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Souhrn

Geodézie se tradi¢né snazi o méreni a popis zemského tithového pole. Piesna a spolehliva
znalost tihového pole slouzi pro spravnou interpretaci a redukci ruznych geodetickych
meéreni provadénych pod vlivem zemské tize. Povrchova tihova data ptredstavovala po
dlouhou dobu jediny dostupny zdroj informace o zemském tihovém poli. Navrhy na
nové mérické postupy a technologie se zacaly rychle objevovat po vypusténi prvni umélé
druzice Zemé v roce 1957. Sledovani drahovych poruch jednotlivych druzic poskytovala
nova data, kterd byla mozno pouzit pro odvozeni prvnich globalnich modeli zemského
tthového pole. S nastupem presné druzicové navigace se pozdéji zacala pouzivat metoda
letecké gravimetrie jako doplnék k pozemskym datum a globalnim modelum.

Vyznamny pokrok pti globalnim mapovani zemského tihového pole je v soucasnosti
dosahovan s pomoci novych druzicovych misi urcenych pro vyzkum tihového pole. Prvni
z celkem tii v soucCasnosti planovanych a ¢astec¢né jiz realizovanvch druzic tohoto typu
byla vypusténa v roce 2000. Dalsi byla vypusténa v roce 2002 a posledni bude vysldna
na obéznou dréhu v roce 2007. Tyto projekty jsou predesim urceny pro sbhér dat ruzného
druhu a vlastnosti, ktera mohou byt pouzita pro odvozeni statického a ¢asové proménného
tihového pole s dfive nedostupnou ptesnosti a prostorovym rozliSenim. Tyto produkty
budou slouzit nejen samotné geodézii, ale umozni mezioborovy vyzkum v radé geovéd
véetné fyziky pevné Zemé a ocednografie.

Protoze tyto mise nyni predstavuji pater vyzkumnych aktivit v oblasti geodézie, tento
text ptredstavuje jejich struc¢ny souhrn. V tvodu textu jsou velmi kratce predstaveny
teoretické zaklady teorie potencidlu véetné v tomto textu pouzitych parametru, symbolu
a fyzikdlnich zdkonu. Neznamé parametry popisujici zemské tihové pole jsou vztazeny k
dostupnym druzicovym datum poskytovanymi jednotlivymi misemi. Geodézie tesi vedle
skalarniho popisu zemského tithového pole také jeho geometrickou reprezentaci ve smyslu
hladinové plochy, ktera reprezentuje stfedni nerusenou hladinu svétovych oceanu — geoid.
Jeho teSeni je také velmi struéné nastinéno.

Jednotlivé principy druzicovych méfeni jsou prezentovany v tomto textu na pozadi
teoretického zakladu vcetné jejich konkrétnich realizaci v podobé stavajicich druzicovych
misi. Hlavni vyhody a ocekdavany piinos kazdé mise jsou vysvétleny z pohledu poskyto-
vanych dat. Inverze jednoho vybraného typu dat je nastinéna v podobé zjednoduseného
matematického modelu. Ten slouzi jako piiklad pro zpracovani obecného typu dat z
dalsich druzicovych misi ur¢enych pro vyzkum tihového pole. Stavajici a navrhované
aplikace pro nové presné modely tihového pole jsou nacrtnuty ve smyslu tii hlavnich
aplikacnich oblasti: geodézie, fyziky pevné Zemé a ocednografie. Dostupné parametry
soucasnych modelu jsou v zavéru textu porovnany s pozadavky na presnost a prostorové

rozliSeni vybranych konkrétnich aplikaci.



Summary

Traditionally geodesy has been attempting to measure and describe the Earth’s gravity
field. Tts precise and reliable knowledge serves for correct interpretation and reduction of
various geodetic observations collected in the presence and under the influence of Earth’s
gravity. For a long time ground gravity data had been the only available information
on the Earth’s gravity field. With the launch of the first artificial satellite in 1957, new
observation techniques were quickly proposed. Measured orbital perturbations of various
satellites started to deliver new types of data useful for derivation of first global gravity
field models. Later, with the advent of precise satellite-based positioning, airborne gravity
observations became complementary to ground gravity and global gravity models.

Most recently, significant advances in global gravity field mapping have been achieved
through deployment of gravity-dedicated satellite missions. The first satellite from three
currently planned and partly realized missions was launched in 2000. The second satellite
mission was launched in 2002 and the last satellite should be put to the orbit in 2007.
These projects are primarily designed for gathering satellite tracking data of different
types and properties that can be used for derivation of static and time-varying gravity
fields with unprecedented accuracy and spatial resolution. These products will serve not
only to geodesy itself but they will allow for multi-disciplinary research including other
geosciences such as the solid Earth physics and oceanography.

As these missions represent a backbone of current research activities in geodesy, this
text intends to summarize briefly these efforts. Theoretical foundations of the potential
theory are briefly reviewed in the beginning introducing used parameters, notations, and
basic physical laws used in geodesy. Unknown parameters describing the Earth’s gravity
field are related to available satellite tracking data as provided by satellite missions.
Besides solving for scalar description of the vector gravity field, geodesy is particularly
keen on solving geometric representation of the gravity field in terms of an equipotential
surface approximating a mean undisturbed sea level — the geoid. Its solution is also briefly
outlined in the text.

On the background of theoretical foundations, satellite observation techniques are
presented and their realization in the frame of existing satellite missions is reviewed. Main
advantages and anticipated contribution of each particular mission are explained in view
of provided data. Inversion of one data type is outlined using a simplified mathematical
model. It serves as an example for processing of general spaceborne data from the gravity-
dedicated satellite missions. Currently available products are introduced and compared to
global gravity models based on traditional observation techniques. Existing and proposed
applications for the new precise gravity field models are outlined in terms of three major
application areas: geodesy, solid Earth physics and oceanography. Achieved accuracy
of recent gravity solutions is compared against accuracy and resolution requirements of

selected applications.
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1 Introduction

Gravitation. The universal force of attraction acting between all matter. It is
by far the weakest known force in nature and thus plays no role in determining
the internal properties of everyday matter. Due to its long reach and universality,
however, gravitation shapes the structure and evolution of stars, galazies, and the
entire universe.

(Encyclopedia Britannica © 1999 — 2000)

The branch of geosciences dealing with obtaining precise measurements of the Earth,
describing its geometry and motion, and mapping its gravity field is known as geodesy.
While parameters describing the geometry and rotation of the Earth are known with a
relatively high level of accuracy, current knowledge of its gravity field is incomplete and
relatively inaccurate. Up to now, data from several dozen satellites had to be combined
to produce a single global model of the Earth’s gravity field. Such a model does a good
job at describing large-scale features of the gravity field but cannot resolve small spatial
fluctuations and temporal variations due to mass distribution shifts inside the solid Earth,
oceans and atmosphere.

