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Summary

At present finite element method is very well established technique to solve various practical
problems. Application of the finite element method (FEM) in engeneering has made a rapid
progress, and it is widely used in industry as well as in research centers today.

Whereas the application of the FEM in the structural mechanics seems to be now clear
enough for solving common tasks, and only special problems remain to be resolved, in fluid
dynamics there are still many open and not well handled problems. One of them is reliable
modelling of flows in channels or tubes with abrupt changes of the diameter, which appear
often in engineering practice. The goal of this work is to construct the FEM solution in the
vicinity of these corners as precise as desired.

We present two ways for getting desired precision of the FEM solution in the vicinity of
corners. Both make use of qualitative properties of the mathematical model of flow. As a
mathematical model we accept the Navier-Stokes equations for incompressible fluids.

The first approach makes use of a posteriori error estimates of the FEM solution which are
carefully derived to trace the quality of the solution. Especially the constant in the a posteriori
estimate is investigated with care. Then we use the adaptive strategy to improve the mesh and
thus to improve the FEM solution. We present some numerical results.

The second approach stands on two legs. One is the asymptotic behaviour of the exact
solution of the NSE in the vicinity of the corner. This is obtained using some symmetry of the
principal part of the Stokes equation, and application of the Fourier transform. Second leg is
the a priori error estimate of the FEM solution where we estimate the seminorm of the exact
solution by means of the above obtained asymptotics. These ideas allow to derive an algorithm
for designing the FEM mesh in advance (a priori). On the mesh we then obtain the solution
with desired precision also in the vicinity of the corner though there is a singularity here. This
approach offers quite cheap and precise computing of selected problems. Numerical results are
demonstrated on two examples.

Finally we discuss main achievements and topics for further research.
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Souhrn

V současné době metoda konečných prvk̊u představuje velmi dobře propracovanou metodiku
pro řešeńı nejr̊uzněǰśıch praktických úloh. Užit́ı metody konečných prvk̊u (MKP) v inženýrské
praxi prodělalo v posledńıch 35 letech významný pokrok, a v současné době je metoda široce
využ́ıvána v pr̊umyslu i v řadě netechnických obor̊u.

Zat́ımco v úlohách pevné fáze se aplikace MKP zdá být dostatečně propracována, a zbývá
dořešit jen některé speciálńı problémy, v dynamice tekutin je stále řada otevřených problémů jak
v numerické teorii tak v aplikaćıch. Jedńım z nich je spolehlivé modelováńı prouděńı tekutin
v kanálech a trubićıch s náhlou změnou pr̊uměru, což je časté jak v technických aplikaćıch
tak např v modelováńı prouděńı krve v cévńıch náhradách. Ćılem této práce je konstruovat
konečněprvkové řešeńı v bĺızkosti takových roh̊u tak přesně jak je vyžadováno.

Uvád́ıme dva zp̊usoby pro źıskáńı požadované přesnosti řešeńı MKP v bĺızkosti roh̊u. Oba
využ́ıvaj́ı kvalitativńı vlastnosti matematického modelu prouděńı. Jako matematický model
přij́ımáme Navierovy-Stokesovy rovnice pro nestlačitelnou tekutinu.

Prvńı zp̊usob využ́ıvá aposteriorńı odhady MKP řešeńı. Ty jsou pečlivě odvozeny za účelem
vystopovat kvalitu řešeńı. Specielně konstanta v aposteriorńım odhadu je pečlivě zkoumána.
Je pak použita adaptivńı strategie ke zlepšeńı śıtě a t́ım ke zlepšeńı přesnosti FEM řešeńı.
Uvád́ıme některé numerické výsledky.

Druhý př́ıstup stoj́ı na dvou sloupech. Jedńım je asymptotické chováńı exaktńıho řešeńı Na-
vierových-Stokesových rovnic v bĺızkosti rohu. To se źıská užit́ım jisté symetrie v̊udč́ı části Sto-
kesových rovnic, a aplikaćı Fourierovy transformace k převedeńı na jednodimensionálńı problém.
Druhým sloupem je apriorńı odhad MKP řešeńı, kde odhadujeme seminormu exaktńıho řešeńı
pomoćı zmı́něného asymptotického odhadu. Tento př́ıstup umožňuje odvodit algoritmus pro
navržeńı MKP śıtě před vlastńım výpočtem. Na takové śıti pak obdrž́ıme řešeńı s předepsanou
přesnost́ı v okoĺı rohu, kde exaktńı řešeńı má singularitu. Tento př́ıstup umožňuje velice levně
źıskat dostatečně precisńı řešeńı. Na dvou aplikaćıch ukazujeme numerické výsledky.

V závěru jsou diskutovány hlavńı dosažené výsledky a náměty pro daľśı výzkum.
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1 Introduction

At present finite element method is very well established technique to solve various practical
problems. Application of the finite element method (FEM) in engeneering has made a rapid
progress, and it is widely used in industry as well as in research centers today.

Whereas the application of the FEM in the structural mechanics seems to be now clear
enough for solving common tasks, and only special problems remain to be resolved, in fluid
dynamics there are still many open and not well handled problems. One of them is reliable
modelling of flows in channels or tubes with abrupt changes of the diameter, which appear
often in engineering practice. The goal of this work is to construct the FEM solution in the
vicinity of these corners as precise as desired.

We present two ways for getting desired precision of the FEM solution in the vicinity of
corners. Both make use of qualitative properties of the mathematical model of flow. As a
mathematical model we accept the Navier-Stokes equations (NSE) for incompressible fluids.

The first approach makes use of a posteriori error estimates of the FEM solution which is
carefully derived to trace the quality of the solution. Especially the constant in the a posteriori
estimate is investigated with care. Then we use the adaptive strategy to improve the mesh and
thus to improve the FEM solution.

The second approach stands on two legs. One is the asymptotic behaviour of the exact
solution of the NSE in the vicinity of the corner. This is obtained using some symmetry of the
principal part of the Stokes equation, and application of the Fourier transform. Second leg is
the a priori error estimate of the FEM solution where we estimate the seminorm of the exact
solution by means of the above obtained asymptotics. These ideas allow to derive an algorithm
for designing the FEM mesh in advance (a priori). On the mesh we then obtain the solution
with desired precision also in the vicinity of the corner though there is a singularity here.

The structure of the work is as follows. Navier-Stokes equations as a model of flow of an
incompressible viscous fluid are introduced in Chapter 2. In Chapter 3, FEM formulation of
the Navier-Stokes problem is described. Capter 4 is devoted to the asymptotic behaviour of the
exact solution of the Stokes and Navier-Stokes equations in the neighborhood of corners.

