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Summary

The text first provides a brief introduction into the theory of the space-time modulation, coding
and signal processing for MIMO (Multiple-Input Multiple-Output) channel. Then, we focus
in more detail on the nonlinear space-time modulation, coding and nonlinear receiver signal
processing in MIMO systems. We show the results for information theoretic limits of the finite
alphabet nonlinear space-time modulation in MIMO channel. We develop trellis code design
rules for the nonlinear space-time modulation. Finally, we concentrate on the nonlinear pro-
cessing of the space-time CPM signals in MIMO channel. Particularly we develop Information
Waveform Manifold (IWM) based signal preprocessing. We analyze its information efficiency
and the multiplexing properties of the IWM based discriminator.
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Souhrn

Text nejprve poskytuje stručný úvod do problematiky časo-prostorových modulacı́, kódovánı́ a
zpracovánı́ signálu pro MIMO (Multiple-Input Multiple-Output) kanál. Následně se podrobně
zabýváme problematikou nelineárnı́ch časo-prostorových modulacı́, kódovánı́ a nelineárnı́ho
zpracovánı́ signálu pro MIMO systémy. Předkládáme výsledky pro informačně teoretické li-
mity nelineárnı́ časo-prostorové modulace s konečnou abecedou v MIMO kanálu. Dále ukazu-
jeme metody návrhu mřı́žkového kódu pro nelineárnı́ časo-prostorové modulace. V závěru se
zabýváme nelineárnı́m zpracovánı́m časo-prostorových CPM signálů v MIMO kanálu. Zejména
se jedná o zpracovánı́ signálu založené na IWM (Information Waveform Manifold) přı́stupu.
Analyzujeme jeho informačně teoretickou účinnost a multiplexnı́ vlastnosti IWM diskriminátoru.
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1 Introduction and Motivation

1.1 Motivation

Physical layer processing algorithms (modulation, coding, signal processing, synchronization,
equalization) are the most critical part of the radio communication system. They directly influ-
ence the effectiveness and performance of the utilization of very sparse natural resource — the
radio spectrum. Any fault or deficiency on the physical layer processing design is highly paid
by decreased performance and low utilization of the propagation medium.

Decades of effort were devoted to the search of better modulation, coding, more effective
receiver signal processing. But only at the end of the last decade, there appeared a new break-
through. It was the appearance of the idea of having multiple antennas both on transmitter and
receiver part together with dedicated multichannel Space-Time (ST) modulation, coding and
signal processing. It was shown that such Multiple-Input Multiple-Output (MIMO) system has
much higher information capacity and reliability comparing to the traditional scalar system.
This was a start of enormous research activity taking a new fresh wind into the radio mobile
communications.

1.2 Current state of art

The research activity in the area of Space-Time Coded (STC) modulations for MIMO commu-
nication systems attracted a lot of attention in recent years. A huge number of results is already
available (see e.g. [1] and the references therein). The topic is investigated from number of
viewpoints starting with the channel capacity evaluation (see e.g. [2], [3]) and going into the
synthesis of the space-time modulation (e.g. [4]) and demodulation, detection and synchroniza-
tion signal processing algorithms [1], [5].

1.3 Nonlinear ST modulation, coding and signal processing

A vast majority of the research results in MIMO communications however focused so far on the
linear modulations, coding and signal processing methods. The reasons for that are various, but
one of the most important is their relatively easy mathematical tractability. On the other side,
nonlinearmodulations, coding and signal processing provide some very attractive benefits (see
e.g. [6], [7], [8], [9]).

One of the most attractive features is the ability of nonlinear modulation to better respect
technology constraints of the practical communication system. Particularly, it is the technology
constraint on the transmitter side (e.g. the nonlinear C-class amplifier). The nonlinear modu-
lation is better suited to this situation due to its ability to put additional waveform constraints
on the signal. The most important property is the resistance to nonlinear distortion for con-
stant envelopeclass of modulations Space-Time CPM. We also have more degrees of freedom
and ability to decouple the constellation 2-nd order properties (distances) and actual waveform
shape reflecting the transmitter technology constraints. This opens wide possibilities for the
space-time code design.

On the receiver side, the most problematic technology constraint is the limited computa-
tional power available for the signal processing. The price paid for having more degrees of
freedom on transmitter side is in the higher waveform dimensionality of the nonlinearly mod-
ulated signal which increases the complexity of the receiver processing. On the receiver side,
there is also a number of processing and technology constraint areas that can effectively benefit
from the nonlinear modulation, e.g. the limiter receiver type and simplification of the receiver
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gain control. A nonlinearreceiver preprocessing for ST-CPM is a very effective way to reduce
the complexity of the receiver signal processing by reducing the dimensionality of the problem
and it can also directly address the constraints of the receiver processing path.

IWM based nonlinear preprocessing for CPM class NSTM is, apart of reducing the dimen-
sionality of the problem, providing one very special feature — capability of separatingthe
signals from individual transmitters without the necessity of any time-domain processing. Ev-
erything is achieved only in value-domain. This is a very specific feature particular only to non-
linear modulations with IWM processing not possiblewith traditional linear signal space pro-
cessing approach. We analyze multiplexing properties of the IWM phase discriminator based
on information-theoretic capacity region approach (see Sec. 6.8).

1.4 Outline of the text

Chapter 2 serves as a gentle introduction into the field of MIMO systems, modulation and
coding. We provide simplified view of a quite diverse and complicated area in a form suitable
for the reader not particularly being expert in the field.

Chapter 3 defines Nonlinear Space-Time Modulation (NSTM) and develops a suitable chan-
nel model and multidimensional waveform space description. Chapter 4 analyzes the funda-
mental information theoretic limits of the finite alphabet NSTM in MIMO system. Chapter 5
synthesizes a method of ST trellis coding for NSTM in Rayleigh MIMO channel. Chapter 6 de-
velops nonlinear Information Waveform Manifold (IWM) based receiver signal processing for
NSTM of the CPM type. Besides an explanation of the novel IWM approach, the essential IWM
processing properties are analyzed — the information transfer efficiency and the multiplexing
capabilities of the IWM discriminator.

Chapters 3, 4, 5, 6 form the core of the textand present author’s particular field of the
research expertise. Most of the results, particularly in Chapters 4, 5, 6 present a cutting-edge
research results. Especially the nonlinear processingin Chapter 6 is author’s unique contribu-
tion not being developed by any other author so far.
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2 MIMO Radio Communication System

2.1 System model

Spatial diversity MIMO (Multiple-Input Multiple-Output) communication system is generally
a communication system using a multidimensional channel where the channel dimensionality is
physically resolved in spatial dimensions. This is usually achieved by a multi-element antenna
arrays having a capability of distinguishing signals to/from various spatial angles by proper
space-time signal processing.

