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Summary

Graphical models combine graph theory and probability theory into
a general formalism to model interactions of multiple variables. The
formalism has many applications in computer vision, machine learning,
artificial intelligence, and other disciplines. A basic operation with a
graphical model is inference, which requires computation of either the
maximum or the marginals of the probability distribution defined by
the model. The former problem is a combinatorial optimization one,
often referred to as discrete energy minimization or valued/weighted
constraint satisfaction.

In this document I first define the problem of discrete energy mi-
nimization and mention the relation of this interdisciplinary problem
to different research disciplines. Then I summarize my contributions to
one successful approach to this NP-hard problem, linear programming
(LP) relaxation.

My first contribution was a revisit of an old and not widely known
approach by Schlesinger et al., which was independently rediscovered
recently and is a basis of the LP relaxation approach. My second con-
tribution is an elegant generalization of this approach, which enables
handling energy terms of arbitrary arity, constructing a hierarchy of
progressively tighter relaxations, and incrementally tightening the re-
laxation in a cutting plane fashion. This comes with a very simple
yet general algorithm, generalized min-sum diffusion, that computes
a (coordinate-wise local) optimum of the dual LP relaxation for large
instances. My third contribution is to show that trying to find a very
efficient algorithm to solve the LP relaxation of discrete energy mini-
mization is hopeless because the general linear programming problem
can be reduced in linear time to this LP relaxation.
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Souhrn

Grafové modely kombinuj́ı teorii graf̊u a teorii pravděpodobnosti
do obecného formalismu vhodného k modelováńı interakćı množiny
mnoha proměnných. Maj́ı mnoho použit́ı v poč́ıtačovém viděńı, stro-
jovém učeńı, umělé inteligenci, a jiných discipĺınách. Základńı operaćı
v grafových modelech je inference, která vyžaduje výpočet bud’ ma-
xima nebo marginál̊u rozděleńı pravděpodobnosti definovaného mode-
lem. Prvńı z těchto problémů je často nazýván minimalizace diskrétńı
energetické funkce nebo programováńı s váženými omezeńımi.

V tomto dokumentu nejdř́ıve definuji minimalizaci diskrétńı ener-
getické funkce a zmı́ńım vztahy tohoto multidisciplinárńıho problému
k r̊uzným výzkumným obor̊um. Poté poṕı̌si mé výzkumné př́ıspěvky
k úspěšnému př́ıstupu k tomuto NP-těžkému problému, založeném na
relaxaci pomoćı lineárńıho programováńı (LP).

Můj prvńı př́ıspěvek byla rekapitulace starého a nepř́ılǐs známého
př́ıstupu Schlesingera aj., který byl nedávno nezávisle znovu objeven
and tvoř́ı základ př́ıstupu založeném na LP relaxaci. Druhý př́ıspěvek
je elegantńı zobecněńı tohoto př́ıstupu, které umožňuje použ́ıt sč́ıtance
libovolné arity, sestavit hierarchii stále těsněǰśıch relaxaćı problému,
a inkrementálně zlepšovat relaxaci podobně jako v metodách řezných
nadrovin. Část́ı př́ıspěvku je velmi jednoduchý ale obecný algoritmus,
zobecněná min-sum difúze, který poč́ıtá (po souřadnićıch lokálńı) op-
timum duálńı LP relaxace. Třet́ı př́ıspěvek ukazuje, že snaha naj́ıt
opravdu efektivńı algoritmus na řešeńı LP relaxace minimalizace dis-
ktrétńı energie je odsouzena k nezdaru, nebot’ obecný problém lineárńıho
programováńı se redukuje v lineárńım čase na tuto LP relaxaci.
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Kĺıčová slova
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Kapitola 1

Discrete Energy Minimization

By discrete energy minimization we understand the following problem:

Given a set of discrete (i.e., with finite domains) variables and a
set of functions each depending on a (usually small) subset of the
variables, minimize the sum of the functions over the variables.

