Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Czech Technical University in Prague
Faculty of Electrical Engineering

Ing. Jiti Bittner, Ph.D.

Optimalizované datové struktury pro sledovani
paprskia

Optimized Data Structures for Ray Tracing

Summary

Efficient spatial data structures are a key for achieving good perfor-
mance of ray tracing based image synthesis methods. I will present an
algorithm for fast optimization of bounding volume hierarchies (BVH),
which became one of the most popular data structures for ray trac-
ing. The proposed method performs selective updates of the hierarchy
driven by the cost model derived from the surface area heuristic. In
each step the algorithm updates a fraction of the hierarchy nodes in
order to minimize the overall hierarchy cost. The updates are realized
by simple operations on the tree nodes: removal, search, and insertion.
The method can quickly reduce the cost of the hierarchy constructed by
the traditional techniques such as the surface area heuristic or spatial
median splits. I will document the properties of the proposed method
on scenes of different complexity. The results show that the proposed
method can improve a BVH initially constructed with the surface area
heuristic by up to 27% and a BVH constructed with the spatial median
split by up to 88%.

Souhrn

Efektivni prostorové datové struktury jsou klicovou komponentou k
dosazeni celkové efektivity metod syntézy obrazu zalozenych na sle-
dovani paprski. Ptedstavim algoritmus pro rychlou optimalizaci hier-
archif obdlek (BVH), které se staly jednou z nejpouzivanéjsich datovych
struktur pro sledovéni paprsku. Navrzend metoda vyuziva selektivni
aktualizace hieararchie zalozené na cenovém modelu odvozeném z povr-
chové heuristiky (SAH). V kazdém kroku algoritmus aktualizuje zlomek
uzla s cilem minimalizovat celkovou cenu hierarchie. Aktualizace jsou
realizovany pomoci jednoduchych operaci na uzlech stromu: odebrani,
vyhledani a vlozeni. Metoda dokaze rychle zredukovat cenu hierarchie
konstruované tradi¢nimi technikami jako je povrchova heuristika nebo
déleni pomoci prostorového medidanu. Ptredstavim vlastnosti navrzené
metody na scénach s ruznou slozitosti. Vysledky ukazuji, Ze navrzena
metoda dokaze vylepsit hierarchii obalek konstruovanou pomoci povr-
chové heurstiky az o 27% a hierarchii konstruovanou pomoci pros-
torového medidnu az o 88%.

Klicova slova: Viditelnost, sledovani paprski, hierarchie obélek, de-
tekce kolizi.

Keywords: Visibility, ray tracing, bounding volume hierarchies, colli-
sion detection.

Contents

1

2

Introduction

Selective BVH Updates

2.1 Algorithm Overview
2.2 Cost Model
2.3 Updating Nodes
2.4 Selecting Nodes For Update
2.5 Terminating the Optimization
2.6 BVH Compaction

Results
3.1 BVH Cost Reduction
3.2 Ray Tracing Performance

Conclusion and Future Work

Ing. Jifi Bittner, Ph.D.

1 Introduction

The current ray tracing based algorithms allow to capture complex
illumination effects and reach high degree of realism of the rendered
images. With advances in computational power and algorithmic effi-
ciency the ray tracing based methods have also become an alternative to
rasterization for interactive and real time applications. Unlike rasteri-
zation, ray tracing relies on a highly efficient acceleration data structure
which allows to trace tens or hundreds million rays per second.

Constructing such high quality acceleration data structures is thus
very important and it has received a strong attention in the last two
decades. Even a relatively small improvement in performance can bring
an interactive ray tracer closer to real-time or provide significant time
savings when rendering many high quality images of complex and de-
tailed scenes in the movie industry.

There are two major classes of data structures used for ray tracing
acceleration: spatial subdivisions (such as kd-trees, octrees, or grids)
and bounding volume hierarchies (BVH). In this work we propose a
method which allows to optimize a given BVH beyond the current
state of the art techniques. The method is based on an iterative algo-
rithm that changes the topology of inner nodes of a bounding volume
hierarchy in order to improve the quality of the hierarchy initially built
with arbitrary method. An example visualization of the reduction of
traversal steps achieved by the proposed method is shown in Figure 1.

i.;)ﬂ;—iij‘f
i

Figure 1: Visualization of the number of traversal steps for the view
of the Sibenik Cathedral scene rendered with primary and ambient
occlusion rays. (left) Rendered image. (center) Number of traversal
steps per ray for BVH built with SAH. (right) Number of traversal
steps for the BVH optimized by the proposed method. On this image
our method gives an approximately 16% performance gain over the base
build algorithm with the SAH. Note that the blue color corresponds to
0 traversal steps, the red color to 100 or more steps.

