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Summary 
 
 
Integrated-optic components and devices have already found interesting 
applications in broadband optical telecommunication systems, optical sensing, 
and microwave technology. However, many other complex high-performance 
guided-wave components and devices for access, metropolitan and local optical 
networks like fixed and tuneable filters, add-drop de/multiplexers, 
reconfigurable space switches, wavelength converters etc. that have been 
developed, still wait for their large-scale deployment. Their prohibitively high 
cost can be dramatically reduced only by batch fabrication of photonic devices 
with higher degree of integration. For this purpose, ‘uniform’ fabrication 
technologies that are much rarer in photonics than in microelectronics are to be 
applied, and the size of individual guided-wave devices integrated on an optical 
chip has to be reduced. 

In this lecture, two kinds of novel photonic waveguide structures suitable for 
photonic integration are briefly presented. Ring and disk microresonators 
represent the more classical, “evolutionary” branch of development while 
waveguide devices in (two-dimensional) photonic crystals represent the 
“revolutionary” approach. We explain the principles of operation of some of 
these structures, show results of basic experimental characterization of one of 
them, and describe two methods for their numerical modelling that are 
connected with our own research activity in this field.  

Efficient numerical modelling is of vital importance for design and 
development of these new components since it helps significantly reduce design 
time and costs. Most frequently used methods are based on discretization of 
coordinates (finite-difference or finite element methods and their modifications). 
In this lecture we will concentrate on the fundamentals of modal methods that 
are generally less flexible but, if correctly formulated, very accurate and often 
bring deeper physical insight into the pertinent wave processes. Two strongly 
related modal methods are presented: a two-dimensional mode expansion and 
propagation method for modelling optical field distribution propagating in 
guided-wave photonic devices, and a rigorous fully vectorial mode solver for 
straight and bent waveguides based on mode matching. The methods were 
developed within several national and international research projects with strong 
participation of PhD students, and their results have been currently applied in 
different MS and PhD courses. At the end, a link between research and 
education in guided-wave photonics and their integration into international 
environment in Europe is briefly discussed. 
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Souhrn 
 
 
Mnohé struktury a součástky integrované optiky již našly zajímavé aplikace 
v širokopásmových optických telekomunikačních systémech, optických 
senzorech i mikrovlnné technice. Mnoho dalších velmi výkonných vlnovodných 
struktur a součástek pro přístupové, metropolitní i lokální optické sítě jako jsou 
pevné a laditelné filtry, vyčleňovací a začleňovací de/multiplexory, 
rekonfigurovatelné spínače, konvertory vlnových délek ap., které již byly 
vyvinuty, na své hromadné využití dosud čeká. Důvodem je jejich příliš vysoká 
vysoká cena. Ta může být výrazně snížena jen při hromadné výrobě součástek a 
struktur s vyšším stupněm integrace. Pro tento účel je třeba využít dostatečně 
„uniformní“ výrobní technologie, které jsou ve fotonice podstatně vzácnější než 
v mikroelektronice, a je třeba výrazně zmenšit rozměry jednotlivých fotonických 
struktur integrovaných na jednom optickém čipu. 

Přednáška je věnována dvěma novým typům fotonických vlnovodných 
struktur vhodných pro fotonickou integraci. Kruhové a diskové mikrorezonátory 
představují klasičtější „evoluční“ vývojovou větev, zatímco vlnovodné struktury 
ve (dvojrozměrných) fotonických krystalech reprezentují „revolučnější“ přístup. 
Jsou objasněny základní principy funkce těchto struktur, ukázány základní 
výsledky experimentální charakterizace jedné z nich a popsány dvě metody 
jejich numerického modelování, které vycházejí z našeho vlastního výzkumu 
v této oblasti. 

Efektivní numerické modelování má zásadní význam pro návrh a vývoj 
těchto nových struktur, poněvadž významně zkracuje dobu návrhu a snižuje 
náklady na vývoj. Nejčastěji jsou používány metody založené na diskretizaci 
souřadnic (metody konečných diferencí a konečných prvků a jejich modifikace). 
V této přednášce se soustředíme na použití modálních metod, které jsou sice 
obecně méně flexibilní, ale pokud jsou správně formulovány, jsou velmi přesné 
a zpravidla poskytují hlubší fyzikální pohled na zkoumané vlnové jevy. 
Zabýváme se dvěma úzce souvisejícími metodami, a to dvojrozměrnou metodou 
obousměrného rozkladu a šíření vlastních vidů pro modelování rozložení 
optického záření šířícího se ve vlnovodných fotonických strukturách, a rigorózní 
plně vektorovou metodou pro výpočet vlastních vidů v přímých a kruhově 
zakřivených vlnovodech, založenou na „sešívání vidů“. Metody byly vyvinuty 
v rámci několika národních i mezinárodních výzkumných projektů s významnou 
účastí doktorandů, a jejich výsledky jsou běžně využívány při přednáškách pro 
magisterské i doktorské studium. V závěru je stručně diskutována vzájemná 
vazba výzkumu a vzdělávání ve fotonice a jejich integrace do mezinárodního 
prostředí v Evropě. 
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1 INTRODUCTION 
 