Substantial improvement of our knowledge of the Earth’s gravity field is coming by
exploiting new approaches based on spaceborne gravity observations. First attempts to
design artificial satellites dedicated to mapping the Earth’s gravity field date back to late
1960’s. During the last half of a century three different concepts for collecting gravity-
related data using low orbiting satellites were proposed. The new era of global gravity
field mapping then started in 2000 when a first gravity-dedicated satellite was launched.
In 2002, a second satellite based on a different observation principle was put to the orbit.
The initial phase of new spaceborne techniques will be completed in 2007 when the first
spaceborne gradiometer should be launched.

New satellite missions provide (or will provide) data that are used for derivation of
global models of the Earth’s gravity field with high spatial resolution (100 km) and to
very high accuracy (107° m s~2). Besides solving for the static field, temporal variations
of gravity are also being estimated. These products offer new and fundamental insight
into a wide range of multidisciplinary research and application areas including geodesy,
physics of the solid Earth, oceanography and hydrology. Recent developments in the
research area related to Earth’s gravity are briefly described and its most recent results
are summarized in this text. The satellite missions dedicated to this task are reviewed
including their respective observation principles. To provide an idea about the data and
their transformation into unknown parameters, mathematical formulations for data of
one of the three satellite missions are provided. Sample results demonstrate significantly
improved accuracy and spatial resolution of the new global gravity models based on the
gravity-dedicated satellite missions. Their importance and consequences are discussed

within the multidisciplinary research fields.



2 Basic principles and observables

The Earth’s gravity field consists of the gravitational and centrifugal components. Both
the centrifugal and gravitational fields are vector fields described uniquely by intensity
(acceleration) vectors. The vector of centrifugal acceleration acting upon each particle
attached to the Earth rotating with the angular velocity vector w can be computed as

follows (Huygens’s Horologium Oscillatorium 1673)
a(x) =w x (wxx) . (1)

The symbol x stands for the vector product. Assuming geocentric Earth-fixed Cartesian

coordinates, the 3-D position in Eq. (1) is given by the geocentric radius vector
T
x =[x y z]| . (2)

Throughout this text, all vectors and matrices will be typed in bold. For the known
position x and angular velocity w, the centrifugal field and its parameters do not represent
any problem in the task of describing the Earth’s gravity field. Moreover, it applies only
to particles attached to the Earth. As such, the centrifugal field will be neglected in the

following sections since spaceborne data are only considered.

2.1 Gravitational field of the Earth

The Earth’s gravitational field as described by Newton’s fundamental law of gravitation
is also a 3-D vector field (neglecting its temporal variability — thus the fourth dimension).
The vector of gravitational acceleration (gravitational vector) generated by the Earth of
the volume B and mass density distribution g (Newton’s Philosophiae Naturalis Principia
Mathematica 1687) reads

gx) = G [[[ oly) =25 dB(y). (3)

[ x—y P
with the universal gravitational constant G, differential volume element dB and the
integration point defined by the geocentric radius vector y.
The Earth’s gravitational field satisfies (considering some mild approximations) two

elementary conditions: it is both conservative and irrotational, i.e.,

fg(x)-dx:o A Vxgx) = o. (4)

The symbol - stands for the scalar product, V for the gradient and o is the null vector, i.e.,
| o | = 0. As a consequence of Egs. (4), the gravitational vector field can be described by
a scalar function V' called the Earth’s gravitational potential. Tts link to the gravitational

vector is given as follows:

VV(x) = —g(x) . (5)



Applying the gradient operator V one more time, the gravitational potential satisfies the

Poisson differential equation, e.g., (Heiskanen and Moritz 1967),
ViV (x) = — 4nGo(x) . (6)

The symbol V? stands for the Laplacian (sometimes the symbol A is used). Moreover,

the gravitational potential is also regular at infinity, i.e.,
Vi) = 0(]x|) . (7)

In this case, Landau’s symbol O describes linear attenuation of the gravitational potential
with an increasing distance from the gravitating masses. Equation (7) also represents a
boundary condition: the gravitational potential vanishes at an infinite distance from the
gravitating masses; for the Earth, the boundary represents a geocentric sphere with an
infinite radius.

The gravitational potential is not directly measurable. Combining Eqs. (3) and (5),
it can be represented by the volume integral

v =6 [[] % dB(y) . (8)

A theoretically simple formula, however, practically not applicable in case of the Earth
due to our limited knowledge of its internal mass density distribution o. Fortunately,
gravimeters and gradiometers can measure first- and second-order directional derivatives
of the gravitational potential, respectively. Thus, gravitational observables are in a form

of entries of the gravitational vector (neglecting the centrifugal component), i.e.,

VV(x) = [D. D, D:]" V(x), 9)
and/or entries of the gradiometric tensor

vee[VOVV(x)] = [D2, D2, D2 D D2 D.| Vix). (10)

The operators D and D? stand for the first- and second-order directional derivatives,
respectively. The symbol f will be used in this text to symbolize any of these operators
including their combinations (such as the Stokes operator, for example). The symbol ®
in Eq. (10) represents the Kronecker (matrix direct) product, and vec is the vectorization
command that transforms a matrix into a single column vector. It should be emphasized
that not all the entries in Eqgs. (9) and (10) must be measurable or measurable with the
same level of accuracy. Their availability and accuracy depends on used instrumentation

and/or observation technique.

2.2 Parametrization of the gravitational field

The Poisson differential equation given by Eq. (6) for the zero mass density collapses into

a homogeneous form

VWV (x) = 0, (11)



known as the Laplace differential equation. This equation represents foundation for the
potential theory that defines and solves various boundary /initial-value problems useful for
the solution of the function V' with a help of some additional information. In geodesy, this
additional information is provided by the observables f(V'): entries of the gravitational
vector and linearly independent entries of the gradiometric tensor, see Egs. (9) and (10).
The homogeneous elliptical equation (11) can be solved by separating variables of the
gravitational potential. Actually not every coordinate system is suitable for application of
this method. The Cartesian coordinate system defined above can be used, however, by far
more practical are geocentric spherical coordinates defined through the transformations

T

4 )
r O N = | a2+ 2+ 22 arccos —————  arctan = , 12
[ ] l Tyt Vi +y?+ 2?2 x (12)

with the geocentric radius 0 < r < oo, co-latitude 0 < # < 7 and longitude 0 < \ < 27.