Chapter 5 deals with the a posteriori error estimates, with the determination of the constant
C in it, and we present some numerical results. Chapter 6 is devoted more to the aspect
of accuracy of the FEM applied to flow in channels with sharp nonconvex inner corners. It
deals with the application of a priori error estimates of the FEM to mesh generation. This
approach offers quite cheap and precise computing of selected problems. Numerical results are
demonstrated on two examples. In Chapter 7 we discuss main achievements and topics for
further research.
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2 Navier-Stokes equations for incompressible viscous fluids

Let Ω be an open bounded domain in R2 filled with a fluid, and let Γ be its Lipschitz continuous
boundary. The generic point of R2 is denoted by x = (x1, x2)

T considered in meters, and t
denotes time variable considered in seconds.

2.1 Unsteady two-dimensional flow

We deal with isothermal flow of Newtonian viscous fluids with constant density. Such flow is
modelled by the Navier-Stokes system of partial differential equations (nonconservative form):

ρ

(
∂u

∂t
+ (u · ∇)u

)
− µ∆u +∇pr = ρ f in Ω× [0, T ] (2.1)

∇ · u = 0 in Ω× [0, T ] (2.2)
where

• u = (u1, u2)
T denotes the vector of flow velocity, in m/s, being a function of x and t

• pr denotes the pressure considered in Pa, which is a function of x and t

• ρ denotes the density of the fluid considered in kg/m3

• µ denotes the dynamic viscosity of the fluid, in Pa · s, supposed to be constant

• f = f(x, t) is the density of volume forces per mass unit considered in N/m3

Dividing both sides of the momentum equation (2.1) by ρ and leaving the continuity equation
(2.2) unchanged we obtain

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω× [0, T ] (2.3)

∇ · u = 0 in Ω× [0, T ] (2.4)
where

• p = pr

ρ
denotes the pressure divided by the density considered in Pa ·m3/kg

• ν = µ
ρ

denotes the kinematic viscosity of the fluid considered in m2/s

The system is supplied with the initial condition

u = u0 in Ω, t = 0 (2.5)
where ∇ · u0 = 0, and with the boundary conditions

u = g on Γg × [0, T ] (2.6)

−ν(∇u)n + pn = 0 on Γh × [0, T ] (2.7)
where

• Γg and Γh are two subsets of Γ satisfying Γ = Γg ∪ Γh, µR1(Γg ∩ Γh) = 0

• n denotes the unit outer normal vector to the boundary Γ.

Introduced g is a given function of x and t satisfying in the case of Γ = Γg for all t ∈ [0, T ]∫
Γ

g · ndΓ = 0

2.2 Steady 2D Navier-Stokes problem

For the case of steady two-dimensional flow, the Navier-Stokes equations are reduced to

(u · ∇)u− ν∆u +∇p = f in Ω (2.8)

∇ · u = 0 in Ω (2.9)
and boundary conditions to

u = g on Γg (2.10)

−ν(∇u)n + pn = 0 on Γh (2.11)
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2.3 Steady 2D Stokes problem

In case of the Stokes flow the first (nonlinear) term in (4.6) is omitted:

−ν∆u +∇p = f in Ω (2.12)

∇ · u = 0 in Ω (2.13)
and boundary conditions are the same as in (2.10), (2.11).

2.4 Unsteady axisymmetric flow

Let us now consider the system of Navier-Stokes equations for incompressible viscous fluid in
three dimensions, cf. [20]. Performing transformation of the cartesian system of coordinates
{x1, x2, x3} into the cylindrical system of coordinates {r, ϕ, z} where

x1 = r cosϕ; x2 = r sinϕ; x3 = z,

and considering axialy symmetric flow, i.e. variables are independent of ϕ, we obtain Navier-
Stokes equations in the form (cf. e.g. [8])

∂u

∂t
+ v

∂u

∂r
+ u

∂u

∂z
− ν

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
+
∂p

∂z
= fz in Ω× [0, T ] (2.14)

∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z
− ν

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
+
∂p

∂r
= fr in Ω× [0, T ] (2.15)

∂v

∂r
+
v

r
+
∂u

∂z
= 0 in Ω× [0, T ] (2.16)

where

• u = u(x, t) is the axial component of velocity (direction of z-coordinate), in m/s

• v = v(x, t) is the radial component of velocity (direction of r-coordinate), in m/s

• f = f(x, t) = (fz, fr)
T is the density of volume forces per mass unit, in N/m3

Equations (2.14)-(2.16) govern the axisymmetric flow in a domain Ω ⊂ R2, where the generic
point of R2 is now denoted by x = (z, r)T for arbitrary ϕ.

2.5 Variational formulation of Navier-Stokes equations

Let L2(Ω) be the space of square integrable functions on Ω, and let L2(Ω)/R be the space of
functions in L2(Ω) ignoring an additive constant. Let H1(Ω) and H1

0 (Ω) be the Sobolev spaces
defined as

H1(Ω) ≡
{
v | v ∈ L2(Ω),

∂v

∂xi
∈ L2(Ω), i = 1, 2

}
H1

0 (Ω) ≡
{
v | v ∈ H1(Ω),Tr v = 0

}
where Tr is the trace operator Tr : H1(Ω) −→ L2(Γ), and derivatives are considered in the
weak sense.

The inner product and norm in the space L2(Ω) are defined as

(u, v)L2(Ω) ≡
∫

Ω

uv dΩ ‖v‖2
L2(Ω) ≡

∫
Ω

v2dΩ

and the norm of function v in the Sobolev space H1(Ω) is considered as

8



‖v‖2
H1(Ω) ≡

∫
Ω

(
v2 +

2∑
k=1

(
∂v

∂xk

)2
)

dΩ

Sometimes, the notation ‖ · ‖L2(Ω) is shortened to ‖ · ‖0 and ‖ · ‖H1(Ω) to ‖ · ‖1. Similarly, the
notation (u, v)L2(Ω) is shortened to (u, v)0.

Let us define vector function spaces Vg and V by

Vg ≡
{
v = (v1, v2)

T | v ∈ [H1(Ω)]2;Tr vi = gi, i = 1, 2
}

V ≡
{
v = (v1, v2)

T | v ∈ [H1
0 (Ω)]2

}
Let us note, that the norm of vector function v in the spaces Vg and V is then

‖v‖2
[H1(Ω)]2 ≡

2∑
i=1

∫
Ω

(
v2
i +

2∑
k=1

(
∂vi
∂xk

)2
)

dΩ

and the norm of vector function v in the space [L2(Ω)]2 is

‖v‖2
[L2(Ω)]2 ≡

2∑
i=1

∫
Ω

v2
i dΩ

The weak unsteady Navier-Stokes problem means seeking of u(t) = (u1(t), u2(t))
T ∈ Vg and

p(t) ∈ L2(Ω)/R satisfying for any t ∈ [0, T ], and ∀ v ∈ V and ∀ ψ ∈ L2(Ω):∫
Ω

∂u

∂t
· vdΩ +

∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ (2.17)∫
Ω

ψ∇ · udΩ = 0 (2.18)

u− ug ∈ V. (2.19)