 
Integrated optics was born at the end of the sixth decade of the last century as a 
new original discipline inspired by the tremendous progress of microelectronics 
and quantum electronics, as a promising complement of the nascent fibre optics 
and emerging optical communication. With some uncertainty, it could be 
characterized as a scientific and technological discipline dealing with 
components and devices that manipulate (“process” or “control”) photon flow in 
planar or channel optical waveguides fabricated on a planar substrate, providing 
thereby some technically useful operations. During its more than 30 years of 
evolution, integrated optics passed through different stages – from its idea-
driven beginnings in the seventies when a large number of different waveguide 
structures, devices, and their principles of operation were proposed, theoretically 
analyzed, and some of them also experimentally fabricated and tested, through 
the “technology-driven” period in eighties when many different fabrication 
technologies were significantly refined and improved, over the “application-
driven” period in nineties when the development was mainly determined by the 
needs of potential users mainly in optical communication, in view of a “market-
driven” development that was expected to come at the beginning of the 21st 
century. The drastical decrease of investments into optical telecommunication 
technologies in the first years after 2000 (well-known “telecom bubble”) could 
not remain without a strong impact on the development in integrated optics: the 
most important parameter of any applicable integrated-optic component – 
regardless how demanding its technical specifications are – became its cost. 
Currently, too high prices of devices and components are prohibitive for most 
potential end users. 

Cost can be dramatically reduced only by batch fabrication of photonic 
devices with higher degree of integration. For this purpose, ‘uniform’ fabrication 
technologies that are much more rare in photonics than in microelectronics have 
to be adopted, and the size of individual guided-wave devices integrated on an 
optical chip has to be reduced. 

In this lecture, two kinds of novel photonic waveguide structures potentially 
suitable for photonic integration are briefly presented. Ring and disk 
microresonators are representative examples of a classical, “evolutionary” 
branch of integrated optics development. We explain the principles of operation 
of microresonator-based structures and show some of their application 
possibilities. The appearance of photonic crystals introduced a really 
revolutionary new approach into optics and photonics as a whole, and into 
integrated and guided-wave optics in particular. We will very briefly introduce 
principles of waveguiding in two-dimensional photonic crystals with envisaged 
applications in waveguide devices. In real structures, wave confinement in the 
third (vertical) dimension by index guiding will be assumed. Because of 
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considerable complexity of underlying physics, only basic features of the 
structures will be tackled in this short lecture. 

Efficient numerical modelling is an important part of design of these new 
and complex components since it helps significantly reduce design time and 
costs. Usually, methods based on discretization of coordinates (finite-difference 
or finite element methods and their modifications) are applied. In this lecture we 
will concentrate on the fundamentals of modal methods that are generally less 
flexible but, if correctly formulated, very accurate and often bring deeper 
physical insight into the pertinent wave processes. Two strongly related modal 
methods are treated here: a two-dimensional mode expansion and propagation 
method for modelling optical field distribution propagating in guided-wave 
photonic devices, and a rigorous fully vectorial mode solver for straight and bent 
waveguides based on mode matching. The methods were developed within 
several national and international research projects with strong participation of 
PhD students, and have been currently used in MS and PhD courses.  

At the end, mutual linkage of research and education in guided-wave 
photonics and integration of research and education into international 
environment within the European 6FP Network of Excellence “ePIXnet” is 
briefly discussed. 
 
 
 
2 NOVEL TRENDS IN GUIDED-WAVE PHOTONICS 
 
Currently, one of the most popular integrated-optic devices is the arrayed 
waveguide grating demultiplexor (AWG) [1, 2] schematically sketched in Fig. 1.  

 
Fig. 1. Schematic configuration of the arrayed waveguide grating demultiplexor. 

It is essentially a planar waveguide spectrum analyzer that relies on differential 
phase shift of modes propagating in channel waveguides of different length. 
Their application in optical communication systems with dense wavelength-
division multiplex (DWDM) requires subnanometer spectral resolution; in the 
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central optical telecommunication band around the wavelength of 1.55 µm, the 
standardized separation between two neighbouring wavelength channels is only 
100 GHz, or equivalently, 0.8 nm. An example of a spectral transmittance of a 
16-channel ARW demultiplexor is plotted in Fig. 2. 

 
Fig. 2. Typical spectral characteristics of a 16-channel AWG demultiplexor [3]. 

Large number of various AWG designs have appeared not only in literature, 
but also on the market. The size of AWG devices strongly depends on the 
fabrication technology, or more specifically, on the refractive-index contrast of 
the waveguide structures. For low refractive index contrast waveguides like 
those made in glass or SiO2, the total device area can be as large as hundreds or 
even thousands of mm2 while high refractive index contrast structures like 
GaInAsP/InP or silicon on insulator (SOI) help reduce the total size of a whole 
device well below 1 mm2. This strong dependence of the device area on the 
refractive index contrast comes mainly from the very strong dependence of 
radiation loss from waveguide bends on the refractive index contrast: with 
increasing contrast, the radiation loss decreases faster than exponentially. The 
waveguide divider/combiner sections are the most critical components of the 
devices since they determine the shape of spectral characteristics of the device 
and contribute to on-chip losses of the device. 

