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Summary 
 
Technological advances in 3D imaging as well as hardware and 
software facilities have generated enormous growth in both 
theoretical and applied scientific applications, especially over the 
past ten years. New real time applications now available, which 
weren’t just a few years ago, along with advanced camera systems, 
have become a normal part of everyday life. Camera systems are 
used in many fields: In industry for car crash tests and machine 
inspection; in biomechanics combined with EMG devices to analyze 
human movement, such as clinical gait; in sports for material 
research and athletic training analysis, etc.  

In this lecture, multi-camera systems for 3D localization have 
been addressed as useful tools for research and clinical applications 
mainly in medical area. They always provide reliable and accurate 
position determination when there is a free line of sight between the 
object under observation (patient) and cameras. It is also minimally 
annoying for the patient when passive markers are used. Most 
disadvantages of camera-systems can be eliminated through a 
carefully designed environment where measurement is done.  

The lecture summarizes fundamentals of projective 
geometry, the process of camera calibration necessary for further 
measurement used for measuring the position and orientation of 
objects in 3D space and furthermore for movement analysis. 
Practical use of camera systems (including the self-proposed and 
existing BradykAn system) for 3D localization in medical research 
have been presented. It is evident, that 3D localization using 
cameras require solving a number of sub-problems, beginning with 
the design and choice of used components, calibration, 
synchronization, marker detection in each frame, matching of 
markers from different views, tracking the markers in time, 
calculation of spatial coordinates, derivation of characteristic motion 
parameters and creation of applications for routine measurements.  
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Souhrn 
 
Technologický pokrok v 3D zobrazení, stejně jako hardwarové a 
softwarové možnosti, zejména za posledních deset let, přinesly 
obrovský nárůst teoretických a aplikovaných vědeckých aplikací. 
K dispozici jsou nové aplikace pracující v reálném čase, které před 
pár lety nebyly a spolu s pokročilými kamerovými systémy se staly 
běžnou součástí každodenního života. Kamerové systémy se 
používají v mnoha oblastech: v automobilovém průmyslu u 
nárazových zkoušek, strojových kontrol, v biomechanice v kombinaci 
s přístroji EMG pro analýzu lidského pohybu, jako je klinické 
vyšetření chůze, v oblasti sportu pro materiálový výzkum, analýzu 
pohybu při atletickém tréninku, atd. 

Tato přednáška je věnovaná vícekamerovým systémům jako 
užitečným nástrojům pro 3D lokalizaci ve výzkumu a klinických 
aplikacích, zejména v oblasti medicíny. Kamerové systémy poskytují 
spolehlivé a přesné určení polohy, kdy je přímá viditelnost mezi 
zkoumaným objektem (pacientem) a kamerami. Použití pasivních 
značek je méně obtěžující pro pacienta. Většina nevýhod 
kamerových systémů navíc může být odstraněna pomocí pečlivě 
navrženého prostředí, ve kterém se měření provádí. 

Přednáška shrnuje základy projektivní geometrie, proces 
kalibrace kamery potřebné pro měření polohy a orientace objektů v 
3D prostoru a dále pro analýzu pohybu. Jsou prezentovaná praktická 
využití kamerových systémů (včetně vlastního navrženého systému 
BradykAn) pro 3D lokalizaci v lékařském výzkumu. Je zřejmé, že 3D 
lokalizace pomocí kamer vyžaduje řešení řady dílčích problémů, 
počínaje návrhem a výběrem použitých komponentů, kalibraci, 
synchronizaci, detekci značek v každém snímku, přiřazování značek 
z různých pohledů, sledování značek v čase, výpočet prostorových 
souřadnic, odvození charakteristických parametrů pohybu a 
vytváření aplikací pro rutinní měření. 
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1 Introduction 

1.1 Position-sensing techniques  
There are four basic position-sensing techniques: (i) acoustic 
ranging, (ii) mechanical articulated arm, (iii) magnetic field sensor, 
and (iv) optical tracker. Acoustic sensors receive signals which are 
emitted by ultrasonic emitters and determine location via time-of-
flight. Mechanical sensors determine position based on 
measurements of joint angles and kinematics of the device. Magnetic 
sensors measure electrical currents induced in three orthogonal coils 
when the receiver is moved within a magnetic field. Finally, optical 
tracker systems track the position of one or more markers and use 
geometric triangulation to determine the location of these markers. 

