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Summary

We propose a multiview tracking method for rigid objects. Assuming
that the part of an object is visible in at least two cameras, a partial
3D model is reconstructed in terms of a collection of small 3D planar
patches of an arbitrary topology. The 3D representation, recovered fully
automatically, allows to formulate tracking as the gradient minimiza-
tion in the pose space (translation, rotation). As the object moves, the
3D model is incrementally updated. A virtuous circle emerges: tracking
enables composition of the partial 3D model; the 3D model facilitates
and robustifies the multiview tracking.

We demonstrate experimentally that the interleaved track-and-
reconstruct approach tracks successfully a 360 degrees turn-around and
a wide range of motions. Monocular tracking is also possible after the
model is constructed. Using more cameras, however, increases stabil-
ity in critical poses and moves significantly. We demonstrate how to
exploit the 3D model to increase stability in the presence of uneven
and/or changing illumination.
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Souhrn

Navrhujeme metodu pro modelováńı a sledováńı rigidńıch objekt̊u ve
v́ıcekamerových systémech. Za předpokladu, že je objekt viditelný v ale-
spoň dvou kamerách, algoritmus rekonstruuje aktuálně viditelnou část
objektu ve 3D. Trojdimenzionálńı model je tvořen shlukem malých
plošek. Automaticky zkonstruovaný model je použit pro úlohu sledováńı
(tracking). Úloha sledováńı je formulována jako gradientńı optimalizace
v prostoru pozic (rotace a translace). Při pohybu objektu se model
př́ır̊ustkově doplňuje. Př́ır̊ustkové modelováńı a sledováńı se vzájemně
podporuj́ı.

Experimenty prokazuj́ı, že algoritmus je schopen modelovat a sledo-
vat objekty během otočeńı o 360 stupň̊u i během nejr̊uzněǰśıch jiných
pohyb̊u. Monokulárńı sledováńı je možné v př́ıpadě dokončeného mo-
delu. Vı́cekamerové sledováńı je ovšem výrazně stabilněǰśı. Nepravi-
delné osvětleńı objektu je kompenzováno.
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Chapter 1

Introduction

Existing multiview approaches mostly represent objects as blobs. A
blob representation assumes that the appearance of an object does not
change significantly when the object rotates. The global object position
is sought and the methods do not attempt to recover the orientation
of the object [3, 9].

Most model-based tracking methods use 3D models prepared offline.
An overview of such methods was published by Lepetit et al. [7]. Vac-
chetti et al. [16] propose a tracker based on matching with keyframes.
The method demonstrates impressive results on out-of-plane rotation
data. Still, it cannot track complete turn of the object and needs the
offline manual selection of keyframes which are essential for its stabil-
ity. Muñoz et al. [10] suggest a method that track even deformable
objects. Their model is composed of small textured planar patches, a
set of shape bases, and a set of texture bases. The tracking procedure
needs a reference image and optimizes over local shape deformations,
color/texture changes and overall motion. Results on real data show
successful tracking only of small variations in object pose and negligible
local deformations.

Several approaches build elaborated 3D models from multiple views.
The methods rely heavily on carefully constructed and expensive
setup and require special scene arrangement since they are based on
scene/object segmentation [1, 5, 8, 17]. Würmlin et al. [17] propose
dynamic 3D point samples for streaming 3D video. This point based
representation somehow resembles our model. However, the method
does not track object and needs many cameras and very precise pixel-
wise motion segmentation.

We propose a combined method that tracks objects in 3D and con-
structs a point based appearance model simultaneously. Our primary
interest is in object tracking and detection. Our model is rather simple,
a set of 3D points associated with 3D orientation and albedo. Despite
its simplicity, the model is rich enough for recovering orientation of
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the object. The tracking can follow a complete 360 degree turn of
object. Rothganger et al. [12] also compose a 3D model from small
planar patches. The patches are reconstructed from multiview corre-
spondences. Objects are photographed an object from several view-
points, corresponding image patches are found by affine covariant fea-
ture matching. Finally, patches are reconstructed in 3D. In fact, it
would be possible to use this model in our tracking. Any complete
off-line built model [11] could be used, too.

