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Summary 
This lecture is an overview of problems, approaches, and solutions dealing with 
modeling and visualization of large-scale models of real cities in a web 
environment. While acquisition issues are outlined only briefly, the study 
focuses on the optimal organization of city models and efficient rendering 
techniques. We also address data optimization for real-time delivery. A special 
attention is paid to user interfaces for manipulation with and examination of 
three-dimensional virtual objects and scenes. The methods under discussion are 
illustrated by examples taken from our long-term project called Virtual Old 
Prague. Although the presented principles are general, we show their 
implementations that take advantage of international standards in the field of 
computer graphics and virtual reality. The presented topic represents a complex 
problem that requires an integration of several branches of knowledge. From the 
pedagogical point of view, the topic contains a number of issues that are both 
interesting and important subjects for education in the field of computer science 
and informatics. 
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Souhrn 
Tato práce obsahuje přehled problémů, metod a přístupů k ře�ení úlohy 
modelování a prezentace rozsáhlých virtuálních modelů skutečných měst 
v prostředí webu. Zatímco otázkám pořizování dat je věnována men�í pozornost, 
důraz je kladen zejména na strukturalizaci virtuálního modelu města a na 
způsoby jeho efektivního zobrazování. Uva�ujeme i optimalizaci dat z hlediska 
jejich přenosu v reálném čase. Významnou součástí procesu vizualizace je 
pou�ití vhodných u�ivatelských rozhraní, umo�ňujících manipulaci a zkoumání 
vybraných trojrozměrných virtuálních objektů. Diskutované metody jsou 
dokumentovány na příkladech převzatých z námi vyvíjeného, rozsáhlého 
projektu s názvem Virtuální Stará Praha. Ačkoliv principy uvádíme v obecné 
rovině, ukazujeme současně jejich konkrétní implementaci zalo�enou na vyu�ití 
mezinárodních norem z oblasti počítačové grafiky a virtuální reality. 
Prezentované téma je komplexní úlohou, její� ře�ení vy�aduje integraci 
vědomostí z několika oborů. Z pedagogického hlediska pak obsahuje řadu 
samostatných témat, které významně obohacují výuku v oboru výpočetní 
technika a informatika. 
V této práci jsou pou�ity materiály z následujících autorových publikací: 
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1 Introduction 
Visualization of existing cities is a problem that bridges two different research 
areas � Computer Vision and Computer Graphics. Due to the complexity and 
diversity of cities around the world, especially historical cities, it is 
a challenging task to develop efficient acquisition, storing, transfer, and 
presentation algorithms. 
In this paper, we concentrate on a specific area � web-based presentation. We 
focus on a smooth walk through a large-scale 3D urban environment in real 
time, using standard technologies (Virtual Reality Modeling Language). 
Limitations due to the web environment are discussed, and ways to overcome 
them are shown in section 2. Section 3 introduces specific features of web-based 
3D graphics applications. Data structures for large city models are discussed in 
section 4. Implementation issues on the client side are presented in section 5. 
User interfaces suitable for presentation of 3D objects are touched in section 6. 
Open problems are listed in section 7. 

2 Related Work 
Currently, much attention is being paid to the automatic reconstruction of city 
models. Since we have to model existing inhabited areas, various approaches 
utilize photographs. The general city layout is usually reconstructed using aerial 
images, possibly combined with GIS (Geographic Information System) data 
(Collins et al., 1998; Kunii & Chikatsu, 2003). This typically results in a model 
of a terrain covered by houses with a block geometry and roofs of simple shape 
(Moons et al., 1998). Planar areas such as streets and simple roofs can be 
covered by textures obtained directly from aerial images, while the 
reconstruction of a 3D façade requires an additional and generally a much 
greater effort in terms of acquisition and processing time. Several technical 
approaches can be identified, including a non-calibrated camera (Koch, 
Pollefeys & Van Gool, 2000), stereo photography, continuous video recording 
(Zheng & Tsuji, 1998), and a laser scanner in combination with GPS (Global 
Positioning System) devices. A representative example is the MIT City 
Scanning Project (Coorg & Teller, 1999), which enables automatic modeling of 
a large urban environment. 
Models obtained from images often belong to one of two extremes. The 
buildings are either constructed from simple planar (textured) facades only, or 
they consist of a large number of unorganized triangular meshes. The optimal 
model complexity for real-time presentations lies somewhere between these 
extremes, i.e. individual houses should contain from tens to hundreds of textured 
polygons, preferably structured into levels of detail (LOD). The creation of such 
models requires slower, interactive work to find geometrical architectural 
elements (Taylor, Debevec & Malik, 1996). The pioneering commercial 
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software was Canoma by MetaCreations, unfortunately no longer supported. 
A promising approach for future studies seems to be knowledge-based 
reconstruction from images, where typical elements such as windows, balconies 
or arcs can be efficiently found and marked (Zlatanova & Heuvel, 2002). 
To conclude the overview of 3D reconstruction techniques, a curious issue 
concerning visual obstacles should be mentioned here. Obstacles such as trees, 
street lamps, traffic lights, cars, and people represent a fundamental 
complication for many reconstruction algorithms. Such objects have to be 
removed (automatically or manually) in the reconstruction phase, but finally 
they should be added back to the model to improve the natural look of the city 
(see Fig. 1).  

