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Summary

Estimating calibration parameters of cameras on robots is an impor-
tant problem that has to be solved in almost every practical system
in robotics and computer vision. In many situations, it is desirable to
find a globally optimal solution to achieve best result possible or to
benchmark other, more efficient but suboptimal methods. We show
how to formulate some of the fundamental camera and camera-robot
calibration problems in order to solve them using methods from global
polynomial optimization.
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Souhrn

V praktických úlohách poč́ıtačového viděńı a robotiky je třeba kalib-
rovat parametry kamer, které jsou neseny robotem. Často je velmi
užitečné naj́ıt globálně optimálńı řešeńı, aby byl dosažen nejlepš́ı možný
výsledek, nebo aby bylo možno vyhodnotit kvalitu jiných efektivněǰśıch
ale sub-optimálńıch př́ıstup̊u. Ukážeme, jak formulovat některé d̊uležité
problémy kalibrace kamer a kamer nesených roboty a jak je řešit me-
todami globálńı polynomiálńı optimalizace.
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Chapter 1

Introduction

Cameras are often mounted on moving mechanisms, Fig. 1.1, to control
the motion of the mechanisms by observations in images. For instance,
image measurements guide robot tools, e.g. welding laser beam or grip-
pers, to desired position and driving assistance systems “drive” cars
based on traffic situation recognized in images, Figure 1.2.

In order to connect image measurements to natural coordinate sys-
tems of robots and cars, it is necessary to (1) calibrate camera pro-
jection [1] and to (2) calibrate camera pose w.r.t. a natural coordinate
system of a mechanism [2]. It is customary to denote the first task as
camera calibration and the second task as hand-eye calibration, Fig. 1.3.

We present several variations of camera calibration and hand-eye
calibration problems that benefit from employing global optimization
techniques.

1.1 Camera calibration

A convenient camera model [1, 3], which works for most cameras,

u “ ApDpPpYqqq, P

¨

˝

»

–

x
y
z

fi

fl

˛

‚“

„

x{z
y{z



, Apvq “ A v` b (1.1)

projects a 3D point Y P R3 from the camera Cartesian coordinate sys-
tem to an image point u P R2 by a composition of perspective projec-
tion P : R3 Ñ R2, lens non-linearity mapping D : R2 Ñ R2 and affine
mapping A : R2 Ñ R2 choosing image coordinate system, Fig. 1.3(a).
Functions P and A are standard, with parameters A P R2ˆ2, b P R2.
There are many different possibilities how to choose function D. A
standard model [4] is obtained by combining radial distortion based on
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(a) (b) (c)

Figure 1.1: (a) Canon EOS with Sigma 180˝ view angle lens mounted
on an industrial robot. (b) ASUS Action 3D sensors, consisting of per-
spective cameras and IR projectors, mounted on a two-armed industrial
robot. (c) An omnidirectional catadioptric camera with 100˝ ˆ 360˝

view angle mounted on Mercedes-Benz Actros vehicle. (By courtesy of
CLOPEMA project and Daimler AG)

rational polynomial model [5] with tangential distortion [6]

D
ˆ„

u
v

˙

“ Lprq

„

u
v



`

„

2p7u v ` p8pr
2 ` u2q

p7pr
2 ` v2q ` 2p8u v



(1.2)

Lprq “
fprq

gprq
“

1` p1r ` p2r
2 ` p3r

3

1` p4r ` p5k2 ` p6r3
with r “ u2 ` v2

Camera calibration identifies parameters A, b, pi from measured 3D
points Y and their images u.

There is an extensive literature on camera calibration. Majority of
works follows the standard procedure [7, 1, 8], which first estimates
an initial solution by a suboptimal, often linearized, method and then
refines it by a local optimization [9]. We will first show that this ap-
proach may lead to serious problems when using rational polynomial
models and secondly how to avoid them by using global polynomial
optimization [10].