Our method constructs more efficient bounding volume hierarchies
in shorter time than previous approaches, while it allows to easily trade-

off the time used for updating the BVH and the expected traversal cost.
Compared to the current state of the art approach for high quality
BVHs proposed by Kensler [Ken08] (simulated annealing), our algo-
rithm is 25 to 147 times faster for the tested scenes, while achieving
BVHs of comparable or even better quality. The method is applicable
to a BVH built with an arbitrary technique, it is simple to implement
and thus it has a potential to become a common optimization approach
following the construction of the hierarchy.

There is a large body of literature on efficient spatial data struc-
tures for rendering and the bounding volume hierarchies have a long
tradition in the context of ray tracing. We reffer the interested reader
to the discussion of related work in the extended version of this arti-
cle [BHH13].

2 Selective BVH Updates

This section describes our method starting with the algorithm outline,
followed by a detailed description of individual steps of the algorithm,
discussion of the design choices and providing further implementation
details.

2.1 Algorithm Overview

The BVH as an input of our algorithm can be built with various ways.
We construct a BVH using a standard top down technique with the
cost model based on the surface area heuristic [Wal07, HSZ11]. Alter-
natively we can use a faster BVH construction method based on object,
or spatial median splits. Our algorithm performs the following steps
(see also Figure 2):

Begin While Loop

1) Select inner nodes for optimization
2) For each selected node

a) Remove both its children from the tree

b) Find a position to reinsert the children using a cost driven
branch and bound search

¢) Insert each of the two children at their new positions and refit
bounding volumes of all affected nodes

End While Loop (until termination criteria are met)

Figure 2: . The core of our method is the removal of inefficient nodes
from the tree and re-insertion of their children to positions that decrease
the overall cost of the tree.

The core of our method lies in steps 1) and 2) of the algorithm. In
step 1) we select the inner nodes for optimization and in step 2) these
nodes are removed from the tree and then reinserted back into the tree
at more appropriate positions. In the next section we recall the cost
model behind our approach and then discuss individual steps of the
algorithm in more detail.

2.2 Cost Model

The surface area heuristic (SAH) [MB90,Hav00] is usually described us-
ing a formula evaluating the expected number of operations for process-
ing a given ray. In particular given a node N and assuming uniformly
distributed unoccluded rays, which intersect the bounding volume of
the node N, the expected cost of the node C(N) is given as:

o) - { op + SALNDCEODLSAROICHN it N s jnner

cr -ty if N is leaf

where cr is the cost of traversing the inner node of the tree including the
box intersection calculations, c; is the cost of ray triangle intersection,
ty is the number of triangles in leaf N, SA(z) is the surface area of
the bounding box associated with the node z, and L(NN) and R(N) are
the left and right children of N, respectively.

The SAH makes two assumptions: (1) the distribution of rays is uni-
form, (2) the rays are unoccluded thus the traversal does not terminate
when a ray intersects a geometric primitive. Although these assump-
tions are generally not met in practice, the experiments indicate that
the cost model with the SAH expresses the runtime behavior of a ray

tracing quite well [BHH13]. Therefore reducing the cost is directly
reflected in reducing ray tracing times and as we show in Section 3.

The cost of the root node expresses the expected number of oper-
ations to process a ray intersecting the scene. By a simple derivation
the recursion can be eliminated and the cost of the tree C'(T") can be
rewritten as:

C(T):S%m cr- > SAN)+er- Y SANN)-ty|, (1)

Ne€inner nodes NE€leaves

where SA(T) is the surface area of the bounding box of the scene.
Note that the second term in the formula representing the ray triangle
intersection calculations is constant for a given scene supposed there is
a fixed number of primitives per leaf. Thus the cost term which should
primarily be optimized is the sum of surface areas of inner nodes of
the tree which induces the traversal overhead of the interior part of
the tree (er - > SA(N)). This is exactly the core of our approach - we
perform global updates of the tree by removing and reinserting nodes to
minimize the total sum of surface areas of inner nodes. This contrasts
to previous BVH optimization techniques which use local operations
on the tree such as rotations.