In this lecture, we deal with optical tracking systems because 
they provide reliable and accurate position determination for different 
applications where there is always a free line of vision between 
markers and cameras. The object is monitored from a distance by 
one or several cameras, and markers, attached to the part of object 
being measured. Further, optical trackers do not involve any 
magnetic field for determination of position data, and therefore do not 
incur any deformation of data in the presence of metallic structures. 
Most disadvantages of optical tracking can be eliminated by carefully 
designing the environment of the system.  

2 Camera model 

This part of the lecture is devoted to a brief discussion of some basic 
three-dimensional (3D) graphics concepts and terminology based on 
pinhole camera model. It gives a geometric aspect of automated 
measurement of 3D world using 2D image information obtained by 
cameras.   

The pinhole camera is the simplest imaging system for 
modeling cameras in the shape of a closed box with a small hole in 
one of the sides. Light with an image passes through this small hole 
and inverts a projected image on the opposite side of the box (see 
Figure 2.1).  
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Fig. 2.1: The pinhole camera. 

 
Let’s introduce a coordinate system as in Figure 2.2. Let the 

origin of the coordinate system   be located at the center of 

projection (the focal point), and let the   axis coincide with the optical 

axis perpendicular to the image plane  . The distance from the focal 
point to the image plane is called focal length  . Similar triangles give 

      
 

 
  and       

 

 
. (2.1) 

 

 

Fig. 2.2: Pinhole imaging model. Perspective projection equations 

are derived from the collinearity of the point   (     ) (on the 

object), its image    (     ) (on the image plane  ) and the center 

of projection   (origin of the coordinate system).  

 
Notice that there is a negative sign in formulae (2.1). This is 

because the image of an object appears to be upside down on the 
image plane. To eliminate this effect, we can simply flip the image 
(     )  (       ). This corresponds to placing the image plane in 
front of the center of projection, making a frontal pinhole camera 
model, illustrated in Figure  2.3. In this case, the image of the point 
  (     ) is given by 

     
 

 
  and      

 

 
. (2.2) 
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Fig. 2.3:  Frontal pinhole imaging model. The image plane   is at the 

distance   in front of the center of projection. 

 
In practice, the size of image plane   is usually limited; 

hence not every point   in space will generate an image    inside the 
image plane. The field of view limiting the image plane is defined as 
         (  ⁄ ), where   is the side of the image sensor (CCD)

1
 

and   is the focal length.  
Adopting the frontal pinhole camera model introduced above, 

we see that point   represented by vector   [     ]  is projected 

into the image plane at point    represented by vector    [     ] . 
Then equations (2.2) can be written in matrix form  

 [
  
  

]  
 

 
[
   
   

] [
 
 
 
]. (2.3) 

This relationship using homogenous coordinates  ̃  

[       ]  and   ̃  [       ] , can be written as 

 [
  

  

 

]  
 

 
[
    
    
    

] [

 
 
 
 

]. (2.4) 

The 3×4 matrix in equation (2.4) is called a camera matrix 
and can be decomposed into two matrices 

 [
    
    
    

]  [
   
   
   

] [
    
    
    

]    [         ]. (2.5) 

The second matrix [         ] is often referred to as a 
standard or canonical projection matrix. The simplified expression of 
equation (2.4) is then 

                                                      
1
 In the case of flat image plane, the angle θ is always less than 

180°. 
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    ̃    [         ] ̃. (2.6) 

 
Since the coordinate   (depth of the point  ) is usually 

unknown, we may simply write it as an arbitrary positive scalar   

    ̃    [         ] ̃. (2.7) 

Equation (2.7) expresses coordinates of point   in the 
camera coordinate system introduced above. To continue, we will 
express point   in a different coordinate system called the object 

coordinate system. Let superscript   denote the camera coordinate 

system and similarly superscript   the object coordinate system (see 
Figure 2.4).  

 

 

Fig. 2.4:  Using different coordinate systems for the camera and the 
object. 

