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Summary
The habilitation thesis “Combinatorics on Words and Applications” combines two fields of
mathematics – the main one is Combinatorics on Words and combinatorial results are applied
in Random Number Generation [2, 3]. In the habilitation lecture, we focus on the first field –
Combinatorics on Words.

We start the lecture with a short look inside the history of Combinatorics on Words and
with the most famous examples of infinite words: the Thue–Morse word and the Fibonacci
word that belongs to the class of Sturmian words (aperiodic infinite words with the lowest
possible complexity). These examples are then useful in the sequel. We subsequently pass to
the main topic of this lecture: palindromes. A palindrome is a word that stays the same when
read backwards. It is a popular linguistic game to look for the longest palindromes in natural
languages. Even more interesting are palindromic sentences. However, according to the structure
of natural languages, nobody can be surprised that there are no especially long palindromes in
such languages. A much more interesting situation comes to light in the world of infinite words.
Palindromes of any length can occur here. However, any anarchy is not reigning here neither.
We devote the rest of the lecture to the study of palindromes and notions related to palindromes
(for instance palindromic complexity, rich words, defect, almost rich words) in infinite words.
Our results that are related to palindromes and that will be presented here in a nutshell are part
of the following papers:

1. Sturmian Jungle (or Garden?) on Multiliteral Alphabets [4];

2. Infinite Words with Finite Defect [5];

3. On the Brlek–Reutenauer Conjecture [6];

4. Proof of the Brlek–Reutenauer Conjecture [7].
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Souhrn
Habilitačnı́ práce “Kombinatorika na slovech a aplikace” se věnuje dvěma oblastem matematiky
– hlavnı́ oblastı́ je kombinatorika na slovech a kombinatorické výsledky jsou aplikovány na
generovánı́ náhodných čı́sel [2, 3]. V habilitačnı́ přednášce se budeme zabývat prvnı́ oblastı́ –
kombinatorikou na slovech.

Přednášku zahájı́me nahlédnutı́m do historie kombinatoriky na slovech a představenı́m nej-
slavnějšı́ch přı́kladů nekonečných slov: Thueova–Morseova slova a Fibonacciho slova, které
patřı́ do třı́dy sturmovských slov (aperiodická slova s nejnižšı́ možnou komplexitou). Tyto
přı́klady se nám budou následně hodit. Posléze přejdeme k hlavnı́mu tématu přednášky: pa-
lindromům. Palindrom je slovo, které zůstane stejné, když ho přečteme pozpátku. Známou
lingvistickou hřı́čkou je hledánı́ dlouhých palindromů v přirozených jazycı́ch. Ještě zábavnějšı́
jsou palindromické věty. Ovšem vzhledem ke struktuře přirozených jazyků nás nepřekvapı́, že
žádné převratně dlouhé palindromy přirozené jazyky neobsahujı́. Mnohem zajı́mavějšı́ situace
nastává v přı́padě nekonečných slov. Taková slova mohou obsahovat palindromy libovolné
délky. Nicméně žádná anarchie nepanuje ani tady. Zbytek přednášky věnujeme právě studiu pa-
lindromů a pojmů souvisejı́cı́ch s palindromy (např. palindromická komplexita, slova bohatá na
palindromy, defekt, slova s konečným defektem) v nekonečných slovech. Vlastnı́ výsledky týka-
jı́cı́ se palindromů, které v přednášce v krátkosti představı́me, byly publikovány v následujı́cı́ch
článcı́ch:

1. Sturmian Jungle (or Garden?) on Multiliteral Alphabets [4];

2. Infinite Words with Finite Defect [5];

3. On the Brlek–Reutenauer Conjecture [6];

4. Proof of the Brlek–Reutenauer Conjecture [7].
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1 Combinatorics on Words
Let us start our look inside the subject of Combinatorics on Words in a gentle manner. In any
lecture devoted to Combinatorics on Words, either the Thue–Morse word or the Fibonacci word
should not be missing. It is even better if one speaks about Sturmian words, a class that contains
the Fibonacci word. When studying palindromes in the sequel, we will see that all of the above
famous examples are worth mentioning.

