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Summary

Łukasiewicz logic is an important many-valued generalization of clas-
sical logic. Łukasiewicz calculus based on MV-algebras operates with
the continuum of truth values, which can capture a rich variety of phe-
nomena related to vagueness and uncertainty. States on MV-algebras
express axiomatically the notion of the average truth value of a for-
mula. It was proved that every state can be represented by an in-
tegral with respect to a unique regular Borel probability measure on
the spectral space of the MV-algebra. Game theory acted as one of
the stimuli for the research in states and measures on MV-algebras.
In the lecture we survey main results about game-theoretic models on
MV-algebras. In particular, we show that Łukasiewicz calculus repre-
sents a uniform frame for the study of most types of coalition games
and their solutions. We discuss an open problem, which concerns exis-
tence of finitely-supported mixed strategy equilibria in the games with
payoffs expressed as formulas in Łukasiewicz logic.
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Souhrn

Łukasiewiczova logika je důležitým vícehodnotovým zobecněním kla-
sické logiky. Kontinuum pravdivostních stupňů umožňuje v Łukasiewic-
zově kalkulu, který je založen na MV-algebrách, modelovat pestrou
třídu fenoménů souvisejících s vágností a nejistotou. Stav na MV-
algebře je axiomatickým vyjádřením průměrné pravdivostní hodnoty
formule. Platí, že každý stav lze reprezentovat integrálem vzhledem
k jednoznačně určené regulární Borelovské pravděpodobnostní míře na
spektrálním prostoru MV-algebry. Jedním ze stimulů k výzkumu stavů
a měr na MV-algebrách byla i teorie her. V přednášce shrneme hlavní
výsledky v oblasti modelů teorie her na MV-algebrách. Ukážeme, že
Łukasiewiczův kalkul představuje jednotný rámec pro studium většiny
koaličních her a jejich řešení. Zmíníme i jeden otevřený problém, který
se týká existence smíšených rovnovážných strategií s konečným nosičem
pro hry, v nichž je užitek modelován formulemi Łukasiewiczovy logiky.
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1 Łukasiewicz calculus
Łukasiewicz logic is among the non-classical logical systems whose rapid
development was made possible by current advances in mathematical
fuzzy logic (see Hájek’s book [11]) and theory of MV-algebras [8], which
provide an algebraic semantics of Łukasiewicz logic. Unlike boolean
logic based on values 0 and 1, Łukasiewicz logic evaluates formulas in
the whole real unit interval [0, 1]. Enlarging the scope of truth valua-
tions opens a surprisingly vast field for mathematical discoveries [18],
for example:

• Γ functor provides a categorical equivalence between MV-algebras
and unital lattice ordered abelian groups having a distinguished
order unit.

• Every free finitely generated MV-algebra is isomorphic to the
MV-algebra of the so-called McNaughton functions, which are
many-valued counterparts of boolean functions.

• Existence of normal forms of Łukasiewicz formulas, which is based
on the algebraic-geometric machinery of regular triangulations of
the unit cube.

• There exists a one-to-one correspondence between averaging pro-
cesses (states) of an MV-algebra and regular Borel probability
measures on the spectral space of the MV-algebra.

Łukasiewicz calculus was employed to capture several interesting
game-theoretical problems, such as Ulam game [16], de Finetti coher-
ence criterion [18], and the Gile’s game [9]. The main aim of this lecture
is to promote the use of Łukasiewicz calculus in game theory farther:
we will show that its tools can be successfully applied to model selected
cooperative games (Section 4) and some strategic games (Section 5).

2 MV-algebras
MV-algebras were introduced by Chang [7] as the equivalent algebraic
semantics for the infinite-valued Łukasiewicz calculus. In this sense
MV-algebras play the same role in Łukasiewicz logic as boolean algebras
play in classical two-valued logic.

Definition 2.1. An MV-algebra is an algebra ⟨M,⊕,¬, 0⟩ with a bi-
nary operation ⊕, a unary operation ¬ and a constant 0 such that
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the reduct ⟨M,⊕, 0⟩ is an abelian monoid and the following equations
hold true for every a, b ∈ M :

¬¬a = a,

a⊕ ¬0 = ¬0,
¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

We put
1 = ¬0, a⊙ b = ¬(¬a⊕ ¬b).

For any two elements a, b ∈ M we write

a ⪯ b if ¬a⊕ b = 1.