2.3 Updating Nodes

Let us assume that we have identified a node N in the tree which
causes a cost overhead. The key idea of our method is to remove the
child nodes of NV from the tree and reinsert both of them back at more
appropriate positions. For the two child nodes we perform a global
search to find the insertion positions that will minimize the tree cost.
Once the insertion position is found, the node is inserted in the tree
using local operations. Note that although we use a global search for
the best position to reinsert the nodes, the method performs a greedy
optimization since we always choose the positions which minimize the
current tree cost.

Removing nodes. When updating an inner node N, we remove N,
its children L and R, and its parent P from the tree. Then we update
the links of the affected nodes to keep the topological consistency of
the tree. We also update the bounding boxes of the affected nodes by
traversing up to the root of the tree. We put the children L and R in
an ordered list of nodes to be reinserted, while the nodes are ordered

so that the node with larger surface area will be processed first. The
nodes N and P are placed in a list of nodes which will be used to link
the reinserted nodes with the nodes at the new positions of the tree.
The removal operation is illustrated in Figure 3. Note that nodes L
and R need not be leaves, but they can represent whole subtrees of the
BVH.

° N 0 _unused (listU) _

e to be reinserted (list I)

© ©® - 00
Figure 3: Illustration of removal of node N — RemoveNode(node N,
list U, list I, root P) operation. The children of N are put into the
list I that contains the nodes to be inserted. Nodes N and P are put
to the list U that stores the nodes that can be reused.

Searching for new positions. We start the search for the new po-
sition to insert the node L at the root of the BVH and incrementally
compute the total increase of the surface area. When reaching a node
X, the surface area and therefore the cost increase is given by two
components:

o the direct cost Cp(L, X) = SA(XUL), where SA(X UL) denotes
the surface area of the box that is a union of bounding boxes of
the node L and the node X.

e the induced cost Cr(L, X), that is the accumulated increase of the
surface area on the path from the root to the parent of the node X
assuming the node L would be inserted in the subtree rooted at X .
This can be defined also recursively so Cy(L, X) = 0 if X is the
root node and Cy(L, X) = C;(L,parent(X)) + SA(parent(X) U
L) — SA(parent(X)), otherwise.

The two components of the cost increase are illustrated in Figure 4.
The total increase of the surface area of the tree is considered as the
cost for merging L and X, that is C(L,X) = Cp(L, X) + Ci(L, X).
We search for such a node X, that minimizes this cost in the whole
tree.

10

Co (L, X2)

Figure 4: A 2D example of how the total cost increase of adding the
node L to the tree at node X is computed. The induced cost C;(L, X5)
results from enlarging ascendants of Xo when inserting the node L as
the bounding boxes have to be refitted (Algorithm 1:line 20). The
direct cost Cp(L, X5) is surface area of the box for the union of Xs
and L (Algorithm 1:line 11).

We use a branch and bound algorithm based on a priority queue in
which the priority is inversely proportional to the induced cost. We can
prune the search along the tree effectively using the smallest cost Chpest
corresponding to node Xpes¢ found so far. We evaluate a lower bound
of the cost in the subtree of X in order to decide whether to continue
the search in that subtree. The lower bound of the cost is given by
the induced cost above X and the surface area of L, which is the lower
bound of the direct cost in the whole subtree of X — the induced cost
represents the necessary enlargement of nodes above X and the surface
area of L is the minimum size of the node inserted into the tree, which
joins L with a node from the tree. The subtree of X is traversed only if
the lower bound of the cost is smaller than Cpes;. The whole algorithm
can be terminated if the lower bound of the cost for the node on the
top of the priority queue is larger than Ches:. The pseudocode of the
searching algorithm is shown in Algorithm 1.

Similar cost model was used in the early work of Goldsmith and
Salmon [GS87] for insertion based BVH construction. They proposed
to track the “inheritance cost” which corresponds to our induced cost.
However, the actual search of the tree was limited either to a greedy
decision and a traversal of a single path or spreading the search in all
subtrees for higher levels of the tree.