1.1 The Thue–Morse Word
The Norwegian number theorist and logician Axel Thue known in particular for his results in
Diophantine approximations published in 1906 in an obscure Norwegian journal [18] answers
to the following questions:
Question 1: “Does there exist an infinite binary word that does not contain cubes?” Let us
illustrate on a concrete example the notions from his question. An infinite binary word is an
infinite sequence consisting of only two symbols, say a, b. Take for simplicity a periodic
sequence:

abbabbabbabbabbabbabbabbabb . . . . (1.1)

It is thus an infinite repetition of the chain abb, which we usually denote (abb)ω. Such a word
contains a cube because for instance the chain abb occurs three times in a row in this word:

abbabbabbabbabbabbabbabbabb . . . .

Question 2: “Does there exist an infinite ternary word (consisting of three symbols) that does
not contain squares?” A square is a double repetition of a chain.

Both of these questions were answered by Thue confirmatively. Moreover he explained that
he had no specific application in his mind, but he studied these questions since he found them
interesting.

The Thue–Morse word provided by Thue as an example of an infinite word without cubes
consisting of two symbols 0 and 1 – that answers thus positively Question 1 – can be constructed
in the following way. Let us define a morphism ϕTM : {0, 1}∗ → {0, 1}∗ by

ϕTM(0) = 01 and ϕTM(1) = 10,

where {0, 1}∗ denotes the set of all finite sequences consisting of symbols 0 and 1. Then the
Thue–Morse word uTM is the so-called fixed point of ϕTM starting in 0. In order to get the fixed
point, we apply the morphism repeatedly

ϕ0
TM(0) = 0

ϕ1
TM(0) = 01

ϕ2
TM(0) = 0110

ϕ3
TM(0) = 0110100110010110

ϕ4
TM(0) = 01101001100101101001011001101001.

(1.2)

Since every iteration is the prefix of the next iteration and their lengths are strictly growing, it
is possible to find an infinite word such that for all n the word ϕn

TM(0) is its prefix. This infinite
word is the unique fixed point uTM. We use the symbolic notation uTM = limn→+∞ ϕ

n
TM(0).

Thue further constructed an infinite word v over {0, 1, 2} that does not contain squares and
responded hence positively also to Question 2. For n ≥ 1 he denoted by vn the number of ones
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between the n-th and (n+ 1)-th occurrence of zero in the Thue–Morse word. The desired word
was then v = v1v2v3 . . ., i.e.,

uTM︸︷︷︸
v

= 0 11︸︷︷︸
2

0 1︸︷︷︸
1

0 ︸︷︷︸
0

0 11︸︷︷︸
2

0 ︸︷︷︸
0

0 1︸︷︷︸
1

0 11︸︷︷︸
2

0 . . .

Since the result of Thue did not become known, Marston Morse rediscovered the Thue–
Morse word in 1921 when he was studying differential geometry [16].

1.2 Dictionary of Combinatorics on Words
In order to describe the second moment considered as the birth of Combinatorics on Words and in
order to present our results in the sequel, we have to introduce basic notions from Combinatorics
on Words. By A we denote a finite set of symbols, usually called letters. The set A is therefore
called an alphabet. A finite string w = w0w1 . . . wn−1 of letters of A is said to be a finite
word, its length is denoted by |w| = n. Finite words over A together with the operation of
concatenation and the empty word ε as the neutral element form a monoid A∗. The map

w = w0w1 . . . wn−1 7→ w = wn−1wn−2 . . . w0

is a bijection on A∗ and the word w is called the reversal or the mirror image of w. A word w
which coincides with its mirror image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A.
A finite word w is a factor of a word v (finite or infinite) if there exist words p and s such that
v = pws. If p = ε, then w is said to be a prefix of v. If s = ε, then w is a suffix of v.

