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Summary 

Cooperation of unmanned vehicles is a key multi-agent application 
domain. Autonomous unmanned vehicles (UAV) are capable of 
automated cooperation without needs of a direct user involvement. 
Application areas of the UAVs operation are rapidly evolving in both 
military and civil sector. Market available UAV systems usually rely 
on the human pilot or operator, while the automated flight 
capabilities are limited to follow manually defined waypoints. The 
human operator is responsible for the designed trajectory, its safety 
and detection of potential collisions with another UAVs operating in 
a shared space. In practical application the operator is able to 
simultaneously handle only a few number of UAVs.  

Multi-agent techniques support coordinated fulfilment of globally 
defined goals in a UAV mission. Automated goals allocation among 
available vehicles ensures efficient resources utilization and 
maximize the mission success rate. Integrated collision detection and 
avoidance methods with guarantied behavior support the increase of 
the number of UAVs operating in the mission theatre and allow to 
increase the system autonomy and thus the efficiency of the overall 
UAV system. A single operator is capable to operate multiple UAVs 
with significant increase of the effectiveness and utilization of 
unmanned aerial assets. 

This text introduces a problem of aerial unmanned vehicles 
cooperation and discuss two main components of cooperative UAV 
multi-agent system – task and resource allocation in the mission 
context and cooperative path finding for safe operation in the shared 
space. A novel mission planning and control system is presented. It 
provides a flexibility in advanced mission planning and control 
mechanisms implementation together with an open architecture for 
out-of-the-box UAV system integration.  
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Souhrn 

Koordinace bezpilotních prostředků je jednou z nejdůležitějších 
aplikačních domén v oblasti multiagentních systémů. Autonomní 
bezpilotní prostředky (UAV) jsou schopny automatizované 
spolupráce bez nutné přímé kontroly uživatelem. Oblasti využití 
UAV zahrnují rostoucí počet vojenských i civilních aplikací. Běžně 
dostupné bezpilotní systémy však většinou vyžadují interakci 
s pilotem, či operátorem. Podpora autonomního letu bezpilotního 
prostředku je orientována na průlet uživatelem definovaných bodů. 
Uživatel je však stále zodpovědný za výslednou letovou trasu, její 
bezpečnost, detekci možných kolizí s ostatními UAV operujícími 
v dané oblasti a jejich řešení. Při praktickém využití je operátor 
schopen ovládat jen velmi malé množství bezpilotních prostředků. 

Pomocí multiagentních technik jsou prostředky schopny 
koordinovaně plnit globálně definované cíle mise. Automatické 
rozdělování cílů mezi dostupné prostředky zajišťuje maximální 
možné splnění mise a efektivní využití prostředků. Integrovaná 
detekce a řešení kolizí s garantovanými vlastnosti napomáhá zvýšit 
počet UAV plnících misi ve stejném prostředí. Vysoká autonomie 
těchto prostředků tak zvyšuje celkovou efektivitu UAV systému. 
Jediný operátor je schopen řídit větší množství bezpilotních 
prostředků a tím zlepšit využití UAV systému a jeho celkovou 
efektivitu. 

V tomto textu se seznámíme s problémem spolupráce bezpilotních 
prostředků a představíme dvě hlavní komponenty multiagentního 
systému pro spolupracující UAV – alokaci úkolů a zdrojů v prostředí 
letecké mise a kooperativní hledání cest podporující bezpečný 
provoz ve sdíleném letovém prostoru. Seznámíme se s inovativním 
systémem pro plánování a řízení misí, který umožňuje pružně 
implementovat pokročilé techniky pro plánování a řízení misí a jeho 
otevřená architektura podporuje integraci dostupných UAV systémů. 
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1. Introduction 

The increase of usage of autonomous aerial vehicles (UAV) in the 
real life situations is an increasing trend that can be seen in everyday 
life. The most interesting application areas comprise of security 
operations, border patrol, infrastructure protection, mapping and geo-
referenced screening, or precisian agriculture. 