Each pair of transmit and receive antenna forms one component communication channel.
Depending on the particular properties of communication propagation media, it can be modeled
as time-variant or time-invariant, frequency selective or non-selective, stochastic or determin-
istic, etc., see [10], [11]. For the purpose of this introductory chapter, we constrain ourselves
to the most common channel type — randomly block-fading frequency non-selective Rayleigh
channel. In this type of channel the input-output equation is




x1(t)
...

xNR(t)


 =




h11 . . . h1NT
...

...

hNR . . . hNRNT






s1(t)
...

sNT (t)


 +




w1(t)
...

wNR(t)


 (1)

where NT , NR is the number of transmit and receive antennas respectively, si (t) is the trans-
mitted signal in i th antenna, xk(t) is the received signal in kth antenna and wk(t) is the additive
Gaussian noise (AWGN). The channel coefficients are constant for the block length t ∈ [0, T]
and forms the channel matrix H.

Time domain system description is fundamental, however the design of the Space-Time
Coding (STC) and investigation of the fundamental system limits requires easier to handle de-
scription. This is the waveform space model (see [12], [10]). Its inputs are directly the constel-
lation points of the codeword symbols sn and the receive signal is the matched filter projection
of the signal in time domain. In this chapter, we assume a linear modulation where the (com-
plex) dimension of the constellation point per one spatial dimension is equal to 1. The case
of nonlinearmodulation will be treated in subsequent chapters in more detail. The waveform
space signal input-output model is

xn = Hsn + wn, n ∈ {1, 2, . . . , N} (2)

where sn is NT dimensional spatial constellation point for nth symbol in the sequence, xn,wn

are NR dimensional projections of the received signal and AWGN into waveform constellation
space. The basis used for the projection of the signal into the waveform constellation space is
assumed to be Nyquist and orhonormal.

2.2 Fundamental limits

2.2.1 Channel capacity

One of the major attractions of the MIMO system is the increase of the information capacity of
the system. The underlying principle, shared in all flavors of the MIMO channels, is based on
our capability of transforming the channel into parallel orthogonalinformation streams. This
is mathematically done by Singular Value Decomposition (SVD) of the channel matrix

H = UDV H . (3)
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Figure 1: Channel eigenmodes.

U,V are unitary matrices (UHU = I ). Subsequently, we can formulate a new equivalent input-
output relationship of the channel

UHx︸︷︷︸
x′

= D VHs︸︷︷︸
s′

+ UHw︸ ︷︷ ︸
w′

, (4)

x′ = Ds′ + w′. (5)

This form of the model model is called channel eigenmodes since the matrix of the eigenvalue
square roots is diagonal D = diag(. . . ,

√
eigi (HH H), . . .) and it effectively transforms the

channel into parallel sub-channels. The number of parallel paths is given by the channel matrix
rank. See Fig. 1.

The MIMO channel capacity can be shown to be a sum of capacities of sub-channels

C =
NH∑
i=1

log2

(
1 + λi

NT
γ

)
[bit/s/Hz] (6)

under slightly simplifying assumptions of deterministic channel with NH = rank(HH H ), λi =
eig(HH H )i . The γ = ĒS/σ

2
w is the signal to noise ratio (SNR) where ĒS is mean total symbol

energy, σ 2
w is the AWGN variance per receiver. Compare this capacity with the capacity of

traditional scalar channel
C = log2 (1 + γ ) [bit/s/Hz]. (7)

We observe that the MIMO capacity scales logarithmically with the SNR the same way as
for the scalar channel. There is additional Rx antenna array gain represented through λi values.
However, the most important is the fact, that it also scales linearly with the channel rank which
is in turn given by the number of antennas and particular propagation environment. The linear
scaling with number of antennas holds (under some assumptions) also for random channel (see
the next chapters). It is very important to stress that this capacity increase is under the same
spectral and power limitations, i.e. the total transmitted power and spectrum occupied are the
same. The increase is purely due to increased number of antennas.
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2.2.2 Diversity

The diversity of the system is a measure of its capability do deliver the information over the in-
dependent paths. Those paths must be resolvable, i.e. the system capabilities must be such that
the individual path can be separated by suitable signal processing. The diversity can be achieved
in (absolute) time, relative (delay) time domain (frequency diversity), and spatial domain (mul-
tiple antennas). The MIMO (NT , NR) system achieves at maximum the spatial diversity of the
order L = NT NR. This situation is referred to as full spatial diversitysystem. The particular
code that allows to achieve that is called the full spatial diversity code. Diversity properties of
the code are given by the minimum rank of the codeword difference Gram matrix over all data
message pairs

[R(a,b)c ]i j =
∫ ∞

−∞
(si (t, d(a))− si (t, d(b)))∗(sj (t, d(a))− sj (t, d(b))) dt, i, j ∈ {1, . . . , NT}.

(8)
The diversity order of the code is L = NR mina,b rank R(a,b).

2.3 Space-Time Modulation and Coding

A Space-Time Coder performs coding in NT parallel streams that subsequently feed the NT

modulators. Typically those modulators are of the same type, e.g. all using linear modulation
with the same constellation alphabet. In the special case of linear modulation (the advanced
case of nonlinear modulation is treated later) we have

s(t) =



s1(t)
...

sNT (t)


 =

∑
n




q1,n
...

qNT ,n


 g(t − nTS) (9)

where �q(d) = [. . . , qn, . . .] the multidimensional space-time codeword, d is the vector of data,
and g(.) is the modulation impulse. The actual space-time code is the mapping d �→ �q.

Depending on the particular form of the mapping d �→ �q we classify the codes into the
following classes STTC (Space-Time Trellis-Code), STBC (Space-Time Block-Code), LSTC
(Layered Space-Time Code).

2.3.1 Diversity and coding gain

A performance of the STC is assessed through two basic criteria — diversity and coding gain.
Under some simplifying condition, we can show that the probability of detection error is gener-
ally following the rule

Pe(λ) ≈ Pe0e−λγ�c/2 (10)

where Pe0 is the linear scaling factor, �c is the coding gain, λ is the composite power transfer
of the propagation path and γ is the mean SNR.

Average error probability in random Rayleigh channel is averaged over the PDF of the
channel transfer

P̄e =
∫ ∞

0
Pe(λ)p(λ) dλ. (11)

The particular form of the p(λ) depends on particular code and signal processing used. Value
λ represents combined transfer of all L existing paths of the Lth order diversity system. The
combination can be either explicit (e.g. Maximum Ratio Combining) or implicit through proper
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Figure 2: Diversity and coding gain.

processing of the STC. The composite path has χ 2 distribution with 2L degrees of freedom.
The mean error probability is then

P̄e = Peo(1 + γ�c)
−L . (12)

We see that the diversity order increases the slope of the error curve while coding gain shifts the
curve in horizontal direction (Fig. 2).

