


České vysoké učeńı technické v Praze
Fakulta informačńıch technology

Czech Technical University in Prague
Faculty of Information Technology

Dipl.-Ing. Dr.techn. Stefan Ratschan

Foundations of the
Automatic Analysis of Cyber-Physical Systems



Summary

We address foundational questions of the automatic analysis of cyber-
physical systems. Here we understand cyber-physical systems as sys-
tems that tightly integrate computation with physical processes. As a
basis, we use the formalism of a hybrid dynamical system. We discuss
the role of formal verification in the design of cyber-physical systems,
and present a way of circumventing the fact that most formal verifica-
tion problems for hybrid systems are undecidable.

2



Souhrn

Zabýváme se základńımi otázkami automatické analýzy takzvaných
kyber-fyzikálńıch systémů. Zde chápeme kyber-fyzikálńı systém jako
systém, který úzce integruje výpočty s fyzikálńımi procesy. Jako základ
použ́ıváme formalizmus hybridńıho dynamického systému. Zvažujeme
roli formálńı verifikace v návrhu kyber-fyzikálńıch systémů a prezentu-
jeme zp̊usob jak obej́ıt problém, že většina úloh formálńı verifikace pro
hybridńı systémy je nerozhodnutelná.

3



Kĺıčová slova:

formálńı verifikace, kyber-fyzikálńı systémy, hybridńı dynamické systémy,
řešeńı omezuj́ıćıch podmı́nek

Keywords:

formal verification, cyber-physical systems, hybrid dynamical systems,
constraint solving

4



Contents

1 Introduction 6

2 Cyber-Physical Systems 6

3 Hybrid Dynamical Systems 7

4 System Design, Analysis, and Verification 11

5 From Undecidability to Quasi-decidability 12

6 Conclusion 13

References 13

Curriculum Vitae 19

5



1 Introduction

In Section 2 we will present the notion of a cyber-physical system, in
Section 3 we will introduce hybrid dynamical systems as a formal model
for cyber-physical systems, in Section 4 we will discuss the role of formal
verification in the design of cyber-physical systems, in Section 5 we will
present a way of circumventing the fact that most formal verification
problems for hybrid systems are undecidable, and in Section 6 we will
conclude the discussion.

2 Cyber-Physical Systems

In this section, we review the notion of a cyber-physical system and
the role of models in the design of such systems. We present a specific
class of models, hybrid dynamical systems, that will serve as a basis
for the questions addressed in this document and discuss the automatic
analysis of hybrid dynamical systems.

Citing Edward A. Lee [34, page 1], “a cyber-physical system (CPS)
is an integration of computation with physical processes.” 1 Among
others, Lee states the following examples: information technological
support for heart surgery, a non-centralized traffic control system based
on inter-car interaction, electronic pilot-support systems in airplanes,
and multiple autonomous quadrotors cooperating on a common task.

In current industrial practice, systems involving both computation
and physical processes are more and more designed based on models,
that is, a formal description of the given system that is abstract in
the sense that it describes only those aspects of the system that are
important in the current stage of the design process and ignores other
aspects. To this end, certain modeling languages and tools are used
(e.g., Matlab/Simulink, Modelica) that partially automize the design
process using methods for the automatic simulation and analysis of the
built models. The current research area of model based design [44, 29,
13] tries to advance the usage of models in systems design.

Modeling languages used in industrial practice are often very rich,
allowing a broad range of expressive features and containing extensive
libraries of modeling components. The downside of this expressivity is

1The notion of a cyber-physical system is often also used in a broader sense,
or even as a keyword summarizing a certain vision and resulting research agenda
(NSF, EU). Instead of this, in this document we will restrict ourselves to the simple
technical definition given above.

6



the complexity of those formalisms and the lack of a precise formal se-
mantics [8]. Since this document concentrates on foundational aspects,
where a clean and elegant mathematical formalization is essential, we
use a small and clean formalism instead of such a rich modeling lan-
guage. Here we use the notion of a hybrid dynamical system that we
will introduce in the next section.