In most cases, a UAV is remotely operated by a pilot, which is 
responsible for the flight safety. An autonomy of such a UAV is 
reduced to flight towards pre-defined waypoints using on-board 
autopilot. Human in the loop is needed for both - flight control and 
sensor processing. For a large unmanned aerial system (UAS), a 
team of experts is involved in the operation. Such operation teams 
don’t scale well with the number of vehicles; so, a single vehicle is 
usually used in practical operations (optionally with additional one 
autonomously navigating into or out of the mission area).  

Small UAV systems usually operates in the less restricted airspace 
similarly to remote controlled (RC) aircrafts. Such operation is 
restricted by the constraints such as maximal flight altitude, distance 
from populated areas, etc. In many cases (without special approvals 
of flight regulation offices) the line of sight between UAV and 
operator is required during the whole flight, as also an ability to 
manually overdrive the autonomous control of the UAV. In such 
conditions the autonomous operation of the team of UAVs is not 
easily achievable and the commercially available systems are not 
going beyond these limits. 

The operation of multiple UAVs in a shared space needs a trajectory 
conflict detection and resolution mechanism with guarantied (and 
certified) behavior to protect UAVs itself, but also other plains and 
obstacles in the area. Commercially available UAVs has no such 
mechanism implemented at this moment, but an intensive research 
on this topic is performed by many universities as well as industrial 
companies. Legal rules for incorporating UAVs into civilian airspace 
are under preparation in USA and EU. The plan is to allow the UAVs 
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to share this airspace with manned planes by September 2015 in 
USA [1] and during 2016 in Europe [2]. This is a significant step 
towards fully autonomous UAV operations, although the remotely 
piloted UAVs are mostly taken into account at this moment. One of 
the biggest legal issue is the responsibility for any potential damage 
caused by the autonomous UAV operation.  

Scientific and technological enablers of the large scale operation of 
fully autonomous UAV teams in a shared space has to target the 
reduction of the direct human involvement in the three main areas: 
(i) mission planning and maintenance, (ii) flight control and (iii) 
sensor operation. This text provides an overview of the first two 
issues and shows an example of the modern multiple UAV control 
systems. The sensor operations are out of the scope of this text.  

2. Cooperative Multi-agent Systems 

The multi-agent system composed of cooperating mobile agents have 
to focus not only on mission planning, but also on the spatio-
temporal constraints of the operation environment. From the mission 
point of view the system targets an allocation of tasks to agents, 
resource sharing, and coordination between agents during the 
mission execution. A problem of finding a set of non-conflicting 
trajectories for a number of mobile agents is called cooperative path 
finding problem [3], which is complex problem, and therefore the 
state-of-the-art approaches for the cooperative path finding typically 
rely on some heuristic forward-search technique, where A* is often 
the algorithm of choice. Both issues are discussed below in detail. 

2.1. Task and Resource Allocation 

The field of cooperative multi-agent systems relies on research of 
problem solving and planning in decentralized environments [4]. The 
integration of the task refinement (decomposition), allocation and 
local planning enables to explore the planning and allocation 
possibilities taking into account the availability of resources. 
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Classical centralized methods depend on one central planning 
system. Such a system gathers all required input data before the 
planning process takes place and then the plan is generated using 
these data. One of the problems of this approach is the need for real-
time plan updates based on environments and conditions changes 
during the mission. On the other hand, in distributed methods of 
planning, each entity plans its own plan. Cooperation and heading 
towards common goals is done by various methods of the 
negotiation. 

Distributed planning and problem solving usually refer to 
environments where planning, solving, or coordination activity is 
distributed across multiple actors, processes, or sites [5]. Distributed 
planning has been viewed as either planning for activities and 
resources allocated among distributed agents, distributed (parallel) 
computation aimed at plan construction or plan merging activity. 
There are a lot of problem formulations, frameworks and methods 
for distributed planning, i.e.  [6, 7, 8, 9, 10 or 11]. On the other hand, 
multi-agent problem solving is more focused on the coordination and 
interaction of autonomous agents, which is more relevant to the 
dynamic scenarios. 

The multi-agent planning problem is defined as a problem with 
autonomy of the actors (the agents are at least partially autonomous), 
locality of the views (no agent has a full global view of the 
environment, or the system is too complex for an agent to make 
practical use of such knowledge), and a high degree of 
decentralization [12].  