11

1 Algorithm:FindNodeForReinsertion(node L)

2 // Cpest - the smallest total cost increase found so far Chess =
infinity;
3 // Priority queue contains pairs: (node, induced cost) Push
(Root of BVH, 0,1) to priority queue PQ;
while PQ is not empty do
(X, Cr(L, X)) = Pop node from PQ;
if Cr(L,X) + SA(L) ;= Cpest then
// Early termination - not possible
break; // to reduce the cost Cpest
end
10 // Compute the total cost of merging L with X
11 Cp(L,X) =SA(X U L); // Direct cost
12 C(L,X)=Ci(L,X)+Cp(L,X); // Total cost
13 if C(L,X) j Cpest then

'

© 0w N o wm

14 // Merging L and X decreases the best cost
15 Cbest = C(L’X)a

16 // Xbpest s the currently best node found

17 Xbest = Xa

18 end

19 // Calculate the induced cost for children of X
20 Cr=C(L,X) - SA(X);

21 // Check if the cost decrease is possible in subtree
22 if C; + SA(L) j Cpest then

23 if X is not a leaf then

24 // Search in both children

25 Push (left child of X, C, ﬁ) to PQ ;
26 Push (right child of X, Cf, ﬁ) to PQ ;
27 end

28 end

29 end

30 return X g;
Algorithm 1: FindNodeForReinsertion(node L) - pseudo-code of
finding suitable inner node or leaf for reinsertion of the candidate
node L so the total cost increase is minimized. Constant € is a small
positive number (e.g. 1072°), the entries with the highest priorities
are removed first from the priority queue PQ.

12

Reinserting nodes. After we select the node Xp.s for insertion,
which minimizes the cost increase in the whole BVH, we simply merge
Xpest and L using one of the removed nodes (N or P) as their parent.
After each reinsertion we update all the bounding boxes along the path
from the parent of the merged nodes to the root. The algorithm is
illustrated in Figure 5.

210

Figure 5: Illustration of reinserting the node L back to the tree. The
node L is merged with the node X while using the node N as their
new parent. The same procedure is used for inserting the node R (using
P as the parent node).

2.4 Selecting Nodes For Update

The update procedure described above process arbitrarily selected nodes
in the tree. An obvious choice for the selecting the nodes for updates
is random sampling. When using a random sampling we observe that
the BVH cost is reduced until a point where it converges.

In order to accelerate the tree optimization we should first update
those nodes that cause the highest cost overhead (surface area increase)
in the tree. To achieve this we need a node inefficiency measure that
would ideally correlate with the actual cost reduction when updat-
ing the node. We experimented with a number of inefficiency mea-
sures, that address different spatial configurations of objects [BHH13].
While some of the measures are specifically designed to capture dy-
namic changes, we observed that one of the most stable one was the
M rEa measure given as Marpa(N) = SA(N). The Marga measure
simple prioritizes the updates of the larger nodes of the tree since each
such node has a significant contribution to the tree cost.

Once the node inefficiency measure is defined we can use it to prior-
itize the updates of the hierarchy nodes according to their inefficiency
measure. Our method works in passes where in each pass it updates a
specified number of nodes k (typically k=1% of nodes). These nodes

13

are selected as follows: we evaluate the inefficiency measure for all in-
ner nodes. Then we determine k& nodes with the highest values of the
inefficiency measure using a partial sort of the node array. These k
nodes are then processed sequentially in descending order according to
their inefficiency measures (the most inefficient nodes first).

Note that an alternative would be to always update a single node
with currently the highest inefficiency measure. The batch process-
ing of nodes however speeds up the node selection procedure since the
inefficiency measures are calculated only once per pass and are not up-
dated after each change in the tree. Additionally the batch processing
makes the method more robust with respect to getting stuck in a local
minimum for the case that the inefficiency measure of some node(s) is
hard to reduce.

2.5 Terminating the Optimization

In the beginning of the optimization the vast majority of updates lead
to reduction of the BVH cost. Since the removal operation removes two
nodes from the tree and processes them sequentially (the first child is
inserted in the tree while the second child is still removed), however, it
is possible that after reinserting both nodes to the tree the BVH cost
will slightly increase. This behavior becomes more apparent when the
optimization converges and the BVH cost cannot be reduced anymore.
Then the BVH cost oscillates in a small range near the reached mini-
mum. Note that by a simple modification of the method which would
always remove just one child from the tree we could ensure that the cost
is either reduced in the given step or it remains the same. However, our
experiments have shown that the BVH cost is reduced slightly more if
we use the method of removing both children, although temporarily
the optimization step might provide a small cost increase.

As the optimization is progressively reducing the cost we can use
different termination criteria deciding when to stop the optimization
such as the maximum time or the number of passes. The criteria can
also be based on evaluating the convergence of the cost. We propose
to terminate the computation when the cost does not improve within a
given number of update passes pr (recall that each pass updates certain
number of nodes).