Cobzas and Jagersand [2] propose a monocular, registration-based,
3D camera tracking of the planar 3D patches. The 3D planar patches
are estimated from tracks. Although the formulation of the tracking
resembles our method, there are several differences. The patch based
model is initialized at the beginning of the sequence (in about 100
frames) by using a standard 2D patch based tracker. Then the algo-
rithm switches to tracking and refines the model using 3D model-based
tracking. Cobzas et al estimate the camera pose, assuming a rigid
scene. Unlike our method which models illumination changes, Cobzas
et al. assume constant illumination and intensity of observed points.
Our method builds the model from the very beginning of the sequence.
Tracked objects change their position and orientation w.r.t. to light
sources. In this case, constant pixel intensities cannot be assumed even
for Lambertian surfaces and our method reflects this.
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Chapter 2

3D tracking

An object O is modelled as a triplet (X,α,N) where X is a set of 3D
points, α : X → R assigns albedo and N : X → S2 a normal to each
point x ∈ X, where S2 is a sphere. While tracking, intensity T (x)
of point x in a given frame is predicted from its albedo α(x) and an
estimated illumination as detailed in section 3.

Assuming object rigidity, the motion of points x ∈ X between two
time instances t1 and t2 is

xt2 = Rxt1 + d,

where R represents rotation and d translation. When the rotation is
small [4] (e.g. between two consecutive video frames), the motion equa-
tion simplifies to

xt = (I + D)xt−1 + d, (2.1)

where the rotation matrix R is replaced by the antisymmetric matrix D

and an identity matrix I. The matrix D is defined by three parameters
u = [D1, D2, D3]>;

D =

 0 D3 −D2

−D3 0 D1

D2 −D1 0

 .
Tracking in 3D is defined as the process of finding motion parameters
D,d minimizing the following image dissimilarity∑

x∈X

[
T
(
xt−1)− I(f(xt

))]2
, (2.2)

where I : R2 → R assigns intensity to each pixel, T : X → R assigns
intensity to each 3D point. The projection function f : R3 → R2 maps
3D points to image coordinates and depends on internal and external
parameters of the camera, see Appendix A for details.
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Figure 2.1: Model (template) T is projected by projection function f
and compared to the current observation I.

Substituting from equation (2.1) for xt in the dissimilarity func-
tion (2.2) and simplifying notation by setting xt−1 = x, a cost function
in six unknowns is obtained

J(u,d) =
∑[

T (x)− I
(
f (x + Dx + d)

)]2
, (2.3)

where the sum is over all x ∈ X as in (2.2); starting from (2.3) the
summation range is omitted for brevity. We seek motion parameters u
and d that minimize dissimilarity J(u,d). At the minimum, the partial
derivatives with respect to all variables must be zero:

∂J(u,d)

∂d
= 0,

∂J(u,d)

∂u
= 0,

which yields the following two vector equations∑[
T (x) − I

(
f(x + Dx + d)

)]∂I(f(x + Dx + d)
)

∂d
= 0, (2.4)

∑[
T (x) − I

(
f(x + Dx + d)

)]∂I(f(x + Dx + d)
)

∂u
= 0, (2.5)
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There is no closed-form solution for (u,d). We therefore apply Newton-
Raphson minimization, approximating I

(
f(x+Dx+d)

)
by its first-order

Taylor expansion

I
(
f(x + Dx + d)

)
≈ I
(
f(x)

)
+ g>(Dx + d), (2.6)

where
g> = I ′>

(
f(x)

)
f ′(x); (2.7)

I ′ : R2 → R2 is the gradient of image I and f ′ : R3 → R2×3 is the
Jacobian of the projection function f , see (6.3).

Differentiating the linear approximation (2.6) leads to

∂I
(
f(x + Dx + d)

)
∂d

≈ g, (2.8)

∂I
(
f(x + Dx + d)

)
∂u

≈ ∂g>Dx

∂u
. (2.9)

Applying the approximations (2.8), (2.9), equations (2.4), (2.5) are
simplified to ∑[

T (x) − I
(
f(x)

)
− g>

Dx− g>d
]
g = 0 . (2.10)∑[

T (x) − I
(
f(x)

)
− g>

Dx− g>d
]∂g>Dx

∂u
= 0, (2.11)

Simple algebraic manipulations confirms that the following two iden-
tities hold

g>Dx = (g × x)>u,

∂g>Dx

∂u
= (g × x) ,

where × is the cross product. Equations (2.11) and (2.10) can be
compactly represented as a system of six linear equations A.