The multi-agent coordination and negotiation problem is targeted in 
literature for more than twenty years. The initial work has been dome 
mainly by Kraus [13] and Osborne [14]. The cooperation of highly 
dynamic and distributed entities (such as UAVs) forms the need for 
flexible and loosely coupled architecture. Such an architecture can be 
found in [5] for a multi-agent cooperation based on task allocation 
and local resource planning. In this architecture agent interactions are 
motivated by cooperative solving of a given problem. The agent 
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community tries to find a solution maximizing social welfare [15] 
similarly to social aspects referred to as comparative advantage in 
economy [16], where a group of individuals cooperates on the 
delivery of a service or goods at a lower opportunity cost than other 
groups. The overall solution cost is minimized using interactions 
between agents – task allocation, delegation and reallocation, where 
the allocation of a task to an agent is represented by a social 
commitment that an agent undertakes [17]. Such a representation 
provides a powerful tool for task execution stability and performance 
in dynamic and/or uncertain environments. 

An example of the task allocation in a UAV scenario is depicted in 
Figure 1. There is a set of dynamic resources and a set of required 
resources for the mission tasks. The multi-agent task and resource 
allocation provides the mapping of available resources to the 
required resources according to dynamic constraints (positions, 
availability and capabilities of the assets) and actual mission needs 
(the number and type of the tasks, priorities and preferred strategies). 

 

Figure 1: An example of a UAV scenario – the mapping of 
resources (UAVs) to the mission requirements for surveillance and 
tracking tasks [18]. 
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The most important dynamic constrain that is often ignored in the 
classical mission planning systems is spatio-temporal limitation – the 
trajectories of the plains that fulfil the allocated tasks need to be 
achievable and collision free. This constrain can be formulated as a 
cooperative path finding problem discussed in the next section. 
Based on these foundations, a novel mission planning and control 
architecture is then presented in Chapter 3.  

2.2. Cooperative Path Finding 

The cooperative path finding is the problem of collision avoidance 
for mobile robots, such as aircrafts, i.e. a problem to find a set of 
non-conflicting trajectories for a number of mobile agents in a shared 
environment. Each agent has defined starting position and desired 
destination (or a sequence of destinations) in the environment with 
(optional) obstacles. For the usual UAV scenarios the environment is 
relatively sparse in opposite to the classical problem setting with 
high number of obstacles and agents, but in general, this problem is 
known to be PSPACE-hard [19]. An illustration of the problem is 
depicted in Figure 2.  

          

Figure 2: An instance of a random scenario with 90 agents in 2D 
grid environment. The start and goal positions of each agents are 
depicted on the left, a solution of the problem is on the right [20]. 
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A solution with guarantied properties can be found by a search of a 
combined joint state-space, which is Cartesian product of the state 
spaces (or more general configuration spaces) of all the agents. Such 
a space is typically searched using some heuristic forward search 
algorithm, such as A* [21]. The performance of forward search 
algorithms depends on a low branching factor of the search space, 
which is in joint-action spaces often exponential in the number of 
agents. Thus the problem is computationally demanding. 

Standley [22] introduced an optimal and complete cooperative path 
finding solver based on A* heuristic search empowered by 
independence detection (independent sub problems identification, 
that is a finding groups of agents that not affect each other) and 
operator decomposition (joint-actions are decomposed to trees of 
single-agent actions for a more efficient pruning). This approach has 
been further extended to an optimal anytime algorithm by Standley 
and Korf [23]. The algorithm has been originally proposed for agents 
moving on a grid, but it can be extended to agents moving on a graph 
as long as the motions of individual agents have identical durations. 

Beside the above presented approaches based on optimal forward 
search, there is also a class of methods for the cooperative path 
finding, such as Push and Swap [24] or BIBOX [25] that do not 
target the quality of the solution, but attempt to constructs any 
feasible multi-agent plan. 

The incremental sampling based family of motion planning 
techniques gained popularity for its ability to quickly find solutions 
for challenging high-dimensional motion-planning problems. The 
most well-known class of sampling-based algorithms are the rapidly 
exploring random trees (RRT) [26] offering probabilistic 
completeness, but with no guaranties of a solution quality. The 
variant of this algorithm operating in a joint-state space can be found 
in [27] or [28].  