Not only the size of devices depends on the refractive index contrast. 
Another important difference is in polarization properties of waveguides. Wave 
propagation in isotropic dielectric waveguides is generally governed by the 
vectorial wave equation 

 ( )2 2 2
0lnn k n⎡ ⎤∆ +∇ ∇ ⋅ + =⎢ ⎥⎣ ⎦E E E 0 , (1) 

where ( )2 ,n x y  is the transversal refractive-index profile, 0 2 /k π λ= , λ  is the 
free-space wavelength, and ( )E r  is the electric field distribution of the guided 
wave. 

In weakly-guiding low-contrast waveguides, the second term in (1) can be 
neglected, and Eq. (1) simplifies to Helmholtz equation, 
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 2 2
0k n∆ + =E E 0 . (2) 

As the components of E  in (2) are mutually decoupled, the mode field can be 
considered (linearly) polarized and is thus describable in a good approximation 
by a single scalar function. As a result, although polarization dependence of 
weakly-guiding waveguides must be taken into account in critical applications, 
too, it is substantially weaker than in high contrast waveguide structures. The 
transverse dimensions of a single mode waveguide and the mode field size of 
weakly-guiding waveguides are close to that of a (weakly guiding) standard 
single-mode fibre, which results in small chip-to-fibre coupling losses. To keep 
a single-mode regime in high refractive index contrast waveguides, their 
transverse dimensions must be smaller than the wavelength. Rather sophisticated 
mode size transformers are usually required to increase the fibre-chip coupling 
efficiency of such high-contrast waveguides [4]. 

In the next parts we will briefly describe some novel ideas in the design of 
spectrally selective waveguide devices – the application of microresonators and 
photonic crystal devices. 
 
 
2.1. Ring microresonator devices 

 
Perhaps the most straightforward way to create a spectrally selective device is to 
use a resonator. In guided-wave optics, ring resonators are especially attractive; 
in contrast to Fabry-Perot resonators, they do not need waveguide mirrors that 
are much more difficult to fabricate than in bulk optics – it is sufficient to create 
just the closed-loop waveguide. For the coupling of the microresonator with the 
input/output waveguides, evanescent-wave coupling is used to advantage – it 
introduces negligible excess loss. An example of a basic unit of the 
microresonator device is shown in Fig. 3. 

  
Fig. 3. Ring microresonator evanescently coupled to throughput and drop “port” waveguides. 
Left – microphotograph from an optical microscope, right – sketch of the vertical cross-
section the device. The ring diameter is 50 µm, the ring guide cross-section is 2.5×0.3 µm, 
and the port guide cross-section is 2×0.14 µm. 
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The device was fabricated at the University of Twente in the framework of the 
EU project IST-2000-20218 “NAIS” (Next-generation Active Integrated-optic 
Subsystems) in which our laboratory participated. 

The coupling gap between the ring and “port” waveguides often needs to be 
very small – of the order of tens or hundreds of nanometres – to ensure the 
necessary coupling strength along a short path. Two currently used 
arrangements of evanescent coupling – lateral and vertical coupling schemes – 
are schematically sketched in Fig. 4. Laterally coupled devices can be fabricated 
in a single microlithographic step, without the need of accurate alignment of 
subsequent masks. It is, however, very difficult to make the small coupling gap 
with the necessary accuracy and reproducibility. The vertical arrangement of 
mutually coupled waveguides has the advantage that the critical separation 
between the coupled waveguides is determined by the thickness of the 
intermediate layer, not by a microlithographic process, and can thus be more 
easily and accurately controlled. At least two microlithographic steps with a 
very accurate mutual alignment of masks are required, however.  

   

Fig. 4. Lateral (left) and vertical (right) coupling of the ring microresonator with 
the input/output “port” waveguides. 

Spectral characteristics of the device can be calculated rather easily using the 
general theory of loaded microresonators (see, e.g., [5]). In Fig. 5, a qualitative 
comparison of calculated and measured spectral characteristics is shown. 
Measured data were obtained in our laboratory using a recently built 
experimental setup for characterization of photonic waveguides and devices [6]. 
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Fig. 5. Left: calculated relative throug and drop power for a microresonator with coupling 
factors 1 2 0 85.t t= = , roundtrip loss 0.05 dB, and roundtrip path length 3000 µm.  
Right: measured characteristics of an experimental Si/SiO2/Si3N4 microresonator. 

The attractiveness of the microresonator-based devices is invoked mainly by 
the expectations that microresonators can be used as rather universal building 
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blocks for large-scale photonic integration [7]. From Fig. 5 it follows that at 
resonance, optical signal is directed to the drop port while out of resonance it is 
lead to the throughput port. The microresonator can thus be used as a passive 
filter. Taking into account the possibility of thermo-optic, electro-optic or even 
“all-optic” tuning using ( )3χ  optical nonlinearity of microresonators, operations 
like modulation, switching and routing using arrays of microresonators 
integrated on a single substrate seem to be feasible. 

   
Fig. 6. Left: two-dimensional array of microresonators as a space switch. Right: third-order 

wavelength filter. 

Schematic arrangements of a microresonator-based space switch and a wave-
length filter are shown in Fig. 6. A number of other configurations have been 
proposed and experimentally tested, too. Interesting examples can be found in 
references [8-10]. Electro-optic and thermo-optic tunability of polymer-based 
ring microresonators has recently been analyzed in our recent study [11]. Our 
contribution to microresonator modelling will be described later in this lecture. 
 
