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Summary
This lecture is aimed at numerical modeling of transonic flow of condensing steam,
which occurs in steam turbines. Presented flow model is based on the model published
in [17]. Several extensions of the model including surface tension correction, alternative
equation of state and droplet size spectra reconstruction are discussed. Problem formu-
lation and boundary condition description are presented. Results have been obtained
by author’s own numerical code based on the fractional step method, which links a finite
volume method for the convection terms with the Runge-Kutta method for the pro-
duction terms. Numerical results of several flow problems including the steady flow
in a convergent-divergent nozzle, the steady flow in a turbine cascade and the unsteady
stator-rotor interaction in a turbine stage are presented. Comparison of numerical results
with experimental data for the flow in a nozzle is included.
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Souhrn
Tato přednáška je zaměřena na numerické modelování transsonického proudění páry v tur-
bínách. Uvedený model proudění vychází z modelu publikovaného v [17]. Jsou disku-
tována rozšíření původního modelu, která se týkají korekce povrchového napětí vody,
alternativní stavové rovnice pro páru a rekonstrukce spektra velikostí kapek. Je uve-
dena formulace úlohy a jsou popsány okrajové podmínky. Numerické výsledky byly
získány metodou, která je založena na metodě rozkladu operátoru a která využívá metodu
konečných objemů pro diskretizaci konvekčních členů a Rungovu-Kuttovu metodu pro in-
tegraci produkčních členů. Ukázky numerických výsledků zahrnují případy stacionárního
proudění v Lavalově dýze, stacionárního proudění v turbínové mříži a nestacionární in-
terakce statoru a rotoru v turbínovém stupni. Numerické výsledky proudění v dýze jsou
porovnány s experimentálními daty.

3



Klíčová slova: transsonické proudění, mokrá pára, metoda konečných objemů, ho-
mogenní nukleace, kondenzační ráz, parní turbína.

Keywords: transonic flow, wet steam, finite volume method, homogeneous nucleation,
condensation shock, steam turbine.

c© Jan Halama, 2013

4



Contents
1 Introduction 6

2 Model of wet steam flow 7

3 Problem formulation 11

4 Numerical method 12

5 Examples of numerical results 13
5.1 Flow in a convergent-divergent nozzle . . . . . . . . . . . . . . . . . . . . . 13
5.2 Three-dimensional flow in a cascade . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Unsteady stator rotor interaction . . . . . . . . . . . . . . . . . . . . . . . 17

6 Conclusions 19

5



1 Introduction
The first attempt to use steam as a working fluid is probably dated to the 1st century.
Heron from Alexandria invented a well recognized steam-powered device called an Aeoli-
pile working on the reaction principle of steam flow. Thomas Newcomen used the pressure
drop of condensed saturated steam to drive a water pump in the 18th century. This pump
was improved by James Watt, who later designed well known steam engine, which started
the boom of industry and transportation. Nowadays, one of the most important applica-
tion for steam flow is a steam turbine used mainly for the production of electric power.
A thermodynamics of such process corresponds to the Rankin cycle. To have highly effi-
cient large power turbine, one wants to design a turbine with big pressure and temperature
gradient. The pressures and the temperatures of steam coming from boiler to the inlet
of turbine can be as high as 20 MPa and 1000 K respectively and the pressure at the exit
from turbine is below the atmospheric pressure. During such expansion an initially dry
steam condensates. The condensation is a non-equilibrium process, which starts when
the vapor temperature decreases sufficiently below the saturation temperature. The va-
por with the temperature below the saturation temperature and before condensation start
is in the so called metastable state. The condensation in a turbine has different mecha-
nisms. The liquid phase can appear suddenly in a form of very small droplets dispersed
in vapor, this phenomena is called nucleation. There is the homogeneous nucleation,
where droplets start to grow from clusters of water molecules and the heterogenous nu-
cleation where vapor starts to condensate on some particles present in vapor. Another
mechanism of condensation is a film condensation on surfaces of inner structures of tur-
bine. Droplets of liquid already present in the steam can grow or evaporate according
to the state of surrounding steam. The presence of liquid phase leads to a very complex
two-phase flow of mixture of vapor and liquid droplets. The mixture contains droplets
with a very big range of sizes. The droplets appearing due to homogenous nucleation
have sub-micron size and are convected by the vapor. Droplets appearing due to liquid
film separation are much bigger and they have different velocity then the vapor. On top
of this, condensation usually starts in a low pressure part of turbine with blades usually
longer than one meter and due to the rotational speed of turbine (given by the AC voltage
frequency 50Hz) the tip circumferential speed of last rotors is supersonic. It is well known
that supersonic flow is very sensitive on the latent heat release due to condensation. This
released heat changes significantly shock wave structure and may also induce pressure
oscillations. Moreover the combination of high velocities and the presence of droplets
of different sizes in the flow field leads to blade erosion phenomena. The condensation
also decreases the thermal efficiency of turbine. There are technical solutions like local
re-heating and condensed water separation, which try to minimize the undesired effects
of condensation. All of these phenomena makes the design of steam turbine challenging.
Research of non-equilibrium condensation is difficult. Experimental as well as numeri-
cal studies are based on certain level of assumptions and approximations. Experiments
rely often on indirect methods, e.g. light scattering methods. Numerical simulations,
on the other hand, are often based on simplified thermodynamic models of steam and
approximations of droplet size spectra. Despite all of these issues numerical simulations
together with experimental tests help to get better insight in condensation phenomena
and contribute to design of steam turbines.