Karaman and Frazzoli [29] introduced RRT* - a novel sampling-
based motion planning algorithm that offers a good scalability to 
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large high-dimensional environments, while at the same time it 
guarantees asymptotic convergence to an optimal solution. Such 
approach is able to quickly provide a first solution that is then 
improved until defined execution time limit. The fast response and 
incremental quality increase are valuable properties in multi UAV 
scenarios. 

Janovský in [30] introduces an extension of the RRT* applied to 
multi-agent path planning. The algorithm uses a simulation of 
reactive collision avoidance method ORCA [31] as a part of the 
search tree extensions. The algorithm shows a great improvement of 
instance coverage in limited running time and combines the problem 
solving capabilities of both reactive and planning technique (i.e., it is 
able to find solution to instances, where RRT* or ORCA fails due to 
an environment complexity or a high number of agents).   

Another popular approach to solve the cooperative path finding 
problem is based on discretization techniques for continuous 
configuration spaces, such as state lattices proposed by Pivtoraiko et 
al. [32]. It can be used to model dynamics and find feasible paths in 
wide variety of real-world motion planning problems [33, 34]. The 
main advantage of the state lattice representation is that it is regular 
and thus an environment representation can be made implicit.  

Asynchronous decentralized prioritized planning for cooperative path 
finding [20] is suitable in highly dynamic communication restrictive 
environments. This approach uses no synchronization points during 
the planning and provides a fast convergence to the feasible problem 
solution. The strong advantage of this algorithms is its ability to 
work efficiently even in the dynamic and non-reliable 
communication environment, where the number of cooperating 
agents is not static (agents may arrive and leave the scenario) and the 
communication channels are not stable (i.e., accidental message 
drop-outs). This approach proved to be reliable in the field-flight 
experiments [35] and it is a part of the mission control described in 
the next Chapter. An example of the cooperative paths recorded 
during the field is depicted in Figure 3. 
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Figure 3: Record of the trajectories of four UAVs in a conflicting 
scenario, where x, y is UAV position projected to the ground, z 
corresponds to the altitude of the UAVs [20]. 

3. Mission Control and Planning 

The cooperation of unmanned vehicles can be viewed from two 
different perspectives. The first one is a coordination of independent 
self-interested agents in a shared space. This problem is pretty well 
covered by the solution of the cooperative path finding problem or a 
various collision avoidance systems [36]. There is a lot of interest in 
this perspective by both researchers and official authorities because 
of actual needs for managing the shared civilian airspace. The second 
perspective goes to the autonomous operation of a set of cooperative 
UAVs. It is focused on the innovations of the mission control and 
planning.  
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Traditionally, the UAV mission consist of limited number (two or 
three) of plains simultaneously operating in the mission. Moreover, 
each plain has been controlled by one or more human operators 
responsible for the flight and sensor operations. The classical 
operation scheme consist of (offline) mission planning, (manual) 
allocation of the mission goals to the UAVs, (automated) trajectory 
planning for each plain with (semi-automated) collision detection 
and resolution, and (assisted) monitoring of the execution of the 
mission. On the other hand the requirements for a modern mission 
control system cover not only in-mission and out-mission automated 
flight, but also support for coordinated automated flight during the 
whole campaign. The single-UAV point of view of the classical 
ground stations is shifted to the mission point of view of the 
integrated system.    

The evolution of such system to the fully integrated autonomous 
mission control can be powered by the multi-agent task and resource 
allocation and the cooperative path finding techniques in the closed 
loop with the execution monitoring. An example of the extended 
mission control of the open-source Paparazzi system1 is shown in 
Figure 4. The system is extended by the dynamic allocation 
mechanism that reads the actual state of the mission (status of 
available UAVs, mission tasks achievements, etc.) and provides the 
dynamic allocation of the task to the available UAVs. The trajectory 
generation and control of the plains remain on the Paparazzi ground 
station system [37]. Another example of modern mission control 
system is Tactical AgentFly experimental system2, which is further 
described in the next section.  

                                                      
1 Paparazzi, Open-source hardware and software autopilot project is 
accessible on http://paparazziuav.org 
2 Tactical AgentFly experimental system is accessible on 
http://agents.fel.cvut.cz/tactical 
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Figure 4: An example of the dynamic mission configuration and 
updates during execution in Paparazzi autopilot system [37]. 