In contrary to Cartesian coordinates, their scale coefficients are not equal to one but
[he hg hy]" =[1 r rsing]" . (13)

The solution of the Laplace differential equation in spherical coordinates has the form of

an infinite series, e.g., (Heiskanen and Moritz 1967),

3 (?)nﬂ Vi Yo(0,2) . (14)

o0
Vr>R: V(0 = >
n=0 m=-n
Stokes’s coefficients V,, , of degree n and order m represent primary unknown values
for global gravity field mapping. Note their physical dimension (m? s72) in Eq. (14).

Spherical harmonics Y, ,,, of degree n and order m read (Abramowitz and Stegun 1972)
Yom(0,A) = Pym(cosh) em (15)

with associated Legendre functions of the first kind P, ,, (Hobson 1931). Both the Stokes
coefficients and spherical harmonics are fully-normalized in numerical applications.

The series in Eq. (14) is uniformly convergent on or outside the so-called Brilloiun
sphere (encompassing all gravitating masses) of radius R, i.e., for r > R. The series
form of the gravitational potential nicely describes the per-degree logarithmic attenuation
of the gravitational field with an increasing altitude above the Brilloiun sphere: the
attenuation factor (R/r)"*" also represents the major drawback of spaceborne data — the
gravitational field is being smoothed up with the distance from the Earth. The natural
method for counteracting this physical property of the gravitational field (differentiation)
is discussed later in the text.

The apparatus of the spherical harmonic series is very convenient. However, it has
yet another disadvantage: to describe the function V' completely, an infinite number of
Stokes’s coefficients must be known requiring for the series an infinite amount of time to
be summed up. In practice, the number of Stokes’s coefficients will always be limited. The

maximum degree nmz =~ 150 is solved from data of current gravity-dedicated satellite



missions. The recovered gravitational potential V' is thus represented by values averaged
both in space and time. The maximum degree can be translated into spatial resolution

(half-wavelength in km)
TR 20000

D = = (16)
nma nma
The gravitational vector in Eq. (9) reads in spherical coordinates
VV(r,0,)) = [V, Vo W] . (17)

Entries of the gravitational vector can easily be derived from Eq. (14) by differentiation.

Only the radial term having the largest numerical value is presented herein

1 00 n R n+2
Vo= hID V0N = -2 XY () <?> Vi Yam(0,\) - (18)

n=0 m=-—n

Entries of the gravitational vector in Cartesian coordinates observed by satellites can be

evaluated trough transformation
VV(z,y,z) = J" VV(r,0,\), (19)

with the Jacobian J of transformation between the spherical and Cartesian coordinate

systems given by

sinf) cosA sinf sinA  cosf
J = Vex(r,0,\) = | cosf cosA\ cosf sin\ — sinf | . (20)

— sin A Ccos A 0

Similarly, the gradiometric tensor in Eq. (10) reads in spherical coordinates
vec [VRVV(r,0,0N) ] = [Vir Vig Vix Vg Vor V| . (21)

Some of its entries will directly correspond to observables in the upcoming gradiometric
satellite missions. The gradiometric tensor being of rank two has nine entries but only
five of them are linearly independent since it is both symmetric and in mass-free space
also trace free. Again, the entries of the tensor can easily be derived from Eq. (14) but

only the radial component is shown due to its dominant magnitude

1 00 n R n+3
Ve = b2 D2V(00) =5 3 Y (n4+1) (1+2) <7> Vi Yam(0,2) . (22)
n=0 m=-—n

Since spaceborne observations are rather related to the geocentric Cartesian coordinate

system, it is also important to find the Cartesian form of the gradiometric tensor
VoVV(z,yz2) = VoITVV(re,)\) + T Ve VV(re\)J. (23)

Equations (18) and (22) nicely demonstrate how the logarithmic attenuation factor can
partially be eliminated by the sensitivity coefficients (n+1) r~" and (n+1) (n+2) r72,

respectively.
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2.3 Geodetic inversion of gravity field parameters

Using an apparatus of Green’s surface integrals, the solution of the well-known Dirichlet
problem in the potential theory is given by the known Abel-Poisson integral that allows
for evaluation of the gravitational potential in a general point described by the geocentric
radius vector x external to Lipschitz’s boundary (smooth closed surface) on which the
gravitational potential is continuously known. The boundary must completely contain
all gravitating masses in order to satisfy the Laplace differential equation in the entire
solution domain, i.e., everywhere outside the boundary. For the general boundary S
described by geocentric radius vectors y, this solution takes a form of the surface integral
(Kellogg 1929)

Vivi<ixl: v = 5 [ V) K6y ds) . 29

Unfortunately, it is not possible to derive the kernel function IC for any general surface S.
Due to the shape of the Earth, it is convenient to use the international reference ellipsoid.
Due to its symmetries, the integral function K can easily be constructed. It is assumed
for the purpose of the solution that all gravitating masses are entirely imbedded inside
the reference ellipsoid. The gravitational potential of the external masses (ellipsoidal
topography, sea water outside the ellipsoid, atmosphere) is usually accounted for by an
appropriate reduction (remove step — direct effect) that is considered to be out of the
scope of this text.

Applying in Eq. (24) the operator f at x yields for the reference ellipsoid S,

VIl < Ix|: AV = 5 [[ Vise) FIKxya) ] dSilre) 25

Geocentric radius vectors y, describe the surface of the reference ellipsoid. The parameter
on the left-hand side of Eq. (25) represents an observation taken at the location x outside
the reference ellipsoid and reduced for corresponding effects of all masses outside the
reference ellipsoid. On the right-hand side of Eq. (25), one solves for the gravitational
potential V' distributed over the known ellipsoidal surface S, with a corresponding surface
element dS,. Their forms depend on the choice of a curvilinear coordinate system related
to the reference ellipsoid and discretization of its surface, respectively. Assuming one-

parametric Jacobi ellipsoidal coordinates defined through the transformations

2
u = g 2 +y? 22 —e? + \/(x2+y2+z2—e2)2+ 4 €222,

p = arctan ———— (26)

z2\VuZ+¢e2’

A= arctang,
x
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with radius 0 < u < 00, reduced co-latitude 0 < ¢ < 7 and longitude 0 < A\ < 27,

respectively, the ellipsoidal surface reads

2
S, = 4ma® 1+b—lna+6 ,
2 4ae a—¢

(27)

with the major semi-axis a, minor semi-axis b, linear eccentricity £ = v/a? — b?, and

dSc(p,\) = a \/b? +e?cos? ¢ sinp dp dX . (28)

Equation (25) represents the general observation equation for integral inversion of
observables represented by the gravitational vector and the gradiometric tensor. Thus,
the gravitational vector results in three and the gradiometric tensor in six observation
equations, respectively. Outside the gravitating masses, only five equations are linearly
independent in the latter case. In both these cases, gravity inversion is an over-determined
inverse problem with complicated numerical solutions. Moreover, observation equations
and available spaceborne data also allow only for recovery of spectrally-limited values
of the unknown gravitational potential; these limitations are related to the logarithmic
attenuation of the gravitational field, noise characteristics of data collected in complicated

dynamic conditions and their geographically restricted coverage (polar gaps).

