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Summary
Multi-Robot exploration is a probem to acquire information about un-
known environment by means of autonomous navigation of a group
of mobile robots that use their sensor system to perceive the environ-
ment. The fundamental approach to address the exploration is based
on an iterative determination where to navigate the robots next, which
is decomposed into determination of the suitable goal candidates and
selection of the next navigational goal from these candidates. In a case
of a multi-robot team, this problem also includes an efficient alloca-
tion of the goals among the team members to support cooperation and
coordination of the robots’ motion, which can be formulated as the
task-allocation problem. Moreover, the model of the environment be-
ing explored is continuously updated during the exploration mission,
therefore it is desirable to continuously utilize the newest information
available and perform a frequent replanning of the robots’ actions.

New information about the environment can be acquired if the
robots travel towards the unexplored parts of the environment, and
therefore, goal candidates can be located at the border of the already
explored and not yet explored parts of the environment. These loca-
tions are called frontiers and various frontier-based approaches have
been proposed. The simplest approach based on greedy selection of
the closet frontier to the robots has been improved by utility based
evaluation that combines expected information gain with the distance
cost. In addition, novel approaches to reduce the number of goal can-
didates have been developed that not only allow to consider more
computational demanding assignment procedures, but they also im-
prove the performance for simple greedy based assignments.

On the other hand, several task-allocation algorithms have been
deployed in the context of the exploration mission that include stan-
dard algorithms from the operational research as well as distributed
approaches allowing decision-making under limited communication
between the exploring units. However, there is still lack of evaluation
methodology to compare different exploration strategies that is not
limited to particular experimental setup and that can provide a more
general conclusion about the expected performance of the exploration
strategy in various exploration missions.
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Souhrn
V úloze multi-robotického průzkumu je cı́lem vytvořit model nezná-
mého prostředı́ skupinou mobilnı́ch robotů vybavených senzory pro
snı́mánı́ svého okolı́. Základnı́ přı́stup řešenı́ této úlohy je založen na
opakovaném stanovenı́ množiny možných cı́lových pozic robotů, ze
kterých je možné zı́skat informace o dosud neprozkoumaných částech
prostředı́. Z těchto možných cı́lů jsou pak vybı́rány navigačnı́ cı́le pro
jednotlivé roboty. Součástı́ úlohy multi-robotikého průzkumu je efek-
tivnı́ rozdělenı́ cı́lů mezi jednotlivé roboty tak, aby roboty spolupra-
covaly a zároveň, aby byly jejich pohyby koordinované. V průběhu
mise docházı́ k aktualizaci modelu prostředı́, proto je výhodné využı́t
aktuálnı́ znalost o prostředı́ k průběžnému stanovovánı́ nových cı́lů a
přeplánovánı́ předchozı́ aktivity.

Nové informace o prostředı́ lze zı́skat pokud jsou roboty navigo-
vány směrem k neprozkoumaným částem prostředı́, proto jsou možné
cı́lové pozice robotů umisťovány na hranici již prozkoumaných a ne-
prozkoumaných částı́ prostředı́. Základnı́ přı́stup je tak založen na
výběru cı́lů na hranici podle jejich vzdálenosti od robotu. Tento přı́stup
byl rozšı́řen metodami kombinujı́cı́ jak vzdálenost cı́le tak očekávaný
přı́nos k zı́skánı́ nové informace o dosud neprozkoumaných částech
prostředı́. Kromě toho byly vyvinuty nové metody minimalizujı́cı́ po-
čet možných cı́lových pozic, které nejen, že vedou na efektivnějšı́ prů-
zkum, ale také umožňujı́ mı́sto hladového výběru využı́t výpočetně
náročnějšı́ metody přidělovánı́ cı́lů jednotlivým robotům a tı́m dále
zvýšit efektivitu průzkumné mise.

