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Analýza jednotkové neuronové aktivity
v Parkinsonově chorobě
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Summary

This lecture focuses on analysis of single-neuron signals gathered du-
ring surgery of Parkinson disease patients using advanced statistical ap-
proaches. In the first part, we describe important pre-processing steps
which must be performed for any consecutive analysis of single-neuron
recordings: artifact segmentation and detection; and sorting of action
potentials. We report that artifact detection algorithm based on statis-
tical learning achieved performance of 90%. Regarding spike sorting, we
perform comparative analysis of three available open-source methods
concluding that waveclust approach is the most suitable for the task
of spike classification. In the second part of the lecture, we talk about
involvement of subthalamic region in emotional-behaviour processing.
We conclude that subthalamic region participates in nonmotor circuits
thus supporting complex role of subthalamic area in information pro-
cessing in human cortex and basal ganglia. Our results contribute to
better understanding of the affective complications seen in Parkinson
patients treated with subthalamic stimulation.
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Souhrn

V této přednášce se soustřed́ıme na zpracováńı signálu jednotkové akti-
vity u pacient̊u trṕıćı Parkinsonovou chorobou pomoćı pokročiĺıch sta-
tistických metod a metod digitalńıho zpracovańı signálu. V prvńı části
poṕı̌seme dva základńı kroky, které jsou nezbytné pro daľśı analýzu
signálu neuronové jednotkové aktivity: detekce artefakt̊u a klasifikace
akčńıch potenciál̊u. Efektivita algoritmu pro detekci artefakt̊u dosáhla
90% s použit́ım rozhodovaćıch stromů. V př́ıpadě akčńıch potenciál̊u
byly porovnány tři dostupné algoritmy, z nichž algoritmus waveclust vy-
kazuje nejlepš́ı separačńı výsledky. V druhé části přednášky se zaměř́ıme
na non–motorické úlohy subthalamického jádra, zejména zpracováńı
kognitivńıch funkćı jako jsou emoce. Ukážeme, že toto jádro ovlivňuje i
emočńı zpracováńı informace, což je jedńım z prvńıch d̊ukaz̊u u člověka
o non-motorické funkci subthalamického jádra a jeho afektivńı úlohy
při léčbě Parkinsonovy nemoci pomoćı hloubkové mozkové stimulace.
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1 Introduction

One of the most used technique to explore the information coding rep-
resentation in brain are extracellular recording of neurons in densely
packed neural structure as hippocampus or basal ganglia. We pro-
pose the framework to better understand underlying principles of Deep
Brain Stimulation (DBS) in Parkinson disease (PD) by analysing micro-
electrode recordings (MER) of single neurons.

About 6.3 million people worldwide suffer from a common neurode-
generative chronic disorder affecting mostly elderly people.

Parkinson disease is a motor system disorder, which is the result
of the loss of dopamine-producing brain cells. The main symptoms
are tremor (trembling of arms, hands, legs); bradykinesia (a movement
slowness); rigidity (arm, leg stiffness) and postural instability. PD is
accompanied by secondary symptoms as depression or another emo-
tional changes, difficulty speaking, sleep problems, urinary problems,
etc [Farris and Giroux, 2011].

The origin of symptoms is impaired function of the basal ganglia; an
anatomical region at the base of the forebrain, responsible mainly for
control of voluntary movements. The basal ganglia play an important
role in other processes including control of eye movements, procedural
learning and cognitive and emotional processes.

PD is currently not curable, but different approaches to medications
schemes significantly improve patients’ life quality. Just to mention the
main medical treatment, levodopa combined with carbidopa is used due
to the fact that levodopa is exploited by cells in brain to compensate
low dopamine levels.

DBS is nowadays used in variety of neurological treatment pro-
grammes. It is a surgical procedure applied to treat the symptoms of
Parkinson’s disease, such as rigidity, bradykinesia and tremor. This
treatment is currently only used for patients whose symptoms can
no longer be sustained with medications [Abosch et al., 2013]. Dur-
ing DBS procedure, MER is used by surgeon as an additional tool to
improve the accuracy of placement of the surgical probe.