 
2.2. Photonic crystal waveguides and devices 
 
The concept of a photonic crystal was introduced in 1987 in the classical paper 
of Yablonovitch et al. [12]. This paper has triggered a real avalanche of 
publications describing various aspects of photonic crystals, from their 
theoretical modelling over the fabrication approaches up to application 
possibilities in various fields of optics and photonics. In this situation, an 
attempt to briefly describe the impact of photonic crystals on integrated optics is 
really very challenging. For introductory reading, let us refer to “classical” 
books by Joannopoulos et al. [13, 14]. Theoretical fundamentals of waveguiding 
in photonic crystals are described in [15] for planar waveguides and in [16] for 
channel (linear) waveguides. Here we will concentrate only on optical 
waveguiding in two-dimensional (2D) photonic crystals. 

To easily understand the basics, let us start with one-dimensional (1D) 
structures. A 1D “photonic crystal” is essentially a periodic stack of layers with 
alternating refractive indices. Although the theory of optical thin-films has been 
developed a few decades ago [17], many of its findings have been re-discovered 

in 
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and put into new context in the photonic crystal research environment. We will 
consider alternating layers of two different materials with refractive indices 1n  
and 2n , respectively, as in Fig. 7. 

 
Fig. 7. Periodic stack of layers as a 1-D photonic crystal. 

The plane wave incident on the stack from the left under the angle θ  with the 
tangential wave vector component sinix ik θ= k  will excite plane waves 
propagating in the layers from left to right and from right to left with the same 
tangential wave vector component ixk  but with different longitudinal wave 

vector components ( )2 2
1 2 0 1 2, ,z ixk k n k= ± − . From symmetry considerations it 

is evident that two independent polarization states propagate independently: 
transversally electric (TE) wave with the only nonzero field components 

 and ,y x zE H H , and transversally magnetic (TM) wave with the only nonzero 
field components  and ,x z yE E H . Considering for the moment only one 
polarization, two generally complex field amplitudes in each slab are required to 
describe completely the resulting field distribution in each slab.  

Instead of two amplitudes of individual plane waves, we can equally well use 
two amplitudes of Floquet-Bloch (FB) modes defined as field distributions that 
are reproduced up to a constant multiplier if the z -coordinate is translated by a 
period Λ . We can thus write (e.g. for TE-polarized wave) 

 ( ) ( )FB, exp( ) ,y yE x z ik E x z± ±+ Λ = ± Λ , (3) 

where ( , )yE x z±  are the field distributions of the forward (+) and backward (–) 
propagating Floquet-Bloch mode, and FBk±  are their respective propagation 
constants (wavenumbers). It is a bit cumbersome but straightforward to rewrite 
this condition into the form of a 2×2 matrix eigenvalue problem that can easily 
be solved analytically. Let us note that there is a one-to-one analogy between the 
field distribution of yE  of the TE-polarized wave and the distribution of the 
quantum mechanical wave function in the Kronig-Peney model of a periodic 
potential in solid-state physics. It is also important to realize that the FB modes 
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are eigenmodes of a single period of the periodic structure, and can thus be 
applied to describe field distribution in finite as well as in infinite periodic 
structures equally well. From (3) it also follows that the propagation constant 

FBk  is determined up to the additive constant 2 /K π= Λ ; it holds 
( ) ( )FB FBexp expi k K ik⎡ ⎤± + Λ = ± Λ⎣ ⎦ . The propagation constant FBk  can thus 

always be chosen from the interval )2 2/ , /K K− , i.e., from the first Brillouin 
zone of the (1D) k -space. 

Equation (3) determines the relation between the frequency of the wave ω  
(or its free-space wavelength 2 /cλ π ω= ) and the propagation constant FBk , 
i.e., the dispersion relation of the FB mode. An example of such a diagram is 
shown in Fig. 8. Blue lines show spectral regions where FBk  is real, red lines 
show FBk±  for imaginary values of FBk . 
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Fig. 8. Left: dispersion (band) diagram of a 1D periodic stack of layers with refractive indices 

1 21 3 5, .n n= =  and thicknesses 1 20 3 µm, 0 15 µm. .L L= = . TE polarization, 0θ = °  
(perpendicular incidence). Right: Spectral dependence of reflectance of the stack of 7 periods. 

We see that FBk  is imaginary for λ  in the vicinity of integer fractions of the 
Bragg wavelength B 1 1 2 22( )L n L nλ = +  of the structure. It means that in these 
wavelength regions, the FB modes are evanescent (damped) in the direction of 
propagation. The incident wave can thus partially penetrate through a photonic 
crystal of finite length but is totally reflected back from a half-infinite photonic 
crystal. These spectral regions form the “photonic forbidden gaps”, or 
“bandgaps” of the photonic crystal. In words of “classical” wave optics, 
bandgaps are regions where the waves experience first- or higher-order Bragg 
reflections. Bandgap is the wider the larger is the refractive-index contrast of the 
periodic structure. 