1.2 Hand-Eye and Robot-World calibration

Consider a calibrated camera is mounted on a rigid body B, which is
a part of a mechanism, Fig. 1.3(b). The unknown relation between the
camera and body B is modeled by transformation X “

“

R, t ; 0J, 1
‰

with rotation R P R3ˆ3 and translation t P R3. Analogically, the re-
lationship between the base coordinate system of the manipulator and
the world coordinate system is captured by transformation Z. Trans-
formations Bi, which relate the coordinate system attached to body B
to the base coordinate system, are available from the control system
of the mechanism. Analogically, transformations Ai, which relate the
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(a) (b) (c)

Figure 1.2: (a) A laser welding application by Mitsubishi Melfa robot
carrying a measurement camera and a welding laser. (b) Robotic cloth
manipulation by a pair of Motoman robots guided by Action 3D sen-
sors. (c) Omnidirectional cameras mounted on Mercedes Sprinter Car.
(By courtesy of Neovision s.r.o., Daimler AG and CLOPEMA project)

camera coordinate system to the world coordinate system, are available
as a side-product of camera calibration or from a 3D reconstruction by
Structure from Motion [11].

For every two different poses of the manipulator B1i1, B
1
i2 and the

corresponding camera poses A1i1, A
1
i2, we can formulate Hand-Eye cali-

bration equations

AiX “ X Bi with Ai “ A
1
´1
i2 A1i1, Bi “ B

1
´1
i2 B1i1 (1.3)

and Hand-Eye and Robot-World calibration equations

A1iX “ Z B1i (1.4)

It theory [12], three general poses suffice to solve for X from Hand-Eye
calibration equations but in practice more poses are used and comput-
ing X, Z is posed as an optimization problem [12].

There is an extensive literature on Hand-Eye and Robot-World cal-
ibration. Many works, e.g. [13, 2, 14], first estimate an initial solution
by a suboptimal method and then refine it by a local optimization.
Such approach is often useful in practice but may miss the global opti-
mum if the initialization fails. They also often first solve for rotation R

only and then compute translation t. It leads to a simpler problem but
it is known to suffer from larger errors [15] compared to optimizing R, t
together. Other methods avoid Hand-Eye calibration equations but (of-
ten globally) optimize image reprojection errors [16, 17, 11, 18, 19, 20].
This approach fails when image measurements are not available. More-
over, many of these methods are based on Branch and Bound tech-
niques, which become computationally expensive when estimating more
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(a) (b)

(c) (d)

Figure 1.3: (a) Camera calibration identifies parameters of the cam-
era projection function model in Eqn. 1.1. (b) Hand-Eye calibration
identifies transformation X, which relates the camera to the mechanism
and, optionally, also transformation Z, which relates the mechanism
to a world coordinate system. (c) Camera is calibrated by observing
a known (planar) calibration target from several (unknown) positions.
(d) Poses Ai of a calibrated camera w.r.t. a world coordinate system
can be computed from observing a known (planar) calibration target.

than three parameters. Other “globally optimal” methods [21, 22, 23]
either do not enforce R to be a valid rotation and require another cor-
rection step afterwards, which does not guarantee any optimality, or
use objective functions based on some algebraic error, which may be
geometrically meaningless [24, 25]. Finally, [26] formulates the Eye-
Hand calibration problem as an algebraic problem but can’t use the
measured orientation of body B.

We will show that Hand-Eye and Robot-World calibration problems
can be solved optimally [27, 28] for meaningful errors using polynomial
optimization.
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Chapter 2

Polynomial optimization and Linear Matrix Inequal-
ities (LMI)

2.1 LMI hierarchy of convex relaxations

Consider multivariate polynomials pipxq P Rrxs, i “ 0, . . . , ` in
x “ px1, . . . , xmq

J P Rm. Multivariate polynomial optimization can be
stated as follows

minimize p0pxq
subject to pipxq ě 0, i “ 1, . . . , `,

where x “ px1, x2, . . . , xmq
J P Rm,

p0pxq, pipxq P Rrxs.