We aim at understanding underlying principles of DBS mechanisms,
mainly how affect non-motor functions of basal ganglia nucleus. This
goal compromises the whole chain of single-unit neuron processing. In
this lecture, we will point out the whole process of MER analysis: from
segmentation and detection of artifacts, spike sorting of action poten-
tials and assessing number of neurons, to identification of visual and
emotion neurons, especially in STN region.
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2 Preprocessing of single–neuron record-
ings

2.1 Artifacts detection

Artifacts’ occurrence in a MER signal may have dramatic consequences
on data quality of subsequent signal processing, such as spike detection
and sorting. MER signals compromise a large amount of external noise,
caused by numerous sources as patient speech or movement, power
electricity inference or vibrations of the stereotactic frame - see Fig-
ure 1. These noise sources lead to corrupting subsequent data analysis
[Stacey et al., 2013]. We proposed an model framework based on mul-
tiple time domain and spectral features to segment and detect artifacts.
The models are based on decision trees, support-vector-machines and
boosting techniques. The models were evaluated on a database con-
sisting of patients data from four DBS centers. The classification re-
sults of artifacts detection reveals, that the best performing classifiers
is bagging tool with 75 learners and the decision tree. The achieved
classification accuracy was close to 90 % on the cross-validation set
and achieved accuracy higher than 86 % [Bakstein et al., 2015]. En
example of artifact detection can bee seen in Figure 2.
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Figure 1: Two second samples of the most commonly inspected ar-
tifacts: raw MER signal with artifact regions in red (top row) and
corresponding spectrogram (bottom row). Signal A) shows intermit-
tent electromagnetic interference, signal B) mechanical artifact and
signal C) uninterrupted electromagnetic interference at 235 and 350
Hz. [Bakstein, 2017]
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Figure 2: Example of artifact detection on MER recordings with five
parallel electrode trajectories. [Bakstein, 2017]

2.2 Spike detection

One of the essential steps in the preprocessing chain of many cognitive
studies in neurophysiology is a detection of action potentials. Accu-
rate separation of the activity of single neurons can be cumbersome
to achieve due to the large amount of the background noise and pres-
ence of several neurons superimposed in a single electrode. Thus, spike
detection enables to separately measure the activity of the individual
neurons.

The spike detection task can be described as a clustering problem
due to a lower-dimensional representation of the spikes and neglecting
the times at which the spikes occurred. Therefore, most of the known
unsupervised learning approaches have been applied to spike detec-
tion: hierarchical [Fee et al., 1996], k-means [Sarna et al., 1988], super
paramagnetic clustering [Quiroga et al., 2004], as well as mixtures of
Gaussians and mixtures of t-distributions [Shoham et al., 2003]. An
example of spike sorting is depicted in Figure 3.

We described a comparative analysis of the three most cited spike-
sorting approaches with a publicly available source-code: WaveClus
[Quiroga et al., 2004], OSort [Rutishauser et al., 2006] and KlustaK-
wik [Harris et al., 2000].

We evaluated the clustering algorithms using 112 artificial signals
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Figure 3: Example of spike detection with different noise levels ranging
from 0.05 to 0.35. The spikes marked in the signal by a triangle and a
circle each belonged to a different neuron and are shown in greater detail
on the right side - in the case of a higher noise level at 0.25 and 0.35,
a new noisy spike could be misleadingly detected. [Wild et al., 2012]

(publicly available online 1) with 2–9 different neurons and varying
noise levels between 0.00 and 0.60. We applied an optimisation tool
based on adjusted mutual information to search for parameter settings
for a given artificial signal and algorithm. The three clustering algo-
rithms performed significantly better (p < 0.01) with optimised param-
eters than with the default ones. WaveClus was the most accurate spike
detection algorithm, obtaining the best performance score in 60 % of all
signals. From point of real-time detection, OSort worked at almost five
times the speed of the other algorithms. In terms of accuracy, OSort
performed significantly less well (p < 0.01) than WaveClus for signals
with a larger noise level in the range 0.15 − 0.30. Finally, the third
clustering approach KlustaKwik performed similarly to WaveClus for

1http://neuro.felk.cvut.cz/supplementary/spikesorting-comparison/
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Figure 4: (a): Three neurons with noise level at 0.2. Outliers were in-
troduced by superimposition at background noise, (b): In this example
only FHV and ED measures support three-clusters underlying model.
Note that the number of clusters is clearly seen in PCA projection
on the three biggest principal components of FHV and ED measures.
[Novak et al., 2009]

signals with low noise level 0.00–0.15 [Wild et al., 2012].