Na druhé straně jsou také rozvı́jeny metody přidělovánı́ cı́lů a kro-
mě nasazenı́ standardnı́ch algoritmů operačnı́ho výzkumu jsou stu-
dovány distribuované přı́stupy, které umožňujı́ řešit úlohu rozhodo-
vánı́ za omezené komunikace mezi jednotlivými průzkumnými jed-
notkami. Kromě těchto výzev je jednı́m z dalšı́ch důležitých problémů
robotického průzkumu také návrh metodiky pro hodnocenı́ a porov-
nánı́ různých strategiı́ průzkumu. Návrh způsobu vyhodnocenı́, který
je nezávislý na konkrétnı́m experimentálnı́m ověřenı́, že daná metoda
funguje pro specifický robotický systém, a který umožnı́ poskytnout
obecnějšı́ závěry o předpokládané efektivitě strategie průzkumu v růz-
ných misı́ch a s jiným systémem.
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Keywords
Multi-robot exploration, robotics, mobile robotics, planning, task-
allocation

5



Contents

1 Mobile Robot Exploration 7

2 Problem Statement 10

3 Exploration Strategies 11

3.1 Goal Candidates Determination . . . . . . . . . . . . . . 11

3.2 Goal Assignment Procedures . . . . . . . . . . . . . . . 13

4 Evaluation of Exploration Strategies 16

5 Conclusion 19

6 References 20

Ing. Jan Faigl, Ph.D. 23

6



1 Mobile Robot Exploration
Autonomous mobile robot exploration can be considered as an infor-
mation gathering problem, where one or a group of mobile robots
are requested to acquire information about an unknown environment.
In robotics, the problem is studied as a problem to create a map of
unknown environment by mobile robots, each equipped with a sen-
sor system to perceive its surroundings. Such a map can be further
used for planning, support localization, or to find objects of interest
located in the environment. Within this context, the exploration is one
of the most important robotic problems to address search and rescue
missions, where the primary objective is to find eventual victims as
quickly as possible.

Regarding this motivation, the exploration can be formulated as a
problem to create a map of all reachable parts of an unknown environ-
ment and the time to create such a map is the main objective function
to measure efficiency of the exploration process. However, the main
difficulty of the exploration is that information about the environment
is not known in advance and thus a complete exploration plan can-
not be prepared prior deployment of the robots in the environment.
New information is collected during the mission, and therefore, the
decision-making process is a continuous processing of newly acquired
sensor measurements to decide where to navigate the robot next.

The fundamental approach to address the exploration problem is
based on an iterative determination of the possible goal candidates
from which new information about unknown part of the environment
can be acquired. In 1997, Yamauchi introduced a frontier based method
for a single robot exploration that is based on an iterative assignment
of new navigational goal in the next-best-view manner, where the next
robot goal is selected from locations that are at the border of already
explored and not yet explored parts of the environment, see Fig. 1. He
called these candidate locations as frontiers.

Yamauchi proposed to determine frontiers in a grid map of the en-
vironment, where each cell is in one of three states: occupied, free, and
unknown. Such a grid map can be created from an occupancy grid
map that allows a straightforward integration of new sensor measure-

7



Robot

Unknown part of the environment

Frontiers

Figure 1: Example of frontiers in the current map of the environment:
light gray – unknown parts of the environment; dark gray – obstacles
(not yet completely explored); white – explored freespace of the envi-
ronment; yellow – frontiers; green – robot

ments using Bayes rules [18]. Each cell in the occupancy grid repre-
sents a probability the cell is occupied and the grid map is created by
thresholding the probability values. Then, frontiers are determined as
all freespace cells that are incident with an unknown cell.

One year later, Yamauchi extended this approach for multi-robot
missions [24]. The simplicity and straightforward implementation of
this method is probably the main reason, why frontier-based approach
combined with the grid map representation of the environment be-
comes very popular in robotics and thus the frontier-based approach
is de facto standard approach for the robotic exploration in robotics.

Since the first introduction of the frontier-based exploration, many
approaches have been proposed to improve performance of explo-
ration missions. These include approaches that explicitly consider lo-
calization of the robot [20], but the main improvement is gained by
new strategies to assign the next robot goal. Instead of Yamauchi’s
greedy approach, researchers proposed utility based evaluation func-
tions that explicitly combine distance of the robot to the goal candidate
with the expected information gain [1, 4].

An intuitive way for improving the required time to explore the
environment is to use a team of mobile robots. Then, the main problem
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Figure 2: Two robots in an experimental evaluation of the multi-robot
exploration. The small superimposed map on left is visualization of
the current frontiers while on right is shown the the current grid map
of the explored part of the environment.

is how to efficiently select the next navigational goals to each robot to
perform an efficient coordination and cooperation.