The fact that the waves within the bandgaps are reflected back from the 
crystal can be used to create a planar waveguide: instead of total internal 
reflection at the interfaces we can use the total reflection from the stack of 
layers. We thus arrive to the concept of a “defect waveguide” formed by a 
“defect” in an otherwise perfectly periodic structure, as shown in Fig. 9. 
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Fig. 9. “Defect” planar waveguide in a 1D photonic crystal. 

It is interesting to note that this type of waveguides has been known in 
integrated optics for almost two decades as an ARROW waveguide 
(antiresonant reflecting optical waveguide) [18]. Its advantage is that the 
refractive index of the core (the central guiding layer) can be lower than one or 
both refractive indices of the layers that form the (Bragg) mirrors. If the wave 
propagates in the direction perpendicular to the interfaces, we get a 1D resonant 
cavity with two (Bragg) reflectors. In the photonic crystal terminology we speak 
about “wave localization by defect” or about a “1D microcavity”. 

A 2D periodic array of holes “drilled” into a high-index material shown in 
the left part of Fig. 10 is a typical example of a 2D photonic crystal with 
hexagonal symmetry. One possible choice of a primitive cell of the structure is 
marked by the yellow hexagon. Any other cell can be obtained by the translation 
of the original hexagon by a vector 1 1 2 2m m= +t a a , where 1 2 and m m  are 
integers.  

1a
2a

x

y

1a
2a

x

y

   
Fig. 10. Left: a 2D photonic crystal created by a triangular array of holes. Right: a “line 
defect” (channel) optical waveguide in a 2D photonic crystal. 

Similarly as before, the FB mode can be found as a solution of Maxwell 
equations that reproduces itself up to a complex multiplier FBexp( )i ⋅k t  by the 
translation of coordinates by t . Again, the FB mode is essentially an eigenwave 
of a single cell, and can thus be efficiently used for modelling finite as well as 
infinite (or semi-infinite) photonic crystals.  

Because of the two-dimensional periodicity, the dispersion diagram relating 
FBk  with the wavelength (or frequency, as in ) of the propagating wave is much 

more complex. It can be calculated e.g. by the plane-wave expansion method 
[19]. The characteristic points K and M  of the first Brillouin zone correspond to 
directions of propagation along the x  and y  coordinate axes (or their 
equivalents following to photonic crystal symmetry). 
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Fig. 11. Dispersion diagram of a 2D photonic crystal shown in the left part of Fig. 10. Left: 
TE polarization, right: TM polarization. The first Brilouin zone is depicted in the inset to the 
right graph. a is the pitch length, 1 2a = =a a , the refractive indices of the material and 
hole are 3.5 and 1, respectively, and the the ratio between the surface of the hole and of that of 
the primitive cell (air filling factor) is 0 35.f = . 

While there is no bandgap for TM polarization (electric field intensity parallel to 
the axes of holes), TE polarization exhibits a complete gap, i.e., the optical wave 
cannot propagate at any direction and is (totally) reflected from the crystal. 
Similarly as in a 1D case, this feature can be used to create a “defect” waveguide 
in the 2D crystal, as it is schematically shown in the right part of Fig. 10. As it is 
shown in the right part of Fig. 8, sufficiently high reflectance can be reached 
even with a comparatively “thin” photonic crystal. Therefore, only a few rows of 
holes at each side of the waveguide might be sufficient to act as an almost 
perfect reflector.  

For practical applications, the optical wave in the photonic crystal waveguide 
should be also confined in the third (vertical) dimension. Although in principle it 
is possible to use a 3D photonic crystals with the full photonic gap, this 
approach is hardly manufacturable with present technologies. Instead, a 
conventional “index guiding” can be used, as schematically depicted in Fig. 12. 

  
Fig. 12. Channel waveguides in 2D photonic crystals with vertical light confinement by index 
guiding. Left: planar slab waveguide. Right: suspended membrane waveguide. 

Instead of translational invariance typical for standard waveguides, these 
waveguides are periodic along the direction of propagation. A typical feature 
caused by this periodicity is the possible appearance of a ministopband 
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(minigap) in the transmission band of the waveguide [20]. On the other hand, 
complicated dispersion behaviour of such waveguides can be utilized in the 
design of photonic crystal waveguide devices like spectral filters, add-drop 
multiplexers, etc. [21-24]. Although a considerable amount of knowledge on 
these complex photonic structures has been gathered so far, a number of rather 
fundamental questions still remain to be answered. One of the most fundamental 
is the problem of radiation and scattering losses that is strongly related to 
deviations of the real structures from ideal periodic ones. Nevertheless, 
propagation losses as low as 1.8 dB/mm have recently been reported [25]. 
 
 
3. MODELLING NOVEL WAVEGUIDE DEVICES 
 
As it has already been mentioned, numerical modelling of advanced waveguide 
devices has become an essential and inevitable part of their design. While the 
previous section was conceived more as a general introductory tutorial, in this 
section we concentrate mainly to our own research activity in the field. 

Two variants of 2D modal methods have been treated in our research group 
within last years. One of them concerns the calculation of optical field 
distribution along the direction of propagation of optical waves in structures 
whose transverse coordinates can be reduced to a single one. The method is 
known as bidirectional eigenmode expansion and propagation method, or BEP. 
The second one is dedicated to calculation of fully vectorial field distribution of 
eigenmodes and their propagation constants in straight and bent waveguides and 
circular ring and disk microresonators. Principles and results of the methods will 
be briefly described in the next parts. 
 