A

[
u
d

]
= b , (2.12)

where

A =
∑[

(g × x)(g × x)> (g × x)g>

g(g × x)> gg>

]
, (2.13)

b =
∑[

T (x)− I
(
f(x)

)] [ (g × x)
g

]
. (2.14)
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Assuming regular A, the solution approximately minimizing equation
J(u,d) is [

u
d

]
= A−1b . (2.15)

The 6×6 matrix A consists of four 3×3 sub-matrices and is block-wise
symmetric. Unknown motion parameters d, u are both 3 × 1 column
vectors and b is a 6× 1 column vector.

At least six points are required for rank(A) = 6. In practice, many
more points are visible. If the object is weakly textured back-projected
image derivatives g may get close to zero and matrix A becomes nearly
singular. Texture properties needed for reliable tracking of the object
are discussed in [14]. Unlike [14], we optimize over the whole object
not just over a small patch.

Newton-Raphson iterations are carried out until convergence or a
maximum number of steps N . Experiments showed the process con-
verged usually in 8 − 10 iterations. Convergence may require more
iterations when the motion is fast, so N was set to 20.

The tracking method was derived for an intensity image and a single
camera. Extension to RGB tracking is straightforward. The single sum
in solution (2.13, 2.14) is replaced by summations over all visible points,
cameras and all RGB channels.
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Chapter 3

Compensation of illumination

Intensity recorded during the model acquisition depends, besides the
object shape and reflectance, on light sources. We treat the intensity as
albedo. As the object moves, the set of light sources visible from a point
and their photometric angles change. When modeling these effects we
assume: i) cast shadows can be ignored, ii) the light sources are dis-
tant, iii) no specular reflectance. Under these assumptions, intensities
of all points with identical normals will be scaled by a common matrix
(for grayscale images only scalar is considered). We adopted a simple
method for estimation of the matrix, which performed well in exper-
iments. The method clusters the points X into n groups G1, . . . , Gn

according to their normals and compensates for the illumination of i-th
cluster in each optimization step (2.15) by a color correction matrix

E∗i = arg min
Ei

∑
x∈Gi

‖EiI(f(x))− T (x)‖22. (3.1)

Let us denote

F (Ei) =
∑
x∈Gi

‖EiI(f(x))− T (x)‖22 =

∑
x∈Gi

I>(f(x))E>i EiI(f(x))− 2T>(x)EiI(f(x)) + T>(x)T (x) .

Minimization yields the following matrix equation

∂F (Ei)

∂Ei
=
∑
x∈Gi

−2T (x)I>(f(x)) + 2E∗i I(f(x))I>(f(x)) = 0 (3.2)

and its least square solution is

E∗i =

[∑
x∈Gi

I(f(x))I>(f(x))

]−1 ∑
x∈Gi

T (x)I>(f(x)). (3.3)
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Chapter 4

Tracking-modeling algorithm

The minimal configuration able to build the model must include at
least one stereo pair. For tracking, a single camera is sufficient.

If no model is available from a previous tracking-modeling session,
the processing starts with a stereo-based reconstruction [6] of the vis-
ible part of the object. Albedo of each point is determined from the
average of intensities at its projections onto images used for 3D re-
construction. The reconstructed points are clustered and replaced by
points on fish-scales [13]. Fish-scales are small oriented planar patches
obtained by local clustering of the cloud of points. Small clusters of
points are replaced by ellipses with half-axes corresponding to the two
main eigenvectors of their covariance matrix. The third eigenvector
defines the surface normal. Note that the computation of fish-scale
representation is much simpler then a complete surface triangulation.
Still the fish-scales are experimentally shown to be sufficient represen-
tation for 3D tracking. Knowledge of surface orientation at each points
allows: i) Efficient visibility calculations for convex objects; ii) Com-
pensation of illumination effects.