The relation ⪯ is a partial order over M . Further, the operations ∨,∧
defined by

a ∨ b = ¬(¬a⊕ b)⊕ b, a ∧ b = ¬(¬a ∨ ¬b),

respectively, make the algebraic structure ⟨M,∧,∨, 0, 1⟩ into a distribu-
tive lattice with bottom element 0 and top element 1. We say that M
is semisimple whenever for every n ∈ N and every a, b ∈ M such that⊕n

i=1 a ⪯ b, we have a⊙ b = a.

Example 2.1 (Standard MV-algebra). The basic example of an MV-
algebra is the standard MV-algebra, which is the real unit interval [0, 1]
equipped with operations

a⊕ b = min(1, a+ b), a⊙ b = max(0, a+ b− 1), ¬a = 1− a.

The partial order ⪯ of the standard MV-algebra coincides with the usual
order of reals ≤ from the unit interval [0, 1].

Example 2.2. Every boolean algebra ⟨A,∨A,∧A,¬A, 0A, 1A⟩ becomes
an MV-algebra upon setting ⊕ = ∨ = ∨A, ⊙ = ∧ = ∧A, ¬ = ¬A,
0 = 0A, and 1 = 1A.

MV-algebras generalize boolean algebras in the following sense [8,
Corollary 1.5.5]: an MV-algebra M is a boolean algebra if and only
if the operation ⊕ satisfies a ⊕ a = a, for every a ∈ M . Hence MV-
algebras are particular non-idempotent generalizations of boolean al-
gebras. Among other non-boolean algebraic models are orthomodular
lattices used in quantum logics [22]. However, by contrast with quan-
tum structures, MV-algebras are always distributive lattices.
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Let X be a nonempty set. The set [0, 1]X of all functions X → [0, 1]
becomes an MV-algebra if the operations ⊕,¬, and the element 0 are
defined pointwise. The corresponding lattice operations ∨,∧ are then
the pointwise maximum and the pointwise minimum of two functions
X → [0, 1], respectively.

Definition 2.2. A clan over a nonempty set X is a collection MX of
functions X → [0, 1] such that the zero function 0 is in MX and the
following conditions are satisfied:

(i) if a ∈ MX , then ¬a ∈ MX ;

(ii) if a, b ∈ MX , then a⊕ b ∈ MX .

In particular, the collection MX of all continuous [0, 1]-valued functions
over a compact Hausdorff space X is a clan. Since the space X is
completely regular, this clan is separating: for every pair of different
points x, y ∈ X we can find a ∈ MX such that a(x) ̸= a(y).

It turns out that clans of [0, 1]-valued continuous functions over
some compact space are, in some sense, the most general examples of
MV-algebras. This fact can be viewed as a generalization of Stone’s
representation theorem for boolean algebras, which says that every
boolean algebra is isomorphic to an algebra of sets.

Theorem 2.1. Let M be an MV-algebra. Then the following are
equivalent:

(i) M is semisimple.

(ii) There exists a compact Hausdorff space X and a separating clan
MX of continuous functions over X such that M ≃ MX .

One of the most important examples of separating MV-algebras is
the clan of McNaughton functions over [0, 1]n for some n ∈ N. We say
that f : [0, 1]n → [0, 1] is a McNaughton function whenever f is

(i) continuous;

(ii) piecewise linear;

(iii) with each linear piece having Z coefficients.

By Mn we denote the MV-algebra of all n-variable McNaughton func-
tions.
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3 States
Mundici [17] introduced states on MV-algebras with the intent on mod-
eling average truth values of Łukasiewicz formulas.

Definition 3.1. Let ⟨M,⊕,¬, 0⟩ be an MV-algebra. A state on M is
a function s : M → [0, 1] satisfying the conditions s(1) = 1 and

s(a⊕ b) = s(a) + s(b) (1)

for every a, b ∈ M such that a⊙ b = 0.

The condition (1) means additivity with respect to Łukasiewicz sum
⊕ since the requirement a ⊙ b = 0 generalizes disjointness of a pair of
elements in a boolean algebra. Hence states are faithful analogues of
finitely-additive probability measures. Indeed, every finitely additive
probability on a boolean algebra is a state as a special case of the above
definition. In particular, every Borel probability measure is a state as
well.

Proposition 3.1 ([17]). For every state s on an MV-algebra M we
have:

(i) s(0) = 0;

(ii) s(a⊕ b) + s(a⊙ b) = s(a) + s(b) for every a, b ∈ M ;

(iii) s(a ∨ b) + s(a ∧ b) = s(a) + s(b) for every a, b ∈ M ;

(iv) If a, b ∈ M are such that a ⪯ b, then s(a) ≤ s(b).