For a slowly fading Rayleigh channel, the coding gain can be shown, under some simplify-
ing conditions, to be proportional to the product of nonzero eigenvalues� iλi . The code design
rule based on maximizing this is called determinant criterion [4].

2.3.2 Block space-time codes

Here, we present only a very basic STBC — the Alamouti code, the keystone of all codes based
on Orthogonal Design (OD). It will serve well for clarifying the idea behind.

The code uses NT = 2 Tx antennas and the block lengths is N = 2. It creates an orthogonal
codeword matrix

Q =
[

d1 −d∗
2

d2 d∗
1

]
↓ space

→ time

, QHQ =
[ |d1|2 + |d2|2 0

0 |d1|2 + |d2|2
]
. (13)

The decision metric of the decoder in the MIMO (2, 2) case is obtained with the help of
properly stacked receive symbols


x0,1

x∗
1,1

x0,2

x∗
1,2




︸ ︷︷ ︸
x̃

=




h11 h12

h∗
12 −h∗

11
h21 h22

h∗
22 −h∗

21




︸ ︷︷ ︸
H̃

[
d0

d1

]
︸ ︷︷ ︸

d

+



w0,1

w∗
0,2

w1,1

w∗
1,2




︸ ︷︷ ︸
w̃

. (14)

Equivalent channel matrix H̃ shares the same structure as original Alamouti codeword and it is
orthogonal

H̃H H̃ =
[ ∑

ik |hki |2 0
0

∑
ik |hki |2

]
=
∑
ik

|hki |2I 2. (15)

The decoding metric is obtained by

z = H̃H x̃ =
∑
ik

|hki |2d� + w� (16)

This output is equivalent to the virtual scalar channelwith AWGN and with equivalent gain∑
ik |hki |2. We clearly see that the system has full diversity order4.
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Figure 3: 2-space, 4-state, 4PSK Tarokh’s ST-TC.

2.3.3 Trellis space-time codes

The Space-Time Trellis Coded (ST-TC) modulation uses a trellis based description of the cod-
ing algorithm. The code produced is characterized by having unity rate. This guarantees no
bandwidth expansion over the uncoded system — there is one channel symbol per one incom-
ing data symbol. The redundancyof the channel symbol set is purely achieved by the expansion
of the alphabetused and not by the waveform dimension increase of the channel symbols.

The simplest possible example of such a code is original Tarokh’s 2-space, 4-state, 4PSK
code [4]. The code in fact artificially creates diversity in delay. The ST-TC can be optimized
for various channel types. ST trellis codes can have full diversity order and quite large coding
gains, that increase with number of the coder states. A large number of the codes can be found
in [1]. The decoding of the ST-TC must be (due to a presence of the memory) done through
trellis path search algorithms. The most typical is the Viterbi Algorithm.

3 Nonlinear Space-Time Modulation and Coding

3.1 Nonlinear space-time modulator

The Nonlinear Space-Time Modulation (NSTM) generates nonlinearlymodulated signal at each
transmitter antenna. The complex envelope signal on i -th transmit antenna is

si (t) =
∑

n

g(qn,i , t − nTS) (17)

where TS is the symbol period, g(qn,i , t) is generally nonlinearmodulation waveform, qn,i ∈
{q(m)}Mq

m=1 is a channel symbol and n is its sequence number. The channel symbol depends

on the modulator input data cn,i ∈ {c(m)}Mc
m=1 and modulator state σn,i ∈ {σ (m)}Mσ

m=1 through
time-invariant generally nonlinear function qn,i = qi (cn,i , σn,i ). Mq,Mc,Mσ are alphabet
(per-transmitter) sizes for channel symbol, input codeword, and modulator state respectively.

The function qi (cn,i , σn,i ) forms a discrete part of the modulator. It can be fully described
by the Finite State Machine (FSM) model. The function g(q, t) forms an expansion part (dis-
crete input, continuous waveform output) of the modulator. The set of all possible modulator

expansion part output waveforms is g(�, t) ∈ {g(m)(t)}Mq

m=1. The modulation functions are as-
sumed to be Nyquist ones. This guarantees that the expansion part is memoryless. Modulators
(discrete and expansion parts) in individual transmitter branches are independent and identical.
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3.2 Waveform and memory constraint

A proper choice of the discrete and expansion part of the modulator can be used to constrain
waveform and memory behavior of the signal. The most typical waveform constraint is the
constant envelope one. As an additional tool, the memory constraint can be imposed (affecting
mainly spectral properties). The most typical one is the continuous signal constraint. As an
practically important example, the CPM class of constant envelope modulationuses both of the
above mentioned.

A capability of having more degrees of freedom for imposing additional waveform and
memory constraints is particular to nonlinear modulations only. It allows to decouple waveform
and memory properties from the second order distance properties (affecting BER properties).
Linear modulations are severely limited in this aspect.

Modulator constraint—waveform only, IID channel symbols The constraint on the set
of waveforms g(�, t) ∈ {g(m)(t)}Mq

m=1 available through the set of channel symbols qn,i ∈
{q(m)}Mq

m=1 is the fundamentalone that controls the classof used channel waveforms(e.g. the
constant envelopeones).

Modulator constraint—waveform and memory The mapping cn,i �→ qn,i puts an addi-
tional optionalconstraint related to the memoryof modulation. It is useful to impose e.g. the
continuity of the phasewhich could not be modeled otherwise. Assuming (cn,i , σn,i ) �→ qn,i

being a one-to-onemapping, the sequence {qn,i }n forms a stationaryMarkov chain.

3.3 Channel

The channel is considered to be frequency flat block-constant fading (NT , NR) MIMO channel
with AWGN (Additive White Gaussian Noise). A received signal at k-th receive antenna is

xk(t) =
NT∑
i=1

hkisi (t)+ wk(t) (18)

where hki are channel coefficients and {wk(t)}NR
k=1 are IID zero mean rotationally invariant

complex white Gaussian noise processes with power spectrum density Sw( f ) = 2N0. Chan-
nel coefficients are zero mean IID complex Gaussian random variables with unity variance
E[|hki |2] = 1. We also form a (NR × NT) channel matrix [H]ki = hki .