The language L(u) of an infinite word u is the set of all its factors. Factors of u of length
n form the set denoted by Ln(u). Clearly, L(u) = ∪n∈NLn(u). We say that the language L(u)
is closed under reversal if L(u) contains with every factor w also its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word
uiui+1ui+2 . . .. Such an index i is called an occurrence of w in u. If each factor of u occurs
infinitely many times in u, the infinite word u is said to be recurrent. If the language of u is
closed under reversal, then u is recurrent (a proof can be found in [14]). The infinite word u is
said to be uniformly recurrent if u is recurrent and for any factor w of u the distances between
successive occurrences of w form a bounded sequence.

The (factor) complexity of an infinite word u is the map C : N 7→ N defined by C(n) =
#Ln(u). To determine the increment of complexity of an infinite word u, one has to count the
possible extensions of factors of length n. A left extension of w ∈ L(u) is any letter a ∈ A
such that aw ∈ L(u). The set of all left extensions of a factor w will be denoted by Lext(w).
We will mostly deal with recurrent infinite words u. In this case, any factor of u has at least
one left extension. A factor w is called left special (or LS for short) if w has at least two left
extensions. Clearly, any prefix of a LS factor is LS as well. Similarly, one can define a right
extension, a right special (or RS) factor, Rext(w). We say that a factor w of u is a bispecial
(or BS) factor if it is both RS and LS. Using the introduced terminology, the increment or the
first difference of complexity ∆C(n) = C(n+ 1)− C(n) is given by

∆C(n) =
∑

w∈Ln(u)

(
#Rext(w)− 1

)
=

∑
w∈Ln(u)

(
#Lext(w)− 1

)
. (1.3)

A non-zero contribution to ∆C(n) in the left-hand sum is given only by RS factors w ∈ Ln(u),
and for recurrent words, a non-zero contribution to ∆C(n) in the right-hand sum is provided only
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by LS factors w ∈ Ln(u). If we denote Bext(w) = {awb ∈ L(u)
∣∣ a, b ∈ A}, then the second

difference of complexity ∆2C(n) = ∆C(n + 1)−∆C(n) = C(n + 2)− 2C(n + 1) + C(n) is
given by

∆2C(n) =
∑

w∈Ln(u)

(
#Bext(w)−#Rext(w)−#Lext(w) + 1

)
. (1.4)

Denote by b(w) the quantity

b(w) = #Bext(w)−#Rext(w)−#Lext(w) + 1.

The number b(w) is called the bilateral order of the factor w and was introduced in [11].
We will moreover need the notion of palindromic extension. The set of palindromic ex-

tensions of a palindrome w ∈ L(u) is defined by Pext(w) = {awa ∈ L(u) | a ∈ A}. The
number of palindromes of a fixed length occurring in an infinite word is measured by the so
called palindromic complexity P , a map which assigns to any non-negative integer n the
number

P(n) = #{w ∈ Ln(u) | w is a palindrome} .

Let j, k, j < k, be two successive occurrences of a factor w in u. Then ujuj+1 . . . uk−1 is
called a return word of w. If v is a return word of w, then the word vw is called a complete
return word of w. It is obvious that an infinite recurrent word is uniformly recurrent if and only
if the set of return words of any of its factors is finite.

We will often work with morphisms, i.e., mappings ϕ : A∗ → A∗ satisfying for any
v, w ∈ A∗ that ϕ(vw) = ϕ(v)ϕ(w). A morphism is thus uniquely given if we define images of
letters ϕ(a) for all a ∈ A. A morphism can be naturally extended to infinite words:

ϕ(u0u1u2 . . .) = ϕ(u0)ϕ(u1)ϕ(u2) . . .

If an infinite word u satisfies ϕ(u) = u, we call u a fixed point of the morphism ϕ.

