2

4c(2) = (2m + 5)(m + 2)(wm − wa) + 3wm[n2 − (m + 2)2]

2c(3) =
3
4
[n2 − (m + 1)2] + 3wm[n2wm − (m + 1)2wa]

−(m + 1)(m + 2)(wpws − wmwa)

c(4) =
3
2
(n2 − m2) + m2(wm − wa) + wm(n2w2

m − m2wpws)

2c(5) =
3
4
[n2 − (m − 1)2] + 3wm[n2wm − (m − 1)2wa]

−(m − 1)(m − 2)(wpws − wmwa)

4c(6) = (2m − 5)(m − 2)(wm − wa) + 3wm[n2 − (m − 2)2]
8c(7) = n2 − (m − 3)2

α(m − 3) =
1

c(7)

6∑
µ=1

c(µ)α(m + 4 − µ)

(end loop on m)
normalisation

s(n) =
α(0)

2
+

n∑
m=1

α(m)

a(0) = (−1)p α(0)
2s(n)

(for m = 1 to n)

a(m) = (−1)p α(m)
s(n)

(end loop on m)

impulse response h(n) =
ym − a(0)
ym + 1

(for k = 1 to n)

h(n ± k) = − a(k)
2(ym + 1)

(end loop on k)
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Table 4: Impulse Response h(k).

k h(k) k h(k)
0 76 -0.029617 20 56 0.023583
1 75 0.009026 21 55 -0.016098
2 74 -0.006910 22 54 0.004079
3 73 0.002540 23 53 0.009627
4 72 0.003215 24 52 -0.021585
5 71 -0.008960 25 51 0.028644
6 70 0.013104 26 50 -0.028782
7 69 -0.014293 27 49 0.021678
8 68 0.011819 28 48 -0.008872
9 67 -0.005907 29 47 -0.006575

10 66 -0.002247 30 46 0.020828
11 65 0.010702 31 45 -0.030245
12 64 -0.017226 32 44 0.032332
13 63 0.019891 33 43 -0.026411
14 62 -0.017624 34 42 0.013833
15 61 0.010583 35 41 0.002336
16 60 -0.000216 36 40 -0.018080
17 59 -0.011026 37 39 0.029453
18 58 0.020271 38 0.916626
19 57 -0.024966
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Figure 4: Amplitude frequency response 20 log |H(ejωT )| [dB].

11. Check the notch frequency ωmT = arccos(wm) using (19).

12. If required, tune the notch frequency to the proper value (Sec. 6).

Example of the design.
Design the ER notch FIR filter specified by the notch frequency ωmT = 0.84 π and by
the width of the stopband ∆ωT = 0.0610 π for the maximal attenuation in the passband
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a = −0.95 dB.
Using the proposed design procedure we get ωp = 0.8095 π, ωs = 0.8705 π (27), ϕs =
0.2992, ϕp = 1.3674 (29), κ = 0.743599 (28), n = [37.2896] → 38 (21), p = [31.9713] → 32
and q = [6.0287] → 6 (30). For the calculated values p, q, κ the actual filter parameters
are ωmT = 0.8408 π (19), ∆ωT = 0.0607 π (31) and a = −0.9109 dB (24). The filter
length is N = 77 coefficients. The impulse response h(k) of the filter evaluated analyti-
cally (Tab. 3) is summarized in Tab. 4. The amplitude frequency response 20 log |H(ejωT )|
[dB] of the filter is shown in Fig. 4.

6. Analytical Procedure for Tuning of FIR Filters

Published in : P. Zahradnik, M. Vlček, ”An Analytical Procedure for Critical Frequency Tuning
of FIR Filters”. IEEE Transactions on Circuits and Systems II. January 2006, Vol. 53, No. 1,
pp. 72-76 ([30]).

