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Summary

Large sparse matrices are widely used in high-performance computing.
This work deals with new storage formats and algorithms for sparse
matrices. Our search for new algorithms and formats was motivated
by absence of an available solution (at the beginning of the research).
There was no satisfactory solution for storing/loading large sparse ma-
trices to/from a distributed file system.

This work presents some solutions for this application domain. Space-
efficient formats reduce the space complexity of the representation of
the sparse matrix. These formats can be applied in situations when
a capacity or a bandwidth is the main bottleneck. New formats and al-
gorithms (usually with possibilities for their parallel execution) are pre-
sented. The theoretical part of this work contains a formal description
of sparse matrix formats and a survey of state-of-the-art solutions. The
work also discusses principles, algorithms for transformation from/to
these formats, and suitability for practical application.
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Souhrn

Velké ř́ıdké matice jsou použ́ıvány v mnoha oborech intenzivńıch výpočt̊u.
Tato práce pojednává o nových formátech a algoritmech pro ř́ıdké ma-
tice. Absence těchto formát̊u a algoritmů (na začátku výzkumu) byla
naš́ı hlavńı motivaćı. Neexistovalo totiž uspokojivé řešeńı pro ukládáńı
nebo nač́ıtáńı velké ř́ıdké matice v rámci distribuovaného souborového
systému.

Tato práce přináš́ı některá možná řešeńı pro tuto aplikačńı doménu.
Pamět’ově úsporné formáty jsou takové, které se snaž́ı minimalizovat
množstv́ı paměti nutné pro uložeńı velkých ř́ıdkých matic. Jejich využit́ı
lež́ı v oblastech, kde je omezena dostupnost nebo propustnost úložných
zař́ızeńı. Jsou zde popsány nové formáty a algoritmy (včetně možnost́ı
jejich paralelizace). Teoretická část práce obsahuje formálńı popis formát̊u
a přehled současných řesšeńı. V práci budou diskutovány principy těchto
formát̊u, algoritmy pro převod z/do těchto formát̊u a jejich výhody či
nevýhody při praktickém uplatněńı.
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1 Introduction

1.1 Motivation

The maximal memory bandwidth and parallel I/O subsystem can be
performance bottlenecks in sparse computations, e.g., loading or stor-
ing large sparse matrices from/to a distributed file system can take
significant amounts of time. Sparse storage formats (SSFs) describe
a way how sparse matrices are stored in computer memory. In this
thesis, new formats are shown to minimize the indexing overhead and
consequently reduce main memory traffic or the parallel I/O traffic.

The space complexity (sometime called memory footprint) of rep-
resentation of sparse matrices depends strongly on the used matrix
storage format.Within our papers [13, 14, 11, 10, 12], weaknesses of
previously developed solutions for space-efficient formats for storing of
large sparse matrices were discussed. This thesis investigates memory-
efficient storage formats for large sparse matrices (LSMs). These ma-
trices that due to their sizes must be stored and processed by massively
parallel computer systems (MPCSs) with distributed memory architec-
ture consisting of processor cores. The motivation of our work was in
applications with LSMs that must be stored in a distributed file sys-
tem using a parallel I/O subsystem. The parallel I/O subsystem can be
performance bottleneck and loading or storing such matrices from/to a
distributed file system are costly operations. We reduced this time by
reducing the space complexity of the LSMs.

1.2 Terminology and notation

1.2.1 General assumption and notation

• We consider a large sparse matrix A of order n × n, A = (ai,j).
The number of its nonzero elements is denoted by N .

• Matrix A is considered sparse if it is worth (for performance or
any other reason) not to store this matrix in memory in a dense
array.

• We assume that 1� n ≤ N �M = n2.

• The pattern of nonzero elements in A is unknown or random.

• The number of nonzero elements in submatrix B of matrix A is
denoted by η(B), thus η(A) = N .
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1.2.2 Matrix properties

• A matrix A is regular if det(A) 6= 0, and it is singular otherwise.

• A matrix A is symmetric if A = AT .

• A matrix A is diagonal if ∀i 6= j; ai,j = 0.

• If A has the same number of nonzero elements in each row then
nonzero elements are distributed in A uniformly and we denote
A as a uniform matrix.