Formally, let V be a finite set of variables, where each variable i ∈ V
attains states xi from a finite domain X. Let H ⊆ 2V be a collection
of variable subsets, i.e., a hypergraph over V . Let for each hyperedge
A ∈ H be given a function fA: XA → R ∪ {∞}. We want to minimize
the ’energy function’

E(xV ) =
∑
A∈H

fA(xA) (1.1)

where xA ∈ XA denotes an assignment to (labeling of) variables A ⊆ V .
E.g., for V = (1, 2, 3, 4) and H = {(1, 2), (1, 3), (2, 3, 4)} we have

E(x1, x2, x3, x4) = f12(x1, x2) + f13(x1, x3) + f234(x2, x3, x4).

The problem is very multidisciplinary, it has been studied in several
disciplines under many different names:

• In machine learning, the problem has been studied in a wider fra-
mework of graphical models, which combine graph theory and pro-
bability theory into a general formalism to model interactions of a
large set of variables (Lauritzen, 1996; Bishop, 2006; Wainwright
and Jordan, 2008). They do so by modeling the joint distribution of
the involved variables as

p(xV ) ∝ e−E(xV ). (1.2)

Inference in a graphical model seeks to compute the states of a sub-
set of variables V (hidden variables) from the states of the remaining
(observed variables). Following the Bayesian decision theory, this is
formalized as minimizing the expectation of a given loss function,
which specifies the penalty for incorrect decisions. The two most
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common loss functions lead to the need to compute either the ma-
ximum (maximum posterior or MAP inference) or the marginals
(maximum posterior marginals or MPM inference) of a distribution
of the form (1.2). Obviously, MAP inference is isomorphic to energy
minimization.

• In computer vision, it was observed that some image processing pro-
blems (typically low-level ones such as denoising, segmentation, or
dense image matching) can be easily formalized as minimizing a
function (1.1) where V is identified with the set of image pixels and
H contains individual pixels and small subsets of pixels. Most often,
H contains just pairs of neighboring pixels, so that

E(xV ) =
∑
i∈V

fi(xi) +
∑
{i,j}∈H

fij(xi, xj). (1.3)

In computer vision, the problem is often referred to as discrete energy
minimization (Boykov et al., 2001; Szeliski et al., 2008; Kappes et al.,
2013). Sometimes, this was understood more widely as MAP infe-
rence in Markov random fields (Li, 2009), which is just another name
for one class of graphical models.

• Pattern recognition is a somewhat obsolete name for what has today
differentiated to machine learning and computer vision. Here, our
problem has been called a two-dimensional grammar or a min-sum
labeling problem (Shlezinger, 1976; Schlesinger, 1989). It is a soft
version of the consistent labeling problem (Haralick and Shapiro,
1979, 1992; Rosenfeld et al., 1976), which is the decision problem
obtained for the ’crisp’ local functions fA: XA → {0,∞}.

• Constraint programming (Rossi et al., 2006) is motivated by the idea
that rather than to specify how to fulfill the task at hand (by giving
a code) it is often easier to specify what should be fulfilled (by gi-
ving a set of constraints). The core of constraint programming is the
constraint satisfaction problem (Mackworth, 1991; Freuder and Mac-
kworth, 2006), equivalent to the consistent labeling problem. This
(crisp) constraint satisfaction was later extended to various forms of
weighted constraint satisfaction (Rossi et al., 2006, chapter 9). One
of them is isomorphic to discrete energy minimization and has been
called the partial (Koster et al., 1998), weighted (Meseguer et al.,
2006) or valued (Živný, 2012) constraint satisfaction problem.

• Statistical physics (Mézard and Montanari, 2009) wants to under-
stand how macroscopic properties of matter result from random
behavior of locally interacting particles. It studies distributions of
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the form (1.2) (with a temperature parameter added) under the
name (Botzmann-)Gibbs distribution, where the function (1.1) is the
actual energy (Hamiltonian) of the system. A famous example is the
explanation of ferromagnetism from interaction of spin orientations
by the Ising model. The maxima of the Gibbs distribution (i.e., the
minima of energy) are known as its ground states.

• It is interesting that despite its very natural formulation, discrete
energy minimization in its full generality has not been studied in
combinatorial optimization. However, it is nowadays changing (Živný,
2012; Kolmogorov et al., 2015).