When using deterministic inefficiency measures the cost might sta-
bilize at a slightly higher value than when using random sampling as
there are some nodes that are never selected for optimization since their
measure is low. To avoid this behavior we switch to random sampling

14

of nodes when we detect that the cost reduction becomes very low or
even zero. Similarly to the termination of the whole computation this
decision is made not for a single node but for sequence of processed
nodes. We switch to the random selection if in the given number of
passes pr (pr < pr) the cost of the BVH does not reduce.

2.6 BVH Compaction

We assumed that the BVH trees are constructed until each leaf contains
a single triangle (or a geometric primitive in general). It is usually more
beneficial to construct leaves with more triangles (e.g. 8 to 10) following
the actual traversal and intersection constants (er and cr) used in the
SAH cost model [Wal07, WBS07]. To get the most benefit from our
optimization method we apply the method in two phases. First, we
build the tree so that each leaf contains a single triangle. Second, we
run the postprocessing phase using a post-order traversal of the whole
tree and evaluate the cost of each node using Eq. 1. This requires also
counting the number of triangles associated with the node during the
post-order traversal. Whenever the cost of an interior node N is larger
than the cost for a leaf created for the triangles contained in the leaves
of the subtree rooted in the node N, we collapse the subtree to a leaf
that references all the corresponding triangles. As a result the cost of
the compacted tree can be significantly reduced compared to the tree
with a single triangle per leaf (see the ratios between the cost and ocost
in Section 3).

3 Results

We have implemented the proposed algorithm in a single threaded
C++ application. The results of BVH optimization and CPU ray trac-
ing were evaluated on a PC with Linux OS, Intel(R) Xeon(R) E5440
2.83GHz CPU, 40GB of RAM, and GNU C compiler version 4.40. To
compute the cost according to equations 1 and 1 we used ¢y = 3.0 and
c; = 2.0. We used batch size k = 1% and termination criteria py = 10,
and pr = 5. We have evaluated the method on nine models of different
complexity (see Figure 6). We have constructed the initial BVH by top
down recursive procedure using a precise SAH builder which evaluates
all discontinuities (two positions for each triangle) in the cost function
for all three axes.

15

Figure 6: Snapshots of tested scenes: Conference, Fairy Forest, Sponza,
Sodahall, Sibenik Cathedral, Power Plant section 9, Power Plant sec-
tion 16, Power Plant, and Pompeii Ten.

3.1 BVH Cost Reduction

As a reference for the comparison we use our reimplementation of the
state of the art BVH optimization algorithms of Kensler [Ken08] for
both hill climbing and simulated annealing. For all tested methods
we evaluate the BVH cost (denoted as cost), BVH cost optimized by
compacting the tree with the method described in Section 2.6 (ocost),
the time for optimizing the tree until predefined termination criteria
(CPUupdate), the total build time including the optimization (C' PUbuild)
and the times for ray casting on the CPU and on the GPU for different
ray types (primary rays, random rays, ambient occlusion rays).

BVH cost reduction. The results show that our method can re-
duce the initial cost of the tree constructed with the traditional top
down algorithm with SAH by 4% to 24% with an average of 17% (see
summary in Table 1). This cost reduction was achieved in time which
was about three times smaller than the time of the initial tree con-
struction (albeit the implementation of the exact SAH builder is not
optimized). We can observe that the cost reduction of the BVH op-
timized by our method is larger than that of the current state of the
art methods for high quality BVH proposed by Kensler [Ken08]. The
build time for the hill climbing reference method is slightly lower than
for our method (note that this also depends on the particular termina-
tion criteria used in our method), but the hill climbing is not able to
reduce the cost more than by a few percent.

The simulated annealing of Kensler [Ken08] achieves better cost re-
duction than the hill climbing, while the running time of the method

16

cost rel. cost time rel. time

Scene SAH optimized SAH optimized

] -] [s] [
Conference 130.30 78.66% 3.45 131.30%
Fairy Forest 95.10 96.21% 1.96 120.92%
Sibenik Cathedral 82.30 84.45% 0.66 209.09%
Sponza 220.20 82.74% 0.56 180.36%
Soda Hall 216.50 76.40% 40.96 137.60%

Power Plant, sec. 9 57.90 89.46% 1.36 119.12%
Power Plant, sec. 16 | 93.50 85.35% 4.70 159.57%
Power Plant 115.80 84.46% | 396.00 121.46%
Pompeii Ten 252.90 86.20% | 102.00 175.49%

Table 1: Summary results of our algorithm. The SAH-based build is
used as a reference.

is about two orders of magnitude higher than for hill climbing. Our
method however provides BVHs with even lower cost (up to 10% dif-
ference) than the simulated annealing by Kensler in computation time
from 28 to 80 times smaller. This brings us to an observation that
our proposed technique is currently able to construct the best known
BVHs for the given scene and the cost model based on SAH. The BVH
quality improvement over the previous state-of-the-art method is not
dramatic, however the speed in which we obtain these improvements is
significant (almost two orders of magnitude compared to the simulated
annealing), which can actually lead to using the proposed technique in
practice as the BVH build time is only slightly higher than without our
method.