Example 1. Let us illustrate the introduced notions on the infinite word u = (abb)ω. Its
alphabet is A = {a, b}. The infinite word u is uniformly recurrent and its language is closed
under reversal. The word babb is a factor of length 4 of u. The word abbabba is a prefix of length
7 of u. The only LS factors are ε and b. Consequently ∆C(n) = 0 for all n ≥ 2. It is readily seen
that the set of all factors of length 2 of u equalsL2(u) = {ab, bb, ba}. Therefore C(n) = 3 for all
n ≥ 2. The only BS factors are ε and b with b(ε) = 0 and b(b) = −1. It is not difficult to see that
there is one palindrome of any even length, i.e., P(2n) = 1 for every n ∈ N, and there are two
palindromes of length one – the letters a, b – and one palindrome of every odd length larger than
one, i.e., P(2n + 3) = 1 for every n ∈ N. Since u0u1u2u3u4u5u6u7u8u9 . . . = abbabbabba . . .,
the index i = 2 is an occurrence of the factor babba and bab is a return word of babba and
babbabba is a complete return word of babba. If we define a morphismϕ on {a, b}∗ byϕ(a) = abb
and ϕ(b) = abb, then u is evidently a fixed point of ϕ.

1.3 The Fibonacci Word and Sturmian Words
Even more often one considers for the birth of Combinatorics on Words the famous paper [17]
by Hedlund and already mentioned Morse from 1940. When studying differential equations
of Sturm–Liouville type, they discovered a certain class of infinite words and named them in
honour of the French mathematician J. C. F. Sturm. Hedlund and Morse noticed that not every
map f : N → N is the factor complexity of an infinite word. Infinite words are eventually
periodic, i.e., they are of the form wvω (where v, w are finite words over the corresponding
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alphabet and ω denotes an infinite repetition) if and only if their factor complexity is eventually
constant, i.e., there exists a constant K such that C(n) = K for sufficiently large n. The words
that are not eventually periodic are called aperiodic. For aperiodic words Hedlund and Morse
showed that for all n ∈ N their factor complexity satisfies

C(n) ≥ n+ 1.

Sturmian words are aperiodic words with the lowest possible complexity.

Definition 1. An infinite word u is called Sturmian if for all n ∈ N it holds

C(n) = n+ 1.

They have been intensively studied from the very beginning. Besides their low factor
complexity the reason of their popularity is the fact that the famous Fibonacci word belongs to
this class.

Example 2. The fixed point of the morphism ϕF : {0, 1}∗ → {0, 1}∗ defined by ϕF(0) =
01, ϕF(1) = 0 is called the Fibonacci word uF. Let us write down a prefix of the Fibonacci
word uF = limn→+∞ ϕ

n
F(0) = 0100101001001010010100100101001001 . . .

The Fibonacci word is closely connected to the Fibonacci numbers. Let us recall that the
Fibonacci numbers were introduced by Leonardo of Pisa, known as Fibonacci, in a mathematical
game dealing with rabbits: An adult couple (denote it 0) has always after one month a pair of
young (denote it 1) and that pair of young grows up after one month. Fibonacci was interested in
how large the population of rabbits would be after n months provided the rabbits are immortal.

It is easy to see that the response is provided by the Fibonacci word. If we denote the length
of the n-iteration Fn = |ϕn

F(0)|, it follows that the number of rabbits after n months is equal to
Fn. It is not difficult to verify that F0 = 1, F1 = 2 and Fn+1 = Fn + Fn−1.

Thanks to a long and fruitful study of Sturmian words, a lot of properties and equivalent
definitions of these words are known nowadays. Let us mention only those ones that are related
to palindromes.

Theorem 1. Let u be an infinite word. The properties listed below are equivalent:

(i) u is Sturmian, i.e., C(n) = n+ 1 for all n ∈ N;

(ii) u contains one palindrome of every even length and two palindromes of every odd length;

(iii) u is binary and every palindrome has a unique palindromic extension.