While 3D reconstruction of large urban sites is still a subject of a research, real-
time visualization of 3D models is much more elaborated (Slater, Steed & 
Chrysanthou, 2002). The most useful principles include the utilization of levels 
of details (both in the geometrical and in the texturing meaning), culling, 
visibility preprocessing (either general, see Durand, 2000, or specific to the 
urban environment, see Bittner, Wonka & Wimmer, 2001), and impostors 
(Sillion et al., 1997; Decoret et al., 1999) replacing more distant objects and 
a complex background. Even for a distributed environment like the web, many 
computer graphics algorithms have been created/adopted, e.g. mesh streaming 
(Hoppe, 1996). On the other hand, web-based graphics is still considered as 
a tool for presentation of single objects (e.g. in e-commerce), thus real-time 
visualization of large-scale city models has not yet been fully solved. 
The traditional trade-off between speed and quality of rendering is complicated 
by the fact that the model is stored in a distant computer - a web server. 
Two main approaches are currently used for city presentations on the web � 
image based and model based rendering. Image based methods directly utilize 
photographs, thus achieving a high quality of rendering. A typical example is 
QuickTime VR technology, where cylindrical panoramic views represent the 

 

Figure 1: In addition to models of buildings, virtual city should incorporate a number of other 
three-dimensional objects that are typical for urban environment. The example on the left 
shows trees and benches, the right scene includes even moveable tram in front of the church. 
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virtual environment around a user. It is suitable for open areas like town squares, 
hills, etc. Narrow and curved streets, typical for medieval cities, do not fit well 
into the cylindrical shape of a panorama, thus a sequence of several neighboring 
panoramas with a small radius has to be used. An interesting improvement 
suggested by Zhyang & Shi (2003) is called route panorama. It is based on the 
creation of two linear panoramas, one for the left view and one for the right view 
when walking along a street. A special viewer merges these two panoramas, 
using perspective projection, into a single image. Background images at both 
ends of a street can also be included. Regardless of the high speed and quality of 
panoramic images, dynamic and interactive behavior is limited to hyperlinks 
associated to sensitive areas only. It is difficult to include animated objects like 
trams or people in panoramic views. 
The second approach is the classical rendering of 3D models. Virtual Reality 
Modeling Language (VRML) is a representative technology designed especially 
for the web. Although several competitive solutions exist, they are either limited 
to a certain computing platform (SVR technology by Superscape) or they are 
designed for presentation of an individual object (MetaStream technology by 
Viewpoint) or specialized to an excessively narrow geographical application 
area (DILAS by GEONOVA). Due to the universality and complex functionality 
of VRML (collision detection, terrain following, simulation based on event 
processing, scripting with the use of external programming languages, etc.), 
VRML browsers are generally considered to be very slow in comparison with 
e.g. game engines. This drawback will persist in the future, although the Web3D 
Consortium has prepared a new version of a language called X3D, which allows 
a layered design and application specific profiles. Real-time navigation in 
a well-modeled and richly-textured virtual city environment will always require 
many computing resources and much data optimization. 
The most difficult goal for a web city presentation is a smooth walk through 
a large urban area. Most existing web cities consist either of one big 
unstructured model (which is hard to download quickly and render efficiently), 
or of several independent smaller models connected by hyperlinks only. When 
users move from one such a part of a city to another part, newly downloaded 
models usually fully replace the current 3D data like a new HTML document 
replaces the previous one after a hyperlink has been activated. This is more like 
teleportation of the user, rather than continuous movement in a specific 
direction. While this behavior is naturally acceptable for text documents, it is 
undesirable for the illusion of a walk through a 3D environment. A seamless 
visual presentation can be better achieved by continuous processing of 
geometrical models rather than by a panorama. The rest of the paper thus only 
concentrates ways of rendering spatial geometrical models. 
 



 9

 

 
 

Figure 2: A general scheme of the processing of city data. Various areas of computer science 
participate in this complex, but challenging web application. While the data flow in the left 
part is unidirectional, interactive visualization requires two-way data transfer. 
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3 Web-based Visualization 
The main parts for processing urban data are shown in figure 2. The difference 
between single computer rendering and web-based visualization is depicted 
using the filled areas in the figure. In a web environment, the following three 
components play specific roles: 

1. Web server. The server is responsible for storing data and transferring it to 
clients. Since it serves a large number of web users, it does not provide 
complex computations for individuals, but, instead, simple tasks like 
selecting a piece of data from a larger model, converting it to a specific 
format (e.g. VRML), packing and sending out. A server typically does not 
hold any state information about clients, thus all communication between a 
client and a server has to be designed as stateless. 

2. Web client. The client deals with rendering and interaction with a user. Due 
to the complexity of city data, it does not render the whole model, but only 
the neighboring area around the user�s avatar. As the avatar moves in 3D 
space and interacts with the model, the client generates requests for new 
data from the server. Incoming (asynchronous) data has to be recognized 
and seamlessly added to the current presentation, thus creating the illusion 
of a smooth walk through a whole city in real time. 

3. Network. Since the speed of data transfer varies from tens of Kbits (phone 
lines) up to hundreds of Mbits, it is difficult to tune the data size to 
a specific connection speed. Web-based city models should be initially 
optimized for low speed connection, with the possibility of enlarging the 
data sizes (geometrical details, textures) for higher speed connection. Here 
the LOD principle is very useful, not only for optimizing the rendering, but 
also for transferring the data. The web also enables data transfer from 
a client to a server. This is typically used for sending simple data requests 
only, and not for rich interactive work. Due to the time delay that is 
characteristic of the network, interactions between a user and a virtual city 
environment have to be performed primarily on the client side. 
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Although our focus is on a 3D virtual environment for city presentations, other 
ways to show a city on the web should also be mentioned here. Since many 
users are not familiar with 3D navigation, common web techniques based on 
hyperlinks and/or sensitive 2D maps are also useful. Figure 3 shows one such 
approach, currently available at http://www.cgg.cvut.cz/vsp/, which uses 
a standard VRML technology for 3D data, combined with a Java applet for 
synchronized movement of a 2D avatar icon on a city map. 
We should mention that only experts from the 3D area and game players are 
able to navigate freely in 3D space. We have been surprised to find that most 
users do not expect to be able to walk through a city by dragging a mouse in 
a particular direction. Instead, they think of a 3D rendering window as an 
�output only� screen where some animation can be seen. Such users are able to 
control their virtual movement by pressing buttons or moving sliders, rather than 
to directly navigate through a 3D browser window. Although these problems are 
beyond the topic of this paper, some support for �old fashioned� users should be 
taken into consideration when designing a city web presentation. This includes 
pre-calculated walks (guided tours), a sequence of simply accessible viewpoints, 
sensitive areas for the �click-and-go� navigation paradigm, or a search function 
providing animated movement to a target place in a city. 
 