The operation ∇u : ∇v is defined as

∇u : ∇v ≡ ∂ux
∂x

∂vx
∂x

+
∂ux
∂y

∂vx
∂y

+
∂uy
∂x

∂vy
∂x

+
∂uy
∂y

∂vy
∂y

Similarly, the weak steady Navier-Stokes problem reads:
Seek u = (u1, u2)

T ∈ Vg and p ∈ L2(Ω)/R satisfying ∀ v ∈ V and ∀ ψ ∈ L2(Ω):∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ (2.20)∫
Ω

ψ∇ · udΩ = 0 (2.21)

u− ug ∈ V. (2.22)

In case of the weak steady Stokes problem instead of (2.20) we require

ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ (2.23)
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3 Finite element method for Navier-Stokes equations

Let us divide the domain Ω (supposed now polygonal) into N elements TK of a triangulation
T such that

N⋃
K=1

TK = Ω

µR2 (TK ∩ TL) = 0, K 6= L

Let hK mean the largest distance in element TK .

3.1 Function spaces for velocity and pressure approximation

To solve the Navier-Stokes equations, different polynomial approximation for velocities and
for pressure are usually chosen. Equal order approximation is easy to implement, but pressure
exhibits instability. Approximation with different order is more suitable for practical computing,
cf. [4].

I. Babuška and F. Brezzi introduced a condition (also called inf -sup condition) limitting
the choice of combinations of approximation

∃CB>0,const. ∀qh∈Qh
∃vh∈Vgh

(qh,∇ · vh)0 ≥ CB‖qh‖0‖vh‖1 (3.1)

where Qh and Vgh are the function spaces for approximation of pressure and velocity. Condition
(3.1) is important for stability. It is satisfied e.g. for Taylor-Hood elements we use.

3.2 Hood-Taylor finite elements

In this paper we apply Hood-Taylor finite elements on triangles and quadrilaterals. Values of
velocity are aproximated in corner nodes and in midsides, and values of pressure in corner nodes
(Figure 3.1). It corresponds to the following function spaces on element TK :

• triangle
vi ∈ P2(TK), i = 1, 2, i.e. polynomial of the second order

p ∈ P1(TK) i.e. linear polynomial

• quadrilateral

vi ∈ Q2(TK), i = 1, 2, i.e. polynomial of the second order for each coordinate

p ∈ Q1(TK) i.e. bilinear polynomial

Let us employ the notation

Rm(TK) =

{
Pm(TK), if TK is a triangle
Qm(TK), if TK is a quadrilateral

(3.2)

and let C(Ω) denote the space of continuous functions on Ω.
Application of Hood-Taylor finite elements leads to the final approximation on the domain

Ω satisfying uh ∈ Vgh and ph ∈ Qh where

Vgh =
{
vh = (vh1 , vh2)

T ∈ [C(Ω)]2; vhi
|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, (3.3)

vh = g in nodes on Γ
}

Qh =
{
ψh ∈ C(Ω); ψh |TK

∈ R1(TK), K = 1, . . . , N
}

(3.4)
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Fig. 3.1: Hood-Taylor reference elements

We also need the space

Vh =
{
vh = (vh1 , vh2)

T ∈ [C(Ω)]2; vhi
|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, (3.5)

vh = 0 in nodes on Γ
}

Since these function spaces satisfy Vgh ⊂ Vg, Vh ⊂ V , and Qh ⊂ L2(Ω)/R for prescribed
arbitrary value of pressure (e.g. ph = 0) in one node, we can introduce approximate steady
Navier-Stokes problem:

Seek uh ∈ Vgh and ph ∈ Qh satisfying∫
Ω

(uh · ∇)uh · vhdΩ + ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ =

∫
Ω

f · vhdΩ, ∀vh ∈ Vh (3.6)∫
Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh (3.7)

uh − ugh ∈ Vh (3.8)

where ugh ∈ Vgh is the projection of ug onto the space Vgh.

Similarly we define approximate steady Stokes problem, just omitting the first term in (3.6).

Using the shape regular triangulation and refining the mesh such that hmax → 0 where

hmax = max
K

hK ,

the solution of the approximated problem converges to the solution of the continuous problem
(for more see e.g. [4]).
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4 Asymptotic behaviour of the solution near corners

We are concerned with numerical solution of flow of incompressible fluid in tubes with abrupt
changes of diameter. We study the axisymmetric flow governed by the Navier-Stokes equations.
First concern is the asymptotic behaviour of the solution near the corners. Fundamental part
of this chapter is based on the paper [5].

In next chapters we deal with the numerical solution of the flow in a tube with sharp changes
of diameter. In plane flow, the finite element method has been succesfully used e.g. in [27]. The
singularity at the corner needs appropriate local refinement of the mesh.

To solve axisymmetric flow we used also the MAC method for space discretization. Nume-
rical results for pulsatile axisymmetric flow were published in [8], [9], [10].

In Chapter 6 our aim is to make use of the information on the local behaviour of the solution
near the corner point, in order to design local meshing subordinate to the asymptotics.

4.1 Solution of Navier-Stokes equations in the axisymmetric case

The asymptotic behaviour of plane flow with corner singularities has been studied e.g. by
Kondratiev [22], Ladevéze, Peyret [26], Kufner, Sändig [25]. The asymptotics of the biharmonic
equation for the stream function ψ are basic.

In this chapter we investigate the pipe flow (axisymmetric). We utilize the stream function
- vorticity formulation of Navier-Stokes equations, which in cylindrical geometry reads

∂ω

∂t
+ u1

∂ω

∂z
+ u2

∂ω

∂r
+ u2

ω

r
= ν

(
∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2

)
, (4.1)

∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
= −rω , (4.2)

u1 =
1

r

∂ψ

∂r
, u2 = −1

r

∂ψ

∂z
, (4.3)

where r, z are cylindrical coordinates, u1 = Vz, u2 = Vr are in turn axial and radial velocity
components, ω is the vorticity, ψ is the stream function, and ν is the viscosity. We assume that
all derivatives exist here at least in the generalized sense.

First we study the steady flow. Putting ω, u1, u2 from (4.2) – (4.3) into (4.1) we get

1

r

∂ψ

∂r

∂

∂z

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
− 1

r

∂ψ

∂z

∂

∂r

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
−

− 1

r2

∂ψ

∂z

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
= (4.4)

= ν
{ ∂2

∂z2

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
+

∂2

∂r2

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
+

+
1

r

∂

∂r

(
−1

r

∂2ψ

∂z2
− 1

r

∂2ψ

∂r2
+

1

r2

∂ψ

∂r

)
+

1

r3

∂2ψ

∂z2
+

1

r3

∂2ψ

∂r2
− 1

r4

∂ψ

∂r

}
.