This theorem has been proved by Droubay and Pirillo [13]. Notice that the third property
can be equivalently rewritten as

P(n) + P(n+ 1) = 3 for all n ∈ N,

and also as
P(n+ 2) = P(n) for all n ∈ N.

Let us recall that P(0) = 1 since the empty word is considered to be a palindrome.
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2 Palindromes in Nature
We know already that a palindrome is a word that stays the same when read backwards.
Nobody can be surprised that in natural languages there are no especially long palindromes. The
longest palindromic words in Czech are those ones of the type “nepochopen” (not understood),
“nepotopen” (not sunk), “nezasazen” (not planted), “nezařazen” (not filed). In English the longest
palindromic word is “tattarrattat”. Its victory is however doubtful because it is not a common
word but an invention by James Joyce who used in his novel Ulysses [15] this neologism to
denote strong knocking on the door:

“I was just beginning to yawn with nerves thinking he was trying to make a fool of me when
I knew his tattarrattat at the door.”

The sentences might be more interesting from the palindromic point of view. They give rise
to palindromes if we release gaps between words and eventually diacritics. In Czech the best
known palindromic sentences are the following ones:

“Bažantu padá za záda putna žab.” (A bucket of frogs is falling behind the pheasant’s back.)
“Jelenovi pivo nelej.” (Do not pour beer to deer.)
“Kobyla má malý bok.” (Mares have small sides.)

Of course, palindromic numbers might be of interest, too. In particular when there is at least
a partial explanation for their reason. For instance there is a palindrome consisting of odd ciphers
related to the foundation of the Charles Bridge 135797531. The Museum of the Charles Bridge
in Prague uses it as a part of its logo. According to the historian of astronomy Zdeněk Horský
the foundation stone might have been laid on July, 9, 1357 at 5:31. There was a favorable
constellation of Sun and Saturn at that moment. The palindrome thus consists of the following
items: year – day – month – hour – minutes.

3 Palindromes in Infinite Words
A much more interesting situation comes to light in the world of infinite words. Palindromes of
any length can occur here. However, any anarchy is not reigning here neither.

The palindromic complexity is bounded by the first difference of factor complexity.

Proposition 1 ([1]). Let u be an infinite word with the language closed under reversal. Then

P(n) + P(n+ 1) ≤ ∆C(n) + 2 for all n ∈ N. (3.1)

Moreover, an infinite word can contain in any of its factors w at most |w| + 1 distinct
palindromes (including the empty word). This upper bound on the number of palindromes
occurring in a finite word given by Droubay, Justin, and Pirillo [12] initiated many interesting
investigations on palindromes in infinite words. A finite word w containing the utmost number
|w|+ 1 of palindromes is called rich. An infinite word is said to be rich if all its factors are rich.
(We keep here the terminology introduced by Glen et al. [14] in 2007, which seems to us to be
prevalent nowadays. However, Brlek et al. [8] baptized such words full already in 2004.)

There exist several equivalent characterizations of rich words. The most recent one using
bilateral orders of factors was stated in the paper Sturmian Jungle (or Garden?) on Multiliteral
Alphabets [4].
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4 Defect and Richness
Brlek et al. [8] suggested to study the defect D(w) of a finite word w defined as the difference
between the upper bound |w| + 1 and the actual number of palindromes contained in w. The
defect of an infinite word is then defined as the maximal defect of a factor of the infinite word.
In this convention, rich words are precisely the words with zero defect.

Since we focus on palindromes in infinite words, richness, and defect, we will introduce
several notions and known results related to this topic. Let us remark that not only all prefixes
of rich words are rich, but also all factors are rich. A result from [12] provides us with a handful
tool which helps to evaluate the defect of a factor.

Proposition 2 ([12]). A finite or infinite word u is rich if and only if the longest palindromic
suffix of w occurs exactly once in w for any prefix w of u.