Precise tuning of frequency properties is an useful operation in the design of digital filters.
Instead of designing the filter from scratch, the impulse response of the available filter
can be reused. Adaptive filtering is one of the applications. Tuning is also useful in the
analytical design of digital FIR filters where the available critical frequencies are quan-
tized (Sec. 4 and 5). Hence analytical design combined with tuning the filter represents
a powerful design tool. The proposed fast versatile tuning procedure adjusts a single fre-
quency of the frequency response of the FIR filter to the specified value while preserving
the nature of the filter, e.g. maximally flat, equiripple etc. The tuning procedure is based
on expansion of the Chebyshev polynomial of the transformed argument into the sum of
Chebyshev polynomials, resulting in the transformation matrix. The impulse response of
the final filter is obtained from the impulse response of the original filter by applying of the
transformation matrix. The purpose of the tuning is to map the critical frequency ωmT of
the frequency response of the filter to the desired value ω0T . The mapping ωmT ↔ ω0T
in the frequency domain is equivalent to the mapping wm ↔ w0 in the w-domain. Due to
(5) the shift in the two domains occurs in opposite directions. I propose the transformed
ZPTFs in the form

Qt(w) = Q(λw + λ
′
) , λ =

wm − 1

w0 − 1
, if ωmT < ω0T (32)

and

Qt(w) = Q(λw − λ
′
) , λ =

wm + 1

w0 + 1
, if ω0T < ωmT. (33)

The real number λ is confined to 0 < λ ≤ 1. The tuning procedure provides the impulse
response coefficients for a FIR filter with following properties :

• the frequency ωmT is adjusted to the specified value ω0T

• the maximal attenuation(s) in the passband(s) and the minimal attenuation(s) of
the stopband(s) of the filter are preserved

• the nature (MF, ER etc.) of the filter is preserved and

• the bands of the filter are broadened.
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The transformed ZPTFs

Qt(w) =
n∑

k=0

a(k) Tk(λw ± λ
′
) =

n∑
k=0

a(k)
k∑

m=0

αk(m)Tm(w) (34)

can be rewritten in matrix form

Qt(w) = [a(0) a(1) · · · a(n)] × (35)




α0(0) 0 0 0 · · · 0
α1(0) α1(1) 0 0 · · · 0
α2(0) α2(1) α2(2) 0 · · · 0
α3(0) α3(1) α3(2) α3(3) · · · 0
...

...
αn(0) αn(1) αn(2) αn(3) · · · αn(n)



×




T0(w)
T1(w)
T2(w)
T3(w)
...
Tn(w)




= a A T . (36)

I call the low triangular matrix A the transformation matrix. The at-vector of the trans-
formed filter is given by the product of a-vector of the original filter and the transformation
matrix A

at = a A . (37)

There are two transformation matrices A+ and A− corresponding to the transformed
ZPTFs (32) and (33). Fast evaluation of the coefficients αk(m) of the transformation ma-
trices is essential in adaptive filtering. Based on the differential equation for the Chebyshev

Table 5: Evaluation of the Coefficients αk(m) of the Transformation Matrix A+.

given k (integer value), 0 < λ ≤ 1 (real value)

initialization λ
′
= 1 − λ

αk(k + 1) = αk(k + 2) = αk(k + 3) = 0
αk(k) = λk

body
(for µ = −3 ... k − 4 )

αk(k − µ − 4) =
{
−2

[
(µ + 3)(2k − µ − 3) − λ

′

λ (k − µ − 3)(2k − 2µ − 7)
]
αk(k − µ − 3)

+2 λ
′

λ 2(k − µ − 2) αk(k − µ − 2)

+2
[
(µ + 1)(2k − µ − 1) − λ

′

λ (k − µ − 1)(2k − 2µ − 1)
]
αk(k − µ − 1)

+µ(2k − µ) αk(k − µ)
} / (µ + 4)(2k − µ − 4)

(end loop on µ)

polynomial of the first kind Tk(x)

(1 − x2)
d2Tk(x)

dx2
− x

dTk(x)

dx
+ k2Tk(x) = 0 (38)

18



Table 6: Impulse Responses h(k) and ht(k).

k h(k) ht(k) k h(k) ht(k)
0 72 0.016832 0.011622 19 53 0.022942 0.028084
1 71 0.004953 -0.005198 20 52 0.028636 0.024800
2 70 -0.002260 -0.009660 21 51 0.009196 0.000144
3 69 -0.009076 -0.010249 22 50 -0.019871 -0.026360
4 68 -0.008700 -0.003681 23 49 -0.033269 -0.032071
5 67 0.000117 0.006768 24 48 -0.018035 -0.010712
6 66 0.010632 0.013012 25 47 0.014008 0.021071
7 65 0.013100 0.008921 26 46 0.035383 0.036681
8 64 0.003678 -0.003396 27 45 0.026667 0.021933
9 63 -0.010795 -0.013938 28 44 -0.005787 -0.012097