2 Space-efficient formats

2.1 Our assumptions

Our research addresses computations with LSMs satisfying at least one
of the following conditions:

1. The LSM is used repeatedly and the computation of its elements
is slow and it takes more time than its later reading from a file
system.

2. Construction of a LSM is memory-intensive. It needs significant
amount of memory for auxiliary data structures, typically of the
same order of magnitude as the amount of memory required for
storing the LSM itself.

3. A solver requires the LSM in another format than is produced
by a matrix generator and the conversion between these formats
cannot be performed effectively on-the-fly.

4. Computational tasks with LSMs need check-pointing and recov-
ery from failures of the MPCSs. We assume that a distributed-
memory parallel computation with a LSM needs longer time. To
avoid recomputations in case of a system failure, we need to save
a state of these long-run processes to allow fast recovery. This
is especially important nowadays (and will be more in the fu-
ture) when MPCSs consist of tens or hundreds of thousands of
processor cores.

If at least one of these conditions is met, we might need to store LSMs
into a file system. And since the file system access is usually of orders
of magnitude slower compared to the memory access, we want to store
matrices in a way that minimizes their memory requirements.

2.2 Our requirements

The requirements for a new storage format are as follows:
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1. One of MPCS’s bottleneck lies in parallel I/O bandwidth. There-
fore we require that the new format should be space-efficient, in
order to keep resulting file sizes as low as possible.

2. We want to access LSMs files linearly. Since nowadays I/O file
operations are processed by hard discs, linear access with mini-
mal amount of seek operations leads to a maximal efficiency of
reading.

3. For the designed format, there must also exist a space-efficient al-
gorithm with small algorithmic complexity for remapping from/to
the common storage formats. Due to this assumption, the time
complexity of remapping is negligible in comparison to I/O file
operations complexity.

Unfortunately, it is hard to satisfy all requirements at the same time,
because they are generally in contradiction. This work is inspired by
some real applications, for example ab initio calculations of medium-
mass atomic nuclei.

There are several other storage formats specialized for given areas
(e.g., compression of text, picture or video). They can be used for
compression of sparse matrices, but none of them satisfies all these
four requirements:

1. non-lossy compression,
2. possibility of massively parallel execution,
3. space efficiency (high compression rate),
4. high speed compression/decompression.

In this thesis, the compression of the information describing the struc-
ture of LSMs (i.e., the locations of nonzero elements) is discussed. The
values of the nonzero elements are unchanged, because their compres-
sion depends strongly on the application. For some application areas,
the values of nonzero elements are implicit and only the information
about the structure of a LSM is stored (for example, incident matrices
of unweighed graphs).

3 State-of-art

In this section short survey of state-of-art sparse storage formats is
given.

3.1 Common sparse storage formats

SSFs describe a way how sparse matrices are stored in a computer
memory. The following three SSFs are most common for storing sparse
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matrices.

3.1.1 The Coordinate (COO) Format

The coordinate (COO) format is the simplest SSF (see [19, 2]). The
matrix A is represented by three linear arrays values, xpos, and ypos.
The array values[0 , . . . ,N − 1 ] stores the nonzero values of A, arrays
xpos[0 , . . . ,N − 1 ] and ypos[0 , . . . ,N − 1 ] contain column and row in-
dexes, respectively, of these nonzero values. COO does not prescribe
any order of these arrays.

3.1.2 The Compressed Sparse Row (CSR) format

The most common SSF is the compressed sparse row (CSR) format
(see [19, 2]). The matrix A stored in the CSR format is represented by
three linear arrays values, addr , and ci . The array values[0 , . . . ,N − 1 ]
stores the nonzero elements of A, the array 1 addr [0 , . . . ,n − 1 ] con-
tains indexes of initial nonzero elements of rows of A; the first nonzero
element of the row j is stored at index addr [j ] in array values. The
row i contains addr[i + 1] − addr[i] elements. If row i does not con-
tain any nonzero element, then addr [i ] = addr [i + 1 ] and matrix A is
singular. Hence, all elements of the array addr should satisfy the condi-
tion . . . addr [i − 1 ] ≤ addr [i ] ≤ addr [i + 1 ] . . .. The array ci [1 , . . . , η]
contains column indexes of nonzero elements of A.