Inference problems in graphical models are intractable. Namely, dis-
crete energy minimization is APX-hard even to approximate and com-
puting marginals is #P-complete. Therefore, one has to recourse to ap-
proximate algorithms. Non-existence of good approximate algorithms
has long hindered applying the powerful formalism of graphical models
in practice. However, in the last decade approximate inference algori-
thms have undergone a revolution within the fields of machine learning
and computer vision. One class of these new successful methods is based
on linear programming (LP) relaxation (Shlezinger, 1976; Kolmogorov,
2006) and, for more general inference problems, variational inference
(Wainwright and Jordan, 2008). These approximate problems are sol-
ved by highly parallelizable (block-)coordinate ascent algorithms (Son-
tag et al., 2012), that can handle large instances of, e.g., image sizes.

In the following three chapters I will summarize my contributions
to the LP relaxation approach to discrete energy minimization.
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Kapitola 2

Review of the LP Relaxation Approach

My interest in energy minimization and graphical models began
around the year 2000 when I attended lectures given by Mikhail I.
Schlesinger from the Glushkov Institute of Cybernetics in Kiev, Ukra-
ine, who was visiting our department. It turned out that he formulated
the LP relaxation approach to discrete energy minimization as early as
in 1970’s (Shlezinger, 1976). The approach consisted in maximizing a
lower bound on the true minimum of (1.3) by linear transformations
of f that preserve the function (1.3). This leads to a linear program,
which in fact was dual to the LP relaxation of the original problem.
Schlesinger and his colleagues proposed algorithms to minimize the
upper bound: a very simple algorithm nicknamed ‘min-sum diffusion’
(Kovalevsky and Koval, approx. 1975) and the algorithm (Koval and
Schlesinger, 1976).

I became attracted by the approach and wanted to contribute to it.
However, the approach was not known in my field of computer vision.
In fact, active knowledge of optimization of a typical computer vision
researcher that time rarely reached beyond the Levenberg-Marquardt
algorithm. Having worked on multiple view geometry before, I was no
exception and had a hard time to understand the approach. There-
fore, before attempting any novel contribution, I decided to first write
a review (Werner, 2005, 2007) which would summarize the approach in
modern terms and relate it to the current state of the art. The topic
turned out to be very multifaceted and I found lots of relevant works
from quite different fields, using different formalisms and terminolo-
gies. Interestingly, it further turned out that a similar approach was
independently discovered at about the same time by Wainwright et al.
(2005) and Kolmogorov (2006).

I included in this review in particular:

• The formulation of the primal and dual LP relaxation of minimizing
the pairwise energy (1.3).

• Its connection with the constraint satisfaction problem.

• The observation that min-sum diffusion not necessarily finds the
global maximum of the LP dual, plus counter-example.
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• A re-implementation of min-sum diffusion (which was easy) and the
algorithm (Koval and Schlesinger, 1976) (very painful).

• A proof that the LP relaxation (in fact, min-sum diffusion suffices)
exactly minimizes submodular energy functions.

Let me remark that I reformulated these results to some extent, to
facilitate possible extension to higher-arity functions, described in the
next chapter.

Example As an example, let us model the class of images containing
non-overlapping letters ‘Π’ of arbitrary width and height (the right-
most image below). Let V be the set of pixels and H ⊆

(
V
2

)
the set of

pairs of neighboring pixels. Each variable takes states xi from the set
X = {E, I,T, L,R,TL,TR}, encoding the syntactic parts of the letter.
Let fi(yi |xi) be the negative log-probability that pixel i has color yi
given its state xi. Let fij(xi, xj) be 0 if syntactic parts xi and xj are
ever incident (in the left picture below) and ∞ otherwise. Then (1.2)
with

E(yV |xV ) =
∑
i∈V

fi(yi |xi) +
∑
{i,j}∈H

fij(xi, xj) (2.1)

is the probability of an input image yV (observed variables) given a
labeling xV formed by the syntactic parts (hidden variables). Minimi-
zing (2.1) over xV yields the most likely image from the class, given
the input image yV .