3 Hybrid Dynamical Systems

The Turing Award winner Joseph Sifakis cites as one of the three grand
challenges for rigorous system design [53]: “We need theory and models
encompassing continuous and discrete dynamics to predict the global
behavior of a [computational] system interacting with its physical en-
vironment.” 2 The classical way of modeling computation are discrete
formalisms such as finite automata. The classical way of modeling
physical systems is based on continuous mathematics, especially differ-
ential equations. Hence, a natural way of modeling the integration of
computation with physical processes is based on formalisms that inte-
grate differential equations with finite automata. This gives rise to the
notion of a hybrid dynamical system, often just called hybrid system,
that combines continuous with discrete state and evolution. This ig-
nores several aspects of cyber-physical systems (e.g., components [46],
physical distribution [21, 15], process scheduling [35], network com-
munication [40], and aspects resulting from specific application areas)
but serves its role as a clean basis for studying foundational questions
arising from the interaction between physical and computational com-
ponents.

In the literature, definitions of the notion of hybrid system come in
several flavors, that we roughly classify as follows:

• automata based [3, 51, 31] (very often called “hybrid automaton”)

• set/function based [22, 54]

• constraint/logic based [45]

In this document we mainly use the set and function based ap-
proach, sometimes using constraints/logical formulas to describes those
sets. More specifically, we use variants of the following definition:

2The word in brackets was added by the author of this document for clarification
purposes.

7



Definition 1 A hybrid system is a tuple (M,Φ, Init,Flow, Jump) where

• M is a finite set, whose elements are usually called modes,

• Φ ⊆M × Rn,

• Init ⊆ Φ,

• Flow ⊆ Φ× Rn,

• Jump ⊆ Φ× Φ.

The intuition is that Φ describes the state space of the system, with
discrete part M and continuous part Rn. Init describes the set of initial
states, Flow describes the continuous behavior of the hybrid system,
and Jump describes the discrete behavior of the hybrid system.

Before making precise, how those elements determine the dynamical
behavior of a hybrid system, we illustrate this definition based on the
widely used example of a thermostat controlling the heating of a room.
Here, the elements of the tuple (M,Φ, Init,Flow, Jump) are as follows:

• M = {on, off }
(the heating can either be on or off)

• Φ = M × R, i.e. n = 1
(we model the continuous behavior using one real variable, the
temperature in the room)

• Init =
{

(m,x) | 10 ≤ x ∧ x ≤ 25
}

(initially, the temperature is between 10 and 25 degrees, indepen-
dently of whether the heating is on or off)

• Flow =

{
(m,x, ẋ) |

[m = on ⇒ [x ≤ 21 ∧ ẋ = 30− x]]
∧

[m = off ⇒ [x ≥ 19 ∧ ẋ = −x]]

}
(evolution of the temperature follows two differential equations,
depending on whether the heating is on or off; in addition, con-
tinuous evolution is only possible if the temperature is not higher
than 21 when the heating is on, or less then 19, when the heating
is off, respectively)

• Jump =

{
(m,x,m′, x′) |

[m = on ∧ x ≥ 21]⇒ [m′ = off ∧ x′ = x]
∨

[m = off ∧ x ≤ 19]⇒ [m′ = on ∧ x′ = x]

}
(the heating switches off if the temperature is at least 21 degrees
and on if the temperature is 19 degrees or less)

8



Often such hybrid systems are visualized using graphs such as the
one in Figure 1.

OFF ON
ẋ = −x ẋ = −x+ 30

x ≤ 19

x ≥ 21

x ≥ 19 x ≤ 21

Figure 1: Visualization of Heating Example

The sets Φ, Init,Flow, Jump are usually infinite. So, we cannot
directly represent them on computers using their elements. Instead,
we work with a finite, symbolic representation of these sets. The
constraints used for describing those sets in the above example (e.g.,
10 ≤ x ∧ x ≤ 25), form such a representation. In the document we
will often call the result a hybrid system description which then falls
into the class of constraint/logic based descriptions of hybrid systems
mentioned above.