3.4 Multidimensional constellation waveform space model

Arbitrary nonlinear modulation can be equivalently expressed using multidimensional wave-
form Euclidean signal space representation of the waveform corresponding to the n-th symbol
at one antenna

g(qn,i , t) = sT
n,i g(t). (19)

The vector sn,i = [sn,i,1, . . . , sn,i,Ns]T is the Ns dimensional signal space representation of the
waveform (constellation point) and g(t) = [g1(t), . . . , gNs(t)]T is vector of orthonormaland
Nyquistbasis functions. The space spanned by g(t) is called constellation (waveform) space.
In a special case of linear modulation, the dimension is Ns = 1. For nonlinear modulation, this
is however Ns > 1. The constellation points can be get e.g. by Gram-Schmidt procedure or
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Figure 4: Multidimensional constellation waveform space model of NSTM.

by informationally equivalent decomposition [9]. The constellation points are selected by the
output of the FSM qn,i = qi (cn,i , σn,i ) (Fig. 4).

An alternative to the orthonormal and Nyquist waveform space basis is the Laurent decom-
position [13]. It also produces linear expansion of the waveform. However, it possesses one
very important deficiency — the Laurent decomposition (including the tilted phase variants)
does notproduce orthonormal nor Nyquist basis. The orthonormality and Nyquist property is a
very important feature from the point of view of the code design and also for the receiver signal
processing (particularly the receiver metric evaluation).

The fact that the nonlinear modulation has waveform dimensionality Ns > 1 has a number
of positive consequences. It opens additional dimensions that can be used for the code design
increasing both the capacity and the potential diversity gain. See [12] and [9] for details.

3.5 Waveform Space channel model for NSTM

The received signal at k-th receive antenna (dimensionality Ns per antenna) in signal space
notation is

xn,k =
NT∑
i=1

hkisn,i + wn,k. (20)

This can be written in a compact form using space-stacked vectors and matrices

x̃n = H̃s̃n + w̃n (21)

where x̃n = [xT
n,1, . . . , x

T
n,NR

]T and similarly for s̃n and w̃n. The stacked channel matrix has a

Kroneckerstructure H̃ = H ⊗ I Ns (⊗ is a Kronecker product), see Fig. 5.
Channel eigenmodes

x̃n = Ṽ1D̃ṼH
2 s̃n + w̃n (22)

can be also shown to have a Kronecker structure Ṽ1 = V1 ⊗ I Ns, Ṽ2 = V2 ⊗ I Ns D̃ = D ⊗ I Ns

where H = V1DVH
2 is SVD decomposition, D = diag(. . . ,

√
λi , . . .) is matrix of eigenvalues.
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H̃x̃n s̃n w̃n

Ns

×NR

Figure 5: Stacked channel matrix with Kronecker structure.

4 Fundamental limits for NSTM

4.1 Channel capacity of NSTM with multidimensional waveform constel-
lation

The multidimensional waveform constellation increases the channel capacity. Each dimension
forms additional orthogonal information channel. This is however paid by increased signal
bandwidth. Fortunately, the signal bandwidth grows linearly with the dimension of the signal
only asymptotically. For signals with moderate dimensionality the grows can be much smaller.
Here, we summarize the capacity results for multidimensional waveform constellations (see
[12] for details).

4.1.1 Deterministic channel with no TxCSI

We assume that the channel state information is not availableat the transmitter and only total
symbol energy ĒS constraint is put in effect. In this case, the symbol energy is split evenly over
all spatial branches as well as over dimensions within the waveform constellation

Ēi = ĒS

NT
, E

[
|si,n|2

]
= Ēi

Ns
. (23)

The resulting capacity is

C = Ns

NH∑
i=1

log2

(
1 + λi ĒS

NsNTσ 2
w

)
. (24)

Very often, the following formal form of the capacity equation is useful

C = Ns log2 det

(
I + ĒS

NsNTσ 2
w

HH H
)
. (25)

An essential observation that can be drawn from the both cases is that the channel capacity
scales linearly with the rank of the channel NH and dimensionality of symbols. This means that
for a given fixed energy per symbol to noise variance, the MIMO system has great capacity
advantage over a scalar system.

4.1.2 Rayleigh IID fading channel

In the previous text, we treated an instantaneous channel capacity for a given channel matrix H.
However, for a random fading channel, we are rather interested in the average capacity. Let us
assume that the channel is ergodic, i.e. its randomness exhibits itself entirely within the channel
observation frame. On this condition, the ergodic average capacity (no CSI at the transmitter)
is get by averaging over all channel states

C̄ = EH [C]

= EH

[
Ns log2 det

(
I + ĒS

NsNTσ 2
w

HH H
)]
. (26)
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Figure 6: (a) Channel capacity (28) as a function of symbol energy to noise variance ratio. (b)
Channel capacity (28) as a function of symbol dimensionality.

In the case of nonergodic channel, we must resort to the outage capacity which is in fact a
probability distribution of instantaneous capacity.

The capacity averaging for a general case of arbitrary NT , NR is mathematically rather
involved task. Details of the derivation can be found in [2]. The resulting expression for IID
zero mean complex Gaussian channel transfer coefficients with unity variance is

C̄ = Ns

∫ ∞

0
log2

(
1 + ĒSλ

NsNTσ 2
w

)m−1∑
k=0

k!
(k + n − m)!

(
Ln−m

k (λ)
)2
λn−me−λ dλ (27)

where m = min(NT , NR), n = max(NT , NR) and Li
j (�) is Laguerre polynomial.

It can be shown [2] that for a special, however significant, case of large NT = NR the
average capacity per symbol again linearly scales with the dimensionality of the channel

C̄ = NsNR

∫ 4

0
log2

(
1 + ĒSν

Nsσ 2
w

)
1

π

√
1

ν
− 1

4
dν. (28)

We again see that the capacity grows with waveform space dimension. A graphical represen-
tation of this equation is on Fig. 6. It is very important to notice a limiting behavior of its
dependence on the symbol dimensionality for a constant mean symbol energy

lim
Ns→∞ C̄ = NR

ĒS

σ 2
w ln 2

. (29)

4.2 Symmetric capacity of finite alphabet NSTM

Fundamental capacity limits of the NSTM, in a specialbut practically important case of finite
symbol alphabet, can be assessed with the utilization of the informationally equivalent system
model (see [9]).

4.2.1 Symmetric capacity

We evaluate the symmetric capacity(denoted by C∗). It is defined as the mutual information
between channel input and output with the uniform distribution of input symbol probabilities
Pm = Pm,i = Pr{cn,i = c(m)} = 1/Mc for all i .

The true capacity (maximized over all input distributions) is equivalent to the symmetric
capacity if the capacity achieving distribution is uniform. It happens in many cases, but unfor-
tunately there is no general way of finding this. We can formulate number of sufficient(however
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generally not necessary) conditions for this situation. It can be shown [14] (based on a similar
arguments as in [11, sec. 7.1.2]) that one of such special situations is the following case of sym-
metricsignal set. If the set of all possible signal differences with suitable unitary transformation
does not depend on k, i.e.,

∀k∃U : {U(s(m) − s(k))}m = {s(m) − s(1)}m (30)

then the the capacity achieving probability distribution is uniform at the level of s symbols
(assuming IID symbols).