10 62 -0.017533 -0.012654 29 43 -0.034396 -0.037428
11 61 -0.009034 0.001287 30 42 -0.033926 -0.032360
12 60 0.009012 0.017271 31 41 -0.003929 -0.000239
13 59 0.021195 0.021210 32 40 0.030153 0.032628
14 58 0.015517 0.007859 33 39 0.038727 0.038693
15 57 -0.004980 -0.013249 34 38 0.013946 0.012424
16 56 -0.023239 -0.024485 35 37 -0.023124 -0.024678
17 55 -0.022375 -0.014929 36 0.933816 0.932507
18 54 -0.001244 0.009158

I have derived the differential equation

(1 − w2 + 2
λ

′

λ
(1 − w))

d2F+(w)

dw2
− (w +

λ
′

λ
)
dF+(w)

dw
+ k2F+(w) = 0 (39)

for the polynomial
F+(w) = Tk(λw + λ

′
) (40)

and the differential equation

(1 − w2 + 2
λ

′

λ
(1 + w))

d2F−(w)

dw2
− (w − λ

′

λ
)
dF−(w)

dw
+ k2F−(w) = 0 (41)

for the polynomial
F−(w) = Tk(λw − λ

′
) (42)

where the real values λ and λ
′
are related by λ + λ

′
= 1. Based on differential equations

(39) and (41) I have derived a fast procedure for evaluation of the coefficients αk(m) of
the transformation matrices A+ and A−. The fast algorithm for the evaluation of the
coefficients of the transformation matrix A+ is summarized in Tab. 5. The evaluation
of the transformation matrix A− is by analogy. Both matrices differ by the signs of the
”odd” coefficients αk(k − µ − 3) and αk(k − µ − 1) only.

Example of the tuning.
Design the ER notch FIR filter specified by the notch frequency ω0T = 0.3 π and width of
the notchband ∆ωT = 0.075 π for maximal attenuation in the passbands a = −0.5 dB.
Using the analytical design procedure (Sec. 5) we get κ = 0.665619, n = 36, p = 11
and q = 25. The designed filter of length N = 73 coefficients with ”quantized” notch
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Figure 5: Passbands of the ”quantized” (thin line) and of the tuned filter.

frequency ωmT = 0.3064 π and ∆ωT = 0.075 π for aact = −0.4584 dB will be tuned using
the proposed tuning procedure in order to get the specified notch frequency ω0T = 0.3 π.
Because ω0T < ωmT we evaluate the transformation matrix A− for λ = 0.9898 (33). The
parameters of the tuned filter are ω0T = 0.3 π and ∆ωT = 0.0779 π for a = −0.4584 dB.
A detailed view of the passbands of the ”quantized” and of the tuned filter is shown in
Fig. 5.

7. Analytical Design of Equiripple DC-Notch FIR Filters

Published in : P. Zahradnik, M. Vlček, ”Note on the Design of an Equiripple DC-Notch FIR
Filter”. IEEE Transactions on Circuits and Systems II. February 2007, Vol. 54, No. 2, pp.
196-199 ([31]).

7.1. Approximation

The approximating polynomial of the DC-notch FIR filter is the polynomial F (w)

F (w) = Tn(λw + λ − 1) =
n∑

m=0

B(m) wm =
n∑

m=0

A(m) Tm(w) . (43)

The approximating polynomial F (w) fulfils the differential equation

(1 − w2 + 2
1 − λ

λ
)
d2F (w)

dw2
− (w − 1 − λ

λ
)
dF (w)

dw
+ n2 F (w)= 0 . (44)

The differential equation (44) is indispensable for the derivation of algorithm for analytical
evaluation of the impulse response of the filter. The zero phase transfer function of the
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DC-notch FIR filter is

Q(w) = 1 − F (w) + 1

Tn(2λ − 1) + 1
= 1 − Tn(λw + λ − 1) + 1

Tn(2λ − 1) + 1
. (45)