Once the partial model is known, it can be used for pose estimation.
If observed motion in the image indicates that a part of the image
moves consistently with points currently in the model, stereo is invoked
again and newly reconstructed patches are merged into the model. The
complete algorithm can be summarized as follows:

1. Capture images

2. If needed, invoke stereo reconstruction and merge it to the model.

3. Estimate the pose of the object by iterating least square solu-
tion (2.15).

4. Update matrices E1, . . . , En and for all i and each x ∈ Gi recompute
object intensity T (x)← EiT (x). goto 1.

Note that the system never knows when the model is completed,
because another consistently moving rigid part of the object can ap-
pear later. The system only detects that no reconstruction is currently
needed.
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Chapter 5

Experiments

The sequences were captured in an office. We used four firewire cam-
eras with resolution of 640 × 480 pixels connected to Linux operated
computers. The acquisition was TCP/IP synchronized and the setup
was calibrated. The total cost of the setup (without computers) is less
than 500 dollars. Calibration is easy since a free software for automatic
(self)calibration exists [15].

Two different sequences were used. In the human sequence, a per-
son makes a variety of motions. The individual walks around, shakes
and tilts his head. The camera setup consists of two narrow-baseline
cameras for stereo reconstruction and two other cameras spanning ap-
proximately a half-circle.

The book sequence poses slightly different challenges. The book is a
relatively thin object and in some poses the dominant planes (front and
back cover) are invisible. The camera setup consists of three cameras
located near each other. Two of them are used for stereo, all of them are
used for tracking. The model of the book is incrementally constructed
from a stereo pair and tracked in all cameras.

Objects are tracked successfully in both sequences and their shapes
are correctly reconstructed. We performed experiments to assess the
accuracy and robustness of multiview and monocular tracking. Sec-
tion 5.1 shows that the accuracy of multiview tracking is sufficient
for incremental model construction without additional alignment. Sec-
tion 5.2 compares monocular and polynocular tracking. We show that
monocular tracking often estimates poses which are incorrect but look
correct in the tracking camera. Robustness is tested in section 5.3 on
the book sequence where the tracking survives even in frames where
dominant planes are absent. Experiments showing illumination com-
pensation are described in section 5.4. Experiments in sections 5.4 are
conducted with illumination compensation.
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a) Multiview tracking; blue points are visible, yellow invisible (occluded)

projections.

b) Corresponding poses and path recorded.

c) Incremental construction of the model as seen from top.

d) Incremental construction of the model, an oblique view.

Figure 5.1: Incremental model construction from partial 3D reconstruc-
tions and registered by 3D tracking. Rows 1-3: Different views with
projected model. Row 4: Position and orientation in 3D space. Rows 5-
6: incrementally constructed 3D model. Columns correspond to frames
1, 100 and 310.
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In Figures 3-5, projections of visible points are depicted in blue and
invisible in yellow. Readers are encouraged to zoom-in the Figures in
the electronic version of the document and watch the accompanying
video sequences.

5.1 Interleaved tracking and model construction

The first experiment demonstrates the interleaved tracking operation
with the model construction. The process starts with a partial recon-
struction in the first frame, see the left-most column of Figure 5.1. The
tracker is initialized using this partial model. As the human is turning
around Fig.5.1(b), the model, is augmented by adding further partial
reconstructions Figs. 5.1(c,d). Once the 360 turn is finished, the model
is complete and further reconstruction are not required. The 3D model
is only a side product of the tracking. Its visual appearance cannot
match models created with specialized stereo algorithms or visual-hull
based algorithms.

5.2 Monocular model-based 3D tracking

In the case of monocular tracking, a 3D model and its initial position
are considered to be known in advance (e.g. we use the model from pre-
vious experiment). The head was successfully tracked over 630 frames,
despite the fact that both 3D translation and out-of-plane rotation were
present in the sequence. Tracking results are shown in The projected
model poses seem correct in images from the tracking camera. How-
ever, since only a single camera was used, the recovered 3D position is
inaccurate, see row 2 in Figure 5.2. Naturally, the more cameras are
used for the optimization, the more accurate 3D pose becomes. Re-
sults from the same sequence with the object tracked by all cameras
are depicted in the last row of Figure 5.2.

5.3 Robustness against critical poses

A thin object like a book used in the experiment, may easily appear
in poses which are inherently challenging for the tracking algorithm.
If only the book back is visible, the tracking may get unstable. Even
during multiview tracking it may happen that most of the object is
visible only in a single camera. We call such poses critical.

In a critical pose, the book has to be tracked virtually from the single
view. The position of the model does not correspond to the projection
in the cameras, in which only a small fraction of the book is observable.
After the object leaves the critical pose, the model converges to the true
position, see Figure 5.3.