In the following, we assume no channel state information at the transmitter and the perfect
one at the receiver.

4.2.2 Capacity factorization per one eigenmode

An important consequenceof our ability (see [9]) to express the finite alphabet channel with
equivalent signal space representation of the waveforms directly applied to eigenmodes is the
possibility of the capacity factorization per one eigenmode. The total capacity per one channel
symbolis a sum of capacities per one eigenmode. Assuming identical modulators for each
antenna, it gives

C∗MIMO(α) =
NG∑
i=1

C∗i (αi ). (31)

Values αi are square roots of the eigenvalues of HH H , αi = √
λi = √

eigi (HH H). The index
i denoting the particular eigenmode/antenna is droppedfor the notation simplicity in the whole
subsequent treatment. The symmetric capacity per one eigenmode is obtained from the mutual
information expressed in terms of the entropy

C∗(α) = I (sn; yn)|Pm= 1
Mc

= H [yn] − H [wn]|Pm= 1
Mc

(32)

where H [wn] = Nh log2(2πN0e). The capacity depends on particular eigenvalue α.

4.2.3 Memoryless modulator—IID channel symbols

Dropping the details (see [9]), we get final expression for the symmetric capacity as

C∗(α) = − E[log2

Mq∑
m=1

1

Mc
pw(yn − αs(m))] − H [wn]. (33)

4.2.4 Channel symbols as a Markov chain

Now we extend the previous results into the case when the modulator discrete part has mem-
ory. The channel symbols at one antenna (droppingthe antenna index) depend on the data and
modulator state qn = q(cn, σn). The equivalent transmitted signal is then a function of the
channel symbols sn = s(qn). The sequence {qn}n forms a stationaryMarkov chain. The map-
ping qn �→ sn for the individual eigenmode is also assumed to be a one-to-one mapping. The
equivalent signal space representation of transmitted signal sn also forms a Markov chain with
the same transition matrix �. The output yn of the equivalent channel model forms a hidden
Markov chain.

The capacity evaluation in the case of the output sequence with hidden Markov property
is somewhat more involved. Average mutual information per one symbol can be expressed as
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function of entropy ratesĪ (sn; yn) = H̄[yn] − H̄ [wn]. As a consequence of being white, the
noise entropy rate is H̄[wn] = H [wn] = Nh log2(2πN0e). The entropy rate of the channel
output can be lower and upper bounded [15]

H̄ [yn] ≥ H [yn|yn−1, . . . , y1, y0, s0], (34)

H̄[yn] ≤ H [yn|yn−1, . . . , y1, y0]. (35)

The bounds approach the H̄[yn] as n increases. However, the required dimensionality of inte-
gration when evaluating the conditional entropy also increases making this rather mathemati-
cally intractable. Therefore we use a first order approximation

H [y1|y0, s0] ≤ H̄[yn] ≤ H [y1|y0]. (36)

Skipping details, we can get for these bounds H [y1|y0] = H [y1] and

H [y1|y0, s0] = −
∫ ∞

−∞

Mq∑
m=1

Pm

Mq∑
k=1

�m,k pw(y1−αs(k)) log2

Mq∑
j =1

�m, j pw(y1−αs( j )) dy1. (37)

It is easy to see that the symmetric capacity Markov model upper bound(first order ap-
proximation) CMUB∗ (α) is equivalentto the memoryless case CMUB∗ (α) = C∗(α) treated in the
previous section. Unfortunately, this makes the bound rather loose since it completely ignores
the memory. There is also, another trivial finite alphabet upper bound CTUB∗ = log2 Mc which
holds generallyfor arbitrary (e.g., no envelope constraint) finite alphabet modulation. A com-
bination of these two can be used to narrow the gap

C∗(α) ≤ CUB∗ (α) = min
(
CTUB∗ ,CMUB∗ (α)

)
. (38)

The symmetric capacity lower boundof one eigenmodeis

CMLB∗ (α) = H [y1|y0, s0] − Nh log2(2πN0e)
∣∣
Pm= 1

Mc
. (39)

4.2.5 Mean capacity for random channel

For random IID Rayleigh channel, the channel eigenvalues obey Wishart distribution [2]. But
unlike from the continuous-valued channel input, the eigenmode capacity is expressed in terms
of αi = √

λi . The total average ergodic symmetric capacity for IID symbols (and similarly
upper/lower bounds for the Markov case) is got by the averaging C̄∗MIMO = NH Eα[C∗(α)]
where NH = min(NT , NR). The averaging Eα is done with respect to the one eigenmode
marginal distribution from the unorderedjoint one. Clearly, the PDF is pα(α) = 2αpλ(α2)

where

pλ(λ) = 1

a

a−1∑
k=0

k!
(k + b − a)!(L

b−a
k (λ))2λb−ae−λ. (40)

The function La
k(�) is Laguerre polynomial, a = min(NT , NR), b = max(NT , NR).

4.2.6 Numerical results

The symmetric capacity behavior of the waveform and optionally memory constrained nonlin-
ear modulation in MIMO channel is now demonstrated on examples. The linear modulation
serves as a reference allowing to demonstrate the influence of higher dimensionality of nonlin-
ear modulation. We chose constantsymbol energy schemes. Examples share a common (2, 2)
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Figure 7: MSK waveforms (Ns = 2) in (2, 2) Rayleigh MIMO channel.
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Figure 8: 8PSK waveforms (Ns = 1) in (2, 2) Rayleigh MIMO channel.

Rayleigh MIMO channel with rank NH = 2. The mean received symbol energy to noise PSD
ratio per one receiver is γ = E[‖s̃‖2]/(2N0). We show also a result with no input alphabet
constrain[12] with the same dimensionality Ns for a comparison. Integrations in the capacity
expressions were evaluated by Monte Carlo method over the marginal eigenvalue. See Fig. 7
and 8 for the mean capacity results.

5 Trellis space-time coding for NSTM of CPM type

Design of the trellis code for NSTM of CPM type is (unlike for the linear modulations) very
difficult task. The main problem arises from the fact that we need to synthesize trellis coder
feeding the modulator subsystem having inherent memory. All space-time coder trellis tran-
sitions are therefore covered by additional layer of FSM from their impact on the transmitted
signal. Here we discuss design rules for trellis coded CPM type space-time modulation in
Rayleigh flat fading channel. For the details refer to [8].