Figure 3: A web page with a virtual city can contain several interactive components 
allowing synchronized multimedia presentation. The example taken from the Virtual Old 
Prague project shows the three most important parts � (a) a 3D scene window, (b) an 
HTML document, and (c) a 2D navigation map. 

a b 

c 
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4 Data Structures for City Models 
This section deals with data structures suitable for describing a city and parts of 
a city. Due to the complexity of a city environment, more than one data structure 
has to be used. On a macroscopic level, a city is subdivided into smaller blocks 
with a view to efficient, non-redundant data transfer through the web. Such city 
subdivision techniques are described in section 4.1. We further concentrate on 
the most recognizable city objects � houses. They require special care in terms 
of geometric description, texturing, and the level of detail utilization. These 
issues are introduced in section 4.2. 

4.1 Subdividing City Spaces 
Generally, cities have a hierarchical structure, headed by districts (quarters) and 
continuing with smaller elements like streets and then individual houses. In 
addition to this logical tree arrangement, topological information about street 
adjacency can be built in the form of a planar graph. Other auxiliary data 
structures coming from the area of Computer Graphics help to increase the 
speed of rendering, utilizing k-d trees, octrees, grids, bounding volume 
hierarchies, etc. Individual visible parts of a city (geometry, textures) are thus 
always extended by invisible additional structures with a global character. 
Web specific limitations influence the arrangement of city data. When the city is 
to be large-scale, the initial transfer of a global auxiliary data structure causes 
a big delay before seeing any image on the client side. Moreover, users do not 
need to download the whole logical structure of a city when enjoying a virtual 
walk around one square only. The key issue is how to subdivide both the 3D 
model and the corresponding auxiliary speeding-up data structures into smaller 
data packages suitable for transfer from server to client. Such data packages 
should be of limited size, self-contained, with unique identification. A client 
should be able to insert them easily into already downloaded parts and connect 
them with other existing data structures.  
A special requirement concerns visibility. In many spatial applications, some 
kind of visibility is pre-computed, thus minimizing the data to be transferred and 
rendered for given users� position(s). From-area visibility (called eye-to-cell 
visibility in Slater et al., 2002) is very suitable for a city environment. For every 
small region, a potentially visible set (PVS) is computed and stored. The data 
packages should correspond with the cells contained in the PVS sets. 
From the programmer�s point of view, a grid seems to be an appropriate 
structure for subdividing a city. Since the city layout is planar, a two-
dimensional grid is sufficient for most cases. When large buildings require 
a three-dimensional structure for processing interior parts, a three-dimensional 
grid, a hierarchy of grids, or a combination of a quadtree and an octree can be 
applied. Each cell of a regular grid is easily identifiable and accessible via 
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indexing; connection between cells is straightforward. However, we recommend 
the use of a grid only as an auxiliary structure, e.g. for fast identification of 
a user�s position in a city but not as a primary subdivision technique. Few real 
cities are built on strict geometrical rules (Lynch, 1960). The arrangement of 
streets, squares, parks, rivers, and other parts does not fit into any orthogonal 
grid, especially in historical cities. Moreover, the correlation between grid cells 
and PVS sets is generally low. If a grid cell contains several streets, nothing can 
be said about their mutual visibility. A partially visible grid cell has to be 
transferred as a whole. Using grid cells as basic data packages, too much 
redundant (because invisible) data would be sent through the net, thus delaying 
the transfer of other necessary visible elements. 
The city subdivision technique should follow the real arrangement of the city 
elements. Since streets are natural and common objects when searching for city 
information or walking in a city, we recommend that the street be taken as the 
basic element for subdividing a virtual city. However, long streets with several 
crossroads are not suitable for visibility preprocessing, thus short street 
segments are used instead. We have designed a data structure called a sector that 
has been successfully employed in various virtual cities. The sector is tightly 
related to street segments, but is not limited to them. It can describe squares as 
well as interiors. A typical sector represents one street segment surrounded by 
two opposite rows of houses and closed by crossroads at both ends. While 
a simple crossroads will belong to one of the adjacent street sectors, large 
crossroads and squares are modeled by their own sectors. To keep the data size 
per sector within limits, long street segments or river banks are divided into 
a chain of sectors. A set of sectors forms a city. The internal structure of a sector 
is shown in figure 4. 
 

Figure 4: The sector is the basic data structure for a virtual city. House facades and gates 
to other sectors enclose a polygonal ground with given elevation(s). Spatial objects such as 
statues and street lamps are placed inside the sector area. The snapshot has been taken from 
the MapEdit utility belonging to the Virtual Old Prague project. 

SECTOR 

gate 
facade 
3D object 
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A sector holds the following information: 

• Unique ID. This serves to identify the user�s position, and also for further 
connection with neighboring sectors. 

• Ground. This is the surface on which the avatar moves. It is represented 
by a polygonal area with a given elevation, a height field, or a triangular 
mesh. It can be further covered either by a simple texture or by a real 
geometry, e.g. sidewalks, stairs, tram rails, etc. 

• Border geometry. While the ground represents horizontal information, 
house facades placed on the ground border constitute vertical parts of the 
sector. All houses belonging to a given sector are considered as the solid 
border geometry. A user cannot pass through them except in cases when 
a house door leads to an interior, i.e. to another sector. 

• Gates. An edge of the ground polygon that is not occupied by border 
geometry is called a gate. It holds the ID of a neighboring sector, thus 
enabling it to be connected via its own corresponding gate. A user can 
leave a given sector only through a gate. A special case is the end of the 
whole city model, where the gate is modeled as a solid face with 
a background image placed on it. Then the gate does not serve as 
a passage but as an obstacle. Gates are important not only for holding 
adjacency information among sectors but also for visibility computations. 
The gate represents a portal in the terminology of visibility processing 
(Luebke & Georges, 1995), while the sector represents a cell. 

• Standalone objects. A sector area is usually enriched by additional spatial 
models. These include a variety of static objects like trees, animated 
objects (water fountains or moving trams), interactive objects (street 
lamps to be switched on/off), sensitive objects (signboards with 
hyperlinks leading to company web sites), etc. 

• Viewpoint list. Predefined camera positions are stored for real-time 
presentation. 