16



Tracking camera, in monocular tracking, this is the only one used for

optimization. Results of monocular tracking projected.

Monocular tracking results as projected to a camera which is approximately

orthogonal to the tracking one.

Polynocular tracking. The same camera as above. Note the essentially more

consistent 3D pose.

Figure 5.2: Comparison of monocular (rows 1-2) and polynocular (row
3) tracking. Monocular: Row 1: view from the tracking camera, Row
2: observing camera (shows that, accuracy in orthogonal direction is
low). Polynocular: Row 3: The same camera with the projected model
from multiview tracking.

5.4 Compensation of illuminance effects

The model points are clustered in 14 equally distributed clusters ac-
cording to their normals. Each cluster is associated with illuminance
constant Ei which changes during the tracking to best fit the observed
data.

Figure 5.5-left shows a view with a projected model. Gray levels of
particular fish-scales correspond to the values of illuminance constants.
Higher values corresponds to the recently illuminated points and vice
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Figure 5.3: Book tracking: Rows 1-2: different cameras with pro-
jected model, row 3: shows the position and orientation in a 3D space;
columns correspond to frames 55, 205 and 265. The second column
shows the book in a critical position in which the dominant plane is
visible only in one camera.

Figure 5.4: Book Model: Different views of the book model. Small
non-planarity in one corner is the reconstructed hand holding the book.
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left light right light

Figure 5.5: Left: The image with projected model. Colors correspond
to the computed illuminance Ei of each particular cluster. Right: Val-
ues of E6 during the the 360 turn.

versa. One can see that in this case light sources were located on the
left side of the object which corresponds to the reality.

The office has several light sources placed on opposite walls and
oriented to the irregularly arched ceiling. Corresponding changes of
the illuminance constant E6 during 360 turn are shown at Figure 5.5-
right. Two significant changes during the turn corresponding the light
sources are clearly visible. The function of illumination changes is not
smooth because during the turn, fish-scales visibility in particular cam-
eras changes and in different times different sets of fish-scales are used
for the compensation of illumination effects. Another reason is local
inaccuracy of tracking caused by image discretization. Tracking trajec-
tories as well as illumination changes could be smoothed using a motion
model, but in our experiments only the output of the optimization is
used.
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Chapter 6

Conclusions

We proposed a fully automatic approach of multiview/monocular 3D
object tracking interleaved with incremental model construction. Nei-
ther the model nor the initialization are needed to be known in advance.
We formulated tracking as a gradient-based method minimizing dissim-
ilarity of the observed image and projected 3D point intensities. We
showed that the fish-scale 3D model [13] is accurate enough to support
the stable 3D tracking.

We experimentally demonstrated that the proposed interleaved ap-
proach, successfully tracks a complete 360 turn and a wide range of
motion without a need for pre-prepared 3D model. A 3D model is
delivered as a side product. We demonstrated the robustness of our
method on a sequence with a thin object where the dominant plane
was often tracked only from one view.

We showed that the monocular tracking is possible if the model is
available. The model projection to the tracking camera often looks
correct, projections to other cameras reveals 3D inaccuracies. Still, the
monocular tracking can provide results acceptable for some applica-
tions. Using more cameras significantly increases stability and accuracy
in critical poses and moves. Exact 3D pose may be necessary in many
application ranging from virtual reality, human computer interfaces to
visual surveillance.
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Appendix A

A 3D point x is projected to 2D image (pixel) coordinates p as[
λp
λ

]
= P

[
x
1

]
,

where P is 3× 4 camera matrix [4] and λ ∈ R. Let the camera matrix
be parametrized as

P =

 m>1 t1
m>2 t2
m>3 t3

 (6.1)

the function f : R3 → R2 projecting 3D point to the camera coordi-
nates is

f(x) =

 m>
1 x+t1

m>
3 x+t3

m>
2 x+t2

m>
3 x+t3

 . (6.2)

Differentiating f with respect to x we obtain f ′ : R3 → R2×3 Jacobian
matrix function, which consists of elements

f ′pq =
mpq(m>3 x + t3)−m3q(m>1 x + tp)

(m>3 x + t3)2
(6.3)

where mpq, p = 1 . . . 2, q = 1 . . . 3 is q-th elements of m>p .
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