5.1 Distance evaluation trellis

We have analyzed the mean squared distance of the trellis coded CPM type constant envelope
space-time modulated signal in a Rayleigh slowly flat fading spatial diversity channel with in-
dependent coefficients. It is shown that the distance evaluation depends on both—the modulator
trellis and on the distance evaluation trellis. The latter has a special properties regarding to its
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Figure 9: Example (RC2 CPM) of distance evaluation trellis with critical paths.

free paths. These properties—a critical pathand the distance increments behavior are the basis
for the space-time trellis code design. We identify the trellis code (data to channel phase sym-
bols mapping) design rules minimizing the mean squared distance. The critical path is shown
to be the determining factor. The overall procedure is general and is not exclusively related to
the spatial channel. It can be applied to the design of a code which is applied to any modulation
possessing itself a memory described by the finite state machine model.

5.2 NSTM-CPM trellis code design principle

The design principlecan be summarized into the following steps: (1) search for terminating
sequences, (2) classify them according to the length and determine the critical path in distance
evaluation trellis, (3) exclude the critical sequences from the stock, (4) use the remaining ones
for ST trellis code.

The first two steps related to the finding of critical paths are essential parts of the design
procedure. They are found with utilization of the distance evaluation trellis. It can be shown
that the distance evaluation is a procedure with memory described by distance evaluation trellis

ρ′2 =
∞∑

m=−∞
�ρ′2(m, �qm,�(m)) (41)

where its input �qm = q(1)m − q(2)m is channel symbol difference and the distance evaluation
state is �(m). The final terminal state identifies the terminating sequences. We can show that
squared distance increment is zero �ρ ′2(m) = 0 if and only if �(m) = 0 and �qm = 0. When
the final state in the distance evaluation trellis is reached paths with the final state �(m) = 0
stop to increase the accumulated squared distance. On the other side the paths with the final state
�(m) �= 0 continue to increase the accumulated squared distance. An example of the distance
evaluation trellis is on Fig. 9. Fig. 10 shows a simple 2-space 2-state (Mσ = 2) modulator trellis
for binary data (Md = 2) for RC2 CPM.
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Figure 10: An example of 2-space 2-state (Mσ = 2) modulator trellis for binary data (Md = 2)
for the RC2 CPM. The vectors at the left hand side are the channel phase symbol vectors. The
first is used for the upper and the second for the lower branch splitting at the given state.

6 Nonlinear Signal Processing for NSTM

6.1 Equivalent system model with composite coefficients

The transmitted signal passes through (NT , NR) MIMO flat fading channel. In our next treat-
ment, the signal preprocessing(not actual space-time decoding) is done separately at each re-
ceive antenna. For the sake of notational clarity, the particular indexof receive antenna will
be droppedin the rest of the paper. The signal at arbitrary receive antenna consists of the use-
ful signal a(t) which is a weighted superposition of signals from all transmit antennas and the
additive noise

x(t) = a(t)+ w(t) (42)

where we denote x(t) = Xejψ . The noise w(t) is the complex rotationally invariant white
Gaussian noise passed through the receiver front-end selectivity (not affecting the useful signal)
thus having finite variance σ 2

w and zero mean. The useful signal is

a(t) = Aejα =
NT∑
i=1

hi si (t, qi ) =
NT∑
i=1

Ai e
jαi =

NT∑
i=1

ai (43)

where hi = Hi ej ηi are channel coefficients and αi = φi + ηi are composite instant phases of
the modulator (si = ejφi ) and the channel, Ai = Hi , and ai = Ai ejαi . For the rest of the
treatment, the channel coefficients hi are assumed to be known. Assuming hi is known, we
can equivalently treat the equivalent system with composite (transmitted signal with channel)
amplitudes Ai and phases αi (see also Fig. 16).

In the remaining part of the chapter, we assume the system with NT = 2 transmit antennas.
The resulting equivalent system model (w.r.t. composite coefficients) for signal at arbitrary
receive antenna is

x(t) = Xejψ = Aejα +w = A1ejα1 + A2ejα2 + w. (44)

6.2 Information waveform manifold

The useful part a(t) of received signal (44) forms a curved (nonlinear) topological space, the
manifold. Since it is formed by the information carrying signal we call it Information Waveform
Manifold (IWM). A particular form of the IWM for CPM constant envelopeclass of modulation
allows a novel approach to the signal processing compared to the traditional Euclidean signal
space decomposition based one. The background of the IWM based preprocessing can be found
in [16], [17], [18].
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t

Figure 11: Two component CPM received signal IWM including two ambiguity modes (solid,
dashed).

A particular form of the 2-component CPM signal IWM is a cylinder-on-cylinder (Fig. 11).
Every manifold can be parametrized by its parametric space. The main advantageof the signal
processing on IWM is two-fold.

1. The dimensionality of the parametric space of the IWM for 2-component CPM signal is
equal to 3 (including time domain axis). The most obvious parametrization is {α1, α2, t}.
This dimensionality does not depend on the particular CPM modulation type and it is
typically much lower than the dimensionality of the traditional Euclidean signal space
expansion.

2. The useful signal lies on known curved space. This opens a wide range of nonlinear
processing possibilities not possible on traditional Euclidean signal space.

The concept of using the IWM receiver preprocessing consists of three basic steps.

1. Nonlinear projector on IWM.

2. Signal processing on the IWM (optional).

3. Isomorphism between IWM and decoder metric.

6.3 Nonlinear projector on IWM

The nonlinear projection operator z(t) = T [x(t)] is the actual operation that reduces the di-
mensionality of the problem. It can be performed as operator, i.e. the mapping including the
time domain, or as function z(t) = T (x(t)). The latter, called a sampledspace projector, is
generally suboptimal however much simpler. The full space projector can be replaced by the
sampled one followed by a proper signal space processing on the IWM.

A particular form of sample space IWM projector for two component CPM signal can be
based on constrained MLcriterion [16]

z = arg max
ǎ∈�

p(x|a) (45)

where � = {A1ejα1 + A2ejα2}α1,α2 is the useful signal IWM. The solution has a form of
parametric limiter z = χ(X)ejψ with AM/AM conversion Z = χ(X) given by (see Fig. 12)

χ(X) =




A1 + A2, X > A1 + A2

|A1 − A2|, X < |A1 − A2|
X, elsewhere

. (46)

Amplitudes A1, A2 are assumed to be known.
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Figure 12: Parametric limiter.

6.4 Signal processing on the IWM

A signal processing on IWM is an optional step. It can replace true full IWM projection op-
erator properly utilizing the properties of time-domain behavior of the signal on IWM. The
signal processing on IWM must use tools from the differential geometry ([19], [20], [21], [22])
to perform the signal processing operations (intrinsic vs. extrinsic operations). The IWM is a
curved space. The curvature generally stems from two sources. The first is a nonlinearity of
phase function β(t) in time. The second appears specifically in MIMO system where superpo-
sition of two cylindrical IWMs of CPM curves the space. A linear movement of the point on
parametric space (phases αi ) of NSTM-CPM corresponds to a curved movement with generally
non-constant curve velocity on the IWM. See [16] for details.

