
České vysoké učeńı technické v Praze
Fakulta informačńıch technologíı

Katedra č́ıslicového návrhu

Czech Technical University in Prague
Faculty of Information Technology

Department of Digital Design

Ing. Jan Schmidt Ph.D.

Experimentálńı algoritmika a postupy
experimentálńıho vyhodnoceńı nástroj̊u
automatizace návrhu č́ıslicových zař́ızeńı

Experimental Algorithmics and Methods for
Experimental Evaluation of EDA Tools

Summary

Algorithms used in Electronic Design Automation are complex, layered
heuristics. Their performance projects directly into the performance
of the chips designed with their support. In the past several years,
several cases of provably poor performance of logic synthesis tools were
reported. The investigation revealed that circuit descriptions deviating
much from the standard human inputs cannot be processed efficiently,
and that current evaluation methods do not help in understanding their
operation.

Algorithms of similar complexity must be evaluated experimentally.
Experimental techniques have been refined in the context of natural sci-
ence for a long time. Experimental algorithmics applies the methods to
study algorithms. Whereas measured values in physical systems usu-
ally exhibit errors with known (normal) distribution, problem instances
have unknown sources of variance. This is overcome by generating in-
stances with uniform probability which permits variance elimination.

The set of practical circuits cannot be characterized, despite the
progress in the last 60 years. Hence, instances cannot be generated
and practical examples must be collected instead. Strange sources of
variance appear, and methods that interpret experimental data are
restricted.

In such a limited environment, the measured examples must be well
documented to prove that they are representative and thus relevant.
This is difficult to achieve with older benchmark sets, but ways to
derive such benchmarks from open-source designs do exist.

1

Souhrn

Algoritmy automatizace č́ıslicového návrhu jsou složité, mnohavrstevné
heuristiky. Jejich účinnost se př́ımo promı́tá do kvality čip̊u, které
byly s jejich pomoćı navrženy. V několika posledńıch letech se objevily
př́ıpady, kdy nástroje logické syntézy poskytly prokazatelně nekvalitńı
výsledky. Bližš́ı zkoumáńı ukázalo, že nástroje nedokáž́ı efektivně zpra-
covat vstup, který se př́ılǐs odlǐsuje od běžného vstupu návrháře, a že
současné metody experimentálńıho vyhodnoceńı př́ılǐs nepomáhaj́ı po-
rozumět činnosti těchto nástroj̊u.

Algoritmy zmiňované složitosti je nutno vyhodnocovat experimen-
tálně. Experimentálńı techniky maj́ı sv̊uj p̊uvod v př́ırodńıch vědách a
vyv́ıjely se po dlouhou dobu. Experimentálńı algoritmika aplikuje tyto
metody na hodnoceńı algoritmů. Zat́ımco měřeńı fyzických systémů je
zat́ıženo chybami, které vykazuj́ı normálńı rozložeńı, instance problémů
na vstupu algoritmů mohou vykazovat neznámé zdroje variance. To se
překonává náhodným generováńım instanćı tak, že každá možná in-
stance má stejnou pravděpodobnost, což dovoluje už́ıt statistických me-
tod k eliminaci každé variance.

Množinu praktických obvod̊u neńı možno vymezit, bez ohledu na
pokroky posledńıch 60 let. Instance proto nemohou být generovány a je
třeba sb́ırat př́ıklady z praxe. Objevuj́ı se nečekané zdroje variance, což
značně omezuje metody použitelné pro interpretaci dat.

V tak omezeném kontextu, použité př́ıklady muśı být dobře doku-
mentovány, aby bylo zřejmé, že jsou reprezentativńı a tud́ıž relevantńı.
Toho je těžké dosáhnout se starš́ımi sadami př́ıklad̊u. Nicméně, existuj́ı
cesty, jak odvodit d̊uvěryhodné př́ıklady z otevřených návrh̊u.

2

Kĺıčová slova

Logická syntéza, standardńı zkušebńı úloha, algoritmus, experimentálńı
vyhodnoceńı, interpretace dat, kvalitativńı analýza, zdroj variance, eli-
minace variance.

Keywords

Logic synthesis, benchmark circuit, algorithm, experimental evaluation,
data interpretation, qualitative analysis, source of variance, variance
elimination.

3

Contents

1 Introduction 5

2 Algorithm evaluation 6
2.1 Analytical methods . 7
2.2 Experimental methods in science 7
2.3 Experimental algorithmics 9

3 Practical circuit instances 10

4 Evaluation methods for EDA 11
4.1 Hidden sources of variance 11
4.2 Instance transformation 12
4.3 Applicable methods . 13

5 Conclusions 13

References 14

4

1 Introduction

Recent integrated circuits have high complexity and cannot be designed
manually. Instead, the design relies on Electronic Design Automation
(EDA) tools. The tools do automate the process to a large extent; but,
because of the complexity, they are, in principle, heuristic optimizers.