Example 3.1. A trivial example of a state on any MV-algebra M is
a homomorphism of M into the standard MV-algebra [0, 1]. This applies
specially to the algebra of n-variable McNaughton functions Mn. Let
x ∈ [0, 1]n. Then the evaluation mapping

sx(f) = f(x), f ∈ Mn

is a state.

Example 3.2. More generally, let µ be a Borel probability measure in
the unit cube [0, 1]n. Then the mapping

sµ(f) =

∫
[0,1]n

f dµ, f ∈ Mn

is a state on Mn.
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The purely formal resemblance of states to probabilities suggested
by Proposition 3.1 and Examples 3.1-3.2 is not accidental. All states
on semisimple MV-algebras, which are identified with separating clans
of continuous functions, arise as integrals w.r.t. Borel probability mea-
sures: this was proved independently by the author and Panti.

Theorem 3.1 ([12, 20]). Let MX be a separating clan of continuous
[0, 1]-valued functions over a compact Hausdorff space X. If s is a state
on MX , then there exists a unique regular Borel probability measure µ
on X such that

s(a) =

∫
X

a(x) dµ(x), a ∈ MX . (2)

The integral representation of s can be generalized to additive mappings
that are not necessarily normalized and positive. The following result,
which follows from Jordan decomposition property, appears in [14].

Theorem 3.2. If s : MX → R is a bounded mapping additive in the
sense of (1), then there exists a unique regular Borel measure µ such
that (2) is satisfied.

4 Coalition games on MV-algebras
A mathematical model of the cooperative game in a coalitional form
is due to von Neumann and Morgenstern, who derived the coalition
function from the minimax value of the strategic game. However, most
contemporary researches conceive the (transferable utility) coalition
game as a primitive concept without consideration for its relation to
any strategic game. Specifically, let X = { 1, . . . , n } be a finite set
of players. Each subset A of X is said to be a coalition. We define
a coalition game to be a function

v : 2X → R such that v(∅) = 0. (3)

The real number v(A) is interpreted as the amount of utility available
to the players in A, disregarding actions of all the remaining players in
coalition X \A. A payoff distribution is a real n-dimensional vector x =
(x1, . . . , xn), each of which coordinates xi represents a payoff imputed
to player i ∈ X. It is usually required that every payoff distribution x
must be feasible, that is,

∑
i∈A xi ≤ v(A) for each A ⊆ X.

Which sets of payoff distributions are likely to arise in coalition
games? Let G be a class of coalition games. A solution (on G) is
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a set-valued function
σ : G → 2R (4)

sending each game v ∈ G to a set of payoff vectors σ(v) in Rn. For
example, let G be the set of all coalition games with the fixed player
set X = { 1, . . . , n }. Then the solution σ on G defined by

σ(v) =

{
x ∈ Rn

∣∣∣∣∣ x feasible and
∑
i∈X

xi = v(X)

}
(5)

is said to be the core [21, Chapter 3]. Other criteria of economic ratio-
nality lead to different solution concepts σ, such as the prenucleolus or
the Shapley value [21, Chapter 6 and 8].

What is the relevance of cooperative games to MV-algebras and
their states? The definition of coalition game (3) can be relaxed in
several ways. We will focus on the generalizations that make possible:

(i) The formation of more general coalitions than those modeled by
subsets A ⊆ X.

(ii) The involvement of a high number (theoretically infinite) of play-
ers in the game.

Both (i) and (ii) are the game properties expressible by replacing the
boolean algebra of all coalitions with an MV-algebra. In particular,
the clans (Definition 2.2) are the coalitional structures enabling us to
represent intermediate membership of players in coalitions. Hence the
following definition makes sense.

Definition 4.1. Let X be a set of players and MX be a clan over X.
A (coalition) game on MX is a bounded function

v : MX → R such that v(0) = 0.

The class of games on MV-algebras incorporates most classes of
coalition games studied in the game-theoretic literature during past
decades.