Assume a parametrized curve �(ξ) which lies in the manifold � which is embedded in the
Euclidean space. The length of the curve in the manifold between two points �(ξ1), �(ξ2) is
defined as

ρ(�(ξ1), �(ξ2)) =
∫ ξ2

ξ1

‖�̇(ξ)‖ dξ (47)

where �̇(ξ) is the velocity vector of the curve.
One of the simplest signal processing tools is the sample mean. Although it is simple, it

provides a nice insight into the problem of the signal processing on the IWM with application
on NSTM. Assume we are given points {ai }Na

i=1 on the manifold �. We define Intrinsic Sample
Meanas

āint = arg min
a∈�

∑
i

ρ2(a, ai ). (48)

Traditional mean calculated in the Euclidean space using ordinary Euclidean distance is called
Extrinsic Sample Mean

āext = arg min
a∈�

∑
i

‖a − ai ‖2. (49)

The extrinsic mean can be also interpreted as an evaluation of the average value in Euclidean
space 1

Na

∑
i ‖a−ai ‖2 with subsequent projection of this value on the manifold�. The intrinsic

and extrinsic values can substantially differ. The intrinsic value fully utilizes the knowledge of
the shape of the manifold including the possibly nonuniform velocity of the curve.

Example

In order to demonstrate the impact of the intrinsic evaluation, we consider this very simple
example which relates directly to the possible processing of the CPM class NSTM in MIMO
channel with additive noise. Assume two constant envelope signals with know magnitudes
A1, A2 in additive noise ζ . The signal point is z = A1ejα1 + A2ejα2 + ζ . The IWM of this
example is the parametric space� = {A1ejα1 + A2ejα2}α1,α2. Assume for the simplicity that the
signal z is already projected on the manifold �, i.e. z ∈ � (noise term ζ is generally different
from w). Our goal is to average the sequence of the observations {zi }i (e.g. the samples) of the
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Figure 13: Example of the evaluation of intrinsic and extrinsic mean.

signal z. The evaluated intrinsic and extrinsic mean is shown on Fig. 13. We used A1 = 1,
A2 = 2 and the sample points zi intentionally chosen such that their intrinsic mean is equal to
the true value. There are also shown the curves of α1 = const and α2 = const with equidistant
(intrinsic) increments. �

6.5 Isomorphism between IWM and decoder metric

At the end of IWM processing, we must provide a suitable metric for the outer space-time
decoder. This isomorphism can have various forms depending on the particular needs of space-
time decoder.

The decoding metric composed of individual component phase estimates is clearly one of
the attractive choices. The isomorphism can be constructed using a geometric approach (solving
the triangular problem) [16] where we assume that the Aejα is already on the IWM. The solution
has generally two ambiguity domains [α̂ ′

1 − α, α̂′
2 − α] ∈ {±[α̌′

1, α̌
′
2]
}

where (α̌′
1 ∈ [0,−π ],

α̌′
2 ∈ [π, 0])

α̌′
1 = − arccos

((
A2

1 − A2
2 + A2

)
/ (2A1 A)

)
, (50)

α̌′
2 = arccos

((
A2

2 − A2
1 + A2

)
/ (2A2 A)

)
. (51)

6.6 2-Component IWM Phase Discriminator

The particular form of IWM receiver preprocessing is the 2-Component IWM Phase Discrim-
inator. It consists of nonlinear sample space projector on IWM implemented as parametric
limiter (46) and decoder metric formed as estimates of composite phases α1, α2 for the actual
projectedpoint of the receivedsignal z = Zejψ (using the geometric approach). The solution
is [α̂1 − ψ, α̂2 − ψ] ∈ {±[α̌1, α̌2]

}
where (α̌1 ∈ [0, π ], α̌2 ∈ [−π, 0])

α̌1 = − arccos
((

A2
1 − A2

2 + Z2
)
/ (2A1Z)

)
, (52)

α̌2 = arccos
((

A2
2 − A2

1 + Z2
)
/ (2A2Z)

)
. (53)

One of the problems of the solutions (52), (53) is the two-fold ambiguity. The Fig. 14 (a)
clearly shows that ambiguity free solution (solution 1 chosen) of the triangular problem is de-
fined by condition for the true composite phases

α1 < α2 < α1 + π, α1 ∈ [0, 2π). (54)

This is shown on Fig. 14 (b). The solution for real received signal is then

α̂1 = ψ − arccos
((

A2
1 − A2

2 + Z2
)
/ (2A1Z)

)
, (55)

α̂2 = ψ + arccos
((

A2
2 − A2

1 + Z2
)
/ (2A2Z)

)
. (56)
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Figure 14: (a) Ambiguous solution of the triangular problem. (b) Ambiguity-free region for
solution 1.

The ambiguity free region (54) at the level of composite phases αi can be equivalently
achieved by a correct ambiguity resolution using proper precoding at the transmitter side (re-
stricting the values of φi ) and by assuming the known channel coefficients. For the rest of the
chapter, we will assume that the composite phases fulfill the condition (54) which is equivalent
to the perfect ambiguity resolution.

6.7 Information sufficiency of the nonlinear projector

The projector generally does not form a sufficient statistic [16]. In the ideal case, the projector
should have a property of sufficient statistic, i.e. it should preserve the information contents of
the channel symbols I (q̃; x(t)) = I (q̃; z(t)). The sufficiency condition at the level between
instant(sampled) phases α = [α1, . . . , αNT ]T and the sampledchannel output x (ESWS) or
projector output z (ISWM) is generally stronger but somewhat easier to evaluate I (α; x) =
I (α; z). This will be further considered.

The sufficiency condition is not generally fulfilled. Even in the simplest case of SISO single
component CPM in AWGN (x = Aejα +w) complete value (magnitude and phase) x = Xejψ

is needed. From the Neyman-Fisher factorization theorem for the sufficient statistic, it can be
inferred easily that the magnitude X and phase ψ in

p(x|α) = 1

πσ 2
e− X2+A2−2X Acos(ψ−α)

σ2 (57)

cannot be decoupled for the α estimation. The phase alone is not the sufficient statistic. Inde-
pendence of the stationary point on the X is not enough, see [23]. Therefore, it is a legitimate
question what is the information loss I (α; x)/I (α; z) caused by a particular projector.