The DC-notch FIR filter is specified by the passband frequency ωpT and by the attenuation
in the passband a [dB] (Fig. 6). The degree equation reads as follows

n ≥
acosh

1 + 100.05a[dB]

1 − 100.05a[dB]

acosh
1 + sin2 ωp T

2

1 − sin2 ωp T

2

(46)

where

λ =
1

1 − sin2 ωp T

2

. (47)

Based on the differential equation (44) the algorithm for the evaluation of the impulse
response of the DC-notch FIR filter was derived. The algorithm is summarized in Tab. 7.
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Figure 6: Amplitude frequency response 20 log |H(ejωT )| [dB] for n = 7, λ = 1.057638, ωpT =
0.15π and a = −1.2446 dB.
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Table 7: Analytical Evaluation of the Impulse Response.

given n (integer value), λ (real value)

initialization A(n) = λn , A(n + 1) = A(n + 2) = A(n + 3) = 0
body
(for k = 2 ... n + 1)

A(n + 1 − k) =

{ 2 [(k − 1)(2n + 1 − k) − ((1 − λ)/λ)(n + 1 − k)(2n + 1 − 2k)] A(n + 2 − k)
+ 4 ((1 − λ)/λ)(n + 2 − k) A(n + 3 − k)
− 2 [(k − 3)(2n + 3 − k) − ((1 − λ)/λ)(n + 3 − k)(2n + 7 − 2k)] A(n + 4 − k)

+ (k − 4)(2n + 4 − k) A(n + 5 − k) } / k(2n − k)
(end loop on k)

h(0) = 1 − A(0)/2 + 1
Tn(2λ − 1) + 1

h(±k) = −1
2

A(k) + 1
Tn(2λ − 1) + 1

, k = 1 ... n

Table 8: Impulse Response h(k).

k h(k) k h(k)
0 , 104 -0.000387 27 , 77 -0.009226
1 , 103 -0.000248 28 , 76 -0.009866
2 , 102 -0.000325 29 , 75 -0.010516
3 , 101 -0.000416 30 , 74 -0.011173
4 , 100 -0.000523 31 , 73 -0.011834
5 , 99 -0.000646 32 , 72 -0.012495
6 , 98 -0.000787 33 , 71 -0.013154
7 , 97 -0.000947 34 , 70 -0.013807
8 , 96 -0.001128 35 , 69 -0.014451
9 , 95 -0.001330 36 , 68 -0.015081

10 , 94 -0.001556 37 , 67 -0.015696
11 , 93 -0.001805 38 , 66 -0.016291
12 , 92 -0.002079 39 , 65 -0.016862
13 , 91 -0.002378 40 , 64 -0.017407
14 , 90 -0.002704 41 , 63 -0.017921
15 , 89 -0.003056 42 , 62 -0.018402
16 , 88 -0.003435 43 , 61 -0.018848
17 , 87 -0.003840 44 , 60 -0.019254
18 , 86 -0.004273 45 , 59 -0.019619
19 , 85 -0.004731 46 , 58 -0.019941
20 , 84 -0.005216 47 , 57 -0.020216
21 , 83 -0.005725 48 , 56 -0.020444
22 , 82 -0.006258 49 , 55 -0.020623
23 , 81 -0.006813 50 , 54 -0.020752
24 , 80 -0.007390 51 , 53 -0.020829
25 , 79 -0.007986 52 0.978583
26 , 78 -0.008598

7.2. Design Procedure

The design procedure is as follows :
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1. Specify the passband frequency ωpT and the maximal attenuation in the passband
a [dB] as demonstrated in Fig. 6.

2. Calculate the minimum degree n (46).

3. Evaluate the impulse response h(k) analytically (Tab. 7).
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Figure 7: Amplitude frequency response 20 log |H(ejωT )| [dB].
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Figure 8: Passband of the filter.
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Example of the design.
Design the DC-notch FIR filter specified by ωpT = 0.05π and a = −0.01dB.
Using the proposed design procedure we get n = 51.8513 → 52 (46) and λ = 1.006194
(47). The actual filter parameters are ωpT = 0.05π and aact = −0.009768 dB. The impulse
response h(k) (Tab. 8) with the length N = 105 was evaluated analytically (Tab. 7). The
amplitude frequency response 20 log |H(ejωT )| [dB] of the DC-notch FIR filter is shown
in Fig. 7. Its passband is shown in Fig. 8.