The longest palindromic suffix of a factor w will occur often in our considerations, therefore
we will denote it by lps(w). In accordance with the terminology introduced in [12], the factor
with a unique occurrence in another factor is called unioccurrent. The proof of the above
proposition is based on the fact that there exists a bijection between the set of palindromes
contained in w and the first prefixes of w ending in the corresponding palindromes. It follows
that the other prefixes cause the increment of the defect.

Corollary 1. The defect D(w) of a finite word w is equal to the number of prefixes w′ of w, for
which the lps(w′) is not unioccurrent in w′.

This corollary implies that D(v) ≥ D(w) whenever w is a factor of v. It enables to give
a reasonable definition of the defect of an infinite word (see [8]).

Definition 2. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup{D(w)
∣∣ w is a prefix of u} .

Let us point out several facts concerning defects that are easy to prove:

1. If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup{D(w)
∣∣ w ∈ L(u)} .

2. Any infinite word with finite defect contains infinitely many palindromes.

3. Infinite words with zero defect correspond exactly to rich words.

The authors of [12] who were the first ones to tackle the problem of richness showed that
Sturmian and episturmian words are rich. (Let us recall that episturmian words are defined as
infinite words with the language closed under reversal and having at most one left special factor
of every length.)
Let us provide as well an example of an infinite word that is not rich. You will probably guess
which word will serve as such an example: the Thue–Morse word uTM. Consider its prefix
w = 011010011. Then w contains nine palindromes: ε, 0, 1, 00, 11, 010, 101, 0110, 1001, which
is less than |w| + 1 = 10. Hence w is not rich (its defect is one), and it is easy to see that
D(uTM) = +∞.

In [8], an insight into the richness of periodic words can be found. Further on, let us
summarize equivalent characterizations of rich words.
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Theorem 2. Let u be an infinite word with the language closed under reversal. Then the
following statements are equivalent:

1. The word u is rich.

2. For any prefix w of u the lps(w) is unioccurrent in w.

3. All complete return words of any palindrome in u are palindromes.

4. The equality
P(n) + P(n+ 1) = ∆C(n) + 2

holds for all n ∈ N.

5. Any bispecial factor w of u satisfies:

• if w is non-palindromic, then b(w) = 0,

• if w is a palindrome, then b(w) = #Pext(w)− 1.

Glen et al. [14] have proved the characterization based on the notion of complete return words,
Bucci et al. [10] have characterized richness using the palindromic and factor complexity, and
most recently, we have found a new characterization of rich words considering bilateral orders
of factors [4].

Our aim in the sequel is to introduce in the rough the papers [5, 6, 7] devoted to the study
of defect. Periodic words with finite defect have been studied in [8] and in [14]. It holds that
the defect of an infinite periodic word with the minimal period w is finite if and only if w = pq,
where both p and q are palindromes. In [14] words with finite defect have been baptized almost
rich.

4.1 Almost Rich Words
The following characterization of infinite words with finite defect – called as well almost rich
words – follows from observations made in [14].

Theorem 3. Let u be a uniformly recurrent word containing infinitely many palindromes. Then
the following statements are equivalent:

1. The word u is almost rich.

2. There exists an integer H such that for any prefix w of u with |w| ≥ H , the lps(w) is
unioccurrent in w.

3. There exists an integer K such that all complete return words of any palindrome in u of
length at least K are palindromes.

It is easy to see that the second statement of Theorem 3 can be equivalently rewritten as:
There exists an integerH such that for any factorw ofuwith |w| ≥ H , the lps(w) is unioccurrent
in w. Let us stress that if we put in the previous theorem D(u) = K = H = 0, all statements
become known results for rich words, see Theorem 2.
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Example 3. Let us provide an example of a uniformly recurrent word u with finite defect and
let us find for u the lowest values of constants K and H from Theorem 3. Take the Fibonacci
word uF, i.e., the fixed point of ϕF : 0 → 01, 1 → 0. Define u as its morphic image σ(uF),
where σ: 0→ cabcbac, 1→ d, i.e.,

u = cabcbacdcabcbaccabcbacdcabcbacdcabcbaccabcbacdcabcbaccabcbacdcabcbacdcabcbac . . .