3.1. Mode expansion and propagation method 
 
This method represents a very straightforward application of the mode matching 
method to a problem of wave propagation in waveguide structures with 
significant back-reflections. Its principles were very briefly described in [26]. 
We have developed this method for modelling waveguide surface plasmon 
sensors [27], waveguide gratings [28], and their combinations [29, 30]. More 
recently it has also been applied for modelling 2D photonic crystal structures 
[31, 32]. For efficient modelling of waveguides in periodic structures, the 
expansion into the Floquet-Bloch modes of the period has been used as an 
alternative to the expansion into local eigenmodes. 

The principle of the method can be easily understood using the schematic 
view of the waveguide structure in Fig. 13. The analyzed waveguide structure is 
subdivided into a finite number of longitudinally uniform sections – waveguide 
segments. If a sequence of segments is repeated for several times, it is referred to 
as a period. 
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Fig. 13. 2D waveguide structure consisting of longitudinally uniform sections. 

The first segment is an input segment, the last one the output segment. They are 
supposed to be infinitely long. In vertical direction, the structure is confined by 
electric or magnetic walls positioned in Fig. 13 at min max,x x . Alternatively, 
perfectly-matched layers represented by complex coordinates of boundaries [33, 
34] can be applied. Our task is to calculate the (2D) field distribution in the 
whole structure having known the distribution of the wave incident from the left. 

Each segment is considered as a finite stack of layers whose set of (TE or 
TM) eigenmodes can be easily calculated using e.g. the transfer matrix method 
[35]. Due to the implementation of horizontal walls, the eigenmode spectrum is 
discrete. The mode sets are calculated for each segment of the structure. 

For the calculation of the field distribution in the whole structure, the 
immittance method known for its numerical stability [36] is used. Its principle 
can be easily explained by the analogy of the waveguide structure in Fig. 13 
with the concatenation of segments of transmission lines (e.g., coaxial cables) 
with different characteristic impedances. The field distribution in each segment 
is given by the superposition of (all) its forward and backward propagating 
modes. To find the backward propagating mode in the input segment, the 
reflection coefficient at the input interface is to be known. It can be easily 
calculated if we know the “loading impedance” of the input section. It can be 
calculated by successive transformations of impedances starting from the output 
waveguide towards the input using the formula for impedance transformation by 
a transmission line (in microwave engineering it is well-known as a “Smith 
diagram method”). Having calculated the amplitudes of backward propagating 
modes at the input, the total field can be calculated successively from the input 
to the output using the field continuity conditions at the interfaces between the 
segments. For periodic structures, the FB modes are calculated as eigenmodes of 
the transfer matrix of a single period, the mode amplitudes are transformed into 
the space of FB modes, and the procedure is then applied to the periodic 
structure as a whole. The details of the calculations can be found in [28]. This 
algorithm was used to get results published in [27-32, 37, 38].  
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Let us mention here only the comparison of modelling methods for 1D large-
contrast periodic structures performed within the framework of European action 
COST 268 “Wavelength-scale photonic components for telecommunications” 
known as the “COST 268 task”.[38]. Six methods developed independently in 
European research laboratories were used to calculate the spectral dependence of 
modal transmission and reflection of a deep waveguide grating, and their 
performance and results were mutually compared. In addition, radiation losses 
of the deep grating were studied to better understand the mechanisms of out-of-
plane radiation losses in 2D photonic crystal waveguides.  
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Fig. 14. Top: geometry of deeply etched grating with a period of 430 nm in SiO2/Si3N4 
waveguide. Waveguide layer thickness is 500 nm. Bottom left: modal reflectance, transmit-
tance and loss of the grating with 20 periods with the etch depth of 625 nm calculated by 5 
methods. Bottom right: Spectral dependence of the effective refractive index FB

effN  of the FB 
mode, modal reflectance R  and loss L  for the grating with the etch depth of 250 nm. 

Nearly perfect agreement of results of several fundamentally different 
methods is a rather convincing indication of their correctness. The spectral 
dependence of the effective refractive index of the FB mode in Fig. 14 clearly 
shows that the FB mode propagates without (significant) loss as long as its 
effective refractive index is larger than the refractive index of a substrate. (the 
mode is “below the light line” of the structure). 

We have tried to apply our BEP method for modelling “line defect 
waveguides” in 2D photonic crystals, too, but its numerical stability appeared 
not to be high enough for this application. The stability can be improved by 
implementing more stable algorithms for the calculation of FB modes like the 
scattering or reflectance matrix formalisms [39]. 
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3.2. Vectorial eigenmode solvers 
 
In this section, our recent contribution to modelling microresonator-based 
devices is briefly reviewed. For “system modelling” of microresonator devices, 
parameters like coupling constants between the resonator and the input/output 
waveguides, phase and group propagation constants of both the ring and straight 
guides, free spectral range and radiation loss of resonators must be calculated 
with a reasonable accuracy. As the first step to calculation of all these 
parameters, a reliable vectorial mode solver for microresonators and bent 
waveguides is required. Such a mode solver has recently been developed in our 
group within the framework of the EU project “NAIS” as a topic of the PhD 
thesis of L. Prkna [40]. 