8. Analytical Design of Equiripple Comb FIR Filters

Published in : P. Zahradnik, M. Vlček, ”Analytical Design Method for Optimal Equiripple Comb
FIR Filters”. IEEE Transactions on Circuits and Systems II. February 2005, Vol. 52, No. 2,
pp. 112-115 ([32]).

8.1. Approximation

The GP F (w) of the ER comb FIR filter is given by the compounded Chebyshev polyno-
mial

F (w) = Tn [λTr(w)] =
nr∑

k=0

A(k) Tk(w) . (48)

The real parameter λ = 1/κ > 1 affects the ripples in the passbands of the comb FIR
filter. The degree r of the inner Chebyshev polynomial determines r narrow bands. The
narrow bands of the comb FIR filter positioned at

ωmi T =
i π

r
i = 0, 1, ... , r (49)

are equally spaced inside the interval [0, π]. The even degree n of the outer Chebyshev
polynomial Tn(w) determines n − 1 local extremes with the same amplitude between
the narrow bands. The GP F (w) (48) of the ER comb FIR filter fulfils the differential
equation

Ur−1(w)
(
κ2 − T 2

r (w)
) [

(1 − w2)
d2F (w)

dw2
− w

dF (w)

dw

]
(50)

−r(1 − κ2)Tr(w)
dF (w)

dw
+ n2r2Ur−1(w)

(
1 − T 2

r (w)
)
F (w) = 0

where Ur(w) is the Chebyshev polynomial of the second kind. The differential equation
(50) is indispensable for the derivation of algorithm for analytical evaluation of the impulse
response of the filter. The ZPTF Q(w) of the comb filter is given by the normalization of
the GP

Q(w) = 1 − 1 + F (w)

C
= 1 − 1 + Tn [λTr(w)]

C
=

nr∑
k=0

a(k) Tk(w) . (51)

The normalizing constant C follows from the GP F (w) for w = 1

C = 1 + F (1) = 1 + Tn [λTr(1)] = 1 + Tn (λ) = 1 + cosh[n acosh(λ)] . (52)

Note that (52) is independent from the degree r of the inner Chebyshev polynomial Tr(w).
The goal in the approximation of the ER comb FIR filter is to obtain the two parameters
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Figure 9: Amplitude frequency response 20 log |H(ejωT )| [dB].

n and λ in order to satisfy the specified number of notch bands r, the width of the notch
bands ∆ωT and the maximal attenuation in the passbands a [dB] (Fig. 9) as precisely as
possible. The degree n of the outer Chebyshev polynomial Tr(w) is

n ≥ acosh(χ)

acosh(λ)
=

ln(χ +
√

χ2 − 1)

ln(λ +
√

λ2 − 1)
(53)

where the parameters λ and χ are

λ =
1

cos
(
r
∆ωT

2

) , χ =
1 + 100.05a[dB]

1 − 100.05a[dB] . (54)

I call (53) the degree equation of the ER comb FIR filter. The real value n (53) has to
be up-rounded to the next even integer value. This up-rounding preserves the specified
number of notch bands and the width of the notchbands. The attenuation in passbands
a [dB] is equal or less than the specified value. The impulse response h(k) of the filter
consists of 2nr + 1 coefficients, among them are n + 1 non-zero values. For illustration,
the amplitude frequency response 20 log |H(ejω)| [dB] based on the ZPTF

Q(w) = 1 − 1 + T6 [1.15 T5(w)]

1 + T6 (1.15)
(55)

is shown in Fig. 9. Note that there are true zeros at the notch frequencies. Based on the
differential equation (50) a simple analytical algorithm for the algebraic evaluation of the
impulse response h(k) of the filter was developed (Tab. 9).
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8.2. Design Procedure

The design procedure for the ER comb FIR filter consists of the following steps :

1. Specify the number of notch bands r, the width of the notch bands ∆ωT and the
maximal attenuation in the passbands a [dB] as demonstrated in Fig. 9.