The design of a device starts with specification what the device
shall do, that is, by specifying its behavior (Gajski and Kuhn 1983).
An abstract structure of sub-blocks is designed then, describing how
the function will be implemented. This step is called synthesis. As the
integrated devices are implemented as two- or three-dimensional struc-
tures, the physical design phase must determine where the processing
and communication will take place.

The part of synthesis responsible for transforming behavior de-
scribed by a Boolean function into a structure of logic gates is called
combinational logic synthesis. This will be the topic of the lecture.

Logic synthesis came into research focus in the eighties. Methods of
that era started with descriptions in a standardized or even canonical
form (normal forms, truth tables) and gradually developed the nec-
essary gate-level structure by its decomposition (Brayton et al. 1984;
Hachtel and Somenzi 1996; Hassoun and Sasao 2002). Those methods
scaled poorly with growing design complexity. Around 2005, an even
older idea of design by gradual transformations was revived. Thanks
to new approaches to data structures and the transformations them-
selves, this effort started a new epoch in logic synthesis and brought it
to wide industrial acceptance. Since then, logic synthesis is considered
a mature process.

Cong and Minkovich (2007) reported provably poor logic synthesis
performance on artificial circuits. Kubaĺık, Fǐser, and Kubátová (2006)
and Fǐser, Kubaĺık, and Kubátová (2008) found similarly poor perfor-
mance in practical designs, but with a non-standard design procedure.
These findings have both negative and positive interpretations. Recent
logic synthesis may be flawed; on the other hand, finding what causes
the observed failures may lead to new approaches to logic synthesis.

In the course of the research (Schmidt 2015), we were able to prove
that neither the fears nor the hopes are well founded. We were able to
offer and experimentally support the hypothesis that the existing tools
are adapted to human input, and when the input deviates too much,
the tools fail to compensate.

This is a qualitative result, unlike the more common quantitative
evaluation found in most research contributions. Such a transition

5

is analyzed in core materials about scientific method (Fisher 1993),
has been called for in the framework of Experimental Algorithmics
(McGeoch 1996; Moret 2002; Hoos and Stützle 2007), but is rarely
discussed in EDA research.

This lecture aims to apply existing standards of experimental work
to EDA research. We outline Experimental Algorithmics and its (often
unspoken) assumptions first. Then, we summarize answers what hu-
man input may actually mean, and that its characterization is so far
unknown, if it is indeed possible. It then becomes apparent, that the
assumptions of Experimental Algorithmics cannot hold. Although it
greatly reduces the repertoire of usable methods, we argue that we can
still achieve significant results by critical evaluation of experimental
material.

2 Algorithm evaluation

Algorithms are evaluated for many purposes, theoretical and practi-
cal. The purpose of the algorithm is projected into a question about
the outcome of the algorithm and its dependency on algorithm input
(problem instance). To get answers that hold not only for a single run
but in general, a kind of instance characterization and algorithm char-
acterization must be devised, and the sought dependency be expressed
in terms of the two.

We require any evaluation to be relevant in the sense that it brings
information, and reliable, so that its statements hold under assump-
tions, explicit or implicit. To be accepted as such, trust is needed. The
question may be purely quantitative (performance prediction), quali-
tative (explanation), or combined in nature (comparison). For some
situations, e.g., making qualitative conclusions from quantitative data,
some acceptance criteria do exist; elsewhere, the acceptance of research
community decides.

As a famous example, Selman, Mitchell, and Levesque (1992) demon-
strated that size is not the most relevant characterization of Satisfia-
bility Problem (SAT) instances to estimate their hardness.

The methods used to answer a question naturally depend on the
question itself, but are themselves limited in their abilities. The un-
derlying mathematics, statistical methods, or technical issues in ex-
periments are examples of such limitations. Examples of the most
prominent cases are summarized in Table 1.

6

2.1 Analytical methods

The analytical approach has the advantage that it applies to all possible
(not only the known) instances. It thus does not have problems with
instance selection. It is indispensable in theoretical studies.

From the point of view of engineering application, however, it can
only tell limited statements about limited class of algorithms. First of
all, the algorithms analyzed so far had to be relatively simple. Second,
they do not provide all the information one would eventually need.
Classical analyses provide worst case information, often not of primary
importance in applications. Expected (average) case characterization
is obtained using strong assumptions (uniform instance distribution),
and sometimes only asymptotically, as in the Randomized Quicksort
analysis (Cormen et al. 2009, page 179). Further details of the charac-
terization and its distribution are beyond the capabilities of analytical
methods.