2.4 Describing geometry of the gravity field

Besides solving for the gravitational potential V' at the known reference surface, geodesy
is also interested in estimating the equipotential surface that approximates the mean-sea
level: the geoid. This concept introduced by C.F. Gauss in 1822 is used in geodesy as
a reference surface (vertical datum) in the system of orthometric heights. Vectors yg in
the geocentric coordinate system can be used to localize the geoid S, in a 3-D space.
By definition, the reference ellipsoid generates the reference gravitational field with the
reference ellipsoid being its equipotential surface with the reference potential U equal to
the value of the actual potential V' (neglecting again the centrifugal component) at the

geoid, i.e., U, =V, = const. Then

Vivel < lxls FVE] = & [[F1KGye) ] dS,lve) (29)

The convolution in Eq. (25) disappeared but the integration surface S, and its surface
element dS; are unknown and should be estimated in terms of the geocentric vectors yg.
The parameter f(V) on the left-hand side of Eq. (29) represents the observed value and
the reference gravitational potential U, at the reference ellipsoid is assumed to be known.
At the moment, we also have a vector description of the gravity field in contrary to the
scalar description in Eq. (25) in terms of the potential. This is quite natural since the
geoid is geometric representation of the gravity field in a 3-D space. We will see that in
geodesy one scalar parameter can be used even for its description taking the advantage

of the known reference ellipsoid.
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Thus, we have formulated two alternative solutions: 1— the gravitational potential V'
is solved for at the reference ellipsoid Se, see Eq. (25), and 2- the geoid S, is solved for in
terms of the geocentric vectors y, assuming the known value of the gravitational potential
at the geoid, i.e., the value of the reference gravitational potential U, at the reference
ellipsoid S,, see Eq. (29). Perturbation theory is applied to both solutions offering the
well known advantage: small numerical values are extracted from erroneous observations
increasing significantly the relative accuracy of the resolved parameters. Only deviations
of the actual potential V' from the reference gravitational potential U called the disturbing
potential T = V — U is being solved in the former solution. Alternatively, geometric
deviations of the geoid from the reference ellipsoid Ay = ys — ye are estimated in the
latter solution. Moreover, the vector description in this solution can be replaced by the
distance of the geoid from the reference ellipsoid (geoidal height N) along the ellipsoidal

surface normal represented by the unit vector e, i.e.,

N = (Ay,e,). (30)
Then the transformations in Eqgs. (25) and (29) can symbolically be written as follows:
[y — 1T(S) A f(T) — N(U.) . (31)

The solution represents the disturbing potential 7" at the surface of the reference ellipsoid,
i.e., deviations of the gravitational potential V' from the reference potential U at the
reference ellipsoid, and/or the geometric deviations N of the geoid from the reference
ellipsoid along the ellipsoidal surface normal. Thus, only scalar quantities are solved for
in both cases. The functional f(7') in Eq. (31) actually represents observed values that
were reduced for the reference field. Once the relationship between the observables and
the unknown gravity potential is established (mathematical model), this reduction can
easily be performed. The simplest example offers ground gravity as the observable and
the gravity disturbance as its reduced form. Equation (31) also demonstrates that both
geometry and gravity field of the reference ellipsoid play a very important role in gravity

field modeling.

3 Gravity field mapping from space

Using the elementary properties of the Earth’s gravity field such as conservativness and
irrotationality, its description is possible using the gravity potential. While it cannot be
directly observed, ground gravity observations have been collected for more than hundred
years. Historically, gravity observations are connected with the names of Galileo Galilei
(gravimetry) and Lorand E6tvos (gradiometry). Their contributions honor derived units
used in gravimetry (Gal = cm s72) and gradiometry (E6tvos = s7), respectively. Most of
available data nowadays represent discrete ground gravity observations that have slowly

been replaced by airborne data in recent years. However, state-of-the-art techniques in
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the last six years are related to gravity-dedicated satellite missions. They provide globally
distributed spaceborne gravimetric and gradiometric data.

Generally, spaceborne data from gravity-dedicated satellite missions should fulfill the
following fundamental criteria:
— uninterrupted tracking in three dimensions;
— measurement or compensation of disturbing effects caused by non-gravitational forces;
— orbital altitude as low as possible;
— sufficient sensitivity to counteract gravity field attenuation.
To meet these requirements, three different concepts of spaceborne gravity field mapping
had been proposed: 1- satellite-to-satellite tracking in the high-low mode, 2— satellite-
to-satellite tracking in the low-low mode, and 3— satellite gradiometry. All these three
concepts were materialized in corresponding missions with two of them orbiting the Earth

already. The third mission is under development with a proposed launch date in 2007.

3.1 Satellite-to-satellite tracking in the high-low mode

The concept of satellite-to-satellite tracking in the high-low mode (HL-SST) is relatively
simple. An artificial Earth’s satellite is equipped with a Global Positioning System (GPS)
receiver and three-axis accelerometer (ACC). While the orbital trajectory of the satellite is
determined accurately through GPS tracking (pseudo-ranges and carrier phases) to the
centimeter precision level, the accelerometer at the satellite’s centre of mass measures
non-gravitational forces such as air drag, Earth’s albedo and solar radiation. Generally,
the satellite is in a free fall caused mainly by Earth’s gravitational pull. Differentiating
the estimated trajectory of the satellite in time, its velocity and acceleration vectors
can be derived. If reduced for measured effects of non-gravitational forces as well as
computed gravitational attraction of other bodies (Moon, Sun, eventually other planets),
the gravitational potential can be estimated via fundamental physical laws such as the

equation of motion.

Figure 1: The CHAMP satellite and its accelerometer (Astrium GmbH)
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The first satellite of this type, and the first gravity-dedicated satellite mission ever,
is the German Gravity And Magnetic Field Mission CHAMP (Reigber et al. 2002). Its
acronym is originating in the alternative name CHAllenging Minisatellite Payload. The
CHAMP satellite was launched on July 15, 2000 into an almost circular, near polar orbit
(inclination of 87 arcdeg) with an initial altitude of 454 km. The reason for choosing an
almost circular and near-polar orbit is the advantage of getting a homogeneous and almost
complete global coverage of the Earth’s sphere with orbit to resolve the gravitational
potential. The relatively high initial altitude was chosen to guarantee a multi-year mission
duration even under severe solar activity conditions. The initial design lifetime of the
satellite system (five years) was extended at least for another two years.