Due to limited information about the environment being explored,
a higher frequency of the goal assignment can exploit newer infor-
mation available, and therefore, the performance of the mission can
also be improved by a more frequent decision-making [15]. The com-
putational complexity of the decision-making process depends on the
number of robots and also on the number of potential goal candidates.
Thus, a selection of the next robot goal can be computationally de-
manding also for a single robot deployment, e.g., using an evaluation
of the candidates based on a solution of the traveling salesman prob-
lem (TSP) [26, 16], which is known to be NP-hard unless P=NP. There-
fore, a procedure to determine a minimal set of the most promising
goal candidates is an important part of the exploration strategy.

It is also worth mentioning the exploration of unknown environ-
ment relies on a localization capability of mobile robots, which can
be a challenging problem itself. Here, the exploration can be consid-
ered within a context of simultaneous localization and mapping [21]
and decision making process has to trade-off between exploring new
areas and navigation to the previously visited locations to decrease
the localization uncertainty. On the other hand, ongoing improvement
of the localization techniques using laser range finders allows to con-
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sider localization sufficiently precise for indoor structured (e.g., office
like) environments [22]. For example this has been reported by several
teams participating in CAROTTE1 multi-robot exploration challenge,
where the most important part of the system design was to efficiently
share the workload among the team members [6].

These advancements allow to consider new realistic assumptions
and provide a ground-work to develop exploration strategies for im-
proving the mission performance not directly related to particular lo-
calization capabilities of the used robotic system albeit the localization
is still a challenging problem, especially for unstructured and com-
plex outdoor environments where global positioning system cannot
be used.

2 Problem Statement
Multi-robot exploration can be considered as an iterative procedure in
which new navigational goals are repeatably determined in the cur-
rent map of the environment and then assigned to the robots. Each
robot is autonomously navigated towards the assigned goal and dur-
ing the motion, sensor measurements of the robot’s surroundings are
collected to update the map being built. This procedure is repeated
until the map of the whole environment is created, which can be indi-
cated by an empty set of the determined goal candidates.

For simplicity, exploration algorithms are usually studied for a ho-
mogeneous group of m mobile robots, each equipped with an omni-
directional sensor with the sensing range ρ. Moreover, the robots are
considered to move with an average speed and thus the time to ex-
plore the environment can be measured as the length of the longest
exploration path.

Having a current map of the environment represented as the occu-
pancy grid Occ, a basic schema of the frontier-based exploration can
be formalized as follows. Let the current map of the environment be
M, a set of determined goal candidates in M be G = {g1, . . . , gn} ,
and the current robot poses be R = {r1, . . . , rm}. The problem is to

1CArtographie par ROboT d’un TErritoire – http://www.defi-carotte.fr
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assign a goal g ∈ G for each robot r ∈ R that will minimize the to-
tal required time to explore the whole environment.2 Thus, the problem
is to determine the goal candidates G and select the next navigational goal
gj ∈ G for each robot ri ∈ R: {〈gj1 , r1〉, . . . , 〈gjm , rm〉}, in such a way the
total exploration time is minimal.

Notice that although we aim to minimize the total required explo-
ration time, the decisions are made iteratively using only the available
information (the current map) about the environment, which is con-
tinuously updated during the mission execution. The main steps of
the exploration are:

1. Determine goal candidates using the current mapM.
2. Assign the candidates as the next navigational goals of the robots.
3. Navigate the robots towards the goals and updateM.

These steps are repeated until |G| > 0, which indicates the whole en-
vironment is explored. The exploration strategy that is responsible for
the decision-making process can be considered as the couple of the
procedures at Step 1 and Step 2.

3 Exploration Strategies
3.1 Goal Candidates Determination
The most straightforward method to determine goal candidates in the
current map of the environment being explored is to consider all fron-
tier cells as potential goal candidates. However, a huge number of can-
didates may increase computational burden of the goal assignment,
while many of such candidates are clearly not perspective goals. For
example, a simple filtration can reduce the number of candidates to
consider only frontiers that are not too close to obstacle regions to in-
crease safety of the navigation [15].

Authors [14] considered the problem of determining goal candi-
dates as a variant of the art gallery problem and utilized the sen-
sor placement algorithm [13] as a randomized greedy set coverage

2Such a time can be approximated by the maximal travelled distance by an individ-
ual robot.
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technique to find the best view locations to cover the frontiers orga-
nized into single connected components called free curves. The goal
candidates are randomly placed within the sensor range from the free
curves. Then, each candidate q is evaluated using a utility function
A(q)exp(−λL(q)), where λ is a positive constant, L(q) is the length of
the robot–candidate path, andA(q) is the expected maximal area of the
unknown part of the environment that can be explored from the can-
didate q. A similar approach is considered in [19], where distance and
utility costs are combined in the same way with an additional expo-
nential term to consider orientation of the sensor at the goal candidate
location.