2.2 Experimental methods in science

Experimental methods originate in natural science (Fisher 1993). In
that setting, the dependency of an measured variable on one indepen-
dent variable is observed. All other variables that can influence the
studied object are held constant. Often, the observed (quantitative)
data are expressed as a (still quantitative) law. If the credibility crite-
ria are met, the law can give us understanding of the object, therefore
qualitative information.

Again, a well-known example of such a transition is the origin of
quantum mechanics from the law of black body radiation (Kragh 2000),
in this case even against the experimenter’s judgment and opinion.

When experimenting with physical objects, all output measure-
ments exhibit errors, and so do the set variables (Figure 1). Experience
in that field tells that these errors have normal distribution. Using this
(often unspoken) assumption, statistical methods can be used to remove
the variance from measured data. Notice that even for the ubiquitous
averaging to work, the distribution must be symmetric.

7

Table 1: Algorithm evaluation methods

Approach Method Instances Instance Algorithm Statement
char. char.

Classical analytical all size time, worst case
complexity theory memory
Approximative analytical all size quality worst case
algorithms study
Randomized analytical all size optimality, expected case,
algorithms study time success prob.
Experimental experimental generated any optimality, observed cases
algorithmics time
Engineering experimental collected any any metric observed cases
evaluation

8

Figure 1: An experiment with variance sources

The importance of variance removal for qualitative conclusions can
be documented by Tycho Brahe’s astronomic observations (cca. 1597),
with precision improved from 10’ to 2’. Before Tycho, circular motion of
planets was consistent with observation, while after the improvement,
it was not (Rawlins 1993).

2.3 Experimental algorithmics

Algorithms that are too complex for analytical evaluation, can still
be studied experimentally. Experimental algorithmics (Moret 2002;
Hoos and Stützle 2007) aims to bring the standards of relevance and
reliability from experimental science into such study of algorithms.

A difference from experiments in natural science, which is crucial
from our point of view, lies in the sources of variance present. First,
let us assume a deterministic algorithm. For a single value of instance
characterization (say, size) we have multiple instances. They may have,
as the case of SAT phase transition illustrates, properties which have
been abstracted away by the instance characterization chosen but which
still can influence the algorithm behavior. The standard remedy of
experimental algorithmics is to assume that all instances are equally
probable. Thus, any hidden source of variance cannot affect the me-
dian or average value. They, however, should be indicated by greater
variance of the observed data, suggesting a loss of relevance.

The requirement of uniform distribution opens up the way to gen-
erate instances for experiments. Once the generator is proven that it
produces any instance (or any instance in a chosen, characterized class)
with equal probability, unlimited amount of experimental material is
at the experimenter’s disposal.

As it is standard in science, experiments must be designed to elimi-
nate all sources of variance. Randomized algorithms have an additional
source of variance, the internal (pseudo-)random number generator.
Again, its statistical characteristics are known, and the variance can
be eliminated from measured data by simple means. Usually, the first

9

stage is to average runs over a single instance, then over multiple in-
stances.

With sources of variance in mind, algorithm comparison stops to
be the matter of comparing two numbers. Experimental algorithmics
brought the notion of dominance, where one algorithm is better on
each instance. When neither the compared algorithm dominates the
other, the situation can still be quantitatively characterized by giving
the probability of one being better.

3 Practical circuit instances

The question, what a practical circuit is, dates back to Shannon (1949).
By his earlier theorem, for “most” circuits of n inputs computing any
function, the size of the circuit is asymptotically larger than 2n/n.
Therefore, Shannon asks, why most real circuits belong to the small
group outside the “most”. The answer by Shannon (1949, page 89) is
that the human designer thinks of functions that can be explained and
that follow some design patterns.

Shannon then finds group invariants, such as symmetry (McCluskey
1956) as common properties. Further important feature is decompos-
ability, that is, the property of having a concise description using sub-
functions.

Ross, Noviskey, and Taylor (1991) take this conjecture farther. Us-
ing a general decomposition scheme, the authors decomposed Boolean
functions not only from electronic design, but also from other fields such
as pattern recognition. They found that human design indeed follows
patterns, and that these patterns can be recognized and utilized.