In the accelerometer, a proof-mass is floating freely inside a cage supported by an
electrostatic suspension. The cavity walls are equipped with the electrodes that control
the motion (both translation and rotation) of a proof-mass by electrostatic forces. By
applying a closed-loop control inside the sensor unit, the proof-mass is kept motionless
in the center of the cage. The detected acceleration is then proportional to the forces
needed to fulfill this task. The CHAMP satellite also carries the laser retro-reflector that
allows to measure direct two-way ranges between a ground station and the satellite with
a single-shot accuracy of 1-2 cm without any ambiguities. These data are used for precise
orbit, determination in connection with GPS. Two advanced stellar compasses provide
high precision attitude information for all instruments fixed to the spacecraft body.

The primary science objective of the CHAMP mission is to provide highly precise
global long-wavelength features of the static Earth’s gravity field and its temporal vari-
ations. CHAMP thus contributes to investigations of the structure and dynamics of
the solid Earth from the core along the mantle to the crust, and of interactions with the
ocean and atmosphere. Besides the gravity field research, additional on-board instrumen-
tation allows for mapping the main and crustal magnetic fields of the Earth including
their space/time variability, and for global estimation of temperature, water vapor and
electron content within the atmosphere and ionosphere.

The CHAMP mission has one major advantage of being relatively simple, thus also
relatively inexpensive. Other two observation techniques discussed in next subsections are
more complicated involving either two satellites or more sophisticated instrumentation.
From this perspective, CHAMP was an ideal candidate for a pioneer gravity-dedicated
satellite mission. However, it does not comply to the fourth criterion required for gravity-
dedicated satellite missions: sufficient sensitivity to small features of the gravity field. The
classical approach of highlighting or emphasizing small features in physics — differentiation
—is first applied in the next two concepts. For the gravity field, CHAMP commenced the
international decade of global gravity models. Although the two follow-up missions su-
persede CHAMP in terms of both accuracy and resolution of derived gravity field models,
its observation technique (HL-SST) helps to de-correlate estimated Stokes’s coefficients

and makes in such a way current gravity field models much more reliable.
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3.2 Satellite-to-satellite tracking in the low-low mode

For satellite-to-satellite tracking in the low-low mode (LL-SST), two identical spacecraft
essentially in the same orbit and at a distance of few hundreds of km apart chase each
other (Wolff 1969). The relative motion of the satellites is measured with the highest
possible precision. Effect of non-gravitational forces can once again either be measured
or compensated for. Observed data — namely those related to the relative motion of the
satellites — can be used for deriving acceleration differences of the two satellites along their
line-of-sight. Through the equation of motion, these differences can directly be linked to
corresponding gradient differences of the gravitational potential. The two satellites can
theoretically be seen as a large 1-D gradiometer.

The first experiment of this type is the US-German satellite mission Gravity Recovery
And Climate Ezperiment (GRACE) launched on March 17, 2002 (Tapley et al. 2004).
The mission consists of two identical spacecraft following each other along almost circu-
lar, low and polar orbit (inclination of 89 arcdeg). The GRACE satellites fly 220 + 50
km apart. During the five-year lifetime of the mission, the relative motion of the two
satellites is measured using a very sensitive K-band ranging system (KBR) that senses
changes in separation between the two satellites. Moreover, the GRACE satellites are
also equipped with geodetic quality GPS receivers allowing for accurate orbit determi-
nation and accelerometers measuring a sum of all non-gravitational forces affecting the
satellites. The GRACE mission is thus based on satellite-to-satellite tracking in both the

low-low and high-low mode.

GPS 0CC
ANTENNA

Figure 2: The GRACE satellites and their anatomy (GFZ Potsdam)

The accuracy increase with respect to CHAMP is achieved by a K-band microwave link
that measures the exact separation distance and its rate of change to an accuracy of better

L. To consider precise attitude and non-gravitational forces, both satellites

than 1 pym s~
are again equipped with star cameras and accelerometers. The position and velocity of
the satellites are measured using on-board GPS receivers. The GRACE satellites could

be seen as two CHAMP satellites equipped additionally with the microwave ranger.
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The primary science objective of the GRACE mission is to provide precise global
and high-resolution estimates of the static and time-variable part of the Earth’s gravity
field. It is namely the long-wavelength component of the field and its temporal variations
(monthly solutions) that are being solved from the GRACE SST data. Additionally, GPS
measurements and its derived quantities of temperature and water vapor contribute to
climate variability studies and improved resolution of the fine structure of the ionosphere.
Estimates of time variable components of the gravity field helps for a better understanding

of time variable processes in oceanography, hydrology, glaciology or solid Earth sciences.

3.3 Satellite gradiometry

The satellite gradiometry is based on measuring second-order directional derivatives of
the gravitational potential improving further the sensitivity of observed data to small
features in the gravitational field. At the moment (January 2007) there is no gradiometric
mission in operation. The first gradiometric mission is under development. The Gravity
field and steady-state Ocean Circulation Explorer (GOCE) satellite will have a small cross
section of approximately 0.9 m?, and will be totally symmetrical to minimize the influence
of non-gravitational forces (Drinkwater et al. 2003). There will be no moving parts or
mechanisms to produce shocks. There will also be no sloshing effects as all the thruster
fuel is gas. The actuators for the orbit maintenance and along-track drag control is a

pair of ion thrusters. Smaller, proportional micro-thrusters are used for attitude control.

Figure 3: The GOCE satellite and its gradiometer (ESA)

GOCE will employ a three-axis electrostatic gravity gradiometer (EGG) that will
allow for the first time gravity gradients to be measured in all spatial directions. It is
designed specifically for determining the stationary gravity field. The measured signal is

the difference in gravitational acceleration at the proof-mass location inside the spacecraft
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caused by mass anomalies within the Earth. Exploiting these differential measurements
for all three spatial axes has the advantage that all disturbing forces acting uniformly
on the spacecraft, e.g., drag, thrusters resulting in linear or angular acceleration, can
be compensated for. The length of the baseline for an accelerometer pair is 0.5 m and
2Tt

is namely the extreme accuracy of the gradiometer that is expected to further improve

its noise within the measurement bandwidth is smaller than 3 mE = 3 x107'2 s

gravity field models, namely their medium-wavelength portion. The noise at the mE level
corresponds approximately to acceleration of aircraft carrier colliding with a snowflake.