• List of Visible and Important Sectors (Lvis). While gates are directly 
applicable for storing adjacency information, pre-computed visibility 
results are stored in the Lvis list. This contains the IDs of sectors 
potentially visible from a given sector. A more detailed explanation 
follows below. 

The Lvis list is a special feature that holds important information about 
visibility. This information is later used for both speeding up the rendering and 
loading sectors in advance. To create the Lvis list, a visibility-preprocessing 
algorithm based on cell-to-cell evaluation has to be executed. Such algorithms 
mostly assume a convex shape of a cell (sector area). To meet this requirement 
for curved non-convex streets, a convex hull or even a simple bounding volume 
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of the sector is a sufficient alternative. If a user walks on the ground, and flying 
is not permitted, then the visibility problem can be transformed from full 3D 
space into 2.5D or even 2D space only.  
Originally, the Lvis list was designed as an equivalent to PVS (potentially 
visible set). After testing practical implementation in the Virtual Old Prague 
project, we extended its functionality to make data reading/releasing more 
efficient during rendering. We noticed that users walking through a city tend to 
return repeatedly to already visited squares and to other sectors characterized by 
valuable historical/architectural/artistic contents. These special places were often 
removed from the client memory as users left them and passed through a narrow 
street. Soon, these sectors were again reloaded when users returned via another 
street. Although the cache of a web browser keeps the already downloaded 
sectors and a full download from the server is not necessary, the time for 
memory allocation and the insertion of repeatedly read geometry into a scene 
graph is considerable for real-time presentation. We decided to hold such 
repeatedly visited sectors in memory as long as possible. The solution was to 
add their IDs to the Lvis lists of all sectors in a specific vicinity. It is for this 
reason that Lvis stands for List of Visible and Important Sectors. 
While visibility preprocessing is an automatic task, the important sectors 
mentioned above have to be added to Lvis manually. We consider this attention 
to important sectors as a secondary activity for the fine-tuning of the overall 
system performance. In most cases, the Lvis list can be directly derived from the 
PVS resulting from a visibility algorithm. 
 

Figure 5: Impostors temporarily placed at sector gates improve the visual look. (a) An 
individual sector without any impostor, (b) impostor at a gate, (c) a neighboring sector was 
loaded and the original impostor removed. The house in the background has no texture. 
This sequence of snapshots is a rather negative example, since the impostor was created 
using a photo taken from an inappropriate position. Big differences and even quality 
degradation can be seen when snapshots (b) and (c) are compared. Impostors should be 
made of images resulting from 3D models. 

(a) (b) (c) 

An interesting problem is the visual appearance of gates. As they represent 
passages to neighboring sectors, they are not solid but transparent. A user should 
see city parts on a background through a gate. If such parts are not yet loaded 
from the server, a predefined image can be temporarily placed on a gate. This 
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technique uses an impostor and utilizes the idea of image-based rendering in 
combination with classical rendering methods. To make an impostor, we can 
utilize either photos taken from a real city or images generated by the rendering 
of the background geometry. The first method highlights differences between 
a photo and a model (as seen in figure 5), but allows us to store the distant 
background of the environment that is not stored in a city model, e.g. mountains, 
forests, etc. The second method can be executed automatically for all gates. 
A camera is usually placed at the most distant position within a sector and 
oriented towards a gate. Since the area of a sector is relatively small, visible 
errors like false parallaxes are not significant when walking within a sector. 
Moreover, neighboring sectors soon replace the nearest impostors. Newly 
loaded impostors belonging to neighboring sectors are farther from the current 
user�s position, so the illusion of depth emerges. Thanks to the fine granularity 
of the subdivision of the city, and the temporal character of gate impostors, one 
simple planar face is sufficient for one impostor. This is different from the 
method published by Sillion et al. (1997). The authors replace the background 
geometry by several faces with various depths. Since their city cells are larger, 
the changes in the mutual positions of distant buildings are more significant 
during a user�s walk. In fact, they create a special geometrical level of detail 
replacing the background geometry. 
Although impostors placed at gates solve many problems of missing, i.e. not yet 
downloaded geometry, they have certain limitations. A sector representing an 
open area (a meadow in a park, a hilltop, etc.) should be surrounded by gate 
impostors only. Due to the polygonal shape of a sector ground, perspective 
errors and cracks can arise on the vertical edges of gate impostors. A panoramic 
background and image-based rendering would be welcome. Unfortunately, we 
have not met a system where a mixture of geometrical data and a panoramic 
background would be seamlessly merged and rendered. We would like to point 
out that parts of the background have to be replaced by geometrical models as 
the user walks in a specific direction. 
Another problem arises when users want to fly over a city. Although this is 
definitely not a usual way for tourists do their sightseeing tours, the possibility 
to fly in virtual space is highly attractive. Unfortunately, a flyover requires 
almost all city data to be available, which is not the case for web-based city 
presentations. Since very large parts of a city are visible from the air, the 
visibility preprocessing that is suitable for streets, i.e. PVS based on sectors, is 
not usable for this task. Instead, the LOD principle plays a more important role. 
A combination of simplified house models viewed from the air and a terrain 
covered by multi-resolution textures can be utilized. This approach is partially 
supported e.g. by the GeoLOD node in the GeoVRML/X3D standard 
specification, where the terrain is represented by a quadtree structure. In our 
opinion, a fast and believable flight over a virtual city using web browsers will 
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remain a dream for many years. Current standard technologies constrain virtual 
visitors to be bound to the ground. On the other hand, the ever-increasing 
performance of graphics cards and especially a very high bandwidth allowing 
fast streaming of geometrical and texture data are promising conditions to 
enable web users to fly in a large-scale virtual environment. 
In summary, we propose a city model consisting of an unordered list of sectors. 
This linear arrangement is very suitable for databases storing an arbitrary city 
description. Adjacency information can be directly obtained from the sector data 
via unique sector IDs. If the city model grows as time passes, new sectors can be 
naturally added to an existing database. Furthermore, this model is highly 
scaleable. The sector definition fulfills all the criteria specified at the beginning 
of this section. The sector is a self-contained data entity that can be individually 
transferred and rendered. Lvis lists allow further sectors to be loaded. Dynamic 
sector management is described in section 5.1. 