3.1. Tactical AgentFly 

Tactical AgentFly is an experimental system developed during the 
series of research projects carried out in Agent Technology Center3. 
During the years, the system grows from the research prototype for 
validation of multi-agent planning algorithms, coordination 
techniques and trajectory oriented research to the high maturity 
cooperative UAV control system ready for the integration with 
various 3rd party UAV control systems4. 

                                                      
3 Agent Technology Center is a part of Department of Computer Science, 
Faculty of Electrical Engineering, Czech Technical University in Prague 
4 Four control systems are reported to be integrated – Paparazzi autopilot 
system (http://paparazziuav.org), MicroPilot (http://www.micropilot.com), 
ArduPilotMega platform (http://ardupilot.com) and Kestrel Flight System 
(http://www.lockheedmartin.com/us/products/procerus/kestrel.html).  
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Figure 5: Tactical AgentFly system general scheme. 

The main purpose of the system is to test and validate theoretical 
research achievements in the both simulation and field experiments 
[38]. The general scheme of the system is illustrated on Figure 5.  

The distributed mission control module is responsible for the task 
and resource allocation based on user input, availability and 
condition of UAVs. Each UAV is controlled by its Aviator module. 
It is responsible for planning and monitoring from the perspective of 
particular UAV and coordination with the others (i.e. cooperative 
path finding). The key integration component is the Embodiment 
with standardized Embodiment Interface. It stands for an instance of 
UAV – simulated or hardware one. It is possible to integrate various 
implementations of simulated UAVs with different level of detail or 
existing out-of-the box UAV control system. All of the modules are 
bi-directly interconnected; so, the command flow propagates from 
the operator to the UAV in a real-time as an execution monitoring 
back from the UAV to the mission control and reported to the 
operator.     

The user perspective is represented by the HMI interface. Such HMI 
provides all the mission information and allows a human operator to 
interact with the system (mainly the mission tasks definition or 
manual overdrive of the allocation and planning). The user 
perspective is depicted in Figure 6. The user experience is the same 
as with classical UAV control systems.  
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Figure 6: User perspective of the Tactical AgentFly system. It 
consist of a set of UAVs and a ground station with interactive HMI, 
mission monitoring screen and mission control software.  

The only change is the ground station that is able to effectively 
control a larger number of UAVs. The intelligent system behind is 
based on discussed task and resource allocation for dynamic mission 
control and cooperative path finding ensuring safe operation in the 
shared space.   

The mission control has been originally developed to allow testing 
and validation of various strategies of multiple UAV cooperation in 
various scenarios. Thus, the architecture is open to introduce a new 
mission objectives and (decentralized) algorithms for planning or 
optimization of the objectives. The system is flexible to cover a large 
scale of the missions, control strategies, planning algorithms and 
scenarios. An example of the surveillance scenario combined with 
tracking is shown in Figure 7. On the left part of the figure a ground 
unit can ask for an aerial visual support using mobile device 
(cooperative tracking task). The unit is traversing a controlled area 
(surveillance task automatically divided to three sectors for three 
UAVs in the middle of the figure); so, the closest UAVs is re-
allocated for the ground unit support while the other two continue to 
monitor the area (automatically divided to the two sectors).  
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Figure 7: Example of the mission. Left – mobile application with 
cooperative GPS tracker. Middle – three segments of the surveillance 
area. Right – record of real-flight trajectories from the field 
experiment. 

Tracking plane gets the highest priority and the other UAVs have to 
adjust the trajectories to avoid conflicts. The tracking is based on the 
position monitoring and the strategy for pursuit-evasion game (the 
record of the trajectories from the field experiment can be seen on 
the right part of the figure).    

4. Conclusion  

The aerial unmanned vehicles cooperation is an interesting research 
topic with many novel application areas. The mission planning and 
control system capable of autonomous task and resource allocation 
with integrated cooperative path finding capabilities provides the 
innovation for the traditional UAV control systems. A single 
operator is capable to operate multiple UAVs in the shared space 
with significant increase of the effectiveness and utilization of 
unmanned aerial system. 
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