(2.1)

This is in general a non-convex problem with many local minima.
In theory, it can be handled using tools of elementary calculus but find-
ing the global minimizer x˚ is, in general, an NP-hard problem [29].
Using Putinar’s results [30], Lasserre showed [31] that one can con-
struct a (Lasserre’s LMI) hierarchy of convex relaxations P1,P2, . . .
that produces a monotonically non-decreasing sequence of lower bounds
on Problem 2.1 over a semi-algebraic set S “ tx P Rm | pipxq ě 0, i “
1, . . . , `u. The sequence converges to the global minimum. Moreover,
the series of the respective global optimizers x˚1 ,x

˚
2 , . . . of problems

P1,P2, . . . asymptotically converges to x˚, limiÑ8 x˚i “ x˚, and that
under mild conditions global optimality of a relaxation can be detected
and the global minimizers can be extracted by linear algebra from the
solutions of the relaxation. Practically, px˚i qiPN converges to x˚ in
finitely many steps, i.e., there exists j P N, such that x˚j “ x˚.

Consider the linearization operator Ly : Rrxs Ñ Rrys which takes a
polynomial ppxq and substitutes a new variable yα P R for every mono-
mial xα “ xk11 x

k2
2 . . . xkmm . First, the LMI relaxation Pδ of order δ is

built by linearizing all monomials xα of the objective function p0 up
to degree 2δ, i.e., k1 ` k2 ` ¨ ¨ ¨ ` km ď 2δ. If the objective function
contains monomials of a higher degree, one has to start with a relax-
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Figure 2.1: GpoSolver workflow. The workflow is divided into the
problem modeling phase and the problem solving phase. In the next
figure, the problem parameters are denoted in blue. The concrete values
of these parameters are not determined until the problem solving phase.
There, the parameters can be easily updated and different problem
instances can be conveniently solved.

ation of a higher order. Next, let vδpxq be the vector of all monomials
up to degree δ. The semialgebraic set S is relaxed by introducing `
LMI constraints Lyppipxqvδ´1pxqvδ´1pxq

Jq ľ 0 (“M ľ 0” stands for
“M is positive semidefinite matrix”). Finally, we add the so-called LMI
moment matrix constraint Lypvδpxqvδpxq

Jq ľ 0. Formally, the LMI
relaxation Pδ of order δ can be written as

minimize Lypp0pxqq
subject to Lyppipxqvδ´1pxqvδ´1pxq

Jq ľ 0, i “ 1, . . . , `,
Lypvδpxqvδpxq

Jq ľ 0.
(2.2)

Since there are exactly d “
`

m`2δ
m

˘

monomials in x P Rm up to degree
2δ, SDP Problem 2.2 will have y P Rd linear variables.

2.2 GpoSolver toolbox

From a practical point of view, it is extremely important that the relax-
ations P1,P2, . . . can be formulated as semi-definite programs (SDP)
solvable by any convenient SDP solver. Software implementations of
LMI relaxations can be found e.g. in Matlab toolboxes GloptiPoly [32]
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and YALMIP [33]. Matlab language is very convenient for modelling
polynomial problems but it is a too heavy tool when an efficient “pro-
duction” implementation is required. Our GpoSolver [34] provides a
Matlab-based problem modelling toolbox supplemented by a problem-
solving back end in a form of a C++ template library, Fig. 2.1. Once a
problem is conveniently modelled and parametrized in Matlab, a C++
class is automatically generated by GpoSolver. This class can be easily
included into an existing codebase and used to solve different instances
of the problem based on the supplied parameters.