4.2 House Structures 
Great efforts have been made in research on the automatic reconstruction of 
buildings, but still no handy solutions are available. Triangular meshes 
generated from images are too large and unorganized, while web visualization 
requires almost the opposite kind of data � small and well structured. Most 
virtual cities currently available on the web were not automatically 
reconstructed, but were created manually or semi-automatically. Models of 
houses are typically converted from CAD drawings (if available) or created 
using programs for modeling. A widely used commercial modeler is the 3D 
Studio Max, from which the data can be exported to various formats. To ensure 
a certain structure for a house, a specialized program is better than a general 
modeler. The following text explains the advantage of specialized tools, 
particularly when a model has to be transferred through the web in several levels 
of detail (LOD). 
Most methods for generating LODs take one initial mesh as an input and create 
simplified meshes upon various decimation criteria. This works well for a single 
complex object like a statue or a highly detailed relief façade. On the other hand, 
it fails for the case of a city consisting of hundreds of houses, i.e. hundreds of 
potential meshes. A common simplification of several houses would cause 
visible errors due to façades and roofs merging into non-existing faces. 
Simplification of individual buildings with a low computational effort is 
required. Instead of progressive LOD representations, several discrete models 
per one house suffice. 
We have proposed a four-step LOD representation called Urban LOD (Zara et 
al., 2001). It is based on the idea of visual importance. Optimization of the data 
flow also takes into account human perception. Two most recognizable features 
of a house have been identified � an outline of the façade, and the 
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windows/doors. A combination of geometry and textures is then arranged into 
four discrete LODs. This principle has been successfully used in the Virtual Old 
Prague project. Based on our experience, we have slightly changed the 3rd LOD 
representation and re-designed the 4th level. While the original proposal assumed 
an arbitrary 3D model for the 4th level, we prefer a model that is semi 
automatically created from previous LODs. The result is shown in figure 6. 

 

Figure 6: The LOD principle can utilize the architectural structure of a house. The upper 
row shows four discrete LOD representations, while the lower row contains the 
corresponding wire-frame models and data sizes. Note that the window textures already 
transferred from the server for level (b) are used again for level (d). 
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The simplest model consists of a few faces (façades and roofs) filled by solid 
colors. This is similar to block models automatically reconstructed from aerial 
images or GIS systems. A house silhouette is the main feature visible in this 
model. The second LOD representation concentrates on visually important parts 
of a façade. These are usually windows, doors, arcades, or frescos. They can be 
directly added to the previous LOD in the form of textured polygons placed in 
front of a façade. As these architectural/artistic objects are often repeatedly 
arranged along a house, the same texture can be duplicated (translated and even 
scaled), thus saving both time for transfer and the size of the texture memory in 
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a client computer. We want to stress that texture size 64 x 64 pixel is fully 
sufficient here, and 256 colors is usually enough. Such a compressed texture file 
with a palette (PNG in our case) does not exceed 3 kB in size. 
The 3rd LOD was designed with the aim to further increase the visual quality 
while holding the overall number of polygons unchanged. A façade is covered 
by one larger texture in this representation. Since the smaller polygons added to 
the façade in the 2nd LOD have been removed, other geometrical objects such as 
chimneys or balconies can be used instead. Finally, the last LOD is composed 
from the geometrical information from the 2nd and 3rd LODs. Windows (and 
possibly other visually important objects) are inserted into a facade using 
a given depth. The final façade gets a real three-dimensional appearance. 
Our approach requires interactive work when preparing house models, but 
automatic preprocessing based on knowledge-based recognition seems to be 
possible. The currently used utility program takes an orthophotograph of the 
façade as an input and allows the user to interactively define the polygonal 
outline, the shape and slope of the roof, the solid fill colors for the façade and 
roof, visually important textures and their repetitive positions, and insertion 
depths for windows/doors. Then four urban LODs are created. 
Unlike mesh simplification and streaming algorithms, urban LOD 
representations are not created incrementally. Information included in the 2nd 
level is not immediately used in the following level, but later in the 4th level. 
This is due to the effort to efficiently transfer a mixture of geometrical and 
texture information from the server to the client and to present the most visually 
important data as soon as possible. Sample data sizes per individual LOD are 
shown in figure 6. The amount of transferred data increases evenly as the 
complexity of the LOD increases. Pop-up effects that can be seen when 
switching among discrete levels are acceptable to web users. This is similar to 
the situation when a web page is progressively downloaded and the images and 
larger tables are displayed step by step. These effects can be minimized by 
blending between LODs and also by increasing the distances in which the LODs 
are switched. The use of discrete LODs minimizes computations on the client 
side, since the only continuously updated value is the avatar-to-object distance. 
From the practical point of view, even an incomplete city model can be 
presented on the web in an early stage of virtual city construction, e.g. one 
planar façade with one texture per house only (3rd urban LOD). Other LODs can 
be modeled later. Visitors to virtual cities are impressed when they are fully 
surrounded by many different house facades forming the city, while the 
architectural décor plays only a secondary role. 
To conclude the discussion of house models, attention should be paid to the 
preparation of textures. Again, the limited capacity of the web influences the 
size of the textures used. The memory architecture of graphics cards on the 
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client side also plays an important role. Texture memory is usually allocated in 
blocks of constant size. The texture image resolution should be a multiple of this 
block size, otherwise the texture memory is fragmented and not fully utilized. 
Images with sizes corresponding to a power of 2 (e.g. 256 x 256, 128 x 512, 
etc.) are generally recommended. A reasonable upper limit for one dimension is 
512, exceptionally 1024. It is important to point out that one true color image 
with resolution 1024 x 1024 requires 3 MB of texture memory after 
decompression. When using mipmapping, an additional 1 MB is required. Ten 
such textures would easily overload a medium quality graphics card with 32 MB 
texture memory. Image compression (e.g. JPEG) is important for data transfer 
but not for standard graphics cards. 
To speed up the transfer of several small textures belonging to a single house 
(e.g. roof, window and door textures), all individual textures should be packed 
into one image and sent as one file. A further simplification leading to a smaller 
file size is the use of a color palette instead of the true color quality. Thanks to 
color interpolation performed during the final texture mapping, many new colors 
emerge and the limited size of the original color palette is not recognizable. 