The main final geophysical product will be a global gravity field expressed as a set
of coefficients where the gravitational potential is described with a spherical harmonic
expansion. The primary objective of GOCE is the provision of high-accuracy and high-
resolution models for the static part of the Earth’s gravity field. It is namely the medium-
wavelength part of the field that should complement the long-wavelength model based
on the GRACE data. Due to the short duration of the mission, temporal variations will
not be estimated in this case.

All three satellite missions are compared in terms of selected parameters in Table 1:

CHAMP GRACE GOCE
altitude (km) 454 485 250
orbital inclination (arcdeg) 87,3 89,5 96,5
orbital eccentricity 0,004 0,001 0,005
orbital period (min) 93 95 < 30
initial mass (kg) 522 2 x 485 1100
launch (month/year) 07/00 03/02 09/07
sensitivity (maximum degree) 50 100 200
payload for gravity recovery ~ ACC/GPS ACC/GPS /KBR GPS/EGG
mission duration (month) 60 60 24
institution GFZ NASA/GFZ ESA

Table 1: Selected parameters of current gravity dedicated satellite missions

4 Mathematical models

The problem of gravity field modeling based on spaceborne data was briefly outlined
in Section 2. Generally, we look for a mathematical model that would relate available
spaceborne observables to the unknown values, namely the Stokes coefficients of the
gravitational potential V},,,. According to transformations in Eq. (31), scalar-valued
perturbations of the gravitational potential and geometric deviations of the geoid from
the selected model (reference ellipsoid and its gravitational potential) can also be solved

for (perturbation theory at work).
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The link between observations f(V') reduced for the effect of the reference potential

f(U) and the unknown parameter 7' can be established as follows :

Vivel < Ix|: A7) = o [[ T F1KGxye) ] dS.(ve) (32)

This equation originates in Eq. (25) reducing both sides for the reference parameter

Vlvel < Ix|: SIUG] = ¢ [[ F1KGye) ] dS.v0) 33

This is the well known and in geodesy often used reduction of gravity field observables for
the reference potential. Depending on the mathematical model, this reduction may be
more or less complicated. Having a mathematical description of the reference potential
(Pizzetti 1911) and knowing the operator f, the reduction can easily be derived.

In order to keep this theoretical section short, mathematical models for inversion of
the GRACE SST data are only outlined in the next subsection. The GRACE data have
some unique features due to combination of spaceborne gravimetric and gradiometric ap-
proaches. Thus, they provide a good example for other spaceborne gravity data discussed

in this text.

4.1 Inverting data of type GRACE

For the GRACE mission, position, velocity and acceleration vectors of both satellites in
the geocentric Earth-fixed coordinate system, i.e.,

T T . . . 1T
] ' x=[d § Z]

x=[z y z] , x=[1 y 2 , (34)
can be derived from GPS code and carrier beat phase observations. The first- and second-
order time derivatives are identified by a dot and by a double dot, respectively. The space
segment of the GRACE mission consists of two satellites following each other along a
similar orbit. Let us assign the leading satellite with the index 1 and the trailing satellite
with the index 2. Positions of the satellites and their derivatives will be then labeled with
corresponding indices. An operator 0 for differences between functions corresponding to
the positions of the two satellites is used throughout the subsection. Vector differences

between the two satellites in position, velocity and acceleration are then given as follows:
5X:X2_X1, (S}.C:}.CQ—}.Cl, 6X:X2_}&1 (35)
The LL-SST provides the inter-satellite range, e.g., (Blaha 1992),

0 = J<Oox|dx> =|dx]| . (36)

Considering the unit vector of the inter-satellite direction (line-of-sight)

e = e, e ez]T:(S—X, (37)
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the LL-SST data can be used for derivation of the first-order time derivative of the range

called herein inter-satellite velocity
0 =<dX|e>+<dix|é>=<ox|e>, (38)

as well as of the second-order time derivative called herein inter-satellite acceleration,
e.g., (Rummel 1980),

0% 2 — ¢

0
Above mentioned SST data are provided by several sensors on board of the GRACE
satellites. The HL-SST data are measured by the Black Jack GPS receivers. Raw GPS
data (code and carrier beat phase observations) are processed in order to recover the
position and velocity vectors of the GRACE satellites in the terrestrial (Earth-fixed)

coordinate system. The acceleration vector is obtainable by numerical differentiation from

0 =<dX|e>+<dx|é>=<kX|e> + (39)

the velocity vector rotated to the celestial (non-rotating) coordinate system. So-called
kinematic orbits are generated by analysis centers responsible for processing GRACE
data. They are usually computed at the sampling rate of 30 seconds with the accuracy at
the level of 5 cm. The LL-SST data are obtained from the K-band ranging system. They
can be found among data supplied by the GRACE data centers at the Jet Propulsion
Laboratories and GeoForschungsZentrum. The inter-satellite range can be derived with
the total error of 10 um at the sampling rate of 0.2 Hz. Moreover, the GRACE satellites
are also equipped with SuperSTAR accelerometers. Non-gravitational acceleration can be
derived with the precision of 100 uGal at the sampling rate of 0.1 Hz. The most significant
non-gravitational forces affecting the motion of the GRACE satellites are the atmospheric
drag and solar pressure radiation, see, e.g., (Montenbruck and Gill 2001). The data from
the on-board sensors considered for formulation of a mathematical model thus represent
time series of the position, velocity and acceleration vectors, inter-satellite ranges and
their time derivatives, and vectors of non-gravitational acceleration, respectively. The
argument of time will be omitted in the following text referring our derivations to a
single epoch. It is acknowledged that effects computed from various geophysical models
(various tidal and loading effects) must also be considered for deriving a complete model.
Namely high-frequency variations of the gravitational field must be modelled to avoid
aliasing errors.

In the inertial reference frame, acceleration of a unit-mass satellite can be expressed

according to Newton’s law of motion as follows:
X = — VV(x). (40)

The inertial frame is approximated by the non-rotating geocentric celestial frame. The
transformation between the terrestrial and celestial frames is well known (McCarthy and
Petit 2004). Since all vectors can easily be transformed between the two frames, no new

notation is introduced herein. It is obvious that the vector quantities must be related
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to the same coordinate system when used in the same equation. Only the gravitational
effect of the Earth’s masses is considered in Eq. (40). The inter-satellite acceleration
vector of the GRACE satellites can be then written

5% = — 6VV(x) . (41)

Combining Eqs. (39) and (41), the observation equation for the GRACE observables can

be written in the form
0% |? — ¢ — 006 = <dVV(x)]|dx> . (42)

This equation can be considered as an observation equation for the SST data of type
GRACE. The equation is not complete as was indicated above: additional terms must
be included in real data analysis (non-gravitational and geophysical effects).