Widespread special cases of hybrid systems include switched sys-
tems [37, 36], timed automata [2], rectangular automata [27, 28], dif-
ferential equations with dis-continuous right-hand side [17], and differ-
ential inclusions [4].

One can define the evolution of a hybrid system as follows:

Definition 2 Given a hybrid system H = (M,Φ, Init,Flow, Jump), a
flow of length l of H is a pair (m,ϕ) where m ∈M and ϕ : [0, l]→ Rn.
By abuse of notation, for a flow φ = (m,ϕ) of length l, and t ∈ [0, l],
we denote by φ(t) the pair (m,ϕ(t)). A trajectory of H is a sequence
of flows φ0, . . . , φp of lengths l0, . . . , lp such that

• r0(0) ∈ Init,

• if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump,

• if li > 0 then for all t ∈ [0, li], (r(t), ṙ(t)) ∈ Flow.

For example, Figure 2 illustrates a trajectory of the thermostat
example given above, where each element of the sequence of flows is
drawn into one and the same diagram. Note also, that each flow has

9



x

19

21

t

ON

OFF

ON

OFF OFF OFF

ON ON ON

Figure 2: Example Trajectory

a local notion of time starting from zero that the diagram joins into a
global time axis.

The above definitions are powerful enough to allow the modeling of
common features of hybrid systems such as invariants or forced/non-
forced jumps. The fact that Flow is based on a relation instead of
a function Φ → Rn allows us to define non-deterministic hybrid sys-
tems, that is, hybrid systems for which a given initial point does not
determine a unique trajectory starting from that point, but that al-
lows many different trajectories to start in a given initial point. This
permits the modeling of uncertainty or leaving open behavior that one
does not want to specify in more detail at a given point of time in
the design process. Constraints defining this relation Flow can model
such non-deterministic behavior using differential inequalities, instead
of differential equations. For example, the constraint 1 ≤ ẋ ∧ ẋ ≤ 2,
restricts the derivative to the interval [1, 2], but allows any derivative
in this interval.

Note that we use the term “system” in “hybrid system” in an es-
sentially different way from its usage in “cyber-physical system”: A
hybrid system is an abstract mathematical formalism whereas a cyber-
physical system is a concrete object from reality. Especially, it is not
necessarily the case that the continuous part of a hybrid system models
the physical and the discrete part models the computational part of a
cyber-physical system. This is just a design choice that often turns out
to be convenient. Still, there are many exceptions. For example, the
gears of a motor or physical impact (bouncing ball) are often modeled
discretely. For details, we refer to several textbooks [38, 45, 51, 54, 22]
and surveys [9, 47, 24, 25, 52, 31] in the area.

10



4 System Design, Analysis, and Verifica-
tion

When designing cyber-physical systems, two activities play a major
role:

• Modeling: creating a model of the desired system.

• Analysis: analyzing the behavior of the created model.

These two activities are repeatedly iterated. One of the advantages
of the usage of models is the fact that already early in the design process
models are available whose analysis can be supported by computer
tools. The most widely used tool for analysis is simulation, that is, the
computation of (approximations of) possible behavior of the model.
For hybrid systems, this means the computation of (approximations
of) possible trajectories. Today, the simulation of hybrid systems is
mature technology [43, 16, 1].

The research area of model checking [11, 5, 23] tries to automatize
the analysis of models at a higher level: Instead of computing a single
behavior of the model, it tries to design algorithms that formally verify
a given model in the following sense:

• Given: a model M and formal specification S.

• Either prove that all behaviors of the model fulfills the formal
specification, or compute some example behavior (usually called
counter-example) that shows that the model does not fulfill its
specification.

Up to recent years, the model M was usually required to have
finitely many states. Only recently, there has been major progress in
the model checking of systems with infinitely many states, allowing
the modeling and model checking of data structures [30, 42], time [6],
probability [32], and continuous/hybrid dynamics [26, 50, 20, 7, 14].