5 Interactive Presentation on the Client Side 
All data describing a virtual city can be stored in a distant database in arbitrary 
format. The sectors and the house data structures specified in previous sections 
were defined independently. Conversion to a specific format takes place when 
the data is sent from a server to a client and finally rendered. We use VRML 
terminology in the following text, although other technologies can also be 
applied. The reason why we prefer VRML is that it is an open, platform-
independent, and well-known format. We intentionally avoid issues of 
copyright, which is not protected in the VRML specification, i.e. data 
transferred to a client cache in the form of VRML files can be easily decoded 
and reused by anybody. Use of the VRML standard is welcomed by ordinary 
users, since they can install a VRML browser once and then browse many 
virtual worlds. The necessity to install special copyright-protected browsers for 
each city on the web is very inconvenient. 
The following text assumes a standard VRML browser installed in a client 
computer. The additional �intelligence� needed for sector management and other 
tasks has to be programmed in the VRML Script node, using either ECMAScript 
(formerly JavaScript) or Java language. The general idea is that the user first 
downloads one starting sector1, and then the system loads other necessary data 
                                           
1 Note that any sector can be set as the starting sector. There is no need to start 
a virtual walk always from the same point in the city. 
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on the fly depending on the user�s movement in the virtual environment. 
Another way is to request a server to send a sequence of sectors representing 
a path between two places of interest. This is useful for virtual guided tours or as 
a support for a �How to get to �?� function from the user interface.  
The Script node performs two main tasks � it watches the avatar�s activities, and 
manages the data contained in the sectors. Newly downloaded sectors are 
included into an existing scene graph, while unnecessary data is disposed of. 
Typically, a sector is loaded through the Inline node. If the sector has to be 
removed, we have to delete the corresponding Inline node (in the case of 
VRML 97) or to set the load field in the Inline node to FALSE (in the case of 
X3D). Actually, the memory management is not fully controlled by a Script 
programmer but internally by a VRML browser. 

5.1 Dynamic Data Management 
Since every sector contains a list of sectors (called Lvis in the previous text) that 
are either directly visible or somehow important, the strategy for generating 
requests to a server seems to be straightforward. One request is sent per each 
sector from a given Lvis list. This simple strategy fails for models with fine 
granularity of the sectors. When a sector represents a street connecting two 
squares, both squares are surely contained in the Lvis, but most of the other 
streets leading from those squares are not directly visible from the given sector. 
Thus, entering a square would lead to an incomplete view of the square area 
without the houses belonging to the other street sectors. Neither visibility 
information nor importance information from the Lvis list is able to cope with 
this problem. The solution is based on the topology, i.e. the connectivity among 
the sectors. As the whole topology graph is usually not present in memory, 
necessary adjacency information can be indirectly retrieved from the visibility 
information. 
Let VIS(C) be a set of sectors contained in the Lvis list of sector C. Let C

iL denote 
a set of sectors that have to be loaded into a client computer memory for a given 
level i and sector C. A simplified notation Li is used when C is unambiguously 
given. Then the sets L0, L1, L2, �, Ln can be iteratively constructed as follows: 
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A high number i indicates that more sectors are loaded. Starting from the zero 
level representing the current sector only, further and further neighboring sectors 
are requested. This process of breadth searching can in theory continue up to 
loading the whole city, but in practice it can be stopped at level 2, which covers 
a satisfactorily large combination of directly visible sectors and �neighbors of 
neighbors�. The number i determining the Li set can be dynamically changed 
according to the performance of the client computer. It is a more robust tool for 
controlling the rendering speed than the finer LOD technique. These two 
methods � sets of sectors (Li) and LOD � can be efficiently combined to achieve 
smooth rendering. The cardinalities of Li sets grow relatively slowly for 
historical towns with an irregular street structure, and rapidly for well-arranged 
modern cities. The upper limit (i = n) is less than or equal to the eccentricity of 
the current sector (node) in an adjacency graph. 
Breadth search processes utilizing Li sets can also be successfully employed if 
no visibility algorithm has been executed in the preprocessing phase. Lvis lists 
for all sectors should then contain close neighbors, i.e. sectors whose IDs were 
assigned to gates. 
 

Figure 7: Progressive data transfer during a typical walk in the Virtual Old Prague. 
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The graph in figure 7 shows how the data packages related to individual sectors 
are downloaded from the server during a virtual walk. Columns filled by solid 
color represent sizes of each sector data. Hatched columns show accumulation 
of data as time passes. The duration of the sample walk was approx. 2 minutes. 
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5.2 Observing the Movement of an Avatar 
Each time a user passes from sector Cprevious to the neighboring sector Cnew, the Li 
associated with the newly visited sector has to be evaluated. Differences 
between previous and current Li sets produce changes in the scene graph. 
Sectors belonging to the set Cnew

iL - Cprevious
iL  have to be downloaded while sectors 

from the set Cprevious
iL - Cnew

iL are disposed of. Continuous observation of the position 
of the avatar in virtual space guarantees timely generated requests for new 
sectors and hence smooth presentation of the city. 

Figure 8: User-in-sector tests based on (a) the point in polygon test, (b) the point in box test, 
(c) the point in gate test. Ten sample sectors have been taken from the map of Prague. 

(a) (b) (c) 

Since the avatar-in-sector test is performed repeatedly, it should be optimized. 
Figure 8 shows three different methods: 

• Point in polygon. A test for a general polyhedron has no support in VRML. 
Evaluation via an external program is necessary, thus slow. 

• Point in bounding volume. The Proximity Sensor in VRML supports this 
test. A bounding box with arbitrary orientation can be used. The bounding 
boxes of neighboring sectors often overlap. Fortunately this is a positive 
rather than a negative feature, as will be explained below. 