In other fields, graphs coming from practical instances were char-
acterized (cf. Albert, Jeong, and Barabasi 1999, for the WWW; and
Ansótegui, Bonet, and Levy 2009, for SAT instances). Unfortunately,
Boolean functions do not have a natural relationship to graphs (al-
though their implementations have). As a result, we have benchmark
sets as sources of evaluation instances (Brglez and Fujiwara 1985; Br-
glez, Bryan, and Kozminski 1989; Yang 1991a; Yang 1991b; McElvain
1993; Albrecht 2005).

From the experimental point of view, they are problematic. Indus-
trial benchmarks are scarce, as the industrialists must observe strict
non-disclosure rules. Therefore, the sets are hard to balance, and are
not statistically representative for any class of practical circuits. More-
over, some of them have been altered in a nearly undocumented man-

10

ner, and their authenticity is dubious.
All those influences cause situation unlike that in other areas. We

cannot characterize input instances, and do not have reliable, statisti-
cally representative material for experimental evaluation.

4 Evaluation methods for EDA

From the preceding sections, it follows that in practical evaluation,
all sources of variance must be identified and eliminated. Although
this may seem a trivial conclusion, its consequences are not trivial to
perform.

Internal variance in randomized algorithms is the easiest one to elim-
inate. The series of random numbers produced by the generator have
uniform distribution. Even if the algorithm modifies them internally
to produce, e.g., normal distribution, such transformation is a part of
the algorithm and does not affect evaluation.

4.1 Hidden sources of variance

As shown above, we cannot count on uniform instance probability.
Moreover, EDA algorithms for combinational logic synthesis do not
work on Boolean functions as abstract structures directly, but on their
descriptions in Hardware Description Languages (HDLs), resembling
(parallel) programs to a degree. Many descriptions may represent the
same Boolean function. Some of them are equivalent not only because
they describe the same Boolean function, but because they describe
it the same way in the eyes of the designer. Few programmers care
about the order of variable declaration, and many consider different
loop constructs that go over the same values entirely equivalent.

Yet, Puggelli et al. (2011) discovered that for many tools, seman-
tically equivalent control structures and a number of other constructs
are not equivalent. Multiple authors (Puggelli et al. 2011; Fǐser and
Schmidt 2011; Fǐser, Schmidt, and Balcárek 2014) reported that syn-
thesis tools of both industrial and academic are sensitive to declaration
ordering and even identifiers. The sensitivity can be attributed to algo-
rithm implementation (as opposed to the abstract algorithm itself). In
some cases, they were traced to container iteration and hash functions
(Shum and Anderson 2012; Fǐser and Schmidt 2011; Fǐser, Schmidt,
and Balcárek 2014).

Such sensitivities are sources of variance, because the exact form of
the input description cannot be predicted and there is no prescription to

11

follow. They can be eliminated, however. When one input description is
replaced by set of descriptions where each ordering and each alternative
control structure is uniformly probable, statistical methods apply.

Already Puggelli et al. (2011) complained that hidden variance is
often greater than improvements reported in research papers, and that
those reports are in principle flawed. The variance found in Fǐser and
Schmidt (2011) and Fǐser, Schmidt, and Balcárek (2014) are substan-
tially greater, which further exaggerates the problem. So far, there
are no systematic methods to discover such sources of variance; their
characterization (e.g., declaration order) must be invented, and tested.
Thus, even rudimentary checks on commonly known sources of variance
would improve the reliability of any EDA algorithm comparison.

4.2 Instance transformation

The technique of transforming a single instance is useful, and in more
situations than for variance elimination; however, there are limits to its
usefulness.

Cong and Minkovich (2007), Schmidt (2015), and Fǐser and Schmidt
(2012a) use selected transformations to discard the original structure
of the description and to test its rediscovery. Outside of the evaluation
field, Fǐser and Schmidt (2012c) and Fǐser and Schmidt (2012b) (mis-
)use the above described variance sources to randomize deterministic
algorithms, and to get the advantages of randomized algorithms.

While transforming an input instance may reveal useful properties
of the algorithm, the transformed instance is still an artificial object
and not an authentic description obtained from a designer. This is
a direct consequence of our inability to characterize what a practical
instance is and to identify all hidden sources of variance.

There are numerous examples of experiments that suffer from this
pitfall. Perhaps the most important ones are the conjectures in Cong
and Minkovich (2007). The instances used there result from transfor-
mations that are never used in practice, and their structure is so far
from the original that no designer is supposed to produce such input.
Therefore, the results lack relevance. Moreover, the obtained descrip-
tions cannot emulate designs by less competent designers, as the article
suggests.