3.1.3 Register blocking formats

Widely-used SSFs are easy to understand, however, sparse operations
(like matrix-vector or matrix-matrix multiplication) using these formats
are slow (mainly due to indirect addressing). Sparse matrices often con-
tain dense submatrices (blocks), so various blocking SSFs were designed
to accelerate matrix operations. Compared to the CSR format, the aim
of these formats (like SPARSITY[7]) is to allow a better use of regis-
ters and more efficient computations. But these specialized SSFs have
usually large transformation overhead and consume approximately the
same amount of memory as the CSR format.

1Usually the array addr is by one element larger ([0, . . . , n]), this simplifies many
algorithms.

8



3.2 State-of-the-art survey

What were the possibilities to manage storing/loading LSMs to/from
a distributed file system (before our research)? There were several
widely used and well documented text-based file formats for sparse
matrices, mainly Matrix Market [3], Harwell-Boeing [4], and Matlab
(ASCII) [6]. There are, however, reasons why text-based storage for-
mats are not suitable for VLSMs— they must be accessed sequentially
and they usually consume much more space than binary formats.

As for binary file formats, there were no satisfactory solutions.
Many modern sparse solvers, such as Trilinos [5] or PETSc [1], pro-
vide the functionality of storing matrices into a file. However,

1. the matrices must already be loaded into the solver, whereas we
might need to store matrices as they are constructed;

2. the binary formats of such files are usually proprietary and poorly
or not at all documented, and therefore they cannot be simply
used anywhere else.

Just few papers have been published about SSFs in the context of
minimization of the required memory (before our research), which is the
optimization criterion for a file I/O. Some recent research of hierarchical
blocking SSFs, though primarily aimed at SpMV optimization, also
addresses optimization of memory requirements [16, 15, 17, 18].

4 Our new space-efficient formats

In this section, new sparse matrix storage formats that minimize the
space complexity of information about matrix structure are proposed
and evaluated.

4.1 The entropy-based (EB) format

4.1.1 The main idea

The space complexity of any sparse matrix storage format depends
strongly on its structural pattern. If the sparsity pattern of a matrix
is completely known (for example, if a matrix is tridiagonal) then the
space complexity for storing the information on its structure is zero.
If a random distribution of nonzero elements is assumed, then it is
equal to the value of the entropy of a bit vector of size M , in which
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N bits are set to 1 and M − N bits are set to 0. Thus, such a for-
mat is denoted as entropy-based. Unfortunately, the EB format is very
difficult to compute, thus it serves only for comparison and no practi-
cal algorithm to achieve this space complexity was given. In [12], the
arithmetical-coding-based (ACB) format was introduced. Since a ran-
dom distribution of nonzero elements is assumed, the bit vector B is
considered to be an order-0 source (each bit is selected independently
on other bits). The total number of bits to encode vector B is equal to
the value of binary entropy of vector B, thus EBF and ACB formats
have the same space complexity.

4.1.2 Results and applicability

A comparison to common SSF was done in [8, 11, 12]. This format
is suitable for matrices without any locality. A drawback of the ACB
format is its computational complexity. Since each bit of vector B is en-
coded in time Θ(1), the complete vector B (representation of sparse ma-
trix A) is encoded in time Θ(n2). This is too much for sparse matrices
with a constant number of nonzero elements per row (i.e., N ∈ Θ(n)).

4.2 Minimal quadtree (MQT) format

4.2.1 The main idea

Definition 1. The Quadtree (QT) is a tree data structure in which all
inner nodes have exactly four child nodes.

A big drawback of the some QT formats from the viewpoint of
space complexity is a larger data overhead (caused by pointers up left ,
up right , lo left , lo right) compared to the COO and CSR formats.
Since our aim is to minimize the space complexity of QT-based formats,
in [10] a new QT format called minimal quadtree (MQT) format is
proposed that extends ideas of the standard QT format as follows:
• All nodes in the MQT are stored in one array. Since we can

compute locations of all child nodes, we can omit pointers. We
lose the advantage of the possibility to easily modify the QT, but
it is not an important property for our application area.

• Instead of pointers, each node of the MQT contains only 4 flags
(i.e., 4 bits only) indicating whether given subquadtrees are nonempty.