• Point in gate. This is actually a variation of the previous test. From the 
mathematical point of view, the gate is a planar face, but in practice it is 
modeled by a box. While each bounding box used in the previous test 
belongs to exactly one sector, a box defined by a gate belongs to two 
sectors. For this reason, a simple point-in-box test is not sufficient to 
determine the direction of an avatar and a newly visited sector. Instead, we 
have to manage a sequence of box faces intersected by the avatar in order 
to evaluate the sector containing the avatar. Although there is no direct 
support in VRML for this special test, a gate box can be modeled using two 
half-gates represented by a pair of Proximity Sensors and additional Script 
that evaluates the direction in which the avatar left the gate. 
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Note that a grid could be used as an auxiliary data structure for all tests. These 
tests can be further optimized in such a way that only the current sector and its 
neighbors are taken into consideration. Instead of k tests performed for k sectors 
loaded in memory, the number of tests drops to the number of gates of the 
current sector, typically from 2 to 4. This kind of optimization can be done 
under the condition that the avatar walks continuously. When rapid jumps to 
viewpoints in farther sectors are allowed, then all k tests have to be executed. 
Moreover, tests of kind (c) fail for such jumps, since VRML browsers skip 
collision detection when switching to another viewpoint. 
When testing users� behavior in a virtual environment we have to consider the 
following unfavorable situation. When a user enters a new sector, the system 
starts to evaluate the Li set, updates the sectors in memory, and generates 
requests to a server. Due to the number of operations performed, the rendering 
speed drops significantly. Some users get the feeling that something is wrong in 
the direction that they are examining. They tend to take a step back, but this 
movement causes a return to the previous sector, and demanding computations 
start again. To overcome this particular problem, we can either delay updates of 
the scene graph or we can detect the avatar�s position in a new sector not 
immediately on the border but somewhere inside. For simplicity, we have used 
the second approach. Both kinds of tests - (b) and (c) from figure 8 - can be 
easily modified. A straightforward solution is to slightly scale up the bounding 
boxes or gate boxes, respectively. Then the event that activates the dynamic 
loading of new data is generated at the time when the avatar leaves the box, 
either the current bounding box for test (b) or a gate box for test (c). In all cases, 
the avatar�s position is relatively deep in the next sector, and repeatedly 
performed updates near borders are suppressed. 
To conclude this section, let us demonstrate the use of gates in another web 
application. In the multi-user application called e-Agora (Adamec et al., 2001), 
users visit both exterior and interior scenes. The sectors describe either rooms in 
a virtual cultural center or a street segment around that building. Sectors are 
again connected via gates, which are represented by 3D models of doors in this 
case. Impostors are placed behind doors and are partially visible through 
semitransparent glass parts of the doors. When a user clicks on a door (via the 
TouchSensor node) a request to load the sector behind that door is generated. At 
the same time, the glass part of the door becomes more transparent and the 
impostor is illuminated by a light source. This is like switching on a light in the 
neighboring room as positive feedback to the user�s action. The door is then 
slowly animated and is fully opened at the time when the neighboring sector has 
been loaded. The geometry of the new sector replaces the impostor and the 
avatar can pass through the door. When the avatar moves deeper into the sector, 
an event for closing the door is generated, all data of the previously visited 
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sector is released from memory, and another impostor is placed on the opposite 
side of the door. 
 

Figure 9: Moving from the exterior to the interior in e-Agora application. (a) Avatar in 
a street sector, (b) The impostor behind the door is illuminated when the geometry of the 
next sector representing the entrance hall is being loaded, (c) A new geometry has replaced 
the impostor behind the door. 

(a) (b) (c) 

gate 

The whole process is depicted in figure 9. It should be stressed that this 
particular web application utilizes a framework of sectors and gates, but all the 
vast geometrical and texture data has to be installed locally in advance. The web 
is primarily used for social interaction (chatting, meetings with individual 3D 
avatars, etc.), but not for transferring the 3D scene data. 

6 Navigation and User Interface 
Navigation in a 3D virtual space is sometimes a nightmare for users accustomed 
to window based GUI where point-and-click is the major interaction technique. 
Moreover, web pages with hyperlinks are based on similar interaction 
techniques: click-and-go. To the contrary, virtual reality offers several 
navigation paradigms � walk, fly, examine. Each of them usually contains 
additional navigation elements like turn head, rotate object of interest, go 
ahead/back, pan, change camera optics, jump to another viewpoint, etc. A user 
interface for 3D is not yet standardized. Even VRML browsers complying ISO 
standard differ in a number of control elements and their arrangement on 
a screen. This fact increases skepticism of ordinary users. 
To achieve platform independent behavior in VR applications, one has to create 
a user interface as an integral part of the virtual scene. One such interface is 
shown in figure 10. It has a function of so called head-up display, since it stays 
at the same position on a screen while user navigates through the virtual scene. 
The user interface in the example consists of control buttons represented by 
semitransparent spheres with 3D icons and textual description. The outermost 
spheres allow choosing previous/next viewpoint. The other buttons manipulate 
with a 3D object of interest. This interface is suitable for exploration of one 
object rather than for a large virtual space, since it does not allow free 
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walking/flying. An animated walk-through started by selecting a proper 
viewpoint is used instead. 

Our experience is that such a simple GUI is acceptable for most users. 
Surprisingly we met curious situation when technically oriented students were 
not able to work with manipulation buttons in the middle, since they clicked on 
them instead of dragging. 
Another strange point is a work with hyperlinks in VR. Users are not familiar 
with sensitive objects thus they do not click on 3D models even if objects have a 
shape of signposts. Additional highlighting is necessary in form of animated 
colors, bouncing arrows, or size changes of interactive objects. 
Since users are familiar with 2D tourist map, they appreciate a presence of such 
a map even in a 3D environment (see small plan in a left bottom corner in 
figure 3). Most maps show a current position of a user. Rarely, they serve as 
additional navigation element allowing immediate jump to any place displayed 
on the sensitive map. 
To conclude this section, we should point out that large virtual space offers quite 
advanced possibilities like route planning. Instead of using predefined animated 
tours only, a presentation system can implement an algorithm that helps users to 
arrange/optimize a walk through a virtual city connecting selected places of 
interest. Subsequent navigation can be executed via animation of a specific 

 

Figure 10. 3D control elements designed for studying virtual objects. The active 
button is always scaled up and highlighted. Examples from the Virtual Heart of 
Central Europe project, related to the Virtual Old Prague project. 
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viewpoint. Since this technique limits user�s self-activity to simple watching 
a moving scene, another approach is to extend the scene by additional signs 
pointing to a proper direction or by a map with highlighted route. Users then 
freely walk through the space with an individual speed. 