There are various ways of providing the formal specification S. In
this document we will mostly concentrate on safety verification, where
the specification S requires that the modelM always stays in a given set
of states that we consider to be safe, that is, it never reaches a state that
we consider to be not safe. In the case of hybrid systems, this can be
formalized by extending the definition of a hybrid system with a set of
unsafe states Unsafe ⊆ Φ and calling a trajectory φ0, . . . , φp of lengths
l0, . . . , lp an error trajectory if and only if there is an i ∈ {0, . . . , p} and

11



t ∈ [0, li] such that φi(t) ∈ Unsafe. Then, for a given hybrid system
H, we either prove that H is safe, that is, that it does not have an
error trajectory, or compute a counter-example in the form of an error
trajectory of H.

A major question in the formal safety verification of hybrid system
is, how to analyze their continuous behavior. A widespread technique
to do so, is to reduce the analysis of this continuous behavior, including
the analysis of ordinary differential equations, to a constraint solving
problem in a first-order theory of real numbers. We also follow this ap-
proach in this document, classifying the contributions of this document
into formal verification and constraint solving.

5 From Undecidability to Quasi-decidability

Most formal verification tasks for hybrid systems are undecidable [27].
Positive decidability results exist only for very special cases [33, e.g.,].
Algorithms for more general cases are usually based on their ability to
verify a wide class of benchmark problems efficiently. We showed [49,
12] that this problem of undecidability can be circumvented by provid-
ing a procedure for safety verification that may run forever, but that
terminates successfully in all cases that are in a certain sense prac-
tically relevant. More specifically, such a procedure, that we call a
quasi-decision procedure, terminates in all cases that are robust, that
is, in all cases where small changes to the hybrid system do not change
its safety. The fact that engineers usually design systems to be robust
implies practical relevance of this class.

Algorithms for formal verification are often built upon constraint
solvers, in the case of hybrid systems, for the real numbers. Due to a
classical result by A. Tarski [55], the first-order predicate logical the-
ory of real-closed fields, that formalizes the real numbers with addition
and multiplication, allows quantifier elimination, and hence is decid-
able. However, adding a function symbol representing the sine function,
makes the theory undecidable, since the sine function is periodic, and
hence it allows encoding the theory of integers that is undecidable [41].
Still, in a similar way as described above for the safety verification of
hybrid systems [49, 12], it is possible to find a quasi-decision proce-
dure, that is, a procedure takes as input formulas with such function
symbols, returns a correct result, if it terminates, and terminates in all
cases, when the input formula is in a certain, precisely defined sense,
robust.

Here, a major issue is the question of how to handle equalities. One

12



approach [48] is to handle equalities of the form f = 0 as a short-cut
for two inequalities of the form −f ≤ 0 ∧ f ≤ 0. This may destroy
robustness, since a solution of f = 0 may vanish if the two occurrences
of f in −f ≤ 0 ∧ f ≤ 0 are slightly changed. Hence the algorithms do
not provide any termination guarantees when proving satisfiability of
equalities. In many applications this is not a problem, since either this
case does not occur, or relaxation of equalities to −f ≤ ε∧ f ≤ ε, for a
small positive real number ε, is fine. Still, we also showed how to handle
equalities directly, without rewriting to inequalities, for a certain class
of formulas [19, 18], again terminating in all robust cases.

6 Conclusion

Computation devices are becoming deeper and deeper integrated into
the physical world surrounding us. Hence it is essential to be able to
design correctly functioning cyber-physical systems, that is, systems
that integrate computation and physical processes. The essence of this
integration can be captured by the notion of a hybrid dynamical system,
that is, dynamical systems that combine discrete and continuous state
and evolution. However, the formal safety verification of such systems
is undecidable for almost all cases. This problem can be circumvented
by taking into account system robustness, resulting in the notion of a
quasi-decision procedure.

References

[1] Vincent Acary and Bernard Brogliato. Numerical Methods for
Nonsmooth Dynamical Systems. Springer Verlag, 2008.

[2] R. Alur and D. L. Dill. “A Theory of Timed Automata”. In:
Theoretical Computer Science 126 (1994), pp. 183–235.