2.2.1 Identifying Number of Neurons

Several methods of automatically identifying and separating the neu-
rons using unsupervised learning were described - see section 2.2. An
important part of the sorting is determining the number of constituent
clusters which best describe the data. A natural choice is to consider
that each neuron represented by set of action potentials is generated
by simple probability distribution and that the whole data set can be
described as a weighted sum of these simpler distributions.

We assume that our data are generated by finite mixture models.
Indeed in case, such as with stationary action potentionals and uncor-
related noise, the clusters will be nearly spherical in which the model
can be very accurate. In less ideal situations, such as correlated noise or
non-stationary spike shapes, the partition can be modelled by general
Gaussian mixture models.

Several selection methods have been proposed to estimate the num-
ber of components of a mixture [McLachlan and Peel, 2005]. The fol-
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lowing criteria based on theory of Occam’s razor has been chosen in the
comparative study: Bayesian selection method (BSM), Akaikes infor-
mation criteria (AIC), minimum description length (MDL), minimum
message length (MML), fuzzy hyper volume (FHV), evidence density
(ED) and partition coefficient (PC). In order to validate the proce-
dure, an experimental comparative study was carried out, comparing
the proposed methodology with three spike sorting algorithms - see
section 2.2. The proposed methodology has an advantage of setting
the minimum number of parameters and is very robust to background
noise. We conclude that only fuzzy hyper volume and evidence density
criteria - see Figure 4 are able to identify the correct number of neurons
across different noise levels [Novak et al., 2009].

3 Visual-emotional neurons

The subthalamic nucleus, which is one of the main targets for DBS, is
considered an important centre of motor function [Okun, 2012]. How-
ever, the non-motor symptoms resulting in post-operative neuropsychi-
atric complications has recently attracted interested [Castrioto et al., 2014].
Furthermore, additional functional aspect of the STN in emotional and
motivational mechanisms has been shown both in animal and human
experiments [Serranova et al., 2013].

3.1 Visual neurons

The execution of STN in eye movements (EM) scanning is not clear
yet although the involvement of both the basal ganglia and STN has
already been reported [Fawcett et al., 2005]. We explored the role of
single-neurons in subthalamic region in control and scanning of eye
movements [Sieger et al., 2013].

Nineteen patients suffering from PD, which received treatment by
implanting DBS electrodes, were involved in the experiment. EM were
recorded using single channel electrooculography. Next, a patient ob-
served a series of colored pictures selected from the International Affec-
tive Picture System. Spike detection was performed by the WaveClus
clustering algorithm - see section 2.2. The interrelationship between eye
movements and neuronal firing rate was analyzed by cross-correlation
analysis - see Figure 5. In total, 183 neurons were identified and 130
were classified in the STN. Twenty percent of the neurons were linked
to eye movement-related activity. It can be concluded that a large
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number of single-neurons in basal ganglia were involved in control of
eye movements.

IFR

IFR

(a)

Figure 5: Neuronal activity during the scanning movement task. Exam-
ple of neuron related (a) and unrelated (b) to eye movements based on
correlation analysis of the instantaneous firing rate (IFR) and eye po-
sition derived from the electrooculography (EOG). [Sieger et al., 2013]

3.2 Emotional neurons

Involvement of the STN region at the single-neuron level during anal-
ysis of emotions has not been explored in human beings yet. However,
single-neuron activity linked to pre-defined emotional groups (e.g., pos-
itive vs. negative) has been investigated in a few human brain anatom-
ical structures, including the prefrontal and subcallosal cortex, amyg-
dala and hippocampus [Wang et al., 2014].

According to [Russell, 2003], emotional state can be aligned to two
psychophysiological descriptors: emotional valence (from unpleasant to
pleasant) and arousal (from low to high).