It is easy to show that all palindromes of length greater than one and the palindromes a,
b, and d have only palindromic complete return words. Hint: long palindromes in u contain in
their center images of non-empty palindromes from uF that have palindromic complete return
words by the richness of uF. The only non-palindromic complete return word of c is cabc. In
order to show that D(u) = 1, it suffices to verify that no prefixes longer than cabc have c as
their longest palindromic suffix. This follows directly from the form of σ. The lowest values of
the constants K and H are: K = 2, H = 5.

In the paper Infinite Words with Finite Defect [5], we have proved a new characterization
of infinite words with finite defect based on a relation between the palindromic and factor
complexity.

Theorem 4 ([5]). Let u be a uniformly recurrent word. Then u is almost rich if and only if there
exists an integer N such that

P(n) + P(n+ 1) = ∆C(n) + 2

holds for all n ≥ N .

Notice that if we set N = 0 in the previous theorem, then we obtain the known characte-
rization of rich words from Theorem 2 (which holds even under a weaker assumption that L(u)
is closed under reversal).

We will present here only the main ingredient of the proof of Theorem 4. Let u be an infinite
word with the language closed under reversal. Using the proof of Proposition 1, those n ∈ N
for which the equality

P(n) + P(n+ 1) = ∆C(n) + 2

holds can be characterized in the graph language.
An n-simple path e is a factor of u of length at least n+ 1 such that the only special (right

or left) factors of length n occurring in e are its prefix and suffix of length n. If w is the prefix
of e of length n and v is the suffix of e of length n, we say that the n-simple path e starts in w
and ends in v. We will denote by Gn(u) an undirected graph whose set of vertices is formed by
unordered pairs {w,w} such that w ∈ Ln(u) is right or left special. We connect two vertices
{w,w} and {v, v} by an unordered pair {e, e} if e or e is an n-simple path starting in w or w
and ending in v or v. Note that the graph Gn(u) may have multiple edges and loops.

Lemma 1 ([5]). Let u be an infinite word with the language closed under reversal. Let n ∈ N.
Then P(n) + P(n+ 1) = ∆C(n) + 2 if and only if both of the following conditions are met:

1. The graph obtained from Gn(u) by removing loops is a tree.

2. Any n-simple path forming a loop in the graph Gn(u) is a palindrome.
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4.2 The Brlek–Reutenauer Conjecture
Despite the fact that numerous researchers study palindromes, only recently Brlek and Reu-
tenauer [9] have noticed that the value of defect is closely tied with the expression in (3.1) –
let us denote for an infinite word u by Tu(n) = ∆C(n) + 2 − P(n) − P(n + 1). They have
shown that for a periodic infinite word u with the language closed under reversal, it holds
2D(u) =

∑+∞
n=0 Tu(n). Their conjecture says that the same equality holds for all infinite words

with the language closed under reversal.

Conjecture 1 (The Brlek–Reutenauer conjecture). Let u be an infinite word with the language
closed under reversal. Then

2D(u) =
+∞∑
n=0

Tu(n) . (4.1)

It is known from the paper [10] that Conjecture 1 holds for rich words (both sides equal zero
for them). As we have already mentioned, Brlek and Reutenauer provided a result for periodic
words.

Theorem 5 ([9]). Let u be a periodic infinite word. Then (4.1) holds.

4.2.1 Partial Proof of the Brlek–Reutenauer Conjecture

In the paper On the Brlek–Reutenauer Conjecture [6], we have proved their conjecture for
uniformly recurrent words.

Theorem 6 ([6]). If u is a uniformly recurrent infinite word with the language closed under
reversal, then (4.1) holds.