One idea of Harlow III and Brglez (2001) is to replace multiple
circuits by transformed descriptions of their small subset. The sources
of variance are not interchangeable; the transformation variance should
have been eliminated independently, as its distribution is known. In

12

that case, however, the number of circuits would be insufficient.
Fujita et al. (1993) praise the “redundancy” of the alu4 benchmark

as a good opportunity to test their procedures. The version of the
circuit cited in the text is one or two orders of magnitude bigger than
the original solution (it is in fact the famous 74181 arithmetic circuit,
for which the original gate-level solution is known, but the identity was
never publicly admitted). The enlargement results from processing by
poorly performing tools, which the authors probably knew about. The
artificially enlarged circuit may still have been able to support their
case; in general, its applicability is a dangerous assumption.

The same transformation as in Cong and Minkovich (2007) is used in
Kubaĺık, Fǐser, and Kubátová (2006) and Fǐser, Kubaĺık, and Kubátová
(2008), not for evaluation, but as a practical measure. In this situation,
one can hardly advice “don’t do it”. If there is no alternative, a synthe-
sis procedure which is not sensitive to such a transformation (the clas-
sical decomposition-based synthesis in this case) should be used. The
belief that the transformed descriptions can be used as benchmarks,
expressed in Fǐser and Schmidt (2012a), is, of course, incorrect.

4.3 Applicable methods

The absence of uniform instance probability, together with the pres-
ence of hidden sources of variance, greatly limits applicable methods.
Under the most stringent integrity requirements, all that remains is the
existential quantifier: “there is a circuit description such that...”. At
this point, the question is how significant such a statement is.

There are no formal methods to quantify; it is the matter of trust
that the circuit is representative for current design practice and not a
damaged legacy circuit, as is the case of alu4 . To develop trust, one has
to document the reasons why the presented circuit is relevant, or why
the given circuit set is balanced. This is not possible with older bench-
mark sets. A step towards trustworthy sets is Albrecht (2005), where
at least a subset is based on open source circuits. Provided a docu-
mented and controllable HDL elaborator, such as ZamiaCAD (Bartsch
et al. 2012), documented, comprehensible and therefore trusted combi-
national benchmarks can be produced.

5 Conclusions

To achieve scientific standards and to gain trust, experimental evalua-
tion should adapt standard procedures from natural science. A notable

13

difference between a natural science experiment and algorithm evalu-
ation are the sources of variance. While in experiments with physi-
cal objects, variance is caused by measurement errors and has normal
distribution, instances of input data can exhibit variance of unknown
probability distribution. Experimental algorithmics overcomes this dif-
ficulty using instance sets where each possible instance has the same
probability to actually appear, and the variance is eliminated. The set
of practical circuits cannot be characterized, and so this approach is not
possible in the evaluation of EDA algorithms. Although some sources
of variance (e.g., internal sources of randomized algorithms) do have
known distributions and can be eliminated, the rest reduces applicable
methods. The variance introduced by instance transformation is, in
general, not interchangeable with variance caused by design style and
thus, transformed instances cannot be used as benchmarks, contrary
to multiple authors’ claims. It also constraints applicable methods
and hinder trustworthy generalization of the results. To obtain trusted
benchmarks, their origin and derivation must be publicly known.

References

Albert, R., H. Jeong, and A.-L. Barabasi (1999). “Internet: Diameter
of the World-Wide Web.” In: Nature 401.6749, pp. 130–131.

Albrecht, C. (2005). IWLS 2005 Benchmarks. url: http://iwls.org/
iwls2005/benchmarks.html.

Ansótegui, C., M. Bonet, and J. Levy (2009). “On the Structure of
Industrial SAT Instances.” English. In: Principles and Practice of
Constraint Programming - CP 2009. Ed. by I. P. Gent. Vol. 5732.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 127–141. isbn: 978-3-642-04243-0. doi: 10.1007/978-3-642-
04244-7_13. url: http://dx.doi.org/10.1007/978-3-642-
04244-7_13.

Bartsch, G. et al. (2012). ZamiaCAD: Open Source Platform for Ad-
vanced Hardware Design. url: http://zamiacad.sourceforge.
net.

Brayton, R. K. et al. (1984). Logic Minimization Algorithms for VLSI
Synthesis. Boston, MA: Kluwer Academic Publishers, p. 192.

Brglez, F., D. Bryan, and K. Kozminski (May 1989). “Combinational
profiles of sequential benchmark circuits.” In: Circuits and Systems,
1989., IEEE International Symposium on, 1929–1934 vol.3. doi:
10.1109/ISCAS.1989.100747.