The developed mode solver is based on mode matching, and as such, it is 
essentially rigorous, without the need of any discretization. Prior to explain the 
fundamentals of the 3D mode solver let us consider the 2D case that allows 
elucidating basic features of ring resonators in a simpler way. We will consider 
2D waveguiding structures schematically depicted in Fig. 15.  
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Fig. 15. 2D ring and disk microresonators. 

There is an important difference between the straight and circularly bent 
waveguides that should be noted. As the straight waveguides are invariant with 
respect to translation along the waveguide direction z , the longitudinal 
dependence of their eigenmodes has the form 0exp( ) exp( )i z ik Nzβ = , where β  
is the propagation constant, and 0/N kβ=  the effective refractive index of the 
mode. In circularly bent structures like those in Fig. 15, the structure is invariant 
with respect to rotation around the centre. As the mode field propagates in 
azimuthal direction, its dependence must be of the form exp( )iνϕ . Denoting the 
bending radius as R  and realizing that the propagation length along the radius 
R  is Rϕ , one can write 0k NRνϕ ϕ= , and thus 0/( )N k Rν= . But only ν  is 
the true (azimuthal) propagation constant, while N  depends on the choice of R  
(e.g., from the centre to the inner or outer edge, or to the centre of the strip 
guide). Thus, for bent waveguides and microresonators, the concept of the 
effective refractive index of a mode looses its physical sense. Due to radiation 
from the bend, field propagates along the bent guide with attenuation. The 
azimuthal propagation constant ν  of the bent waveguide is thus complex.  
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Modes of two polarizations can propagate in the 2D structures in Fig. 15: TE 
modes with field components , ,x rE H Hϕ , and TM modes with components 

, ,x rH E Eϕ . Because of cylindrical symmetry, the radial dependence of the 
fields has to satisfy Bessel equation in each radially uniform section of the 
structure. Thus, the electric field intensity of the TE mode can be written as 
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where ,J Yν ν  and 1( )Hν  are the Bessel function, the Neumann function, and the 
Hankel function of the first kind, respectively. From the field continuity 
conditions we easily find that the amplitudes and , , ,A B C D  must satisfy the set 
of linear equations 
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and ( )TA B C D  is the column vector with the elements , , ,A B C D . To get 
a nontrivial solution, the determinant must be equal to zero,  

 [ ] 0det ( , )ω ν =L . (7) 

This is the dispersion equation for the TE modes [41]. 
Although these formulas look relatively simple, their numerical evaluation is 

not trivial. The dispersion equation is to be solved for the (complex) order of 
cylindrical functions, but no reliable algorithms are available for such functions 
in software libraries. Moreover, the products of cylindrical functions and their 
derivatives in the determinantal equation lead often to numerical expressions of 
the type “0 ⋅ ∞”. Thus, special computer code had to be developed not only for 
cylindrical functions and their derivatives but also for their products, for which 
exponential scaling of functions had to be used. For these purposes, uniform 
asymptotic expansions [42] were used. 

As it has been analyzed in some detail in [43], the dispersion equation (7) 
can be considered either as a dispersion equation for modes of a bent waveguide, 
or as a dispersion equation for modes in a circular resonator. In the first case the 



 21

frequency in Eq. (7) is simply the frequency of the field propagating in the 
waveguide, and Eq. (7) is to be solved for the complex azimuthal propagation 
constant ν . In the second case, the symmetry (in other words, the condition of 
field selfconsistency in the whole ring resonator) requires that ν  is an integer; 
then Eq. (7) is to be solved for the complex frequency ω . The real part of the 
complex frequency then gives the resonant frequency and the imaginary part 
determines the quality factor, ( )2Re{ }/ Im{ }Q ω ω= − . The difference in the 
calculated field distributions in a microresonator with the radius of 10 µm using 
both approaches is apparent from Fig. 16. Note the strong wavefront bending 
due to radiation. 

   
Fig. 16. Field distributions in a 2D bent waveguide (left) and a microresonator (right). Radius 
of curvature 10 µm, waveguide width 1 µm, 1 3 31 6   1 7. , .n n n= = = , wavelength 1.55 µm.  

Let us now turn our attention to 3D structures. The cross-section of a bent 
rib waveguide that forms a ring resonator is sketched in Fig. 17. 
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Fig. 17. Cross-section of a ring microresonator. 