We are interested in the asymptotic behaviour of the solution near the corners. One example
of our solution domain is shown in Figure 4.1, where the corners are the points P, Q.

P Q

Fig. 4.1: The solution domain Ω (left) and the auxiliary domain Ω0 (right)
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4.2 Asymptotics of steady Navier-Stokes flow near the corner

Substituting
z − z0 = x, r − r0 = y, (4.5)

into (4.4) we come to the equation

− 1

(y + r0)2

∂ψ

∂y

∂3ψ

∂x3
− 1

(y + r0)2

∂ψ

∂y

∂3ψ

∂x∂y2
+

1

(y + r0)3

∂ψ

∂y

∂2ψ

∂x∂y
+

+
1

(y + r0)2

∂ψ

∂x

∂3ψ

∂x2∂y
+

1

(y + r0)2

∂ψ

∂x

∂3ψ

∂y3
− 1

(y + r0)4

∂ψ

∂x

∂ψ

∂y
=

= ν { 1

y + r0
(
∂4ψ

∂y4
+ 2

∂4ψ

∂y2∂x2
+
∂4ψ

∂x4
)−

− 1

(y + r0)2
(
∂3ψ

∂x3
+

∂3ψ

∂x2∂y
+

∂3ψ

∂x∂y2
+
∂3ψ

∂y3
) +

3

(y + r0)3

∂2ψ

∂x2
− 3

(y + r0)4

∂ψ

∂x
}, (4.6)

which, to be a bit more general, we consider on the domain Ω0 shown in Figure 4.1, the corner
being in the origin of the coordinates, with the internal angle ω, 0 < ω ≤ 2π.

The coefficients in (4.6) are infinitely differentiable in Ω0. To study the asymptotic behaviour
of the solution of (4.6) near the corner P , we first restrict ourselves (cf. Kondratiev [22]) to the
principal part of equation (4.6), namely

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
= f, (4.7)

where we first assume f = 0. We perform the transformation into the polar coordinates ρ, ϑ,

x = ρ cosϑ, y = ρ sinϑ. (4.8)

Equation (4.7) in polar coordinates reads

S0(ψ) ≡
[1
ρ

∂

∂ρ
ρ
∂

∂ρ

1

ρ

∂

∂ρ
ρ
∂ψ

∂ρ
+

1

ρ

∂

∂ρ
ρ
∂

∂ρ

1

ρ2

∂2ψ

∂ϑ2

+
1

ρ2

∂2

∂ϑ2

1

ρ

∂

∂ρ
ρ
∂ψ

∂ρ
+

1

ρ2

∂2

∂ϑ2

1

ρ2

∂2ψ

∂ϑ2

]
= 0. (4.9)

The boundary conditions are

ψ
∣∣∣
∂Ω0

= 0,
∂ψ

∂n

∣∣∣
∂Ω0

= 0 (4.10)

where n is the outgoing normal to the boundary ∂Ω.
The problem (4.9), (4.10) is the same as in Kondratiev [23], and we follow his procedure.

To study the asymptotics in Ω0 near the corner P , we first consider the infinite cone Ω̃0,

Ω̃0 = {(ρ, ϑ), 0 < ρ <∞, α < ϑ < β}, (4.11)

where α ∈< 0, 2π), β ∈ (0, 2π >, α < β, are given angles, β − α = ω. Substituting τ = ln 1
ρ

into (4.9), we get

[(ψττττ + 4ψτττ + 4ψττ ) + 4ψτϑϑ + 2ψττϑϑ + ψϑϑϑϑ + 4ψϑϑ] = 0 (4.12)

on the infinite strip τ ∈ (−∞,+∞) , ϑ ∈ (α, β). Now we can perform the Fourier transform
with respect to τ , (i being the imaginary unit)

ψ̂(λ, ϑ) = (2π)−1/2

∫ +∞

−∞
e−iλτψ(τ, ϑ)dτ, (4.13)

and then Eq. (4.12) transforms to the ordinary differential equation

L̂(ϑ, iλ)ψ̂ ≡ ψ̂ϑϑϑϑ + (−2λ2 + 4iλ+ 4)ψ̂ϑϑ + (λ4 − 4iλ3 − 4λ2)ψ̂ = 0, (4.14)

13



where ϑ ∈ (α, β). The operator L̂ depends analytically (in fact polynomially) on λ. Thus the
inverse operator R(λ) (if it exists at least for one point λ ∈ C) is a meromorphic operator-valued
function of λ, each pole of R(λ) having finite multiplicity.

Equation (4.14) is a fourth order equation with constant coefficients. We denote them

A = −2λ2 + 4 iλ+ 4, B = λ4 − 4 iλ3 − 4λ2.

To find the general solution of (4.14), we have to solve the biquadratic equation

µ4 + Aµ2 +B = 0. (4.15)

The squares of the solutions of Eq. (4.15) are (µ2)1 = λ2, (µ2)2 = (λ−2i)2. So the solutions
of (4.15) are µ1,2 = ±λ, µ3,4 = ±(λ− 2i). (4.16)

Now we can prove the following Lemma.

Lemma 4.1 There are no poles of the resolvent R(λ) on the line Imλ = 2.

Now we can use the following theorem proved by Kondratiev [23]. We use the Sobolev spaces

W̊
k

δ (Ω) supplied with the norm

‖u‖2

W̊
k
δ (Ω)

=
k∑

m=0

∫∫
Ω

ρδ−2(k−m) |Dmu|2 dx, Dm =
D|m|

∂xm1
1 ∂xm2

2

, |m| = m1 +m2. (4.17)

Now let us return to the full Navier-Stokes equation (4.6). We rewrite (4.6) in the form

∂4ψ

∂y4
+ 2

∂4ψ

∂y2∂x2
+
∂4ψ

∂x4
= f, (4.18)

where now

f =
1

ν
{ 1

(y + r0)

(
∂3ψ

∂x3
+

∂3ψ

∂x2∂y
+

∂3ψ

∂x∂y2
+
∂3ψ

∂y3

)
+

3

(y + r0)2

∂2ψ

∂x2
− 3

(y + r0)3

∂ψ

∂x
} +

+
1

ν
{− 1

(y + r0)

∂ψ

∂y

∂3ψ

∂x3
− 1

(y + r0)

∂ψ

∂y

∂3ψ

∂x∂y2
+

1

(y + r0)2

∂ψ

∂y

∂2ψ

∂x∂y
+

+
1

(y + r0)

∂ψ

∂x

∂3ψ

∂x2∂y
+

1

(y + r0)

∂ψ

∂x

∂3ψ

∂y3
− 1

(y + r0)3

∂ψ

∂x

∂ψ

∂y
}. (4.19)

By (4.19) we get, cf. Agmon et al.[1], ψ ∈ W 4(Ω̃0 ∩ {(x, y), x2 + y2 > R}) ∀R > 0. As in

Kondratiev, Olejnik [24], we can then receive ψ ∈ W̊
4

4(Ω̃0). Then, using boundedness of ∂ψ
∂x
, ∂ψ
∂y

in Ω̃0 we can prove that the function f in (4.19) satisfies f ∈ W̊
0

2(Ω̃0).
Now we are in the position to use the following theorem by Kondratiev, Olejnik [24].