So, the space complexity of every MQT node is only 4 bits.
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4.2.2 Results and applicability

A space complexity comparison to common SSF was done in [10]. The
derivation of lower and upper bounds for this format was also included.
Experiments proved that this format minimize space complexity of the
sparse matrix structure.

4.3 The minimal binary tree (MBT) format

4.3.1 The main idea

The full binary tree (FBT) is a widely used data structure in which all
inner nodes have exactly two child nodes. Binary trees especially those
used for binary space partitioning can also be used for storing sparse
matrices. In standard implementations, every node in a FBT is rep-
resented by structure standard_BT_struct consisting of the following
items:
• two pointers (left , right) to child nodes,
• (only for leaves) the value of a nonzero element.

If a FBT is used as a basis for SSF, it describes a partition of the
sparse matrix into submatrices and each node in the FBT represents
a submatrix. Equally as in k-d trees, the decomposition is performed
in alternating directions: first horizontally, then vertically, and so on.
From the viewpoint of space efficiency, a drawback of the standard
FBT representation is the overhead caused by pointers left , right . To
eliminate this drawback, we propose a new k-d-tree-based SSF. Each
tree node represents again a submatrix, but we modify the standard
representation of the FBT and we call this data structure the minimal
binary tree (MBT) format. The idea is very similar to that in the MQT
format.
• All nodes of a MBT are stored in one array (or stream). Since

the size of the input matrix is given, we can compute locations of
all child nodes, we can omit pointers left , right .

• All nodes of a MBT contain only two flags (it means only two
bits). Each of them is set to 1 if the corresponding half of the sub-
matrix (left/right or upper/lower) contains at least one nonzero
element, otherwise it is set to 0.

So, the space complexity of every MBT node is only 2 bits.

4.3.2 Results and applicability

A space complexity comparison to common SSF was done in [12]. The
derivation of lower and upper bounds for this format was also included.
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Space complexities using this format are comparable to MQT format
(see Section 4.2).

4.4 Minimal compressed formats

4.4.1 The main idea

The space complexity of MBT and MQT formats (see Section 4.2 and
4.3) can be further reduced by compression as was discussed in [12].
The MBT and MQT formats have minimal space complexity only if we
assume fixed number of bits for each node (2 bits for MBT and 4 bits for
MQT). We can relax this assumption to achieve more space efficient
formats. Based on this idea, we propose another new format, called
compressed binary tree (CBT). and another new compressed quadtree
(CQT) format.

4.4.2 Results and applicability

A space complexity comparison to common SSF is done in [12]. It also
includes the derivation of lower and upper bounds for this format.

4.5 COOCOO256 and COOCSR256 formats

4.5.1 The main idea

The high memory requirements for the COO format are caused by two
arrays of size N . We cannot reduce the size of these arrays, but we can
try to reduce the number of bytes for every row/column index. The idea
is to partition the matrix into square blocks of size r× c rows/columns.
In [8], these parameters were fixed (c = r = 256), thus these formats
were denoted as COOCOO256 or COOCSR256. Every such block can
be identified by block row and block column indices of size S(dn/256e)
bytes. Let K denotes the number of nonzero blocks for our matrix A
(nonzero block is a block that contains at least one nonzero value).
Suppose nonzero matrix elements stored in the COO format. If we
store nonzero blocks in the coordinate storage format, we need for each
one its block row/column index of size S(dn/256e) bytes, and a pointer
into its data (an index into the original arrays of row/column indices
and values) that it therefore an index of size S(N ) bytes. Now, for each
nonzero element, we need only 1-byte local row/column indices valid
within a block instead of S(n)-byte row/column indices valid within
the whole matrix.
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4.6 Basic hierarchical (BH) formats

4.6.1 The main idea

In [11], we relaxed the assumption of the fixed block size. The idea was
generalized to partition the matrix into square disjoint blocks of size
2c×2c rows/columns, where c ∈ N+ is a formal parameter. Coordinates
of the upper left corners of these blocks are aligned to multiples of 2c.
So, indexes of nonzero elements are separated in two parts, indexes of
blocks and indexes inside the blocks. Every such a block has block row
and block column indexes of size S(dn/2ce) bits. Let B(c) denote the
number of nonzero blocks for matrix A. A nonzero block is a block that
contains at least one nonzero matrix element. For storing information
about the blocks and elements inside the blocks, we can use the COO
or CSR format, which results in four combinations of these formats.