14

http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html
http://dx.doi.org/10.1007/978-3-642-04244-7_13
http://dx.doi.org/10.1007/978-3-642-04244-7_13
http://dx.doi.org/10.1007/978-3-642-04244-7_13
http://dx.doi.org/10.1007/978-3-642-04244-7_13
http://zamiacad.sourceforge.net
http://zamiacad.sourceforge.net
http://dx.doi.org/10.1109/ISCAS.1989.100747

Brglez, F. and H. Fujiwara (1985). “A Neutral Netlist of 10 Combina-
tional Benchmark Circuits and a Target Translator in Fortan.” In:
Proceedings of the International Symposium on Circuits and Sys-
tems, pp. 663–698.

Cong, J. and K. Minkovich (Feb. 2007). “Optimality Study of Logic
Synthesis for LUT-Based FPGAs.” In: IEEE Trans. on Computer-
Aided Design 26.2, pp. 230–239.

Cormen, T. H. et al. (2009). Introduction to Algorithms. MIT Press.
Fǐser, P. and J. Schmidt (2012a). “A Difficult Example Or a Badly

Represented One?” In: Proc. of 10th International Workshop on
Boolean Problems. Freiberg, DE: Technische Universität Bergakademie,
pp. 115–122. isbn: 978-3-86012-438-3.

Fǐser, P., P. Kubaĺık, and H. Kubátová (2008). “An Efficient Multiple-
Parity Generator Design for On-Line Testing on FPGA.” In: Proc.
11th Euromicro Conference on Digital Systems Design (DSD’08).
Parma, Italy, pp. 94–99.

Fǐser, P. and J. Schmidt (2011). “How Much Randomness Makes a
Tool Randomized?” In: Proc. of the 20th International Workshop on
Logic and Synthesis (IWLS). San Diego, California, USA, pp. 136–
143.

— (Apr. 2012b). “Improving the iterative power of resynthesis.” In:
Design and Diagnostics of Electronic Circuits Systems (DDECS),
2012 IEEE 15th International Symposium on, pp. 30–33. doi: 10.
1109/DDECS.2012.6219019.

— (2012c). “On Using Permutation of Variables to Improve the Iter-
ative Power of Resynthesis.” In: Proc. of 10th Int. Workshop on
Boolean Problems (IWSBP). Freiberg (Germany), pp. 107–114.

Fǐser, P., J. Schmidt, and J. Balcárek (2014). “Sources of Bias in EDA
Tools and Its Influence.” In: Proc. of 17th IEEE Symposium on
Design and Diagnostics of Electronic Systems (DDECS). Warsaw,
Poland, pp. 258–261.

Fisher, R. A. (1993). Statistical methods, experimental design, and sci-
entific inference. Oxford University.

Fujita, M. et al. (1993). “Multi-level Minimization by Partitioning.”
In: Logic Synthesis and Optimization. Ed. by T. Sasao. Springer
Science & Business Media, pp. 109–126.

Gajski, D. D. and R. H. Kuhn (Dec. 1983). “Guest Editors’ Intro-
duction: New VLSI Tools.” In: Computer 16.12, pp. 11–14. issn:
0018-9162. doi: 10.1109/MC.1983.1654264.

Hachtel, G. and F. Somenzi (1996). Logic Synthesis and Verification
Algorithms. Kluwer Academic Publishers.

15

http://dx.doi.org/10.1109/DDECS.2012.6219019
http://dx.doi.org/10.1109/DDECS.2012.6219019
http://dx.doi.org/10.1109/MC.1983.1654264

Harlow III, J. E. and F. Brglez (May 2001). “Design of experiments and
evaluation of BDD ordering heuristics.” In: International Journal
on Software Tools for Technology Transfer 3.2, pp. 193–206. issn:
ISSN 1433-2779.

Hassoun, S. and T. Sasao (2002). Logic Synthesis and Verification.
Springer Science & Business Media, p. 454.

Hoos, H. H. and T. Stützle (2007). “Empirical analysis of randomized
algorithms.” In: Handbook of Approximation algorithms and meta-
heuristics. Ed. by T. F. Gonzalez. Boca Raton (FL): Chapman &
Hall, pp. 14.1–14.17.

Kragh, H. (2000). “Max Planck: the reluctant revolutionary.” In: PhysicsWorld.
Kubaĺık, P., P. Fǐser, and H. Kubátová (2006). “Fault Tolerant System

Design Method Based on Self-Checking Circuits.” In: Proc. 12th
International On-Line Testing Symposium 2006 (IOLTS’06). Lake
of Como, Italy, pp. 185–186.

McCluskey, E. (Nov. 1956). “Detection of group invariance or total sym-
metry of a Boolean function.” In: Bell System Technical Journal,
The 35.6, pp. 1445–1453. issn: 0005-8580. doi: 10.1002/j.1538-
7305.1956.tb03836.x.