7 Open problems 
Almost every component used in the processing pipeline depicted in figure 2 
contains areas that need to be improved. The most demanding requirements are 
still placed on research in Computer Vision and Computer Graphics. In the 3D 
reconstruction area, we need to solve the following issues: 

1. Algorithms that generate meshes adapted to real shapes of buildings. Such 
meshes should contain large planar faces on walls and roofs, but dense 
triangles for architectural details. 

2. Reconstruction based on knowledge of the house structure. Repeatedly 
used elements like windows should be recognized and optimized for further 
LOD creation. Fully automatic creation of LODs for houses is a highly 
important task. 

3. Since real cities do not consist of houses only, we need to automatically 
recognize other objects such as street lamps, litter bins, trees, park benches, 
etc. Once recognized, these objects can be removed from photos that are 
used for reconstructions of buildings, but they have to be added to a 3D 
model of the city and presented to visitors. From a few 3D model 
prototypes we can efficiently generate a number of duplicates in the scene. 
On the other hand, many visual obstacles such as cars, dogs, and people 
can be removed forever. 

In web 3D visualization, the following tasks are of great interest: 
4. Automatic determination of sectors based on a city map (GIS database) 

would save a lot of time when creating a virtual city database. Several 
constraints influence the definition of sectors. A data package containing 
all objects attached to the sector has to be of limited size (web constraint). 
The next constraint concerns the shape of the sector and the number of 
gates (visibility issues).  

5. A seamless combination of impostors and 3D models is required for open 
places like hills, observation towers, islands in rivers, etc. An efficient 
mixture of image based and model based rendering algorithms should be 
implemented in the client browser/viewer. 

6. A flight over a city requires a special solution. Aerial photos mapped on 
a terrain can be combined with highly simplified house models. The use of 
LOD is an obvious condition. The question is how to transfer an extremely 
high number of houses from a server in the shortest time. Instead of many 
individual files (one per house), the models need to be grouped before they 
are sent through the net. 
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8 Conclusion 
Various issues concerning preparation and presentation of 3D city models on the 
web have been discussed in this paper. Web specific limitations require the 
adaptation of already existing algorithms and the use of appropriate data 
structures. We have introduced a framework for virtual city models taking into 
account historical towns with an irregular street structure. The framework is 
made of a set of city sectors holding models of houses and other spatial objects. 
A special urban LOD has been designed to achieve both fast download of house 
models and real-time rendering on the client side. Selected methods for dynamic 
management of sectors and for observing the user�s movement were presented. 
In this study we have presented our experience from the design, implementation 
and operation of the Virtual Old Prague web application. This project prefers to 
use standard, open technologies rather than proprietary and perhaps more 
efficient solutions. These standard technologies are VRML, HTML, JavaScript, 
and Java on the client side; PHP and mySQL database on the server side. The 
area of Prague that is modeled as a virtual city consists of about 25 streets, 
6 larger squares, 350 houses, and tens of additional 3D objects arranged into 
80 sectors. Although these numbers are not astonishing, the framework is 
scaleable and can grow up to an entire city. Currently, two European cities � 
Graz in Austria, and Bratislava in Slovakia � are testing the Virtual Old Prague 
project with the aim to use this technology for presenting the historical kernels 
of the cities on the web. 
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Stuttgart, Aix en Provence, Mexico). He also lectures Virtual reality at Charles 
University in Prague, and Masaryk University in Brno. He is responsible for 
the new study track Web and multimedia in the newly introduced bachelor 
program Software technologies and management at CTU, and for the study track 
Computer Graphics in master study program at CTU. In previous years, he was 
the supervisor of more than 25 diploma theses. One of his Ph.D. students 
successfully finished his doctoral study in 2005; next two students will finish in 
2006. 
His research concentrates primarily on virtual reality and 3D computer graphic. 
He is the author or co-author of more than 50 reviewed papers published in 
international journals and conferences. In 1993-2003, he represented the Czech 
Republic in the ISO organization - committees for Computer graphics and image 
processing (SC24), and Multimedia and hypermedia (SC29), where he 
participated especially on the development of international standards VRML, 
PNG, and MPEG. 
Jiří �ára is internationally recognizable person. He is a member of International 
program committees of various IEEE/ACM conferences (Web3D, Cyberworlds, 
SCCG, WSCG, 3IA, Information Visualization), and reviewer for international 
journals (IEEE Transactions on Image Processing, Visual Computer). In 2005, 
he was the conference chairman of CEMVRC �05 (Central European 
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Multimedia and Virtual Reality Conference). He has been chosen by the 
Eurographics Association to organize and chair the most prestigious Computer 
Graphics conference in Europe � Eurographics �07. 
He actively participated in number of research projects. He has been the 
responsible person for the following international and bilateral projects: 

• AKTION-KONTAKT: Efficient data structures for global illumination 
methods (M�MT - Nr. 1999-17), 1999-2000 

• Virtual Heart of Central Europe - VHCE, (Culture 2000 - Nr. 2003-
1467/001-001), 2003-2004 

• AKTION-KONTAKT: Realistic Real-Time Rendering of Urban Areas 
(M�MT - Nr. 2004-20), 2004-2005 

• Augmented Reality in School Environment � ARiSE, (6th Framework, EU 
� Nr. 027039), 2006-2008. 

His research effort is also targeted to cooperation with industrial and research 
partners within the Czech Republic � �koda Auto, Digital Media Production 
Praha, CIANT Praha, Muzeum hl.m. Prahy. 
 
Jiří �ára has fully linked his professional career with the education and research 
at the Czech Technical University in Prague. 
 