2.3 Non-negative polynomials

A polynomial ppxq P Rnrxs of degree n P N can be written as ppxq “
pnx

n ` pn´1x
n´1 ` ¨ ¨ ¨ ` p1x` p0 “ pJvnpxq with a coefficient vector

p “ pp0, p1, . . . , pnq
J P Rn`1 and the canonical monomial basis vnpxq “

p1, x, x2, . . . , xnqJ. A polynomial qpxq P R2nrxs can be written as

qpxq “ vJn pxq Qvnpxq (2.3)

with a symmetric Gram matrix matrix Q P Rn`1ˆn`1 [35].
Markov-Lukacs theorem [36] characterizes polynomials that are

non-negative on a real interval rα, βs, α ă β, using positive semidef-
inite Gram matrices S, T: A polynomial ppxq P Rrxs is non-negative
on rα, βs if and only if (i) for deg ppxq “ 2n it can be written
as ppxq “ spxq ` px ´ αqpβ ´ xqtpxq with spxq “ vJn pxq Svnpxq,
tpxq “ vJn´1pxq Tvn´1pxq or (ii) for deg ppxq “ 2n ` 1 it can be writ-
ten as ppxq “ px ´ αqspxq ` pβ ´ xqtpxq with spxq “ vJn pxq Svnpxq,
tpxq “ vJn pxq Tvnpxq.
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Chapter 3

Camera calibration

Figure 3.1(a) Top shows that using the standard model in Eqn. 1.2
and a standard calibration procedure implemented, e.g., in [4], leads to
serious problems. The figure shows image undistorted [1] by inverting
function D for estimated parameters. Image center, which was covered
by calibration data, is undistorted correctly. However, image undistor-
tion is completely wrong further from the center in the area where the
calibration model extrapolates. The circular artifact is caused by “zero
division” effect in radial distortion function Lprq. The function is un-
necessarily complex for this particular camera and thus the numerator
fprq and denominator gprq contain linear factors that almost cancel.
The ratio of the linear factors is thus equal to one almost everywhere
except for a very narrow area where fprq is small but non-zero and gprq
goes to zero. In general, it is desirable and possible to avoid the “zero
division” artifact. Let us show how this can be achieved when using
polynomial matrix inequalities (PMI) and how to estimate parameters
of Lprq subject to PMI constraints using SDP [10].

The artifact is generated due to wrong Lprq. Other calibration pa-
rameters, even when estimated with wrong Lprq, are estimated almost
correctly by the classical calibration approach. Therefore, better cali-
bration can be obtained by (1) initializing all parameters by the classical
method, then (2) optimizing parameters of Lprq subject to PMI con-
straints, and (3) optimizing other parameters by a local optimization
with Lprq fixed. If necessary, steps (2) and (3) can be repeated until
convergence.

To correct Lprq, we have to avoid a common root of the polynomials
fprq and gprq on the field of view interval r0, r̄s, i.e. to enforce at least
one on them to have no root. We enforce gprq ą 0, i.e. gprq ´ ε ě
0, with a small ε ą 0 on r0, r̄s.

By applying Markov-Lukacs theorem to the above, we get

gprq´ε “ 1´ε`p4r`p5r
2`p6r

3 “ v1prq
JS1v1prq`pr̄´rqv1prq

JT1v1prq

13



(a) (b)

Figure 3.1: (a) Top. An image undistorted using camera parameters
calibrated by a standard initialization + local optimization paradigm.
(a) Bottom: The image undistorted with constraining the model to
be positive on the field of view. (b) The circular artifact in (a) Top
is caused by inexact cancellation of redundant terms in the numera-
tor and denominator of the radial distortion part of the model (red
curves). Green curves show numerator and denominator constrained
to be positive on the whole field of view.

with S1, T1 P R2ˆ2, S1, T1 ľ 0. Having all other calibration pa-

rameters fixed, it suffices to minimize
ř

i

›

›

›

›

gprq

„

ûi
v̂i



´ fprq

„

ui
vi


›

›

›

›

2

“

pJLJL p`mJp` c where matrix L, vector m and scalar c depend on im-
age measurements ui, vi and their estimate ûi, v̂i obtained using other
fixed parameters. Vector p of parameters is computed from p1, p2, p3
and elements of S1, T1 [10]. Using Schur complement and slack variable
γ, we get a radial distortion calibration

minimize γ

subject to F “

„

I L p

pJLJ ´mJp´ c` γ



ľ 0, S1 ľ 0, T1 ľ 0.