 
If vector   

  refers to point   represented in coordinate 

system  , then the same point   is represented in object coordinate 

system   by  

   
         

 
 
 , (2.8) 

where   is a 3×3 rotation matrix that rotates coordinate system   
through at counterclockwise angles  ,  , and   to the position where 
its basis vectors are parallel with the basis vectors of the 
coordinating system  . Vector    

  represents the origin of the camera 
coordinate system with respect to the object coordinate system. 
Alternatively the vector   

  can be expressed as 

   
   (      

 
 

 ). (2.9) 
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Note: The rotation matrix is an orthonormal matrix, therefore, the 

inverse of a rotation matrix is its transpose (      ). 
In block form using homogenous coordinates 

 [
  

 

 
]  [

     
 

     
] [

  
 

 
], (2.10) 

Analogously, the vector   
  can be expressed in the camera 

coordinate system by the following transformation 

 [
  

 

 
]  [

      
 

     
] [

  
 

 
], (2.11) 

   
 ̃     

 ̃ , (2.12) 

where   is referred as a homogeneous transformation matrix which 
contains what are known as camera extrinsic parameters which 
indicate external position and orientation of the camera in the 3D 
world (in our case with respect to the object coordinate system).  

Based on knowledge of vector   
 ̃  and homogeneous 

transformation matrix  , we can express vector   ̃ (representing the 

projection of point   into the image plane) by substituting equation 

(2.12) into the equation (2.7), taking into account that  ̃ in (2.7) is the 

same as   
 ̃  in (2.12). An overall geometric model for an ideal camera 

can be described as: 

    ̃    [         ] [
      

 

     
]   

 ̃ . (2.13) 

With multiplication of the canonical projection matrix 
[         ] and the homogeneous transformation matrix we can 
simplify the equation above  

    ̃  [           
 ]   

 ̃      
 ̃ , (2.14) 

where  

 [           
 ]     (2.15) 

is what we call a projection or camera matrix. Then the simplified 
expression of the equation (2.14) is  

    ̃      
 ̃ . (2.16) 

2.1 Intrinsic parameters of the camera 
The ideal model of a camera defined by the equations above is 
specified relative to a particular position of the image plane, centered 



 

11 

at the optical axis. Projected points are in that case expressed in so 

called normalized coordinates, relative to the principal point (     ), 

where the optical axis intersects the image plane (see Figure 2.5). In 
practice, using for example a digital camera the positions of 
projected points are obtained in terms of pixels and the origin of the 
image coordinate system is typically in the upper-left corner of the 
image. In order to extend the ideal camera model (2.16) taking into 
account pixel coordinates, we need to specify the relationship 
between the coordinate system centered at the principal point and 
the pixel array with an origin at the corner of the image.  

Let’s first specify the units along the   and   axes. If the 

normalized coordinates (     ) are specified in terms of metric units 

(e.g. millimeters), and (     ) are scaled versions that correspond to 
co-ordinates of the pixel, then the relationship can be described by a 
scaling matrix  

 [
  

  
]  [

   
   

] [
  
  

], (2.17) 

that depends on the size of the pixel (in metric units) along the   and 

  directions (see Figure 2.5). 

 

Fig. 2.5:  Transformation from normalized coordinates to coordinates 
in pixels. 

When    and    are equal, each pixel is square, but in 

general, they can be different, and then pixels are rectangular. After 
scaling the normalized coordinates (     ), pixel coordinates (     ) 
are still specified relative to the principal point and may have a 
negative dimension, whereas pixel coordinates are conventionally 
specified relative to the upper-left corner. Therefore, we need to 
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translate the origin of the frame to the upper-left corner (see Figure 
2.5) 

 
       

       
, (2.18) 

where (     ) are the coordinates of the principal point relative to the 

corner given also in pixels.  
 The above described steps (scaling and translation) can be 
connected together and can be written in a homogenous 
representation as  

 [
 
 
 
]  [

     

     

   

] [
  
  
 

], (2.19) 

where   and   are again expressed in pixels. In this case, when pixel 
shape is not rectangular a more general form of transformation can 
be considered, 

 [
 
 
 
]  [

      

     

   

] [
  
  
 

], (2.20) 

where    is called skew factor and is proportional to       ( ), 

where   is angle between the axes    and   . Typically, the angle    
is very close to 90°, and hence    is very close to zero. 

The matrix is therefore 

    [
      

     

   

], (2.21) 

then 

   ̃      ̃. (2.22) 

By combining the previous camera model (see equation 
2.16) with the scaling and translation of the image coordinate system 
represented by matrix   , a more realistic model of transformation 
between a 3D point and its image can be obtained. A homogenous 
representation of the transformation is then 

    ̃        
 ̃ . (2.23) 

    ̃  [         
 ]   

 ̃ , (2.24) 

where 
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        [
      

     

   

] [
   
   
   

]  [
        

      

   

] (2.25) 

is an upper triangular     matrix collecting all the parameters that 
are intrinsic to a particular camera, and is therefore called the 
intrinsic parameter matrix or calibration matrix of the camera. Then 
the projection or camera matrix (2.15) can be rewritten as  

    [         
 ], (2.26) 

including the intrinsic parameters of the camera, too. The projection 
equation will be 

    ̃     
 ̃ . (2.27) 

The process where intrinsic parameters of a camera (i.e. 
components of the calibration matrix  ) are calculated is called 
camera calibration.  