• Aubin’s games with fuzzy coalitions. Aubin considered finite player
set X = { 1, . . . , n } together with the unit cube MX = [0, 1]n.
Each element a = (a1, . . . , an) ∈ [0, 1]n is called a fuzzy coalition,
where ai is thought of as a partial degree of membership of player
i ∈ X in the fuzzy coalition a. The cube [0, 1]n can be identified
with the clan of all [0, 1]-valued functions over the player set X.
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A game with fuzzy coalitions is then a bounded real function on
[0, 1]n. Such an extension of coalition games from 2X to the cube
[0, 1]n is based on the idea of convexification, which is ubiquitous
in game theory. In fact, we may view the set of all coalitions 2X

as the set of all extreme points of the set of all fuzzy coalitions in
the cube [0, 1]n. Hence each fuzzy coalition is in the convex hull
of classical coalitions. For example, Owen used this idea to lift
a coalition function (3) from 2X to [0, 1]n — by way of a multilin-
ear interpolation — in order to facilitate the computation of the
Shapley value. Games with the finite player set and the possibil-
ity of fuzzy coalition formation have been subject to the growing
research — see [2] for a first-hand account.

• Aumann’s ideal coalitions. Relaxing the finiteness assumption,
Aumann and Shapley [1] investigated games with the player set
X = [0, 1]. The coalition game becomes a (non-additive) bounded
real function on Borel subsets of [0, 1]. Strange as it may seem,
the continuum of players models games with many homogeneous
individuals, each of which has negligible impact on the overall
outcome of coalitional behavior. The same authors also came up
with the concept of ideal coalitions, which they identified with
Borel measurable functions X → [0, 1]. Clearly, the set of all
ideal coalitions forms a clan.

• Butnariu-Klement’s games on tribes. Butnariu and Klement [3]
considered tribes not necessarily containing all the ideal coalitions
and they generalized the Aumann-Shapley construction of the
value operator to a broader class of coalition structures.

What is a payoff distribution in the framework of coalition games
on MV-algebras? Let v be a game on a clan MX over a player set X.
For the time being suppose that v is nonnegative and v(1) = 1. The
feasibility requirement means that any candidate for a payoff distri-
bution, which is just a mapping m : MX → R defined on coalitions
a ∈ MX , ranges in the unit interval [0, 1] only. Moreover, any payoff
distribution m should fulfill the additivity condition (1), that is, the
payoff m(a ⊕ b) attributed to two disjoint coalitions a, b ∈ MX equals
the total of the two coalitions’ payoffs.

Clearly, every state s on MX (Definition 3.1) meets both the feasi-
bility and the additivity condition. The restriction to the [0, 1]-valued
payoffs may, however, seem artificial. This leads to the following con-
cept of payoff distribution.
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Definition 4.2. Let MX be a clan over a player set X. A payoff
distribution is a bounded function m : MX → R satisfying (1) for every
a, b ∈ MX .

Every payoff distribution m among coalitions in MX induces a pay-
off distribution µ among the players in X such that m(a) is the average
value of the payoff µ with respect to the participation rates a(x) of
players x ∈ X: this is the content of Theorem 3.2, which says that

m(a) =

∫
X

a dµ.

Once knowing the structure of payoff distributions, we can start in-
vestigating solution concepts for games on MV-algebras. Given a coali-
tion game v on MX , the core of v is defined to be the set of payoff
distributions

C(v) = {m | m(a) ≤ v(a) for every a ∈ MX and m(1) = v(1) } . (6)

In words, the core is the set of all feasible payoff distributions that are
simultaneously feasible and Pareto efficient.

Most core solution concepts (the classical core (5), the Aubin’s core,
the Butnariu-Klement’s core etc.) are obtained as special cases of
(6), which demonstrates the unifying role of MV-algebras in coalitional
game theory. In the series of papers we have elaborated on the selected
game-theoretic problems from the MV-algebraic perspective:

• Generalized Möbius transform [14];

• Core of games on clans [13];

• Existence of value operator [4];

• Bargaining schemes [5].

5 Strategic games with McNaughton functions
Imagine the following two-person game [15], which is a continuous vari-
ant of the well-known matching pennies [19]. The action of each player
(Alice and Bob) consists in selection of a real number, x and y, from the
unit interval [0, 1]. The choices are made secretly and independently,
the players try to maximize their expected utility. The payoff of Alice
is 1000 · |x− y| euros, while Bob gains 1000 · (1− |x− y|) euros. What
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is the maximum price p Alice is willing to pay for the participation in
this game?

The situation can be described as a two-player constant sum game,
where the payoff functions are

f1(x, y) = |x− y| and g1(x, y) = 1− |x− y|.

Interestingly, both f1 and g1 are 2-variable McNaughton functions since
they correspond to the Łukasiewicz formulas

(X ⊙ ¬Y )⊕ (¬X ⊙ Y ) and (X ⊕ ¬Y )⊙ (¬X ⊕ Y ),

respectively, where the former is known as the Chang distance [8] and
the latter is its negation. Other example leading to utilities described by
McNaughton functions is the version of a game called love and hate [6]
in which the payoff function of the first player is

f2(x, y) = min(|x− y|, 1− |x− y|)

and the second payoff function is defined as g2(x, y) = 1− f2(x, y), for
every x, y ∈ [0, 1].