In the proof of Theorem 6 we used our result from [5] (recalled here as Theorem 4) to show
that either both sides of (4.1) are finite, or both of them are infinite. Further on, the main idea
was to construct for any almost rich uniformly recurrent word u a periodic word v satisfying
D(u) = D(v) and Tu(n) = Tv(n) for all n ∈ N. The proof was then finished because by
Theorem 5 the conjecture holds for periodic words. However, in the construction we had to
prove one more quite interesting statement on increasing squares in uniformly recurrent words
with finite defect.

Lemma 2 ([6]). Let u be an almost rich uniformly recurrent infinite word. Then the set

{w ∈ A∗ |ww ∈ L(u)}

is infinite.

The proof relied essentially on the uniform recurrence of the infinite word in question.

4.2.2 Proof of the Brlek–Reutenauer Conjecture

In the paper Proof of the Brlek–Reutenauer Conjecture [7], we managed to find completely
different arguments than in the previous paper [6] that enabled us to prove Conjecture 1 in full
generality without exploiting the result for periodic words.

Theorem 7 ([7]). Let u be an infinite word with the language closed under reversal. Then

2D(u) =
+∞∑
n=0

Tu(n) . (4.2)
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Let us provide the main ideas of the proof. We divided the proof into two steps:

1. Let u be an infinite word with the language closed under reversal. Assume D(u) < +∞
and

∑+∞
n=0 Tu(n) < +∞. Then 2D(u) =

∑+∞
n=0 Tu(n) .

Since the defect is finite, there existsH1 such thatD(q) = D(u) for every prefix q of u of
length greater than or equal toH1−1. By the finiteness of

∑+∞
n=0 Tu(n), there existsH2 such

that Tu(n) = 0 for all n ≥ H2. Set H = max{H1, H2} and find a prefix p of u containing
all factors of length H . Clearly, D(p) = D(u) and

∑+∞
n=0 Tu(n) =

∑H−1
n=0 Tu(n).

In the sequel, we will use a theorem by Brlek and Reutenauer for finite words [9].

Theorem 8 ([9]). For every finite word w we have

2D(w) =

|w|∑
n=0

Tw(n),

where Tw(n) = ∆Cw(n)+2−Pw(n+1)−Pw(n) and the indexw means that we consider
only factors of w.

We deduce the following equalities:

2D(u) = 2D(p) =

|p|∑
n=0

Tp(n) =
H−1∑
n=0

Tp(n) +

|p|∑
n=H

Tp(n) =
H−1∑
n=0

Tu(n) =
+∞∑
n=0

Tu(n),

where everything follows from the previous arguments; only the equality
∑|p|

n=H Tp(n) = 0
remains to be explained. Let us rewrite it in the following form:∑|p|

n=H Tp(n) =
∑|p|

n=H

(
Cp(n+ 1)− Cp(n) + 2− Pp(n+ 1)− Pp(n)

)
= −Cp(H) + 2(|p| −H + 1)− 2

∑|p|
n=H Pp(n) + Pp(H).

We have to explain why the last expression equals zero: The factors of lengthH are either
palindromes of length H – their number is equal to Pp(H) – or they are non-palindromic
factors whose longest palindromic suffix is of course of length less than H . Such non-
palindromic factors are certainly not contained in the prefix q of length H − 1, therefore
their longest palindromic suffix is unioccurrent. Consequently, to any palindrome of length
less than H that does not occur in q, there are exactly two non-palindromic factors w and
w having it as its longest palindromic suffix. The number of such factors is therefore given
by twice the number of palindromes of length less than H that are not contained in q,
which is equal to 2(|p| − |q| −

∑|p|
n=H Pp(n)). This concludes the proof.

2. Let u be an infinite word with the language closed under reversal. Then D(u) is finite if
and only if

∑+∞
n=0 Tu(n) is finite.

This second part was proved using the graph theory, more precisely, using mainly
Lemma 1.
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