[3] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and
Pei-Hsin Ho. “Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems”. In: Hybrid Sys-
tems. Ed. by Robert L. Grossman, Anil Nerode, Anders P. Ravn,
and Hans Rischel. Vol. 736. LNCS. Springer Berlin Heidelberg,
1993, pp. 209–229.

[4] J.-P. Aubin and A. Cellina. Differential Inclusions: Set-Valued
Maps and Viability Theory. Springer Verlag, 1984.

13



[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. The MIT Press, 2008.

[6] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics,
Algorithms and Tools”. In: Lectures on Concurrency and Petri
Nets. Vol. 3098. LNCS. Springer, 2004, pp. 87–124.

[7] Luca Benvenuti, Davide Bresolin, Alberto Casagrande, Pieter
Collins, Alberto Ferrari, Emanuele Mazzi, Alberto Sangiovanni-
vincentelli, and Tiziano Villa. “Reachability Computation for Hy-
brid Systems with Ariadne”. In: Proceedings of the 17th IFAC
World Congress. 2008.

[8] Olivier Bouissou and Alexandre Chapoutot. “An Operational Se-
mantics for Simulink’s Simulation Engine”. In: Proceedings of
the 13th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, Tools and Theory for Embedded Systems.
LCTES’12. ACM, 2012, pp. 129–138.

[9] Michael S. Branicky. “Introduction to Hybrid Systems”. In: Hand-
book of Networked and Embedded Control Systems. Ed. by Dim-
itrios Hristu-Varsakelis and William S. Levine. Control Engineer-
ing. Birkhäuser Boston, 2005, pp. 91–116.

[10] B. F. Caviness and J. R. Johnson, eds. Quantifier Elimination
and Cylindrical Algebraic Decomposition. Wien: Springer, 1998.

[11] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[12] Werner Damm, Guilherme Pinto, and Stefan Ratschan. “Guar-
anteed Termination in the Verification of LTL Properties of Non-
linear Robust Discrete Time Hybrid Systems”. In: International
Journal of Foundations of Computer Science (IJFCS) 18.1 (2007),
pp. 63–86.

[13] P. Derler, E.A. Lee, and A.S. Vincentelli. “Modeling Cyber-Physical
Systems”. In: Proceedings of the IEEE 100.1 (Jan. 2012), pp. 13–
28.

[14] Andreas Eggers, Martin Fränzle, and Christian Herde. “SAT Mod-
ulo ODE: A Direct SAT Approach to Hybrid Systems”. In: Auto-
mated Technology for Verification and Analysis. Vol. 5311. LNCS.
2008.

[15] J.C. Eidson, E.A. Lee, S. Matic, S.A. Seshia, and Jia Zou. “Dis-
tributed Real-Time Software for Cyber-Physical Systems”. In:
Proceedings of the IEEE 100.1 (Jan. 2012), pp. 45–59.

14



[16] Joel M. Esposito, Vijay Kumar, and George J. Pappas. “Accu-
rate Event Detection for Simulating Hybrid Systems”. In: Hy-
brid Systems: Computation and Control, HSCC 2001. Ed. by
M.D. Di Benedetto and A. Sangiovanni-Vincentelli. Vol. 2034.
LNCS. Springer, 2001, pp. 204–217.

[17] A. F. Filippov. “Differential equations with discontinuous right-
hand side”. In: Mat. Sb. 51 (1960). In Russian, pp. 99–128.

[18] Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. “Quasi-
decidability of a Fragment of the First-order Theory of Real Num-
bers”. In: (2013). Under revision at the Journal of Automated
Reasoning. url: http://arxiv.org/abs/1309.6280.

[19] Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. “Satisfi-
ability of Systems of Equations of Real Analytic Functions is
Quasi-decidable”. In: MFCS 2011: 36th International Symposium
on Mathematical Foundations of Computer Science. Vol. 6907.
LNCS. Springer, 2011, pp. 315–326.