This motivates the investigation of a general two-person (Alice and
Bob) constant sum game such that:

• The strategy space of each player is the interval [0, 1].

• The payoff function of Alice is an arbitrary McNaughton function
f ∈ M2, the payoff function of Bob is given by g = ¬f .

• A pure strategy is a point in [0, 1] and a mixed strategy is a prob-
ability measure defined on Borel subsets of [0, 1]. Every pure
strategy x ∈ [0, 1] can be identified with the Dirac measure δx
and conversely.

The resulting game is denoted by Gf . When Alice and Bob play a pair
of mixed strategies (µ, ν), the expected payoff of Alice is

sf (µ, ν) =

∫
[0,1]2

f d(µ× ν).

We say that a pair of mixed strategies (µ∗, ν∗) is a Nash equilibrium of
the game Gf if

sf (µ, ν
∗) ≤ sf (µ

∗, ν∗) ≤ sf (µ
∗, ν),

for every pair of mixed strategies (µ, ν). As a consequence of the Glicks-
berg’s theorem [10], the game Gf has a Nash equilibrium in mixed
strategies for any f ∈ M2.
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Theorem 5.1 (Glicksberg). Let strategy sets be compact Hausdorff
topological spaces and payoff functions be real and continuous. Then
there exists a Nash equilibrium (µ∗, ν∗).

The proof of the above theorem is based on a crude compactness
argument. Therefore, the quest for methods and algorithms to recover
Nash equilibria is one of the main problem for various classes of con-
tinuous games [23]. In particular, sufficient conditions for the existence
of finitely-supported mixed equilibria are sought.
Example 5.1. In game Gf1 both Alice and Bob may randomize over
finite strategy subsets. Indeed, one Nash equilibrium pair is (µ∗, µ∗),
where µ∗ = 1

2 (δ0 + δ1). Since

sf1(µ
∗, µ∗) = 1

2 ,

Alice won’t pay no more than p = 1
2 · 1000 = 500 euros for the game

ticket. There is another pair of Nash equilibria (µ∗, δ1/2), which means
that the optimal response of Bob to the Alice’s random choice of 0 and 1
is the constant selection of number 1/2.

It is an open question whether the game Gf , where f is an arbi-
trary 2-variable McNaughton function, possesses a Nash equilibrium
pair whose mixed strategies are finitely-supported Borel probability
measures. So far we have achieved only partial results in this direction.
They are based on the simplicial decomposition of the unit square that
linearizes a McNaughton function.
Proposition 5.1. Let f ∈ M2. Then there is a simplicial complex Sf ,
which is supported by the unit square [0, 1]2, and such that f is linear
over each simplex of Sf .

Let V (Sf ) be the set of all vertices of the complex Sf . Our goal is
to approximate f by a matrix game whose equilibria will also be the
equilibria of the original game Gf . The matrix game will be given by
the following requirements:

(i) The strategy sets are nonempty finite subsets M,N ⊂ [0, 1].

(ii) The payoff function of Alice is the restriction of f to M × N ,
the payoff function of Bob is the restriction of ¬f to M ×N .

Let M = {x1, . . . , xm } and N = { y1, . . . , yn }. An (M ×N)-grid S is
the one-dimensional simplicial complex with the vertex set M ×N and
the line segments having the endpoints of the form

(xi, yj), (xi, yj+1) or (xi, yj), (xi+1, yj).
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The matrix game GS
f corresponding to Gf and an (M × N)-grid S is

called a grid game.

Theorem 5.2. Let f ∈ M2 and Sf be an associated simplicial complex.
If there exists an (M ×N)-grid S such that

• V (Sf ) ⊆ M ×N and

• each line segment of S belongs to some simplex of Sf ,

then every Nash equilibrium of the matrix game GS
f is a Nash equilibrium

of the game Gf . Consequently, the game Gf has a pair of finitely-
supported Nash equilibrium strategies.

For instance, both games Gf1 and Gf2 satisfy the hypothesis of the
above theorem. However, there are McNaughton functions such that
the associated game does not fulfill the sufficient condition of Theo-
rem 5.2. The standing conjecture is that the class of games with Mc-
Naughton payoff functions, for which finitely-supported Nash equilibria
exist, is much broader. This topic is subject to an ongoing research.
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