The modal approach to find eigenmodes of the structure is quite similar to that 
used in the BEP method. For straight waveguides it has been described by 
Sudbø [44, 45]. Each radially uniform section (“slice”, denoted by 1 2 3, ,s =  in 
Fig. 17) forms a multilayer waveguide. Artificial walls (electric, magnetic or 
perfectly matched layers) are placed below and above the structure to discretize 
the spectrum of its eigenmodes. Contrary to the case of a BEP method, the set of 
both TE and TM modes must now be calculated in each slice. They are required 
to describe the total field in the slice. All modes are expected to propagate in the 
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azimuthal direction with the same (azimuthal) propagation constant ν . At each 
interface between the slices, tangential components of electric and magnetic 
fields ( , , ,x xE E H Hϕ ϕ ) must be matched. From these constraints, a set of linear 
equations for complex amplitudes of individual modes of the slices can be 
constructed. However, an immittance approach [45] modified for cylindrical 
geometry has been chosen to improve the numerical stability of the procedure 
and to reduce the size of the problem. It is similar to that used in the BEP 
method but now the immittance matrices at the innermost and outermost slices 
can be determined from the boundary conditions, supposing that no wave is 
incoming from outside. The immittance matrices can then be transformed from 
both inner and outer slices to some intermediate interface where the eigenmode 
field is expected to be strong (i.e., 2r r= ). By equating them we arrive to a 
nonlinear eigenvalue problem for the propagation constant (and a linear one for 
the eigenmode field distribution). Its numerical solution is substantially more 
complicated than that of a 2D problem, but we succeeded to overcome most of 
the difficulties. A working mode solver has been created and successfully tested 
by comparison with two commercial software packages. The details have been 
described in the PhD thesis [40] and in recent publications [46-49].  

Let us conclude this section with few examples of calculated eigenmode 
field distributions of microresonator devices in Fig. 18 and Fig. 19. 

   
Fig. 18. Dominant component ( )xE  of the TM00 mode of the ring (left) and disk (right) 
polymer microresonator with the outer radius of 50 µm.  

   
Fig. 19. Electric field components , ,x rE E Eϕ  of the TE00 mode of a SiO2/Si microresonator 
with the outer radius of 2.25 µm, ring width of 0.5 µm and height of 0.36 µm. 

It has been verified that the mode field distribution calculated by this 
method can be utilized as an input field for the coupled-mode theory of a 
microresonator devices developed at the University of Twente within the NAIS 
project. The field distribution at three different cross-sections of a 
microresonator coupled to a straight waveguide calculated with the help of the 
coupled-mode theory is shown in Fig. 20. 



 23

   
Fig. 20. Field distribution at three cross-sections of a vertically coupled microresonator 
device. The outer figures are taken at the positions ± 24 µm off the central cross-section (at 
the input and output of the device, respectively). 
 
 
4. RESEARCH AND EDUCATION IN INTEGRATED OPTICS 
 
As a concluding remark, let us briefly comment on mutual relations of research 
and education in integrated optics in our environment. 

Our research group at IREE AS CR has been working in integrated optics for 
more than 25 years. Rather strong collaboration was soon established with Tesla 
Research Institute of Telecommunications (VUST), in which technological 
issues were solved mainly in Tesla, and our group was concentrated mainly on 
theory, design, and characterization of structures and devices. From the very 
beginning, our group had very frequent contacts with universitites, especially 
with the Czech Technical University in Prague, Faculty of Nuclear Science and 
Physical Engineering and Faculty of Electrical Engineering (CTU FNSPE and 
FEI), with the Charles University in Prague, Faculty of Mathematics and 
Physics (MFF CUni), and with the University of Chemical Technology in 
Prague, Institute of Chemical Technology (VSCHT). Individual lectures on 
integrated optics for MS and PhD students of these and some other Czech 
universities were regularly read, and these contacts ocassionally evolved into 
diploma and PhD theses. After VUST had ceased to exist in early nineties, some 
of its key researchers in optoelectronics continued their work at universities, 
mainly FEI CTU and VSCHT, and our contacts with those universities were 
considerably strengthened. Within last years, our research group participated in 
a number of national and several international projects jointly with partners and 
collaborators from universities, and new proposals of such projects are pending. 

At present, new research results in the field of guided-wave optics are 
currently being incorporated into regular semestral courses of Integrated Optics. 
In view of the latest development in guided-wave optics, especially in high-
refractive index contrast waveguide devices, photonic crystals and possibly also 
guided-wave plasmonics [50, 51], fundamental changes of the content of the 
courses of Optoelectronics and Electrodynamics 2 are now under serious 
considerations. Problems of guided-wave optics become ever more frequently 
topics of student research projects, diploma and PhD theses. Talented students 
are not only the most active members of our research teams in national as well 
as international projects but they also help organize important international 
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meetings and conferences like recent prestigious 11th European Conference on 
Integrated Optics (ECIO’03) co-located with International Workshop on Optical 
Waveguide Theory and Numerical Modelling (OWTNM’03) in April 2003 in 
Prague. Participation in international projects and actions helps open additional 
possibilities for students to find suitable post-doc positions in leading European 
research laboratories. 

Recently started new European 6FP NoE activity “ePIXnet” (European 
Network of Excellence on Photonic Integrated Components and Circuits) offers 
rather unique chances to all its partners, including our laboratory, for junior 
(student) exchange with the best European research teams and for access to their 
unique technological and experimental facilities. Moreover, rather strong 
interaction among partners is expected in the preparation, sharing and 
unification of courses and lectures in guided-wave optics, optoelectronics and 
related topics, aimed at good comparability of BC, MS, and PhD degrees in this 
field in the EU. One of the challenging goals might also be the creation of a 
“virtual” Internet library of the best courses and lectures, with direct on-line 
access to the corresponding educational texts, presentations, and seminar tasks. 
We are convinced that that our students would benefit a lot from any real 
progress in this area if it happens. 
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