Theorem 4.1 Let f ∈ W̊
k1

δ1
(Ω̃0) and let ψ ∈ W̊

k+4

δ (Ω̃0) be the solution of (4.7) satisfying the

boundary conditions (4.10) on ∂Ω̃. Let

h1 ≡
−δ1 + 2k1 + 6

2
>
−δ + 2k + 6

2
≡ h , k1 ≥ k. (4.20)

Suppose that the resolvent function R(λ) has no poles on the line Im λ = h1.
Then the solution ψ has the form

ψ(x, y) =
∑
j

pj−1∑
s=0

ajsρ
−iλj lns ρ · ψsj(ϑ) + w(x, y), (4.21)

where w satisfies (4.10), w ∈ W̊
k1+4

δ1
(Ω̃0), ψsj ∈ C∞(Ω̃0), ajs = const., and λj are the poles of

multiplicity pj of the function R(λ), satisfying h < Imλj < h1.
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Now we can apply Theorem 4.1 to Eq. (4.18), with k = 0, δ = 4. We put h1 = 2 according to
Lemma 4.1, k1 = 0, δ1 = 2.

Theorem 4.1 deals with the infinite cone Ω̃0. The situation is a bit more complicated in the
conical domain Ω0, and we refer to [5].

Now we try to find the poles of R(λ). According to (4.16), the general solution of (4.14) is

ψ̂ = c1 exp(λϑ) + c2 exp(−λϑ) + c3 sin(2ϑ) + c4 cos(2ϑ). (4.22)

The boundary conditions are

ψ̂
∣∣∣
ϑ=α

= 0, ψ̂
∣∣∣
ϑ=β

= 0,

∂ψ̂

∂ϑ

∣∣∣
ϑ=α

= 0, ∂ψ̂
∂ϑ

∣∣∣
ϑ=β

= 0, (4.23)

To obtain a nontrivial solution of the problem (4.22), (4.23), the necessary and sufficient
condition is that the following determinant be zero,

R(λ) ≡ det


exp(λα) exp(λβ) λ exp(λα) λ exp(λβ)

exp(−λα) exp(−λβ) −λ exp(−λα) −λ exp(−λβ)
sin(2α) sin(2β) 2 cos(2α) 2 cos(2β)
cos(2α) cos(2β) −2 sin(2α) −2 sin(2β)

 = 0. (4.24)

Let us for example take the angle ω = 3
2
π, i.e. α = 0, β = 3

2
π. We come to the first root of

(4.24): iλ1 = −1.54448374, which is simple, so that, according to Theorem 4.1, the first term
of the asymptotic expansion is ρ1.54448374, i.e.

ψ(ρ, ϑ) = ρ1.54448374 φ(ϑ) + . . . . (4.25)

This result is the same as that obtained in desk geometry by Kondratiev [23], Ladevéze,
Peyret [26], M. Dauge [16], where

ψdesk(ρ, ϑ) = ρ1.5445 φd(ϑ) + . . . . (4.26)

Now according to (4.3) we get the expansion for the velocities:

ul(ρ, ϑ) = ρ0.54448374ϕl(ϑ) + . . . , l = 1, 2, (4.27)

where the functions ϕl do not depend on ρ.
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5 A posteriori error estimates for the Stokes equation

At present various a posteriori error estimates for the Stokes problem are available. We mention
e.g. Babuška, Rheinboldt [3], Ainsworth, Oden [2], Verfürth [30]. Other references in [6].

One of the goals of this chapter is to study the aspect of the constant that appears in the
estimate because it plays significant role in the adaptive mesh refinement. That is why we
derive our own a posteriori estimate and trace carefully the role of different constants and their
sources. In [6] we derived an a posteriori estimate for the Stokes problem in a 2-dimensional
polygonal domain. In [7] we presented a posteriori estimates also for 3-dimensional domains.

The outline of the chapter is as follows. In Section 5.1 we consider the Stokes problem and
its finite element approximation with Taylor-Hood elements. The a posteriori error estimate
for the Stokes problem is shown in Section 5.2. In Sections 5.3-5.4 we describe implementation
and tests of a posteriori error estimates of the discretization error for Navier-Stokes equations.
These estimates are computed using approximate numerical solution on an initial finite element
mesh. On each element they give us information about the discretization error. This enables
us to consider the quality of the mesh, and also to refine the elements of the mesh, where the
discretization error is too high, and then compute new solution on that new mesh. This way
we can continue, until the prescribed accuracy is reached. Numerical results are demonstrated
in Section 5.5 on a model of fluid flow in a domain with corner singularity.

5.1 The Stokes problem and finite element solution

Let us consider the steady Stokes problem on a bounded Lipschitzian domain Ω ⊂ IR2 as
defined in Section 2.3, now with simplified boundary conditions: given f∈ L2(Ω), find {u, p} ∈
H1(Ω)d × L2

0(Ω) such that, in the weak sense,

−ν∆u +∇p = f in Ω ,

div u = 0 in Ω , (5.1)

u = 0 on ∂Ω ,

L2
0(Ω) is the space of L2 functions having mean value zero. Let us denote (., .)0 the scalar

product in L2, and let V = H1
0 (Ω)2×L2

0(Ω). Problem (5.1) is known to have a unique solution,
cf. [19], and consists in: find {u, p} ∈ V such that

ν(∇u,∇u∗)0 − (p, div u∗)0 + (p∗, div u)0 = (f ,u∗)0 ∀{u∗, p∗} ∈ V. (5.2)

For the finite element approximation we take Ω a polygon in IR2, for simplicity. Let {Th}h→0

be a regular (cf. [19]) family of triangulations of Ω.
We use Hood-Taylor elements as defined in Chapter 3.

5.2 A posteriori error estimate for the Stokes problem

We define the residual components on the elements K ∈ T h, by the relations

R1(u
h, ph) = f + ν∆uh −∇ph, R2(u

h, ph) = div uh. (5.3)

The error components are defined on Ω by

eu = u− uh , ep = p− ph ,

where {u, p} is the exact solution defined in (5.1), {uh, ph} is the approximate solution, by (4).
The V norm of {eu, ep} is

‖{ev, ep}‖2
V = (eu, eu)1 + (ep, ep)0.