A numerical evaluation of the sufficiency condition by comparing I (α; x) and I (α; z) for
various values A1, A2 (Fig. 15) shows a negligible loss of information at the low signal to noise
region. In the high signal to noise region, the loss tends to zero. Signal to noise ratio is defined
as
∑

i A2
i /σ

2. Notice that the particular case of A1 = 1, A2 = 0 corresponds to a scalar (SISO)
hard-limiter receiver.

6.8 Multiplexing Properties of the Discriminator

A constant envelope CPM class of NSTM modulations at multi-antenna transmitter is consid-
ered. Each receive antenna in MIMO system receives a superposition of CPM waveforms. The
useful signal at the receiver spans a curved space —IWM. Particularly it has a form of a cylinder
on cylinder for 2-component CPM signal. At the receiver, we use a nonlinear preprocessor con-
sisting of nonlinear projector on the IWM, optional processing on curved space and decoding
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Figure 16: System model of multiplexing IWM processing at one receive antenna.

isomorphism. A particular form of the preprocessor, the 2-component IWM phase discrimi-
nator, is analyzed. We show that the discriminator can separate individual instant phasesof
the component CPM modulations and therefore has multiplexing capabilities with respect to
the individual transmitted components. It creates parallel eigen-space like virtual channels. No
time domain processing is needed, the procedure fully relies on the curved space properties of
the IWM and thus is applicable with arbitrary outer space-time coding of NSTM-CPM. Infor-
mation theoretic analysis of the multiplexing properties based on capacity region is presented.
We show that the discriminator provides good separation of component phases.

6.8.1 Multiplexing IWM processing

The information carrying phases φi (t, qi ) are separated at receiver (at the level of composite
phases αi = φi + ηi ) thus allowing information multiplexing of the individual data q i streams
(see Fig. 16). It is very importantto stress that the whole multiplexing processingof the IWM
discriminator is purely done in value domain without any time-domain processing. Therefore it
is easily applicable with arbitrary outer space-time coding performed on phases φi .

6.8.2 Capacity region

The informationally equivalentsystem on the Fig. 16 is a system with two inputs α1, α2 (infor-
mationally equivalent inputs get from the knowledge of channel h1, h2 and φ1, φ2) and two
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outputs α̂1, α̂2. Let the Ri be the information rate between {αi , α̂i } defined separately for
m ∈ {1, 2}. The bounding conditions for these rates are given by capacity region

R1 < C1 = I (α1; α̂1|α2), (58)

R2 < C2 = I (α2; α̂2|α1), (59)

R1 + R2 < C12 = I (α; α̂), (60)

where α = [α1, α2]T and α̂ = [α̂1, α̂2]T . This capacity region is somewhat similar to that of
classical multiple access channel (see [15]). It has however one subtle but important difference.
The conditional mutual information in (58) and (59) has the output variable corresponding only
to one of the output, unlike as it is in multiple access case where both of them are considered.
The mutual information interpretation is the amount of information shared between single input
and single output given that the other one is not present or it is known (which is equivalent
— any of its influence can be subtracted). This is obviously the most favorable situation and
the rate Ri cannot exceed this value under any condition. The sum-rate condition evaluates the
total information throughput between both inputs jointly and both outputs where encoder and
decoder can use joint processing for both channels.

The capacity region allows to quantitatively asses the multiplexing properties of the system,
i.e. the level of separation of the virtual channels α̂1(α1) and α̂2(α2). The situation is demon-
strated on Fig. 17. The perfect multiplexing allows communication in channel α̂1(α1) on the
rate R1 without any influence of the rate R2 in the second channel (and similarly vice versa).

We define the multiplexing separation ratioas

κ = C12

C1 + C2
. (61)

Clearly, any value κ < 1 causes the capacity region (Fig. 17) to have upper right corner cut-out
by C12 condition. This corresponds to imperfect channel separation. The coefficient κ describes
a quality of channel separation, the lower κ the worse separation.

6.8.3 Approximation of the discriminator output

The evaluation of the quantities C1,C2,C12 in an exact manner is intractable. The difficulty
arises from two sources. The first is nonlinear projector z = χ(X)ejψ and the second one comes
from the nonlinear functions in (55), (56). Therefore we first try to find tractable approximation
of the discriminator output.

Both problems can be overcome assuming medium to large signal-to-noise ratio. In this case
the information loss caused by nonlinear projector is negligible [16]. We can then approximate
the solution by leaving out the projector and assuming that the noise level will be such that
conditions for solution existence hold. As a next step we can linearize the estimation error
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evaluation using proper evaluation of its tangential wt and radial wr components. See Fig. 18.
Skipping the details (see [18]) we get linearized estimation erroras

�α1 = wt

A
+ wr

A2 − A2
1 + A2

2

2A2 A1

√
1 − (A2+A2

1−A2
2)

2

4A2 A2
1

, (62)

�α2 = wt

A
− wr

A2 + A2
1 − A2

2

2A2 A2

√
1 − (A2−A2

1+A2
2)

2

4A2 A2
2

. (63)

We denote ˆ̃α = [ ˆ̃α1, ˆ̃α1]T and α = [α1, α2]T .

6.8.4 Approximation of the capacity region

The linearized discriminator model can be now used for evaluation of C1,C2,C12. The lin-
earized estimation error �α = [�α1, �α2]T has conditional PDF1 p�α|α(�α) which is zero
mean Gaussian with covariance matrix

C�α = σ 2
w

2

[ −4A2
2 2(A2 − A2

1 − A2
2)

2(A2 − A2
1 − A2

2) −4A2
1

]

A4 + (A2
1 − A2

2)
2 − 2A2(A2

1 + A2
2)

. (64)

The covariance is inherently a function of composite phases C�α(α) through the variable A(α).
Capacities obtained from the linearized estimation model are

C̃i = I ( ˆ̃αi ; αi |ᾱi ) = H [ ˆ̃αi |ᾱi ] − H [ ˆ̃αi |α], (65)

C̃12 = I ( ˆ̃α; α) = H [ ˆ̃α] − H [ ˆ̃α|α] (66)

where H [�] is the entropy, i ∈ {1, 2}, and ᾱi is a complementary input for αi (e.g. ᾱ1 = α2).
The multiplexing separation ratio for linearized model is κ̃ = C̃12/(C̃1 + C̃2).

Capacities are evaluated with the input distribution of α with independent components with
uniformdistribution over the ambiguity-free region(Fig. 14) and Gaussianlinearized estimation
error. Details of the mutual information evaluation are shown in [18].

A numerical evaluation of capacity region, C̃1, C̃2, C̃12 and κ̃ are shown on Fig 19, Fig 20,
Fig 21. A signal to noise ratio is defined as � = ∑

i A2
i /σ

2
w. We see that the multiplexing

separationis very goodin most cases.

1Probability density function.
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