(a) (b)

Figure 3: Examples of determined goal candidates by the methods:
(a) representatives of the frontiers [16]; (b) complete coverage [7]; The
unknown part of the environment is in gray, explored freespace is in
white and detected obstacle are in black. Free curves (frontier cells) are
distinguished by different colors and determined goal candidates are
represented as red discs.

Representatives of free curves (frontiers cells) are utilized in [16]
to decrease computational burden of the proposed next–goal assign-
ment based on a solution of the TSP in a single robot exploration. The
method selects nr goal candidates for each free curve as the means
of nr clusters determined by the K-means algorithm. The number nr
is determined according to the size of the particular free curve (i.e.,
the number of the frontiers cells of the curve) and sensor range. An
example of such representatives is shown in Fig. 3a.

A deterministic procedure to determine a minimal set of goal can-
didates from which all frontiers cells can be covered is presented in [7].
The paper also provides an extensive comparison with other goal can-
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didates determination methods combined with various assignment
procedures. The results indicate that the proposed method (called com-
plete coverage) of goal candidates determination provides the best ex-
ploration performance. Besides, the results also indicate that a com-
putationally efficient selection of the free edge representatives [16]
improves performance of the exploration significantly regardless the
assignment method, i.e., it also improves Yamauchi’s greedy assign-
ment. Therefore, based on these results it does not make sense to use
all frontier cells as potential goal candidates.

The main difference of the complete coverage approach [7] and
the previous frontier-based approaches is in determination of the goal
candidates that are not frontier cells, but are located deeper in the al-
ready explored space, see Fig. 3b. This motivate us to consider the
consecutive selection of the next robot goal and we proposed a goal
candidates determination method based on a solution of the traveling
salesman problem with neighborhoods (TSPN) using a self-organizing
map based approach [10]. Early results reported in [11] indicate that
combining determination of the goal candidates with a consideration
of the further selection of the goal can improve the overall mission
performance. However, the current results do not provide a strong ev-
idence of the improvement. A solution of the underlying TSPN that
provides a coverage of the frontier cells and the found goal candidates
are shown in Fig. 4.

3.2 Goal Assignment Procedures
Following the standard robotic exploration based on the next-best-
view approach, the assignment of the goal candidates to a group of
mobile robots can be considered as the task-allocation problem [12].
The problem is to find the best assignment of n goals to m robots max-
imizing the overall utility, i.e., to find one goal for each robot.

In [17], authors use Hungarian algorithm for the assignment of
the goal candidates to the robots and Voronoi Graphs of the current
known environment to explore a single room by one robot. Hungar-
ian algorithm is an optimal task-allocation algorithm for the given cost
matrix in which each cell value is a distance cost of the robot–goal as-
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(a) (b)

Figure 4: Example of the TSPN solution to determine a shortest path
from which all frontier cells are covered. The unknown part of the en-
vironment is in gray and the frontier cells are in red: (a) – the color map
indicates how many frontier cells can be covered from a particular lo-
cations, the red color means a high number of covered frontier cells
while blue indicates a low number of covered cells; (b) – determined
goal candidates from the solution of the TSPN.

signment. The algorithm has complexity O(n3), where n is the size of
the squared cost matrix and it is a suitable technique for centralized
approaches where information about all exploring units and a global
integrated map of the explored parts of the environment is available.

A distributed assignment algorithm called Broadcast of Local Eli-
gibility (BLE) has been proposed in [23]. A pair 〈robot, task〉 with the
highest utility is considered to assign the task to the robot without
tasks. The BLE algorithm works iteratively until each robot has as-
signed a task; thus, the algorithm is also called iterative assignment.