[20] Goran Frehse. “PHAVer: algorithmic verification of hybrid sys-
tems past HyTech”. In: International Journal on Software Tools
for Technology Transfer (STTT) 10.3 (2008), pp. 263–279.

[21] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach.
2nd edition. CRC Press, 2014.

[22] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R Teel. Hybrid
Dynamical Systems: Modeling, Stability, and Robustness. Prince-
ton University Press, 2012.

[23] Orna Grumberg and Helmut Veith, eds. 25 Years of Model Check-
ing. Vol. 5000. Lecture Notes in Computer Science. Springer,
2008.

[24] Hervé Guéguen, Marie-Anne Lefebvre, Janan Zaytoon, and Oth-
man Nasri. “Safety verification and reachability analysis for hy-
brid systems”. In: Annual Reviews in Control 33.1 (2009), pp. 25–
36.

[25] W. P. M. H. Heemels, D. Lehmann, J. Lunze, and B. De Schut-
ter. “Introduction to Hybrid Systems”. In: Handbook of Hybrid
Systems Control. Ed. by Jan Lunze and Françoise Lamnabhi-
Lagarrigue. Cambridge University Press, 2009.

[26] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. “HYTECH:
a model checker for hybrid systems”. In: International Journal
on Software Tools for Technology Transfer (STTT) 1 (1997),
pp. 110–122.

15

http://arxiv.org/abs/1309.6280


[27] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. “What’s Decidable about Hybrid Automata”. In: Jour-
nal of Computer and System Sciences 57 (1998), pp. 94–124.

[28] Thomas A. Henzinger and Rupak Majumdar. “Symbolic Model
Checking for Rectangular Hybrid Systems”. In: Proc. of the Sixth
Workshop on Tools and Algorithms for the Construction and
Analysis of systems (TACAS’00). LNCS 1785. 2000, pp. 142–156.

[29] J.C. Jensen, D.H. Chang, and E.A Lee. “A model-based design
methodology for cyber-physical systems”. In: Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2011 7th
International. July 2011, pp. 1666–1671.

[30] Ranjit Jhala and Rupak Majumdar. “Software model checking”.
In: ACM Comput. Surv. 41.4 (2009), pp. 1–54.

[31] S. Kowalewski, M. Garavello, H. Guéguen, G. Herberich, R. Langerak,
B. Piccoli, J. W. Polderman, and C. Weise. “Hybrid automata”.
In: Handbook of Hybrid Systems Control. Ed. by Jan Lunze and
Françoise Lamnabhi-Lagarrigue. Cambridge University Press, 2009.

[32] M. Kwiatkowska, G. Norman, and D. Parker. “Stochastic Model
Checking”. In: Formal Methods for the Design of Computer, Com-
munication and Software Systems: Performance Evaluation (SFM’07).
Ed. by M. Bernardo and J. Hillston. Vol. 4486. LNCS (Tutorial
Volume). Springer, 2007, pp. 220–270.

[33] Gerarde Lafferriere, George J. Pappas, and Sergio Yovine. “Sym-
bolic Reachability Computation for Families of Linear Vector
Fields”. In: Journal of Symbolic Computation 32.3 (2001), pp. 231–
253.

[34] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded
Systems, A Cyber-Physical Systems Approach. http://LeeSeshia.
org, 2011.

[35] Qiao Li. “Scheduling in Cyber-Physical Systems”. PhD thesis.
Carnegie Mellon University, 2012. url: http://repository.

cmu.edu/dissertations/91.

[36] Zhengguo Li, Yengchai Soh, and Changyun Wen. Switched and
Impulsive Systems—Analysis, Design and Applications. Vol. 313.
LNCIS. Springer, 2005.

[37] Daniel Liberzon. Switching in Systems and Control. Birkhäuser
Basel, 2003.

16

http://LeeSeshia.org
http://LeeSeshia.org
http://repository.cmu.edu/dissertations/91
http://repository.cmu.edu/dissertations/91


[38] Hai Lin and Panos J Antsaklis. “Hybrid dynamical systems: An
introduction to control and verification”. In: Found. Trends Syst.
Control 1.1 (2014), pp. 1–172.