2.2 Image distortion 
The pinhole camera model is an idealized representation for physical 
imaging systems, performing projective transformations between 
object points and image plane projections. For real applications this 
ideal situation will not hold, since it is very difficult or impossible to 
construct an optical system in which all lenses are perfectly parallel, 
with their optical centers perfectly aligned and their curvature 
meeting the required form. As a result, the deviations may be several 
pixels relative to the ideal model. For example, in Figure 2.7 the 
image has severe radial distortion. In practice image distortion can 
be expressed as a transformation of the pinhole projection 
estimation, mapping an ideal (distortion-free) image point defined by 
vector   ̃ into a real distorted location  ̃  (see Figure 2.6). 

 

Fig. 2.6: Schematic complete imaging system model including 
projection and distortion transformations.  
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Fig. 2.7:  Radial distortion of the image. 

3 Multiply view geometry 

In this lecture, we examine relations that arise when a single image 
is captured by two or more cameras. The geometric setting for two 
cameras – epipolar geometry - is illustrated in Figure 3.1. Note, that 
the geometry of multiple views may result from views acquired 
simultaneously as mentioned above, as in the case of stereo images, 
or from views acquired sequentially, for example by a single camera 
moving relative to the static image. These two situations are 
geometrically equivalent and will not be differentiated further.  

The epipolar geometry is independent of the scene structure, 
and only dependent on the internal parameters of cameras and their 
relative position. 

  

Fig. 3.1:  The geometry of two cameras showing the epipolar 
geometry. 
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Suppose point   in 3D space is imaged at    in the first view 

and    in the second view. As shown in Figure 3.1 image points    

and   , point  , and camera centers    and    are coplanar. We 
denote this plane by   and call it the epipolar plane. The line joining 
the two camera centers is called the baseline.  

Suppose now that we know   , and need to determine the 

corresponding point    in the second image. The plane   is 
unambiguously determined by the rays defined by    and the 
baseline. Then, we need only search along the intercept of the 
epipolar plane   and the second image plane for the corresponding 

point   . If we call this line of intercept the epipolar line (marked    in 
Figure 3.1), we need only search along this line for the 
corresponding point    (we reduce the dimensionality of the search 

space for correspondence between    and    from 2D to 1D). 

3.1 Fundamental matrix 
The fundamental matrix is an algebraic representation of epipolar 
geometry. It can be derived from the mapping between a point in one 
image to its corresponding epipolar line in the other image (     ) 
in terms of the known projection matrices    and    of the left and 
right cameras. Moreover the fundamental matrix satisfies the 
condition that for any pair of corresponding points    and    in the 
two images 

   ̃
    ̃   , (3.1) 

since    lies on the epipolar line   , i.e.   ̃
   ̃   . 

The importance of the relation (3.1) is that it enables the 
fundamental matrix   to be computed from image correspondences 
alone (without camera matrices). In general at least 7 
correspondences are required to uniquely compute   [9]. 

3.2 Camera calibration 
Camera calibration is a process of determining intrinsic and extrinsic 
parameters of a camera. In many cases, overall performance of a 
camera system depends strongly on accuracy of calibration. Several 
methods are presented in the literature [2], [3], [4], [5], [7], [12] and 
basically they can be thought of as a two-stage process: 

1. Estimating projection matrix   that represents a complete 
viewing operation (2.26) 
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2. Estimating the intrinsic and extrinsic parameters from  . 
This stage may not be necessary in some applications, e.g. 
in the case of stereo vision. 

 
There are two main approaches to estimating  , 1) with 

known and 2) with unknown scenes. 
In the case of a known scene, a set of 3D points and 

corresponding 2D image points are used in order to define a linear 
equation system, which provides elements of  . The scene contains 
so called calibration objects or targets, whose shapes and 
dimensions are a priori known. This approach is also called as 
photogrammetric calibration.  