For BVHs built using a simple spatial median split the cost reduc-
tion achieved by our algorithm is very significant. Interestingly, the
BVH cost quickly converges almost to the same cost as for the case
when the BVH was built with top down build algorithm with SAH and
optimized by our algorithm, but the optimization takes more computa-
tion time. The time needed for the build including optimization is 25
to 147 times smaller than the time of simulated annealing by Kensler.

BVH structure analysis. In order to find out what particular
changes to the BVH our algorithm does we calculated histograms of the
surface areas of the nodes at different depths of the tree for the initial
BVH and for the BVH optimized by our method. These histograms
are shown in Figure 7. The plots show that our optimization method
reduces the sum of surface areas of inner nodes especially for the middle
range depths. We can also observe that this is achieved by restructuring

17

the tree so that certain nodes are placed deeper in the tree.

4 25
o 35 =
% 3 ! ‘\ ’@ 2
€ 25 [ty 15
B 2 b § '
c 1 1 <
g 15p < 1 ,".

1 - | i
& 05 N 05 [SRS

0 - 0 + L=

0O 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40
Depth Depth

Figure 7: Histogram showing the sums of surface areas of inner nodes
(left) and leaves (right) at different depths of the tree for the Conference
scene. The results for trees constructed by top down SAH are shown
in red (dashed), the results after optimization by our algorithm are in
green (solid).

BVH tree compaction. We also evaluated the contribution of
the tree compaction described in Section 2.6. The ocost after the com-
paction can be non-negligibly lower than the initial cost before per-
forming the tree compaction.

The ocost is on average by 20% lower than cost for the trees origi-
nally built with SAH and by 17% for trees built with spatial median.
Interestingly, the impact of our tree optimization algorithm is typically
a few percent larger when considering the ratio of ocost than the ratio
of cost before and after the optimization. For example for the Soda
Hall scene the cost is reduced by 24% (ratio 0.76), while the ocost is
reduced by 27% (ratio 0.73).

3.2 Ray Tracing Performance

We have evaluated the optimized BVH using two different ray tracers.
The first one is a CPU based ray tracer with no low level optimizations,
the second one is a GPU ray tracer derived from the implementation
of Karras et al.’s [KAL09]. For the GPU ray tracer we have used an
adaptor that converts the main memory data structures to the data
structures used by the GPU application’s CUDA kernels.

CPU ray tracer results. The CPU ray tracing performance of
the constructed BVH has been evaluated for two scenarios — casting
primary rays and shooting random rays. The figures computed for
casting primary rays are shown in Figure 6. Note that the time for
tracing rays is in strong correlation with the cost irrespective of the
scenario for both primary and random rays for all reported results.

18

GPU ray tracer results. The GPU ray tracing results were eval-
uated using a modified version of the Karras et al.’s [KAL09] GPU ray
tracer. For measurements we have used a PC with Intel Core i7-2600K
3.40GHz, NVIDIA GeForce GTX 580 3GB GDDR5 and Windows 7
OS. We have tested the performance of primary rays, random rays,
and ambient occlusion rays. We can see that the GPU results corre-
late with the results from the CPU raytracer. Karras et al.’s primary
rays and ambient occlusion rays generation and general tracing kernels
were used without changes. We have implemented a random rays gen-
eration routine, casting 8 million rays for each scene, where the rays
are defined by generating two uniformly distributed points in the scene
bounding box. For the ambient occlusion test we spawn ten rays at
each hit of the primary ray. There are scenes, where the GPU version
does not provide a performance gain comparable to the CPU implemen-
tation particularly for primary rays (e.g. Conference - CPU primary
69%, GPU primary 98%), though in these cases the reference method
of Kensler exhibits similar behavior. On the contrary on a few tested
scenes the optimized BVH provides slightly higher performance gain
for the GPU ray tracer than for the CPU version (e.g. Sibenik - CPU
primary 85%, GPU primary 81%).