We aimed to detect single-neuron firing pattern changes in the STN
region in relation to emotional arousal and valence. The scoring of
descriptors was performed individually based on emotionally charged
and neutral pictures which were presented to PD patients during DBS
surgery.
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Since our main interest is focused on affective content of visual pro-
cessing, the alpha oscillations (8–12 Hz) parameter was selected for
further analysis due to previous experiments which used local field po-
tential recordings [Brucke et al., 2007], [Kuhn et al., 2005]. Therefore,
the power spectra bands were applied for analysis of the single-neuron
signal during affective picture presentation [Huebl et al., 2011].

valence arousal

IFR IFR

Figure 6: Relationship of the single-neuron instantaneous firing rate
(IFR) alpha band activity during emotional picture presentation to
individual valence and arousal ratings of the presented pictures in two
neurons of the STN in patients with PD.[Jech et al., 2014]

Single-neuron activity was recorded in 13 PD patients.The patients
were instructed to observe a presentation with pleasant, unpleasant,
and neutral pictures displayed for 2,000 ms, preceded by a black screen
with a white fixating cross presented for 3,500–5,500 ms. In total, 97
MER signals were registered in the STN area, in which of 125 neurons
were detected. The activity of 35 neurons was related to eye move-
ments, therefore these neurons were omitted from further analysis –
see section 3.1. The remaining 90 neurons were analysed for tracks of
perceptual and emotional behaviour.

Actions potentials were detected by WaveClus method - see section
2.2.1. Next, the individual alpha firing activity using instantaneous
firing rate (IFR) from single neurons was calculated and was corre-
lated to subjective ratings of the emotional valence and arousal of each
presented picture. Finally, those neurons were mapped into the STN
anatomical model [Morel, 2007] - see Figure 7. A neuron was classified
as affective if the correlation between activity in the alpa band was
significantly with these ratings.

As a results, the alpha band activity of 15 of 90 neurons (17%) was
related to the emotional content of the presented pictures expressed in
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individual valence or arousal ratings (P < 0.05) [Sieger et al., 2015].
However, the correlation was only significant for the late period of
picture presentation epochs (500–2,000 ms after stimulus onset). The
activity of other nine neurons (10%) correlated with the arousal ratings
(seven neurons positively, two neurons negatively) - see Figure 6.

(a) (b)
loc [mm] loc [mm]

Figure 7: Locations of STN neurons related to emotional content of
the presented pictures in (a) coronal and (b) sagittal views of the
STN model. Valence-related neurons are depicted as blue rectangles,
arousal-related neurons as cyan circles. [Jech et al., 2014]

Once, commonly accepted consensus stated that the STN area is
divided into three functional zones: limbic, associative, and sensori-
motor regions, residing in the anteromedial, middle, and dorsolateral
portions, respectively, of the STN [Parent and Hazrati, 1995]. This
statement has been challenged by several recent electrophysiologic, neu-
roanatomic, and neuroimaging experiments concluding incomplete sep-
aration of the subthalamic territories [Haynes and Haber, 2013]. There-
fore, it is not surprising that we found the affective neurons in the sen-
sorimotor regions, suggesting that motor and nonmotor regions overlap
in the STN region - see Figure 7.

4 Conclusion

This lecture focused on analyses of single-neuron signals gathered dur-
ing treatment of Parkinson disease patients using advanced statistical
approaches and new methods of exploration, mainly in basal-ganglia
area. In the first part of the talk, we described important pre-processing
steps which must be performed for any consecutive analysis of brain
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recordings: artifact segmentation and detection and action potentials
detection and sorting. We reported that artifact detection algorithm
based on statistical learning achieved performance of 90%. Regard-
ing spike sorting, we performed comparative analysis of three available
open-source methods concluding that waveclust approach is the most
suitable for the task of spike sorting. In the second part of the lecture,
we talked about involvement of subthalamic region in emotional - be-
haviour processing. We concluded that subthalamic region participates
in non-motor circuits thus supporting complex role of subthalamic area
in information processing in human basal ganglia and cortex. Our re-
sults contribute to better understanding of the affective complications
seen in Parkinson patients treated with deep brain stimulation tech-
nique.
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