4.6.2 Results and applicability

A space complexity comparison to common SSF was done in [12]. The
derivation of lower and upper bounds for this format was also included.

4.7 The advanced hierarchical (AH) format

4.7.1 The main idea

Another type of a hierarchical format (introduced in [11]) is a format
that combines a bitmap at the top level and the COO format at the
lower level. The COO format is used due to small number of elements
inside each block. So, this format consists of:

• One bitmap (in this bitmap each bit=pixel represents a block of
s × s elements in matrix A. If this block is nonempty, then the
corresponding bit in the bitmap is set to 1 and vice versa.

4.7.2 Results and applicability

A space complexity comparison to common SSF was done in [11, 12].
The derivation of lower and upper bounds for this format was also
included. By comparing results from AH and ACB formats, we see
that the AH format is only slightly less efficient (about 0.47 bit per
non-zero element) than the ACB format (see Section 4.1).
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4.8 Summary of space-efficient formats

As was already said, we can divide our new space-efficient formats
further according to the following criteria:

• the purpose of the format:

– formats for storing large sparse matrices suitable for parallel
I/O systems: ACB, BHF, AHF, MQT, MBT, CQT, CBT
formats,

– a format for acceleration of basic numeric algebra routines:
(COO8 )4 (described in [9]).

• the principle of the format:

– tree based: MQT, MBT, CQT, CBT formats

– hierarchically based:

∗ 2-level: BHF, AHF formats

∗ multi-level: (COO8 )4 format (described in [9])

– arithmetic coding based: the ACB format

All listed papers represent a significant contribution to fields of sparse
matrix formats and related algorithms.

5 Conclusions

Large sparse matrices are widely used in high-performance computing.
These matrices due to their sizes are usually stored and processed by
parallel computer systems.

This work was motivated by the fact that a parallel I/O subsystem
is typically the main performance bottleneck in computation with large
sparse matrices, e.g., loading or storing of large sparse matrices from/to
a distributed file system can take significant amounts of time. Weak-
nesses of the previously developed solutions for space-efficient formats
for storage of large sparse matrices were discussed. Reducing the space
complexity of the representation of large sparse matrices resulted in
reduced time of parallel I/O. New formats for storage of large sparse
matrices suitable for parallel I/O systems were designed. In particular,
the first new formats were from a large family of hierarchical formats
(BH and AH), the next format was arithmetical coding based (ACB)
format, one new format was quadtree-based (MQT format), one new
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format was based on binary tree (MBT format), and the last two for-
mats were compressed variants of the previous two (the CQT and CBT
format).

We performed experiments with matrices arising in many different
application areas and compared them with widely used COO or CSR
formats. These experiments proved that our new formats could signifi-
cantly reduce the space complexity of these matrices and consequently
reduce amount of data needed for storing these matrices. Low space
complexity of these formats made them good candidates for storage of
large sparse matrices using parallel I/O systems.

All advances presented in this work concern both theoretical and
practical areas.
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[9] I. Šimeček and D. Langr. Space and execution efficient formats
for modern processor architectures. In 2015 17th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pages 98–105, Sept 2015.
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allel and gpu version of a treor-based algorithm for indexing powder
diffraction data. Journal of Applied Crystallography, 48(1):166–170,
Feb 2015.

19


	Introduction
	Motivation
	Terminology and notation
	General assumption and notation
	Matrix properties


	Space-efficient formats
	Our assumptions
	Our requirements

	State-of-art
	Common sparse storage formats
	The Coordinate (COO) Format
	The Compressed Sparse Row (CSR) format
	Register blocking formats

	State-of-the-art survey

	Our new space-efficient formats
	The entropy-based (EB) format
	The main idea
	Results and applicability

	Minimal quadtree (MQT) format
	The main idea
	Results and applicability

	The minimal binary tree (MBT) format
	The main idea
	Results and applicability

	Minimal compressed formats
	The main idea
	Results and applicability

	COOCOO256 and COOCSR256 formats
	The main idea

	Basic hierarchical (BH) formats
	The main idea
	Results and applicability

	The advanced hierarchical (AH) format
	The main idea
	Results and applicability

	Summary of space-efficient formats

	Conclusions