4 Conclusion and Future Work

We proposed an algorithm for building a high quality BVH by incre-
mental updates of the BVH initially constructed by a top down method
with surface area heuristic. The method is based on performing selec-
tive updates of the BVH by identifying problematic nodes and reinsert-
ing them back in appropriate positions in order to minimize the total
BVH cost. The updates are prioritized and the resulting method is
highly flexible in terms of the update time with respect to the quality
of the hierarchy.

We have shown that for complex scenes our method achieves very
good cost reduction in much shorter time than previous methods. In
fact the results indicate that the method constructs the best currently
known BVHs under the SAH cost model and thus it has a potential to
become a common optimization technique, which further reduces the
cost of the SAH builders used in practical applications.

We currently work on extending the method to dynamic and ani-
mated scenes. We also want to study the properties of the hierarchy
for other visibility computations such as occlusion and view-frustum
culling for large scenes.

19

Acknowledgements

I would like to thank Vlastimil Havran and Michal Hapala, the co-
authors of the paper which presents most of the material discussed
here in extended form [BHH13].

References

[BHH13]

[GS87)

[Hav00]

[HSZ+11]

[KALO09)

[Ken08]

[MBYO]

[Wal07]

[WBS07]

Jit{ Bittner, Michal Hapala, and Vlastimil Havran. Fast
Insertion-Based Optimization of Bounding Volume Hierar-
chies. Computer Graphics Forum, 32(1):85-100, 2013.

Jeffrey Goldsmith and John Salmon. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Computer Graph-
ics and Applications, 7(5):14-20, May 1987.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, Nov 2000.

Qiming Hou, Xin Sun, Kun Zhou, C. Lauterbach, and
D. Manocha. Memory-Scalable GPU Spatial Hierarchy Con-
struction. IFEE Transactions on Visualization and Com-
puter Graphics, 17(4):466-474, Apr 2011.

Tero Karras, Timo Aila, and Samuli Laine. Understanding
the Efficiency of Ray Traversal on GPUs; Google Code, 2009.

Andrew Kensler. Tree Rotations for Improving Bounding
Volume Hierarchies. In Proceedings of the 2008 IEEE Sym-
posium on Interactive Ray Tracing, pages 73-76, Aug 2008.

J. David MacDonald and Kellogg S. Booth. Heuristics for ray
tracing using space subdivision. Visual Computer, 6(6):153—
65, 1990.

Ingo Wald. On fast Construction of SAH based Bounding
Volume Hierarchies. In Proceedings of the 2007 Eurograph-

ics/IEEE Symposium on Interactive Ray Tracing, pages 33—
40, Sep 2007.

Ingo Wald, Solomon Boulos, and Peter Shirley. Ray tracing
deformable scenes using dynamic bounding volume hierar-
chies. ACM Trans. Graph., 26(1), January 2007.

20

5 Ing. Jiri Bittner, Ph.D.

Personal Information

Born:
Address:
Email:
Homepage:
Family status:
Languages:

Education

November 9, 1972 in Brandys nad Labem
Veltruskd 532/11, 19000 Praha 9, Czech Rep.
bittner@fel.cvut.cz
http://dcgi.felk.cvut.cz/members/bittner
married, two children

Czech, English, German

2003-2003 Postdoc at Vienna University of Technology

1997-2003 PhD degree in Informatics and Computer Science,
Czech Technical University in Prague

1991-1997 Master degree in Computer Science, Czech Technical
University in Prague

1987-1991 Secondary school (computer engineering), Prague

1979-1987 Elementary school, Prague

Citations and Impact

Google Scholar (2014) citations: 961, h-index: 18, i10-index: 23
Research Gate (2014) score 16.15, impact points 18.34

Professional History

2011-present

20062011
2005-2006
2003-2004
2002-2003

2000-2002

Assistant professor and deputy head for research at
the Department of Computer Graphics and
Interaction, FEE CTU in Prague.