Equation (42) can be solved in the spectral form by its combination with Eqs. (17) and
(19). The unknown parameters in this case are the Stokes coefficients V;, ,,,. Their number
must be limited by some maximum degree nmz. For the GRACE mission nmx & 150.
The obtained observation equation is linear with respect to the unknown parameters,
thus no other modifications must be done. Still, the large number of both observations
and unknowns create many problems for numerical solutions.

Alternatively, the unknown gravitational potential can be solved in the spatial form.
In this case, Eqs. (25) and (42) are considered. Replacing the reference ellipsoid by a
geocentric sphere S, : | y» |= R, their combination results in the integral form of the

observation equation (Novak et al. 2006)

. ) . 1
[P = =0 = = [ Vive) Hixixa ) dSi(y) (43)
with the scalar three-point kernel function
H(x1,X2,¥r) = <IVE(X,y,) | 0x > . (44)

For a single epoch, the integral kernel H relates the gravitational potential V' at the
spherical surface S, with the functional on the left-hand side of Eq. (43) derived from
the SST data of type GRACE. This makes the kernel function A different from typical
integral kernels used in geodesy that usually relate only two points such as the Stokes,
Hotine or Vening-Meinesz functions. The quadrature of the surface integral can be used

for its numerical evaluation, i.e.,

%UYWWW%M%wawﬁzwwmmmmMa (45)

The solution of Eq. (45) is then given in terms of surface mean values of the function V'
that correspond to normalized discrete surfaces AS, = sinf Af A\. If applied correctly,
the spectral and spatial solutions should be identical: the harmonic analysis of computed

mean values of the function V' should provide the Stokes coefficients V,, ,,, and vice versa.
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Let us look now at the gradiometry with GRACE (Keller and Hess 1998). Assuming

the satellites are identical, the radius vector of their barycenter B is estimated as follows:

Xp = w (46)

The gravitational potential at the first satellite can be related to the barycenter
ViV(x) = VgV(x) + Vg VEV(x) (x; —x5) , (47)
while only the linear term of the expansion series was considered. Similarly,

VoV(x) = VV(x) + V@ VV(x) (x2 —x5) . (48)
Keeping the linear approximation in mind, subtracting Eq. (47) from Eq. (48) yields
IVV(x) = Vp® VgV(x) x . (49)
Substituting Eq. (49) into Eq. (42) yields the gradiometric observation equation

0% > — 0 — 60 =< Vp®VeV(x)dx|dx > . (50)

Combining Eqgs. (25) and (50) then results in the spatial form (Novék et al. 2006)

| 0X |2 - 9.2 — 00 = Si //T V(Yr) g(XBaYr) dST(Yr) ’ (51)

with the scalar-valued two-point kernel function
G(xp,yr) =< Vp®Vp K(x,y,) 0x|dx > . (52)

In this case, only the barycenter of the GRACE satellites and the computation point are
related through the integration kernel G. Even Eq. (50) can be solved in the spectral
form by expanding the function V' into the spherical harmonic series.

Equations (42) and (50) represent two observation equations relating the SST data of
type GRACE to the unknown gravitational potential. In the first equation, the potential
gradient difference is used while the second equation contains the full gradiometric tensor
(matrix direct product of the gradient). The surface integrals in Eqgs. (43) and (51) can be
evaluated without problems related to the eventual singularity of the respective integral
kernels. Moreover, the series representation of the kernel functions will always be degree-
limited.

5 New gravity models and their applications

Prior to the CHAMP and GRACE missions, the long-wavelength part of the Earth’s
gravity field from spaceborne data was determined from various tracking measurements
of a greater number of satellites. Unfortunately, these data were of varying quality and

restricted by geographical coverage. Consequently, the accuracy and spatial resolution of
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derived gravity field models were limited with most of the satellite contributions restricted
to wavelengths of 1000 km or longer. At shorter wavelengths, the errors were too large to
be useful. Thus, improvements to gravity models at medium and short wavelengths had
to come from the use of ground, marine and airborne gravity measurements. However,
they are also of varying vintage, quality and geographic coverage. Due to the restricted
access to observed data, global gravity models were also produced only by a limited
number of research teams.

The situation changed dramatically with the launch of the CHAMP and GRACE
satellites. After some initial testing phase, their observed data became available to various
research groups worldwide. Consequently, a series of new global gravity models has been
released. Already the first results based on preliminary analysis of short spans of observed
data showed significant advances in both the accuracy and resolution of the recovered
gravity models. Figure 4 depicts the anomalous gravity field based on decades of pre-
CHAMP and pre-GRACE data compared to the model based only on 110 days of GRACE
observations. The improvement in the resolution of the gravity model (units of mGal) is

clearly visible.

Figure 4: Pre-GRACE vs. GRACE-based gravity models (GFZ Potsdam)

Due to a large involvement of the GeoForschungsZentrum (GFZ) Potsdam, German
research centre for geosciences, in both missions, only their results are briefly summarized
herein. Other teams have contributed in this field but it is out of the scope of this text
to list all of them. GFZ results are used to document the recent progress in accuracy and
resolution of the new global gravity models. Based on the CHAMP SST data, a series of
gravity field models was computed: starting with EIGEN-1S, the first model including
CHAMP data, up to EEGEN-CHAMPO03S derived from 33 months of data. The estimated
accuracy of the latest model EIGEN-CHAMPO03S is about 5 cm and 0.5 mGal in terms
of the geoidal height and gravity, respectively, for spatial resolution of D = 400 km.
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The first GRACE gravity model EIGEN-GRACEOQ1S was released in July 2003. The
model based on 39 days of preliminary GRACE flight instrument data gathered in August
and November 2002 was about 5 times more accurate than the latest CHAMP field and
about 50 times more accurate than the best pre-CHAMP satellite-only gravity model for
spatial resolution of D = 1000 km. The medium-wavelength gravity field model EIGEN-
GRACEO02S was calculated from 110 days of the GRACE tracking data. This model fully
independent from oceanic and continental surface gravity data was derived solely from
SST data of GRACE. It resolves the geoid with the accuracy of better than 1 mm at
spatial resolution of D = 1000 km, i.e., it is about one order of magnitude more accurate
than then CHAMP-based global gravity models and more than two orders of magnitude
more accurate than the latest pre-CHAMP satellite-only gravity model GRIM5-S1. The
accuracy of gravity models based on pre-CHAMP, CHAMP and GRACE data in terms

of the accumulated error in the geoidal height is compared in Figure 5.
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Figure 5: Accuracy of the geoid vs. spatial resolution (GFZ Potsdam)

5.1 Geodesy

The global geoid estimated with centimeter accuracy and global gravity model with 1-2
mGal accuracy at about 100 km spatial resolution, such as expected from combination of
GRACE and GOCE SST data, would also serve some fundamental geodetic applications;
among them the most important ones are:

1. Leveling with GPS. With the aid of geoidal heights above the reference ellipsoid,
any geometric heights determined by GPS or any follow-on system, are convertible to
heights above sea-level. These physical heights still keep their importance since they
indicate what is up and down throughout science and engineering. This new technique will

revolutionize height determination and make it much less time consuming and expensive.
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2. Unification of height systems. There are still a large number of unconnected height
systems around the world. Each system refers to a reference point, usually a benchmark
close to the sea and connected by leveling to mean sea-level obtained by a tide gauge.
The discontinuity in height systems is of no importance as long as there is no requirement,
to compare height values from the various systems. In the past, discontinuities had to
be accepted whenever different geographical areas (with their individual height systems)
were separated by sea. With the new accurate geoid, it will be possible to connect all
height systems with centimeter precision, provided at least one benchmark in each height
system is equipped with some space positioning technique such as GPS.