Using the Poincaré-Friedrichs inequality, the Galerkin orthogonality, the Schwarz inequality,
the interpolation properties of Vh, Qh, and the estimate of the solution of the dual problem,
we get the theorem (proof in [6] is based on the ideas of Eriksson et al. [18], and Babuška,
Rheinboldt [3])
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Theorem 5.1 Let Ω be a polygon in IR2 with Lipschitz continuous boundary. Let T h be a
regular family of triangulations of Ω. Let {uh, ph} be the Hood-Taylor approximation of the
solution {u, p} of the Stokes problem. Then the error {eu, ep} satisfies the following a posteriori
estimate

‖eu‖1 + ‖ep‖0 ≤ 2 CP CI CR
∑
K∈T h

(
hK‖R1(u

h, ph)‖0,K +

(5.4)

+‖R2(u
h, ph)‖0,K + h

1
2
K

∑
l∈∂K

∥∥∥∥1

2

[[
ν
∂uh

∂n

]]
l

∥∥∥∥
0,l

)
,

where CP , CI , CR are positive constants.

Remarks The constants CP , CI , and CR in Theorem 5.1 come in turn from the Poincaré
inequality, the interpolation properties of Vh, Qh, and the regularity of the dual problem, re-
spectively.

Our result in Theorem 5.1 is in agreement with that of Verfürth [30], though the technique
of the proof is different, and we do not require any regularity.

5.3 A posteriori estimates for 2D steady Navier-Stokes equations

Let us consider the steady Navier-Stokes problem (4.6), (2.13), with boundary conditions (2.10),
(2.11). For the discretization by finite elements we use again Hood-Taylor elements P2/P1.

Suppose that exact solution of the problem is denoted by (u1, u2, p) and the approximate
finite element solution by (uh1 , u

h
2 , ph). The exact solution differs from the approximate solution

in the error
(eu1 , eu2 , ep) ≡ (u1 − uh1 , u2 − uh2 , p− ph). (5.5)

For the solution (u1, u2, p) we denote

U2(u1, u2, p,Ω) ≡ ‖(u1, u2, p)‖2
V ≡ ‖(u1, u2)‖2

1,Ω + ‖p‖2
0,Ω (5.6)

≡
∫

Ω

(
u2

1 + u2
2 +

(
∂u1

∂x

)2

+

(
∂u1

∂y

)2

+

(
∂u2

∂x

)2

+

(
∂u2

∂y

)2
)

dΩ +

∫
Ω

p2dΩ.

The estimate in Theorem 1 can be generalized to the Navier-Stokes equations:

‖(eu1 , eu2)‖2
1,Ω + ‖ep‖2

0,Ω ≤ E2(uh1 , u
h
2 , p

h), (5.7)

where (cf. [30])

E2(uh1 , u
h
2 , p

h,Ω) ≡ C

[ ∑
K∈T h

h2
K

∫
TK

(
r2
1 + r2

2

)
+
∑
K∈T h

∫
TK

r2
3dΩ

]
, (5.8)

where hK denotes the diameter of the element TK and ri, i = 1, 2, 3, are the residuals

r1 = fx −
(
uh1
∂uh1
∂x

+ u2
∂uh1
∂y

)
+ ν

(
∂2uh1
∂x2

+
∂2uh1
∂y2

)
− ∂ph

∂x
, (5.9)

r2 = fy −
(
uh1
∂uh2
∂x

+ uh2
∂uh2
∂y

)
+ ν

(
∂2uh2
∂x2

+
∂2uh2
∂y2

)
− ∂ph

∂y
, (5.10)

r3 =
∂uh1
∂x

+
∂uh2
∂y

. (5.11)

Let us note that due to our practical experience we use only the element residuals.
Denote also

E2(uh1 , u
h
2 , p

h, TK) ≡ C

[
h2
K

∫
TK

(
r2
1 + r2

2

)
+

∫
TK

r2
3dΩ

]
. (5.12)
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Qualitatively the value of the constant C is not simple to determine, the sources are seen in
Theorem 5.1. It is important, that C doesn’t depent on the mesh size and so can be determined
experimentally for general situation.

By computing of the estimates (11) we obtain absolute numbers, that will depend on given
quantities in different problems. We are mainly interested in the error related to the computed
solution, i.e. relative error. This is given by the ratio of absolute norm of the solution error,
related to unit area of the element TK ,

1
|TK |

E2(uh1 , u
h
2 , p

h, TK), and the solution norm on the

whole domain Ω, related to unit area 1
|Ω| ‖(u

h
1 , u

h
2 , p

h)‖2
V,Ω, i.e.

R2(uh1 , u
h
2 , p

h, TK) =
|Ω| E2(uh1 , u

h
2 , p

h, TK)

|TK | ‖(uh1 , uh2 , ph)‖2
V,Ω

. (5.13)

5.4 Determination of the constant C

In papers [11], [12] we investigated the problem of the constant C in the a posteriori error
estimates. Comparing analytical and finite element solution of some model problems we found
the apropriate value of the constant. For details we refer to [11] and [12].

5.5 Numerical results and application of estimates to the construction
of adaptive meshes

Consider two-dimensional flow of viscous, incompressible fluid described by Navier-Stokes equati-
ons in domain with corner singularity, cf. Fig. 5.1.

Fig. 5.1: Geometry of the channel

Due to symmetry, we solve the problem only on half of the channel, cf. Fig. 5.2. On the
inflow we consider parabolic velocity profile, at the outflow ’do nothing’ boundary condition.
On the upper wall, no-slip condition and on the lower wall, condition of symmetry (i.e. only y−
component of velocity equals zero). We consider the following parameters: ν = 0.0001 m2/s,
uin = 1 m/s. The initial mesh is in Fig. 5.2. Relative errors on the elements of the initial mesh
are on Fig. 5.3.

Fig. 5.2: Initial finite element mesh

Elements, where the relative error by (5.13) exceeds 3 % are refined, and new solution
together with new error estimates is computed. The refinements are seen on Figures 5.4, 5.5.

The relative errors in the vicinity of the corner are shown on Figure 5.6. Numerical results
of velocity components and pressure are on Figures 5.7 , 5.8, and 5.9. The corner singularities
caused by nonconvex corners are approximated with high accuracy.
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Fig. 5.3: Relative errors on elements of initial mesh

Fig. 5.4: Finite element mesh after first refinement

Fig. 5.5: Finite element mesh after third refinement

Fig. 5.6: Relative errors on elements of the third refinement
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Fig. 5.7: Velocity ux after third refinement

Fig. 5.8: Velocity uy after third refinement

5.6 Conclusions

In the a posteriori estimate (5.4) only the constant CP can be evaluated directly. The others
are not known from the analysis. But in the application to the adaptive mesh refinement we
need the constant. We developed a technique for calculating the constant with high accuracy.
Of course this approach needs some improvement, and it will be a subject of future research.

Let us note that another way of local mesh refinement near the singularity has been sug-
gested in [5]. This approach will be applied in Chapter 6.