McElvain, K. (1993). LGSynth93 benchmark set: Version 4.0.
McGeoch, C. (1996). “Toward an experimental method for algorithm

simulation.” In: INFORMS J. Comput. 1.1, pp. 1–15.
Moret, B. (2002). “Towards a discipline of experimental algorithmics.”

In: Data Structures, Near Neighbor Searches, and Methodology: Fifth
and sixth DIMACS implementation challenges. Ed. by M. Gold-
wasser, D. Johnson, and C. McGeoch. AMS, p. 15.

Puggelli, A. et al. (2011). “Are Logic Synthesis Tools Robust?” In:
Proc. of the 48th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pp. 633–638.

Rawlins, D. (1993). “Tycho’s 1004-Star Catalog.” In: DIO, the Inter-
national Journal of Scientific History 1.3.

Ross, T. D., M. J. Noviskey, and D. A. Taylor Timothy N. ;and Gadd
(1991). Pattern Theory: An Engineering Paradigm for Algorithm
Design. Final Report ADA243214.

Schmidt, J. (2015). “Performance Problems in Logic Synthesis.” Habil-
itation thesis.

Selman, B., D. Mitchell, and H. Levesque (1992). “Hard and Easy
Distributions of SAT Problems.” In: Proceedings of Tenth National
Conference on Artificial Intelligence (AAAI-92), pp. 459–465.

Shannon, C. E. (1949). “The synthesis of two-terminal switching cir-
cuits.” In: Bell Systems Technical Journal 28, pp. 59–98.

16

http://dx.doi.org/10.1002/j.1538-7305.1956.tb03836.x
http://dx.doi.org/10.1002/j.1538-7305.1956.tb03836.x

Shum, W. and J. H. Anderson (2012). “Analyzing and predicting the
impact of CAD algorithm noise on FPGA speed performance and
power.” In: Proceedings of the ACM/SIGDA international sympo-
sium on Field Programmable Gate Arrays (FPGA ’12), pp. 107–
110.

Yang, S. (Jan. 1991a). Logic Synthesis and Optimization Benchmarks
User Guide. Technical Report 1991-IWLS-UG-Saeyang. Research
Triangle Park, NC: MCNC.

— (Jan. 1991b). Logic Synthesis and Optimization Benchmarks User
Guide: Version 3.0. Tech. rep. MCNC Technical Report.

17

Ing. Jan Schmidt, Ph.D., 9. 7. 1953

Qualifications

2001 CTU in Prague, Prague 2, PhD. in informatics

1976 CTU in Prague, Prague 2, Ing. in cybernetic technology

1971 SVVŠ W. Piecka, Prague 2

Employment History

1976–1989 CTU in Prague, Prague 2, Faculty of Electrical Engineer-
ing; computer technician. Research in electronic design automa-
tion, computer maintenance.

1989–2009 CTU in Prague, Prague 2, Faculty of Electrical Engineer-
ing; assistant professor. Research in electronic design automa-
tion and cryptographic hardware, teaching computer engineering
courses; a 6-months stay at University of Loughborough, UK, in
1991; research in knowledge representation.

2009–recent CTU in Prague, Prague 6, Faculty of Information Tech-
nology; assistant professor. Research of design, verification and
testing of digital devices, teaching courses in the area of digital
design.

Publications

2014

Balcárek, J., P. Fǐser, and J. Schmidt (Nov. 2014a). “On don’t cares in
test compression.” In: Microprocessors and Microsystems (MICPRO)
38.8, pp. 754–765.

— (2014b). “PBO-Based Test Compression.” In: Proc. of 17th Euromi-
cro Conference on Digital Systems Design (DSD). Verona (Italy).

Fǐser, P. and J. Schmidt (Apr. 2014a). “Permuting Variables to Improve
Iterative Resynthesis.” In: Recent Progress in the Boolean Domain,
pp. 213–230.

— (2014b). The Logic Synthesis Homework Is Not Done Yet. invited
talk at 10th Italian Annual Seminar Day on Logic Synthesis.

Fǐser, P., J. Schmidt, and J. Balcárek (2014a). “On Robustness of EDA
Tools.” In: Proceedings 17th Euromicro Conference on Digital Sys-
tems Design (DSD). Verona (Italy), pp. 427–434.

18

Fǐser, P., J. Schmidt, and J. Balcárek (2014b). “Sources of Bias in EDA
Tools and Its Influence.” In: Proc. of 17th IEEE Symposium on
Design and Diagnostics of Electronic Systems (DDECS). Warsaw,
Poland, pp. 258–261.