3. Inertial navigation. A principle of inertial navigation is quite simple: accelerometers
measure motion of some moving platform and single and double integration yields its
velocity and position differences. Changes in the orientation of the accelerometer triad
are taken into account by gyros. However, one fundamental source of error is that the
accelerometers measure not only motion of the platform, but the sum of its kinematic and
gravity acceleration. At present, the gravity part is taken into account via the ellipsoidal
gravity model. As a consequence, deviations of the actual and ellipsoidal gravity field are
interpreted erroneously as platform accelerations. Precise knowledge of the gravity field
will drastically reduce this source of error.

4. Orbit determination. New accurate gravity field models will provide a significant
improvement in orbit computations for all Earth-orbiting satellites. They will lead to a
better understanding of physics behind orbit perturbations. Especially for low-orbiting
satellites, such models will enable separation of perturbations due to the static gravity
field and those due to other perturbing forces. The latter do not only include non-
conservative forces caused by air drag and solar radiation, but also perturbations caused
by the solid Earth and ocean tides. It is foreseen that some significant improvements can

be made in modeling these perturbations.

5.2 Solid Earth and oceanography

As in the case of other planets, the gravity field of the Earth is an essential quantity for
probing its interior structure and for modeling of its dynamical behaviour under various
circumstances, such as heating from the interior, redistribution of masses between solid
and fluid parts, and loading of its surface.

In solid-Earth physics the production of the gravity field model is not the primary
goal. It rather aims at the provision of a detailed 3-D image of density variations in the
lithosphere and upper mantle, as derived from a combination of gravity, seismic tomog-
raphy, lithospheric magnetic-anomaly information and topographic models. The density
information then allows for precise quantitative modeling of sedimentary basins, rifts,
tectonic motions and sea/land vertical changes. The latter is of particular importance

for estimation of global sea-level variations. Further, the density contributes significantly
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to the better understanding of the occurrence of subcrustal earthquakes, a long-standing
geophysical modeling objective which will lead to significantly improved quantification of
various seismic hazard risks.

In oceanography, the mean dynamic ocean topography derived from the new global
geoid in combination with precise altimetry, will allow for determination of practically
all ocean current systems in terms of location and amplitude, from the strongest through
to the weaker deep-ocean and coastal current systems. In particular, knowledge of the
marine geoid with centimeter accuracy and spatial resolution at the level of D = 100 km
or better will ensure:

— mapping of short-wavelength features of the dynamic topography to 1-2 cm accuracy
on a global basis;

— notification of practically all features within the mean geostrophic current field by the
improved knowledge of the dynamic topography:;

— better understanding of the role of the positions, strengths and dynamics of the short-
spatial scale fronts and jets in controlling and influencing the ocean circulation;

— significant reduction in oceanic transport and global ocean heat budget uncertainties.

Each area of application for the new gravity models has specific accuracy requirements

that are summarized in terms of geoidal heights and gravity in Table 2:

Application accuracy accuracy resolution
geoid (cm) gravity (mGal) (km)

Geodesy :

leveling by GPS 1 100-1000
unification of height systems 1 100-20000
inertial navigation ~ 1-5 100-1000
orbit determination ~ 1-3 100-1000
Solid Farth :

upper-mantle density 1-2 100
continental lithosphere :

— sedimentary basins 1-2 50-100
— rifts 1-2 20-100
— tectonic motions 1-2 100-500
— seismic hazards 1 100
oceanic lithosphere 0.5-1 100-200
Oceanography :

short-scale 1-2 /0.2 100 / 200
basin scale ~ 0.1 1000

Table 2: Accuracy and resolution requirements for different applications
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6 Conclusions

The new gravity-dedicated satellite missions discussed in this lecture have been providing
high-quality tracking data that can be used for production of new global models of the
Earth’s gravity field. These geodetic products including the static field and its temporal
variations are of both unprecedented accuracy and spatial resolution. Combining the
low-low satellite-to-satellite tracking data (GRACE) with spaceborne gradiometric data
(GOCE), the static gravity field should be resolved with the accuracy of 1 mGal for spatial
resolution (half-wavelength) of 100 km. Geometry of the gravity field in terms of the geoid
should be known for identical resolution with the accuracy of 1 cm. Besides the static
field, its temporal variations are also estimated. Namely the GRACE mission contributes
to this task allowing for recovery of monthly solutions. Although their spatial resolution
is smaller than that of the static field, their analysis will still allow for a large number of
investigations related to mass shifts within the solid Earth, oceans and atmosphere. It can
be expected that spaceborne data from these satellite missions either already collected or
still to be gathered within the next years will introduce a new area of multi-disciplinary
research in solid Earth physics, oceanography, and geodesy itself.

In view of recent changes of global climate and various natural disasters affecting
people around the world with an increasing frequency, these new geodetic products are of
a great importance. They help researchers in different geosciences to understand better
the full complexity of the Earth’s system and interactions of its various components.
They are already now many phenomena, that can be studied through the new gravity
field models, and new are still emerging. Sea-level changes, changes in ocean circulation,
volume, temperature and salinity, solid mass movements, ice mass changes — all these
phenomena influence our everyday life. To support the sustainable development of the
entire human society and to protect its living environment, the reliable knowledge of all
these processes will be extremely important.

For the geodetic community, the current era is very exciting with instrumentation
providing excellent observational material that is moreover available to all interested
parties. Thus, even the Czech geodesy, having some excellent record in this field starting
with the first published estimation of the Earth’s flattening based solely on spaceborne
data of the first artificial Earth’s satellite Sputnik by Prof. Emil Buchar in 1957, has the
opportunity to contribute to these efforts. It is namely the duty of current and future
academic staff to get talented students involved in the geodetic science — one of the oldest

scientific disciplines.
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