The approach with an unknown scene does not require 
explicitly known calibration objects, but the correspondence between 
image points in different views must be established and intrinsic 
camera parameters would not change during calibration.    

a)    b)    

 Fig. 3.2:  a) Camera calibration from a known scene; b) Camera 
calibration from an unknown scene. 

3.3 Markers  
Markers are attached to an object (e.g. human body) and, based on 
their positions the anatomical landmark points are determined.   

Markers should keep their relative positions to anatomical 
landmark points constant during measurement. They should also be 
lightweight and minimally influence the analyzed object. In image-
based analysis, markers must be seen by cameras otherwise their 
position cannot be determined.  

We can basically distinguish two types of markers - active 
and passive. Active markers emit light. Their advantage is that 
identification is easy. The disadvantage is that active markers require 
an energy source.  
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Passive markers have the important advantage that they 
incur almost no discomfort for the human or animal, as they are 
lightweight and need no wired connection. The drawback of passive 
markers is that they need to be identified on each frame because 
relative positions of the markers may change as a result of 
displacement. When trajectories of two markers cross each other, 
further identification of each marker after crossing requires a priori 
knowledge of the studied movement.  

The form of a marker must be selected so that its projection 
to the sensor plane has no effect to the accuracy of measurement. It 
follows that the shape of a marker should result in a circular 
projection. For 3D applications spherical shape is satisfactory.  

3.4 Positional sensitivity of the optical 
system 

Choosing a camera for an optical system determines only part of its 
capability. Geometric configuration of the cameras and the observed 
object also has a profound effect on the results. Positional sensitivity 
of the system is determined by angular resolution of the optical 
sensors due to the finite number of sensing elements, the distance 
between the investigated point on the observed object and the 
sensor, and on the geometric configuration of the optical sensors. 
Angular resolution is determined by the field of view of the sensor 
and resolution of measurements on the image plane.  

For maximum accuracy, the cameras should be as distant as 
possible from each other and nearly at right angles to one another. 
Unfortunately placing the cameras too far apart may cause another 
problem because all the cameras must have a view of the 
investigated point in order to compute its 3D position. 

4 3D measurements using cameras in 
practice 

4.1 Bradykinesia analysis  
Bradykinesia is the leading symptom in Parkinson´s disease (PD), 
crucial for diagnosis and for estimating functional disability of 
patients, and for which several clinical rating scales are used [6]. 
However, these rating scales are based on subjective evaluation 
expressed on an ordinal scale. Such evaluation fails not only to 
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cover severity nuances associated with bradykinesia, but also to 
monitor its progression in time. Therefore, a camera system 
BradykAn was developed in cooperation with the Department of 
Neurology and Clinical Neuroscience Centrum 1st Faculty of 
Medicine and General Teaching Hospital in Prague.  

During the measurement, the 2D positions of the reflective 
markers are automatically found in the image sequences (from both 
cameras), and the 3D positions of markers are computed within a 
half millimeter of accuracy. The 3D movement of the markers 
(fingers) is subsequently processed and parameters characterizing 
given movements are computed (see Fig. 4.1).  

 

 

Fig. 4.1:  BradykAn: contactless 3D capture of finger tapping 

4.2 Gait analysis  
Gait analysis is used to evaluate progress of patients and the 
effectiveness of their medical treatment. Patients show unusual 
patterns of gait because of physical deformities, irregular rotation of 
leg joints, and muscle tone issues.  

Patients are measured with passive markers placed on the 
specific parts of the body. The coordinates of each marker are 
captured and a 3D model of each patient is created. Angle, velocity, 
cadence and other variables are derived from the data. 
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Fig. 4.2: Specialized gait laboratory at the Department of Pediatric 
Orthopedics in Graz University Hospital (left) using Vicon motion 

capture system with ten cameras (right). 

4.3 Camera systems in automotive industry 
Multi-camera systems offer significant advances in measurement 
capabilities for crash test facilities in the automotive industry. These 
systems are fast, and provide results that document all test results in 
accordance with regulatory requirements. In car crash tests, both 
movement and deformations on dummies and on the actual car parts 
need to be analyzed. Crash tests are taken under controlled 
conditions with markers applied to parts that are of interest. High-
speed cameras are used to ensure an accurate record of fast 
movements (typically, 1000 frames/s or more is used). Cameras are 
used both off-board and on-board. 

    

Fig. 4.3:  Multi-camera measuring system for dynamic capture of 
engine movements or movements of any fixed bodies (left). 

Mounting frame for car reference points on engine block and vehicle 
(right) [1]. 
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