[39] Jan Lunze and Françoise Lamnabhi-Lagarrigue, eds. Handbook of
Hybrid Systems Control. Cambridge University Press, 2009.

[40] John Lygeros. “Handbook of Networked and Embedded Control
Systems”. In: Springer, 2005. Chap. An Overview of Hybrid Sys-
tems Control, pp. 519–537.

[41] Yuri Matiyasevich. “Enumerable sets are Diophantine”. In: Dok-
lady Akademii Nauk SSSR 191 (1970), pp. 279–282.

[42] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer.
“Software Model Checking Takes Off”. In: Commun. ACM 53.2
(2010), pp. 58–64.

[43] P. J. Mosterman. “An Overview of Hybrid Simulation Phenomena
and Their Support by Simulation Packages”. In: HSCC’99. Ed. by
F.W. Vaandrager and J.H. van Schuppen. LNCS 1569. Springer,
1999.

[44] Gabriela Nicolescu and Pieter J. Mosterman, eds. Model-Based
Design for Embedded Systems. CRC Press, 2009.

[45] André Platzer. Logical Analysis of Hybrid Systems: Proving The-
orems for Complex Dynamics. Heidelberg: Springer, 2010.

[46] Akshay Rajhans and Bruce H. Krogh. “Compositional Hetero-
geneous Abstraction”. In: Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control. HSCC
’13. ACM, 2013, pp. 253–262.

[47] Jean-François Raskin. “An Introduction to Hybrid Automata”.
In: Handbook of Networked and Embedded Control Systems. Ed.
by Dimitrios Hristu-Varsakelis and William S. Levine. Control
Engineering. Birkhäuser Boston, 2005, pp. 491–517.

[48] Stefan Ratschan. “Efficient Solving of Quantified Inequality Con-
straints over the Real Numbers”. In: ACM Transactions on Com-
putational Logic 7.4 (2006), pp. 723–748.

[49] Stefan Ratschan. “Safety Verification of Non-linear Hybrid Sys-
tems is Quasi-decidable”. In: Formal Methods in System Design
44.1 (2014), pp. 71–90.

17



[50] Stefan Ratschan and Zhikun She. “Safety Verification of Hybrid
Systems by Constraint Propagation Based Abstraction Refine-
ment”. In: ACM Transactions in Embedded Computing Systems
6.1 (2007), pp. 1–23.

[51] A. J. van der Schaft and J. M. Schumacher. An Introduction to
Hybrid Dynamical Systems. Springer, 2000.

[52] B. De Schutter, W. P. M. H. Heemels, J. Lunze, and C. Prieur.
“Survey of Modeling, Analysis, and Control of Hybrid Systems”.
In: Handbook of Hybrid Systems Control. Ed. by Jan Lunze and
Françoise Lamnabhi-Lagarrigue. Cambridge University Press, 2009.

[53] Joseph Sifakis. “A vision for computer science—the system per-
spective”. In: Central European Journal of Computer Science 1.1
(2011), pp. 108–116. issn: 1896-1533.

[54] Paolo Tabuada. Verification and Control of Hybrid Systems. Springer
Verlag, 2009.

[55] A. Tarski. A Decision Method for Elementary Algebra and Ge-
ometry. Also in [10]. Berkeley: Univ. of California Press, 1951.

18



Dipl.-Ing. Dr.techn. Stefan Ratschan

Education
1998, Ph.D. in Computer. Science., Joh. Kepler Univ., Linz, Austria
1995, Diploma Degree in Comp. Sc., Joh. Kepler Univ., Linz, Austria
1989, High School Exam (Matura), Schärding, Austria

Employment History

2010– Odborný asistent, Faculty of Information Technology,
Czech Technical University in Prague