2. The degree of the inner Chebychev polynomial is r.

3. Determine the auxiliary parameters λ and χ (54).

4. Evaluate the real value n (53) and round it to the next even integer value.

5. Evaluate the impulse response h(k) analytically (Tab. 9).

Example of the design.
Design an ER comb FIR filter with 20 notch bands specified by the width of the notch
bands ∆ωT = π/50 and by the maximal attenuation in the passbands a = −1 dB.
The degree of the inner Chebyshev polynomial is r = 20. We get λ = 1.2361, k = 17.3910
(54) and n = 5.2623 → 6 (53). The ZPTF is

Q(w) = 1 − 1 + T6 [1.2361 T20(w)]

1 + T6 (1.2361)
. (56)

The impulse response h(k) with a length of 241 coefficients is evaluated analytically
(Tab. 9). It consists of seven non-zero coefficients only. It is summarized in Tab. 10.
The actual parameters of the comb FIR filter are ∆ωT = π/50 and a = −0.6080 dB. The
amplitude frequency response 20log|H(ejω)| [dB] of the filter is shown in Fig. 10.
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Figure 10: Amplitude frequency response 20log|H(ejωT )| [dB].
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Table 9: Analytical Evaluation of the Impulse Response.

given n (even integer), r (integer), λ > 1 (real)

initialization κ =
1
λ

, α(n) = λn , α(n + 2) = α(n + 4) = α(n + 6) = 0

body
(for k = 1 ...

n

2
)

α(n − 2k) =
{ α(n − 2(k − 1)) ×[

(1 − κ2)(n − (2k − 1))(n − (2k − 2)) + 3(k − 1)(n − (k − 1))
]

−α(n − 2(k − 2))×[
(1 − κ2)(n − (2k − 4))(n − (2k − 5)) + 3(k − 2)(n − (k − 2))

]
+α(n − 2(k − 3))(k − 3)(n − (k − 3)) } / k(n − k)

(end loop on k)

α(0) =
α(0)

2
A(k) of F (w)
body

(for k = 0 ...
n

2
)

A(nr − 2kr) = α(n − 2k)
(end loop on k)

a(k) of Q(w) C = cosh[n acosh(λ)] , a(0) = 1 − 1 + A(0)
C

body
(for k = 1 ... nr )

a(k) = −A(k)
C

(end loop on k)
impulse response h(k)

h(nr) = a(0)
body

(for k = 1 ... nr )

h(nr ± k) = a(k)
2

(end loop on k)

Table 10: Non-zero Coefficients of the Impulse Response h(k).

k h(k)

0 240 -0.060281
40 200 -0.124960
80 160 -0.189719

120 0.749920
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9. Robustness of the Analytical Design

It is worth of noting that the analytical design by far outperforms the numerical procedures
(e.g. [9]). In order to demonstrate the robustness, we wish to design the equiripple DC-
notch FIR filter with quite absurd specification ωpT = 0.00001π and a = −0.01[dB].
Using the proposed analytical procedure (Sec. 7), we get λ = 1.00000000024674, n =
259523.24 → 259524. The length of the filter amounts N = 519049 coefficients. The zero
phase transfer function of the filter is

Q(w) = 1 − T259524 (1.00000000024674w + 0.00000000024674) + 1

T259524(1.00000000049348) + 1
. (57)

The properties of the designed filter are ωpT = 0.00001π and a = −0.00999976[dB]. The
amplitude frequency response 20 log |H(ejωT )| [dB] of the filter is shown in Fig. 11.
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Figure 11: Amplitude frequency response 20 log |H(ejωT )| [dB].

10. Concluding Remarks

In this document I have introduced novel purely analytical solutions for the design of
maximally flat notch FIR filters, equiripple notch FIR filters, equiripple DC-notch FIR
filters and equiripple comb FIR filters for telecommunication applications. Formulae for
the degree and for the impulse response of the filters were presented. The design proce-
dures were published in four IEEE papers. My future work may comprise the development
of the analytical design procedures for multiple notch FIR filters with non-equidistantly
located notch frequencies, FIR filters with maximally flat pass band(s) and equripple stop
band(s) and non-narrow band FIR filters.
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