Posṕı̌sil, J., T. Vaňát, and J. Schmidt (2014). “Towards Trusted Devices
in FPGA by Modeling.” In: Proceedings of the 2nd Prague Embedded
Systems Workshop, p. 16.

Schmidt, J., R. Blažek, and P. Fǐser (2014). “On Probability Density
Distribution of Randomized Algorithms Performance.” In: Proc. of
11th Int. Workshop on Boolean Problems (IWSBP). Freiberg (Ger-
many), pp. 67–74.

2013

Balcárek, J., P. Fǐser, and J. Schmidt (2013a). “Simulation and SAT
Based ATPG for Compressed Test Generation.” In: Proc. of 16th
Euromicro Conference on Digital Systems Design (DSD). Santander
(Spain), pp. 445–452.

— (Mar. 2013b). “Techniques for SAT-based Constrained Test Pattern
Generation.” In: in Microprocessors and Microsystems (MICPRO)
37.2, pp. 185–195.

Posṕı̌sil, J., J. Schmidt, and P. Fǐser (2013). “New SEU Modeling by
Architecture Analysis.” In: Proc. Work in Progress Session of 16th
Euromicro Conference on Digital Systems Design (DSD). Santander
(Spain).

Schmidt, J., P. Fǐser, and J. Balcárek (2013). “The influence of imple-
mentation type on dependability parameters.” In: Microprocessors
and Microsystems (MICPRO) 37.6-7, pp. 641–648.

2012

Fǐser, P. and J. Schmidt (Apr. 2012a). “Improving the iterative power
of resynthesis.” In: Design and Diagnostics of Electronic Circuits
Systems (DDECS), 2012 IEEE 15th International Symposium on,
pp. 30–33. doi: 10.1109/DDECS.2012.6219019.

— (2012b). “On Using Permutation of Variables to Improve the It-
erative Power of Resynthesis.” In: Proc. of 10th Int. Workshop on
Boolean Problems (IWSBP). Freiberg (Germany), pp. 107–114.

Schmidt, J., P. Fǐser, and J. Balcárek (2012a). “Generalized Miter and
its Application in Hardware Design.” In: in Proc. of the 8th Doctoral
Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS). Znojmo (ČR), pp. 119–120.

19

http://dx.doi.org/10.1109/DDECS.2012.6219019

Schmidt, J., P. Fǐser, and J. Balcárek (2012b). “The Influence of Im-
plementation Technology on Dependability Parameters.” In: Proc.
of 15th Euromicro Conference on Digital Systems Design (DSD).
Cesme (Turkey), pp. 368–373.

2011

Balcárek, J., P. Fǐser, and J. Schmidt (2011a). “Implicit Techniques
for Constrained Test Patterns Generation.” In: Proc. of Annual
Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS). Lednice (ČR), p. 106.

— (2011b). “Techniques for SAT-based Constrained Test Pattern Gen-
eration.” In: Proc. of 14th Euromicro Conference on Digital Systems
Design (DSD). Oulu (Finland), pp. 360–366.

Fǐser, P. and J. Schmidt (2011). “How Much Randomness Makes a
Tool Randomized?” In: Proc. of the 20th International Workshop on
Logic and Synthesis (IWLS). San Diego, California, USA, pp. 136–
143.

2010

Balcárek, J., P. Fǐser, and J. Schmidt (2010a). “Implicit Represen-
tations in Test Patterns Compression for Scan-Based Digital Cir-
cuits.” In: Proc. of Informal Proceedings of European Test Sympo-
sium (ETS). Prague (CR).

— (2010b). “Test Patterns Compression Technique Based on a Dedi-
cated SAT-based ATPG.” In: Proc. of 13th Euromicro Conference
on Digital Systems Design (DSD). Lille (France), pp. 805–808.

Fǐser, P. and J. Schmidt (2010a). “It Is Better to Run Iterative Resyn-
thesis on Parts of the Circuit.” In: Proceedings of 19th International
Workshop on Logic and Synthesis, pp. 17–24.

— (2010b). “New Ways of Generating Large Realistic Benchmarks for
Testing Synthesis Tools.” In: Proc. of 9th Int. Workshop on Boolean
Problems (IWSBP). Freiberg, Germany, pp. 157–164.

20

	Introduction
	Algorithm evaluation
	Analytical methods
	Experimental methods in science
	Experimental algorithmics

	Practical circuit instances
	Evaluation methods for EDA
	Hidden sources of variance
	Instance transformation
	Applicable methods

	Conclusions
	References