Fig. 5.9: Pressure p after third refinement
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6 Application of a priori error estimates for Navier-Stokes

equations

The goal of this chapter is to summarize author’s experience with the application of a priori
error estimates of the finite element method in computational fluid dynamics. This approach
is applied to generation of the computational mesh in the purpose of uniform distribution of
error on elements and is used in precise solution on domains with corner-like singularities.
Incompressible viscous flow modelled by the steady Navier-Stokes equations (2.20)-(2.22) is
considered.

One possible way to improve accuracy of solution by the FEM is to refine the mesh near
places, where singularity can appear by means of adaptive refinement based on a posteriori
error estimates or error estimators, as presented in Chapter 5. This method could be quite time
demanding, since it needs several runs of solution. Completely different method is applied in
this chapter. Computational mesh is prepared before the first run of the solution.

Numerical results are presented for flows in a channel with sharp obstacle and in a channel
with sharp extension. Let us note that some other results were published in [14]

6.1 Algorithm for generation of computational mesh

In the derivation of the algorithm, two main ‘tools’ are used. The first is a priori estimate of
the finite element error for the Navier-Stokes equations (2.20)-(2.22) (cf. [19])

‖∇(u− uh)‖L2(Ω) ≤ C
[(∑

K

h2k
K | u |2

Hk+1(TK)

)1/2

+
(∑

K

h2k
K | p |2Hk(TK)

)1/2]
(6.1)

‖p− ph‖L2(Ω) ≤ C
[(∑

K

h2k
K | u |2

Hk+1(TK)

)1/2

+
(∑

K

h2k
K | p |2Hk(TK)

)1/2]
(6.2)

where hK is the diameter of triangle TK of a triangulation T , and k = 2 for Hood-Taylor
elements, which are applied in presented numerical experiments.

The second tool is the asymptotic behaviour of the solution near the singularity. In Section
4.2 (see also [5]), it was proved for the Stokes flow in axisymmetric tubes, that for internal
angle α = 3

2
π, the leading term of expansion of the solution for each velocity component is

ui(ρ, ϑ) = ρ0.5445ϕi(ϑ) + . . . , i = 1, 2 (6.3)

where ρ is the distance from the corner, ϑ the angle and ϕi is a smooth function. The same
expansion is known to apply to the plane flow (cf. [22]), and similar results were also proved

for the Navier-Stokes equations. Differentiating by ρ, we observe ∂ui(ρ,ϑ)
∂ρ

→ ∞ for ρ → 0.

Taking into account the expansion (6.3), we can estimate

| u |2Hk+1(TK)≈ C

rK∫
rK−hK

ρ2(γ−k−1) ρ dρ = C
[
−r2(γ−k)

K + (rK − hK)2(γ−k)
]

(6.4)

where rK is the distance of element TK from the corner, cf. Figure 6.1.
Putting estimate (6.4) into the a priori error estimate (6.1) or (6.2), we derive that we

should guarantee

h2k
K

[
−r2(γ−k)

K + (rK − hK)2(γ−k)
]
≈ h2k

ref (6.5)

in order to get the error estimate of order O(hkref ) uniformly distributed on elements. From
this expression, we compute element diameters using the Newton method in accordance to
chosen href . Similar idea was presented by C. Johnson for an elliptic problem in [21].
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Fig. 6.1: Description of element variables

i ri (mm) hi (mm)
1 0.25000 0.06004
2 0.18996 0.04808
3 0.14189 0.03795
4 0.10394 0.02947
5 0.07447 0.02245
6 0.05202 0.01674
7 0.03527 0.01217
8 0.02311 0.00858
9 0.01453 0.00584
10 0.00869 0.00380
11 0.00489 0.00234
12 0.00255 0.00134
13 0.00121 0.00070
14 0.00050 0.00050

i ri (m) hi (m)
1 0.30000 0.06956
2 0.23044 0.05621
3 0.17423 0.04483
4 0.12940 0.03522
5 0.09419 0.02720
6 0.06699 0.02059
7 0.04640 0.01524
8 0.03116 0.01098
9 0.02017 0.00767
10 0.01250 0.00515
11 0.00735 0.00330
12 0.00405 0.00199
13 0.00206 0.00112
14 0.00094 0.00057
15 0.00038 0.00038

Table 6.1: Resulting refinement for the first (left) and the second (right) cases of geometry

6.2 Geometry and design of the mesh

The algorithm was applied to two different computational domains in 2D. The first is the
channel with sudden intake of diameter (see Fig. 5.1), the second is the channel with abruptly
extended diameter (Figure 6.2). Since these are symmetric, the problem was solved only on the
upper half of the channels.

3000 3000

9000

Æ
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0
0

0

Æ
2

0
0

0

Fig. 6.2: The second geometry

In the first case of geometry, diameters of elements were computed for values href =
0.1732 mm, k = 2, γ = 0.5444837. We started in the distance r1 = 0.25 mm from the cor-
ner. This corresponds to cca 3% of relative error on elements. Fourteen diameters of elements
were obtained (Table 6.1).

For the second channel, we used href = 0.1732 m, k = 2, γ = 0.5444837 and started in
the distance r1 = 300 mm from the corner. Fifteen diameters of elements were obtained (Table
6.1).

Note, that those are ‘1D’ data. An experiment with three meshes with different refined
details (Figure 6.3) was performed (cf. [12],[28] for details). Type C of refinement in Figure
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6.3 provided the best uniformity of the error on elements, therefore was chosen for further
applications. This type of refinement corresponds to the polar coordinate system used in the
derivation of the algorithm, and is applied in the two experiments described in this chapter.

Fig. 6.3: Details of refined mesh - type A (left), type B (middle), type C (right)

The refined detail is connected to the rest of the coarse mesh. In Figures 6.4-6.5, final meshes
after the refinement are shown for both geometries.
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Fig. 6.4: Final computational mesh for the first channel
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Fig. 6.5: Final computational mesh for the second channel

6.3 Measuring of error

To review the efficiency of the algorithm, we use a posteriori error estimates as derived in
chapter 5, to evaluate the obtained error on elements. Suppose that the exact solution of
the problem is denoted as (u1, u2, p) and the approximate solution obtained by the FEM as
(uh1 , u

h
2 , p

h). The exact solution differs from the approximate solution in the error (eu1 , eu2 , ep) =
(u1 − uh1 , u2 − uh2 , p− ph).