A local maximum of the dual LP relaxation is found by min-sum
diffusion, which iterates a simple local operation (Shlezinger, 1976; Wer-
ner, 2007). Despite the problem belongs to none of the known tractable
subclasses, min-sum diffusion often finds an exact solution. Moreover,
handles very large instances (millions of variables) in reasonable time.
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Kapitola 3

Energy Terms of Arbitrary Arity

The arity of an energy term fA is the number |A| of variables on
which it depends. For quite some time, the researchers in energy mi-
nimization focused on functions of arity at most two (often called ‘bi-
nary’, ‘pairwise’, or ‘second-order’), i.e., the form (1.3) (Szeliski et al.,
2008). Seemingly, this is without any loss of generality because any non-
binary function fA can be represented by combining binary functions.
However, representing some high-arity functions needs an exponential
number of binary functions. Moreover, this translation destroys sym-
metry. Therefore, I wanted to handle energy terms of arbitrary arity
natively , without translating them to binary terms.

First I derived the LP relaxation approach for a very general family
of distributions known as the (discrete) exponential family (Wainwright
and Jordan, 2008), which contains distributions of type (1.2) but also
other distributions. This is described in (Werner, 2009). Then I took
a less general view, considering only functions (1.1). This resulted in a
very elegant framework with several desirable properties:

• It is applicable to energy terms fA of arbitrary arity but it is at the
same time very simple. The algorithm is a generalization of min-sum
diffusion as I formulated it in (Werner, 2007).

• It straightforwardly allows to construct a partially ordered hierarchy
of progressively tighter LP relaxations. This is much simpler than
the existing method by Wainwright et al. (2005) to construct such
a hierarchy by combining (hyper-)trees. The hierarchy is much finer
that the well-known hierarchy by Sherali and Adams (1990).

• It is easy to tighten the relaxation incrementally during min-sum
diffusion, resulting in fact in a (dual) cutting plane algorithm.

• It can be easily proved that the algorithm exactly solves problems
with submodular functions of any arity.

The framework is described in (Werner, 2008, 2010)1. The hierarchy of
LP relaxations, generalized min-sum diffusion, and the cutting plane
algorithm are revisited in the book chapter (Franc et al., 2012).

1This work has been evaluated by the Czech government as an excellent result
in the II. pillar of RIV in 2015.
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Kapitola 4

Hardness of the LP Relaxation

The LP relaxation of discrete energy minimization is exact for a
large class of min-sum instances (e.g., all tractable languages with fi-
nite costs (Thapper and Živný, 2012) and instances with bounded tre-
ewidth) and it is a basis for designing good approximate algorithms in
general (Kappes et al., 2013). It would be therefore of great practical
interest to have efficient algorithms to solve the LP relaxation. Indeed,
many authors invested considerable effort to develop new efficient al-
gorithms to solve the LP relaxation.

As linear programming is in the PTIME complexity class, one might
think that solving the LP relaxation is easy. However, this is not so for
large instances that occur, e.g., in computer vision. For energy functions
with binary functions fA and |X| = 2 labels, the LP relaxation can
be solved efficiently by reduction to max-flow (Boros and Hammer,
2002; Rother et al., 2007). For more general problems, no really efficient
algorithm is known. In particular, the well-known simplex and interior
point methods are not applicable, if only due to their quadratic space
complexity. Coordinate ascent algorithms, such as min-sum diffusion
or TRW-S (Kolmogorov, 2006), do apply to large-scale instances but
they find only a local optimum of the dual LP relaxation.

My colleague and me have shown (Pr̊uša and Werner, 2013, 2015b;
Živný et al., 2014) that the quest for very efficient algorithms to solve
the LP relaxation is futile, because this task is not easier than solving
any linear program. Precisely, every linear program reduces in linear
time to the LP relaxation of discrete energy minimization (allowing
infinite costs) with |X| = 3 labels. From the polyhedral point of view,
every polytope is a coordinate-erasing projection of a face of the feasible
set of the LP relaxation (known as the a local marginal polytope) with
3 labels, whose description can be computed in linear time.

Recently, we proved a similar (somewhat weaker) result for a subc-
lass of the discrete energy minimization problem, the attractive Potts
problem (also known as the uniform metric labeling problem (Kleinberg
and Tardos, 2002; Chekuri et al., 2005)). This is described in (Pr̊uša
and Werner, 2015a).
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Computer Vision

2015: Article [15] was evaluated by the Czech government as an ex-
cellent result in the II. pillar of RIV.
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