Another goal assignment strategy that can be used in a distributed
environment is the MinPos algorithm proposed by the authors of [5].
The assignment strategy is based on a computation of the rank ri,j for
each goal i and robot j. The rank ri,j is the number of robots that are
closer to the goal candidate i than the robot j. Then, each robot selects
the goal for which its rank is minimal. In a case several goal candidates
have the same minimal rank for the robot i, the closest goal candidate
to the robot is selected from such candidates. The rank can be simply
computed in a centralized way but it can also be computed locally
based only on the information about the position of the other robots
in the vicinity of the particular robot.
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Additional approach to the distributed solution of the goal assign-
ment in multi-robot exploration can be based on market (or auction)
based approaches in which a robot (auctioneer) offers a task and other
robots bid. If any robot bids with a higher price than the auctioneer’s
offer, the task is exchanged. This approach has been utilized in [26],
where a robot considers its goals in a tour and new (exchanged) goal
is inserted into the tour regarding minimization of the tour’s cost, i.e.,
the problem is a variant of the traveling salesman problem (TSP).

A selection of the next navigational goal based on evaluation only
a distance cost has been studied in [16]. However, instead of single
robot–goal distance, the distance is computed as a length of the short-
est path to visit all current goal candidates, and the problem is for-
mulated as a variant of the TSP. The authors call the distance as the
TSP distance cost and reported about 30 percentage points shorter ex-
ploration path than using the standard greedy approach. A computa-
tionally demanding solution of the TSP is addressed by the Chained
Lin-Kernighan heuristic [3] to find approximate solution of the TSP
with a sufficiently good quality and without expensive computational
requirements, which allows to use the method under real-time con-
straints in a practical deployment.

In [9], we extended the TSP distance cost approach for a single
robot to multi-robot exploration and formulate the problem as the
multiple traveling salesman problem (MTSP). The MTSP is addressed
by the 〈cluster first, route second〉 heuristic and the complete assign-
ment algorithm works as follows. First, the goal candidates are clus-
tered by the K-means algorithm where the clusters are seeded with the
robots positions. Then, each cluster is assigned to the particular robot
used for the cluster initialization and the next robot goal is determined
according to the TSP distance cost to visit all the goal candidates in
the cluster. Similarly to [16], the solution of the TSP is solved by the
Chained Lin-Kernighan heuristic [3] from the CONCORDE package [2].

A comparison of the aforementioned exploration strategies have
been reported in [9, 7, 8]. Regarding the reported results, the most effi-
cient exploration strategies are the Hungarian assignment and MTSP
based assignment, example of exploration paths for 3 robots and the
same evaluation setup is shown in Fig. 5. Both approaches are central-
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Figure 5: Example of the exploration paths for the same scenario with
3 robots and Hungarian assignment and MTSP-based assignment

ized, and therefore, the BLE algorithm that provides not significantly
worse performance than the Hungarian algorithm can be considered
for distributed decision-making.

4 Evaluation of Exploration Strategies
Although the robotic exploration is a challenging problem, we also
deal with a problem how to compare different exploration strategies.
It is because performance of the exploration, e.g., in a term of the re-
quired exploration time, depends on many factors and it is influenced
by a particular robotic platform and its navigational system including
motion control. The most visible factor is a frequency of the decision-
making as information about the environment is collected during the
exploration mission and thus one can expect that a more frequent re-
planning may provide better performance because of new available
information.

In robotics, the mission performance of the exploration system is
usually considered in a practical deployment, where simple and fast
algorithm can actually perform better because of the limited on-board
computational power, and therefore, such results and comparisons are
less general, especially regarding a more sophisticated approach con-
sidering a longer planning horizon that are currently limited by the
available computational power. In addition, the decision-making pro-
cess is stochastic because of underlying sources of uncertainties in
robot motion and sensor measurements, and therefore, the expected
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performance should be measured as statistical indicators. However,
practical deployment usually limits the evaluation to several trials
that do not provide statistically significantly evidence about the per-
formance. Moreover, and probably more importantly, such an eval-
uation can also be biased by a tuning of the parameters to the par-
ticular robotic system. Therefore, we can identify that even though a
practical deployment provides a valuable verification of the particu-
lar robotic exploration system, such results and conclusions about the
system performance are limited to the particular system and they may
not be directly generalized.

Based on this observation we propose to also evaluate performance
of the exploration in a well defined setup that is independent on the
available computational resources. We proposed an evaluation frame-
work based on a discrete event based simulator. Regarding the explo-
ration strategy, we can identify three main decision-making parts in
the frontier-based exploration approaches. The first part is the method
how new goal candidates are determined from the frontier cells in
the actual map of the environment. The second important decision-
making process is the assignment of the goal candidates to the robots
together with the selection of the next navigational goal for each robot.
Finally, the decision-making also depends on how often these two
parts are repeated, and therefore, the third part is the condition when
to perform new assignment. These parts are the main components of
the exploration procedure and we call them exploration strategies. The
procedure can be summarized as follow:

1. Initialize the occupancy grid Occ and set the initial plans to P =
(P1, . . . , Pm), where Pi = {∅} for each robot 1 ≤ i ≤ m.