which is an LMI program in 9 variables γ, s11, s12, s13, t12, t13, p1, p2, p3.
This can be solved by GpoSolver [34]. Additional constraints on cali-
bration function, e.g. requiring the radial distortion to be of pincushion
type, leads to a more difficult PMI problem that requires additional
LMI relaxations [10].
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Chapter 4

Hand-Eye and Robot-World calibration

Consider a mechanism with a camera mounted on one of its rigid bodies
B and positioned into n different general poses out of which k pairs
are formed. Equations 1.3 and 1.4 can’t be exactly satisfied if there
is noise in measurements A1i, B

1
i. We therefore pose the calibration as

minimization problems

min
XPSEp3q

k
ÿ

i“1

}AiX´ XBi}
2 or min

X,ZPSEp3q

n
ÿ

i“1

}A1iX´ Z B1i}
2

with Frobenius norm }.}. Special Euclidean group SEp3q consists
of matrices

“

R, t ; 0J, 1
‰

with a 3 ˆ 3 rotation R and a translation
t P R3. Alternatively, almost equivalent formulation can be ob-
tained in dual quaternions [27]. We will demonstrate the approach
using Frobenius norm formulation for Hand-Eye and Robot-World cal-
ibration problem. There are many ways how to constrain X and Z

to be in SEp3q. We will show quaternion parameterization here.
Other parameterizations have been studied in [27]. Hence, matrices
XpqX, tXq “

“

RpqXq, tX ; 0J, 1
‰

, ZpqZ, tZq “
“

RpqZq, tZ ; 0J, 1
‰

are pa-
rameterized by 7 parameters q P R4, }q}2 “ 1 and t P R3 with

Rpqq “

»

–

q21`q
2
2´q

2
3´2q24 2q2q3´2q4q1 2q2q4`2q3q1

2q2q3`2q4q1 q21´q
2
2`q

2
3´q

2
4 2q3q4´2q2q1

2q2q4´2q3q1 2q3q4`2q2q1 q21´q
2
2´q

2
3`2q24

fi

fl. To avoid most

of double solutions due to Rpqq “ Rp´qq, we can add constraint
qX1, qZ1 ě 0. It leaves double solutions only for rotations by 180 degrees,
which almost never occur.

We are thus getting the following optimization problem

minimize fpqX, tX, qZ, tZq “
řn
i“1 }A

1
iXpqX, tXq ´ ZpqZ, tZqB

1
i}

2

subject to qJX qX “ 1, qX1 ě 0, qJZ qZ “ 1, qZ1 ě 0,
tJX tX ď sX, t

J
Z tZ ď sZ.

Objective function f is a polynomial of degree 4 and is composed of 209

15



Figure 4.1: Top: Real experiments with Hand-Eye and Robot-World
calibration were carried out on Motoman manipulator with Xtion 3D
sensor comprising a calibrated perspective camera and a planar cali-
bration target. Bottom: Robot-World calibration mwbc-* formulated
in [28] achieved considerably more accurate estimates of robot pose
than other methods.

monomials in 14 variables. GpoSolver [34] could not find any solution
without constraining the length of translations by tJX tX ď sX, t

J
Z tZ ď sZ

for some parameters sX, sZ ě 0. However, after adding the final con-
straints, GpoSolver was able to obtain and certify the global minimum.

In [28], yet another variation of the problem was studied. Assum-
ing that Hand-Eye calibration X has already been recovered, e.g. by
a Hand-Eye calibration from [27], it is possible to cast Robot-World
calibration problem as a kind of the camera resectioning problem [1]
in seven unknowns only when objective function minimizes the object
space error. It turns out that the objective function is quadratic in
tZ and thus optimal tZ can be written in a closed form for known RZ.
That reduces the number of parameters further to four. This reduction
of the number of unknowns makes the problem tractable within LMI
relaxation framework with one second order LMI relaxation. Fig. 4.1
Bottom shows that this approach outperforms alternative methods in
accuracy.
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