2006– Researcher, Institute of Computer Science of the Czech
Academy of Sciences

2002–2006 Researcher, Max-Planck-Institut für Informatik,
Saarbrücken, Germany

2001–2002 Marie Curie Postdoctoral Fellow, Universitat de Girona,
Spain

1999–2001 Postdoc, Johannes Kepler University, Linz, Austria
1998–1999 National Social Service, Bosnia and Herzegovina
1994–1998 Research Assistant, Joh. Kepler University, Linz, Austria

Selected Invited Talks

• Invited Plenary Talk, Sixth International Conference on Mathe-
matical Aspects of Computer and Information Sciences (MACIS),
Berlin, 2015

• Panel Session Speaker, 17th International Conference on Hybrid
Systems: Computation and Control (HSCC), Berlin, 2014

• Invited Plenary Talk, SNC 2009, 3rd International Workshop on
Symbolic-Numeric Computation, Kyoto, Japan, 2009

Selected Publications

• Peter Franek and Stefan Ratschan: Effective Topological De-
gree Computation Based on Interval Arithmetic, Mathematics
of Computation, Volume 84, 2015, 1265–1290

• Stefan Ratschan: Safety Verification of Non-linear Hybrid Sys-
tems is Quasi-Decidable, Formal Methods in System Design, Vol-
ume 44, Issue 1, 2014, pp. 71-90

19



• Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns,
and Ernst Moritz Hahn: Safety Verification for Probabilistic Hy-
brid Systems, European Journal of Control, Volume 18, Number
6, 2012, pp. 572–587

• Stefan Ratschan and Zhikun She: Providing a Basin of Attrac-
tion to a Target Region of Polynomial Systems by Computation
of Lyapunov-like Functions, SIAM J. Control and Optimization,
Volume 48, Number 7, 2010, pp. 4377–4394

• Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan,
and Tobias Schubert: Efficient Solving of Large Non-linear Arith-
metic Constraint Systems with Complex Boolean Structure, Jour-
nal on Satisfiability, Boolean Modeling and Computation, Special
Issue on SAT/CP Integration, Volume 1, 2007, pp. 209–236

• Stefan Ratschan and Zhikun She: Safety Verification of Hybrid
Systems by Constraint Propagation Based Abstraction Refine-
ment, ACM Transactions on Embedded Computing Systems, Vol-
ume 6, Number 1, 2007, pp. 1–23

• Stefan Ratschan, Efficient Solving of Quantified Inequality Con-
straints over the Real Numbers, ACM Transactions on Compu-
tational Logic, Volume 7, Number 4, 2006, pp. 723–748

Teaching

• Systems Theory, semester course WS 2012/2013, 2013/14, 2014/15
(2+1 hours, 200-250 students each), Czech Technical University,
Prague

• Formal Methods and Specification, semester course SS 2011, 2012,
2013, 2015 (2+1 hours, appr. 80 students each), Czech Technical
University, Prague

• Systems Modeling and Analysis, semester course WS 2010/2011,
2011/12 (2+1 hours), Czech Technical University, Prague

• Non-linear Numerical Constraint Solving, Automatic Verification
and Analysis of Complex Systems, 1st AVACS Spring School,
Universität Oldenburg, March 2010

• Hybrid Systems: Modeling, Simulation, Verification, Semester
course WS 2008/2009 (2 hours), Charles University, Prague

20



• Global Optimization, semester course WS 2007/2008 (2 hours)
Charles University, Prague

• Solving Constraints over the Real Numbers, semester course 2003/04
(2 hours of lecture and 2 hours of exercises per week) Universität
des Saarlandes, Germany

• Solving Quantified Real-Number Constraints, RAAG Summer
School on Tools for Real Algebraic Geometry, 2003 Rennes, France

• Foundations of Computer Geometry, 1 year course 1998/1999 (2
hours of lectures and 2 hours in lab per week) Faculty of Natu-
ral Sciences and Mathematics University of Sarajevo, Bosnia and
Hercegovina

21


	Introduction
	Cyber-Physical Systems
	Hybrid Dynamical Systems
	System Design, Analysis, and Verification
	From Undecidability to Quasi-decidability
	Conclusion
	References
	Curriculum Vitae