2. Repeat

(a) Navigate robots towards their goals using the plans P , i.e.,
move each robot to the next cell from the plan;

(b) Collect new measurements with the range ρ to the occu-
pancy grid Occ;

Until replanning condition is meet.
3. Update a navigation mapM from the current Occ.
4. Detect all frontiers F in the current mapM.
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5. Determine goal candidates G from the frontiers F .
6. If |G| > 0 assign goals to the robot

• (〈r1, gr1〉, . . . , 〈rm, grm〉)=assign(R,G,M), ri ∈ R, gri ∈ G;
• Plan paths to the assigned goals (as sequences of grid cells)
P = plan(〈r1, gr1〉, . . . , 〈rm, grm〉,M);

• Go to Step 2.

7. Stop all robots (all reachable parts of the environment are ex-
plored).

The navigation part (Step 2a and Step 2b) is repeated according to the
specified condition. Two basic (limiting) variants of the condition can
be distinguished: (1) a robot reaches its goal; (2) a new assignment is
performed whenever an assigned goal will no longer be a frontier cell,
e.g., a surrounding unknown area becomes explored. We call the first
variant as the goal replanning (GR) condition and the second variant is
called the immediate replanning (IR) condition.
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(a) autolab environment, ρ=3 m
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Figure 6: Required time to explore the autolab and potholes environ-
ments withm robots, sensor range ρ, IR and GR replanning conditions

In this evaluation framework, the robot motion is restricted to tra-
verse a single grid cell per one simulation step, which avoids an influ-
ence of the available computational power and it also allows to evalu-
ate performance of computationally demanding exploration strategies
independently on the used hardware. Thus, this evaluation frame-
work allows to measure the performance of the exploration as the re-
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quired exploration steps. Besides, it can be used to evaluate the results
statistically using thousands of trials.

(a) autolab environment (b) potholes environment

Figure 7: Final exploration paths in the evaluated environments, the
number of robots m=3 and sensor range ρ=3 m. Obstacles (showed in
black) are enlarged to avoid collisions of the disc shaped robots (with
a diameter 0.3 m) with obstacles.

An example of the results provided by the framework that are vi-
sualized as the five-number summary from 3780 trials is depicted in
Fig. 6. The results show how frequency of replanning can significantly
change performance of the computationally demanding MTSP-based
assignment (MA) in comparison with greedy approach [25] (GA), iter-
ative assignment (IA) [23], Hungarian assignment (HA) [17], and Min-
Pos assignment [5] accompanied by a modified determination of the
goal candidates as representatives of free curves [16]. The particular
environments called autolab and potholes are shown in Fig. 7.

5 Conclusion
A problem of multi-robotic exploration of unknown environment can
be addressed by the well established frontier-based approach, where
the problem of efficient sharing of the work load among the team
members is formulated as the task-allocation problem. Based on the
nowadays technological advancements providing robust navigational
capabilities in structured environment, we can identify two main re-
search streams in robotic exploration. The first stream aims to address
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the exploration in a more complex, large-scale unstructured environ-
ments, while the second streams aims to improve the performance of
the exploration mission based on more sophisticated decision-making
processes. The presented approaches follow the second stream.

Regarding multi-robot exploration, we can further identify addi-
tional challenges related to practical deployment of the system in dif-
ferent scenarios. These include consideration of efficient information
sharing under limited communication, which leads to a local decision-
making and distributed algorithms such as the BLE and MinPos algo-
rithms. Another challenging topic is an exploration under dynamic
environment that can be further generalized to exploration of some
studied phenomena in the environment and thus the goal is not to cre-
ate a map of the environment, but rather to build a sufficiently precise
model of the phenomena.

Although the aforementioned problems are very challenging, there
is also one fundamental challenge that need to by address. The chal-
lenge is to move the research from a demonstration that a particular
approach is working for specific tuned parameters, to a systematical
evaluation that will allow to compare different exploration strategies
and to provide more general conclusions about the expected system
performance under different setups.
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