Senior researcher at the Czech Technical University
in Prague

Researcher at the Vienna University of Technology
(Gametools IST project)

CGX - development of computer graphics and signal
processing applications

Researcher at the Vienna University of Technology
(UrbanViz FWF project)

Researcher at the Czech Technical University in
Prague, Center for Applied Cybernetics

21

Research Activities

o Journal reviews: ACM Transactions on Graphics, IEEE Trans-
actions on Visualizations and Computer Graphics, Computers &
Graphics, Computer Graphics Forum, Computer Animation and
Virtual Worlds.

e Conference reviews: SIGGRAPH, SIGGRAPH Asia, Eurograph-
ics, Graphics Interface, Symposium on Interactive 3D Graphics
and Games, Pacific Graphics, Visualization, WSCG, High Perfor-
mance Graphics, Eurographics Symposium on Rendering, Com-
puter Graphics International, GRAPP.

e [PC memberships: Eurographics (2015), International Confer-
ence on Computer Graphics Theory and Applications (2007-2014),
Winter School of Computer Graphics (2009-2014), Spring Confer-
ence on Computer Graphics (2007-2014), Center European Sem-
inar on Computer Graphics (2007-2014), Eurographics Sympo-
sium on Rendering (2008-2010), Eurographics state-of-the-art re-
ports co-chair (2007), Computer Graphics International (2004)

e Organisations: Member of Eurographics and ACM SIGGRAPH.

Selected Journal Publications

1. J. Bittner, M. Hapala, V. Havran: Fast Insertion Based Opti-
mization of Bounding Volume Hierarchies, Computer Graphics
Forum, 32(1), pages 85-100, February 2013.

2. T. Barak, J. Bittner, V. Havran: Temporally Coherent Adap-
tive Sampling for Imperfect Shadow Maps. Computer Graphics
Forum, 32(4), pages 87-96, 2013.

3. M. Vinkler, M. Hapala, J. Bittner, V. Havran: Massively Par-
allel Hierarchical Scene Sorting with Applications in Rendering.
Computer Graphics Forum, 32(8), pages 13-25, 2013.

4. L. Cmolik, J. Bittner: Layout-aware optimization for interactive
labeling of 3D models. Computers & Graphics, vol. 34, no. 4, p.
378-387, 2010.

5. J. Bittner, O. Mattausch, P. Wonka, V. Havran, M. Wimmer:
Adaptive Global Visibility Sampling, ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH 2009), Volume 28, Issue 3, pages
94:1-94:10, 2009.

22

6. O. Mattausch, J. Bittner, M. Wimmer: CHC++: Coherent Hier-
archical Culling Revisited. Computer Graphics Forum, vol. 27,
no. 2, p. 221-230, 2008.

7. K. Zhou, E. Zhang, J. Bittner, P. Wonka: Visibility-driven Mesh
Analysis and Visualization through Graph Cuts. IEEE Transac-
tions on Visualization and Computer Graphics, vol. 14, no. 6, p.
1667-1674, 2008.

8. J. Bittner, M. Wimmer, H. Piringer, W. Purgathofer: Coherent
Hierarchical Culling: Hardware Occlusion Queries Made Useful
Computer Graphics Forum, 23(3):615-624, 2004.

9. J. Bittner and P. Wonka: Visibility in Computer Graphics. Jour-
nal of Environment and Planning B: Planning and Design Vol 5.,
No. 30, pages 729-756, Pion Ltd., 2003.

10. J. Bittner, J. Prikryl, and P. Slavik: Exact Regional Visibility
Using Line-Space Partitioning Computers & Graphics, Vol. 27/4,
pages 569-580, 2003.

11. J. Bittner and V. Havran: Exploiting Coherence in Hierarchical
Visibility Algorithms, The Journal of Visualization and Computer
Animation, Volume 12, Issue 5, pages 277-286, 2001.

12. V. Havran and J. Bittner: LCTS: Ray Shooting using Longest
Common Traversal Sequences, Computer Graphics Forum, 19(3):C59-
C70, 2000.

Selected Conference Publications

1. J. Bittner, O. Mattausch, A. Silvennoinen , M. Wimmer: Shadow
Caster Culling for Efficient Shadow Mapping. In Proceedings of
the ACM Symposium on Interactive 3D Graphics and Games
(I3D’11), p. 81-88, 2011.

2. J. Bittner, V. Havran: RDH: Ray Distribution Heuristics for Con-
struction of Spatial Data Structures. In Proceedings of Spring
Conference on Computer Graphics, pages 51-57, 2009.

3. J. Bittner, P. Wonka, M. Wimmer: Fast Exact From-Region Vis-
ibility in Urban Scenes. In Proceedings of Eurographics Sympo-
sium on Rendering ’05, pages 223-230, 2005.

23

	Introduction
	Selective BVH Updates
	Algorithm Overview
	Cost Model
	Updating Nodes
	Selecting Nodes For Update
	Terminating the Optimization
	BVH Compaction

	Results
	BVH Cost Reduction
	Ray Tracing Performance

	Conclusion and Future Work
	Ing. Jirí Bittner, Ph.D.