In adaptive mesh refinement in Sections 5.3 - 5.5 we used the error estimator (5.13). In
this Chapter, for the similarity with a priori error estimate, we use the modified absolute error
defined as

A2
m(u1h, u2h, ph, TK ,Ω, n) =

|Ω|E2(u1h, u2h, ph, TK)

|TK | U2(u1h, u2h, ph,Ω)
(6.6)

where |TK | is the mean area of elements obtained as |TK | = |Ω|
n

, where n denotes the number of
all elements in the domain, and the symbols E2(u1h, u2h, ph, TK), U2(u1h, u2h, ph,Ω) are dfefined
in (5.6), (5.12).
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6.4 Numerical results

Channel with sudden intake of diameter (results for Re = 1000)
In Figures 6.6-6.7, plots of entities that characterize the flow in the channel are presented. In

Figure 6.6, there are streamlines and plot of velocity component ux. Plots of velocity component
uy and pressure are in Figure 6.7. Note, that the fluid flows from the right to the left on plots
of ux, uy, and p, to have better view.

Fig. 6.6: Detail of streamlines (left) and velocity component ux (right)

Fig. 6.7: Velocity component uy (left) and pressure (right)

In Figure 6.9, there are values of obtained error on elements in refined area. All values are
listed in Table 6.2. Marking of elements in the table is described in Figure 6.8, together with
plot of contours of velocity uy close to the corner.

Fig. 6.8: Contours of uy (left) and marking of elements for Table 6.2 (right)
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Fig. 6.9: FEM error on elements in the refined area for the first case of geometry

A B C D E F G H
1 1.858 0.652 0.229 0.103 0.132 0.149 0.193 0.234
2 2.221 0.664 0.135 0.105 0.127 0.160 0.194 0.238
3 2.427 0.513 0.122 0.103 0.123 0.156 0.192 0.230
4 2.292 0.407 0.110 0.095 0.110 0.140 0.170 0.205
5 1.574 0.261 0.083 0.069 0.087 0.103 0.126 0.154
6 0.523 0.104 0.034 0.037 0.042 0.054 0.068 0.085
7 0.585 0.093 0.032 0.030 0.033 0.036 0.043 0.051
8 1.544 0.274 0.079 0.064 0.072 0.085 0.098 0.109
9 2.223 0.404 0.115 0.091 0.105 0.122 0.144 0.165
10 2.409 0.521 0.126 0.098 0.112 0.139 0.169 0.191
11 2.277 0.654 0.134 0.101 0.118 0.139 0.163 0.192
12 1.912 0.665 0.237 0.102 0.125 0.126 0.159 0.174

I J K L M N con. -
1 0.283 0.345 0.399 0.499 0.530 0.793 1.222 -
2 0.288 0.341 0.408 0.482 0.596 0.782 1.380 -
3 0.276 0.329 0.392 0.476 0.570 1.353 2.495 -
4 0.245 0.289 0.343 0.390 0.471 0.577 1.996 -
5 0.185 0.216 0.242 0.252 0.222 0.499 1.754 -
6 0.102 0.120 0.122 0.142 0.151 0.419 1.813 -
7 0.056 0.066 0.082 0.126 0.388 1.070 3.776 -
8 0.124 0.140 0.168 0.194 0.363 0.896 1.733 -
9 0.189 0.215 0.243 0.268 0.309 0.488 0.957 -
10 0.216 0.245 0.265 0.285 0.277 0.610 1.558 -
11 0.212 0.237 0.237 0.284 0.411 1.021 2.786 -
12 0.199 0.186 0.209 0.172 0.311 0.496 1.970 -

Table 6.2: Obtained errors on elements for the first case of geometry
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Channel with abruptly extended diameter (results for Re = 400)
Similarly, streamlines, plots of velocity components ux and uy, and pressure are presented

in Figures 6.10-6.11.
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Fig. 6.10: Streamlines (left) and velocity component ux (right)

Fig. 6.11: Velocity component uy (left) and pressure (right)

In Figure 6.12, there are, again, values of obtained error on elements in refined area.

Fig. 6.12: FEM error on elements in the refined area for the second case of geometry

26



7 Conclusion

Presented work is mainly focused on flow problems with singularities caused by corners in the
solution domain, and on the construction of the the FEM solution in the vicinity of these
corners as precisely as desired.

We presented two ways for getting desired precision of the FEM solution in the vicinity
of corners. Both make use of qualitative properties of the mathematical model of flow. As a
mathematical model we accept the Navier-Stokes equations (NSE) for incompressible fluids.

The first approach described in Chapter 5 makes use of a posteriori error estimates of
the FEM solution which is carefully derived to trace the quality of the solution. Especially the
constant in the a posteriori estimate is investigated with care. Then we use the adaptive strategy
to improve the mesh and thus to improve the FEM solution. Numerical results demonstrate
the robustness of this approach.

The second approach stands on two legs. In Chapter 4 we derive the asymptotic behaviour
of the exact solution of the NSE in the vicinity of the corner. This is obtained using some
symmetry of the principal part of the Stokes equation, then applying the Fourier transform,
and investigating the resolvent of the corresponding operator. Second leg is the a priori error
estimate of the FEM solution where we estimate the seminorm of the exact solution by means of
the above obtained asymptotics. In Chapter 6, according to these ideas we derive an algorithm
for designing the FEM mesh in advance (a priori). On the mesh we then obtain the solution
with desired precision, namely in the vicinity of the corner though there is a singularity there.

Two applications in Chapter 6 confirm the achievement of the goal – to obtain solution
tinged with errors on elements satisfactorily small and uniformly distributed. The uniformity
is apparent in Figures 6.9 and 6.12, and in Table 6.2. Using this approach, we can save a lot of
computational time using mesh ‘prepared’ for expected solution.

At present we deal also with the stabilized version of FEM to enable the calculation of
flows with higher Reynolds numbers [15]. In future we intend to combine stabilization with
presented achievements on a posteriori error estimates. Our achievements with precise solution
of problems with singularities may serve as an important tool for verification.

Results of Chapters 4 - 6 were presented e.g. on the following international conferences:

• FEF05, Finite Elements in Fluids, Swansea, March 2005, see [15]

• ICFD International Conference on Numerical Methods for Fluid Dynamics 2004, Univer-
sity of Oxford, March 29 – April 1, 2004, cf. [14]

• ICCFD3, Toronto, July 12 – 16, 2004, cf. [13]

• ENUMATH 2003, Prague, August 18 – 22, 2003, cf. [12]

• ICCFD2, 2-nd Int. Conf. on Computational Fluid Dynamics, Sydney, Australia, July,
2002,

• ENUMATH 2001, the 4-th European Conference on Numerical Mathematics and Advan-
ced Applications, Ischia, Italy, July, 23 - 28, 2001,

• Finite Element Methods, Three-Dimensional Problems, Jyväskylä, June 2000

• ICCFD1, Int. Conf. on Computational Fluid Dynamics, Kyoto, JAPAN, July 2000

• Finite Element Methods, Supeconvergence, Post-Processing and A Posteriori Estimates,
Jyvaskyla 1996, see [5]
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pracovńık)
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FRVŠ i interńımi granty ČVUT. V těchto projektech se významně účastńı doktorandi a studenti.
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– Pavel Moses, 4. roč. (2000) - 3. mı́sto
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