Numerical simulations of two-phase flow of steam have evolved over three decades.
The first simulations of two-dimensional two-phase flow in turbine cascade e.g. [2], [1],
[11] or [19] were based on the solution of flow field in the Eulerian framework and wetness
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(homogeneous nucleation and droplet growth) was calculated along streamlines in the La-
grangian framework. The advantage of this algorithm is that condensation is solved
as the one-dimensional problem along streamline with known expansion and allows to
track the complete history of droplets. The main disadvantage is the need to recom-
pute streamlines every n-th iteration of time-marching algorithm. Later works are based
mainly on fully Eulerian approach, where transport equations for mass, momentum and
energy of the mixture are supplemented by transport equations for additional parameters
of liquid phase. Models based on the assumption of monodispersity of mixture contain
transport equations for the total mass and the total number of droplets e.g. [8], [5], [6], [7]
or [16]. Models based on the method of moments [9] are able to recognize the polydisper-
sity of mixture. There are works, where moments are used to compute the average droplet
size only, e.g. [14] and works, where moments are used to reconstruct the droplet size
distribution, e.g. [12] or [10]. Most of simulations consider that droplets are convected
by the vapor. Recent paper [18] present the use of two-fluid single-pressure flow model
for the simulation of transonic flow of condensing steam in a nozzle. The observation
is, that small droplets coming from nucleation have velocity very similar to the velocity
of vapor. Such model could be possibly used for modeling of flow of mixture with bigger
droplets coming e.g. from liquid film separation. The research of film condensation mod-
eling is open and can be one of the future directions towards more complex simulations.

2 Model of wet steam flow
Presented model of wet steam flow originates from the model [17]. The vapor specific
heat ratio, considered as a constant in [17], is taken as a function of vapor temperature.
The homogenous nucleation model is supplemented by the correction term published
in [13]. The model is closed by the polynomial functions for the material properties
of water taken from [8]. The velocity, pressure and temperature of steam is considered
within the range typical for the flow in a steam turbine. Condensed water, if it is present,
is dispersed in vapor in the form of high amount of small spherical droplets, therefore
the velocity of droplets is considered to be the same as the velocity of vapor. The flow
model is based on the conservation laws for mass, momentum and energy of the mixture
and for the mass fraction of liquid phase. Mass exchange between vapor and droplets is
given by the models of homogeneous nucleation and droplet growth. The whole spectra
of droplet sizes in the elemental volume of mixture is described by the three moments
according to [9]. Such model is able to describe polydispersity of mixture and can be
complemented by some model of distribution of droplet size. The moments are

Q0 = N, Q1 =
N∑
i=1

ri, Q2 =
N∑
i=1

ri,
2 (1)

where N denotes the total number of droplets per unit mass and ri is the radius of i− th
droplet. The average droplet radius is approximated by r =

√
Q2/Q0 if the wetness χ is

above a chosen minimum χmin otherwise it is set r = 0 to avoid numerical errors. The full
system of transport equations for three-dimensional flow in integral form for arbitrary
control volume Vk reads

∂

∂t

∫∫
Vk

W dV +

∮
∂Vk

(F(W),G(W))~n∂Vk
dS =

∫∫
Vk

Q(W)dV (2)
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ρv
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
, Gv =



0
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

0
0
0
0

4
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πr3

cJρl + 4πρM2ρl
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J


,

F = Fc−Fv, G = Gc−Gv, Mn =
∞∫
0

rnN(r)ṙ(r)dr,

where ~n∂Vk
is the outer unit normal vector of ∂Vk, ρ is the mixture density, u and v

the mixture velocity components, e the total energy of mixture in unit volume, p is
the pressure of the mixture, χ denotes the mass fraction of liquid phase, known also as
wetness, J is the number of new droplets due to homogenous nucleation per unit volume
per second, which have the size of critical radius rc. The variable ρl denotes the density
of liquid phase, N(r) denotes the droplet size distribution function. The integral of N(r)
along the interval < r1, r2 > gives the total number of droplets with the radius between
r1 and r2 per unit mass of mixture. The function ṙ(r) gives the droplet growth velocity
of droplet with radius r. Provided the solution of (2) is sufficiently smooth one can derive
the differential form

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= Q(W). (3)

However it is known, that discontinuous solutions are of practical importance (shock
waves, contact discontinuities, etc.), therefore the integral form (2), which allows discon-
tinuous solutions, is preferred. Moreover the balance of mass, momentum, energy and
parameters of liquid phase from the point of view of arbitrary volume Vk is more natural
for the development of a finite volume method. The system (2) has more unknowns than
the number of equations, it has to be closed by additional equations related to properties
of considered fluid. Under perfect gas assumption the equation for pressure reads

p =
(γ − 1)(1− χ)

1 + χ(γ − 1)

[
e− 1

2
ρ(u2 + v2 + w2) + ρχL

]
, (4)

where common pressure for both phases is considered and L denotes the latent heat
of condensation/evaporation Further details are provided in [14] or [24]. The specific heat
ratio is taken as a function of temperature

γ =
cp(T )

cp(T )−Rv

, (5)

8



where Rv is the gas constant for vapor, cp the specific heat at constant pressure cp and
T the vapor temperature. The system (2) models also the single-phase flow of vapor
if χ = Q0 = Q1 = Q2 = 0. We assume two approximations of droplet growth speed ṙ(r).
The first one considers that the droplet growth speed depends only on average radius r.
The integrals in the source term Q are then replaced by a simple product

Mn =

∞∫
0

rnN(r)ṙ(r)dr = ṙ(r)

∞∫
0

rnN(r)dr = ṙ(r)Qi. (6)

Such model is denoted as AVG-P model. The second approximation considers certain re-
construction of the droplet size distribution function N(r) from the values of moments Qi.
The model further denoted as DSDF-P is based on the log-normal distribution for N(r),
which can be obtained from three moments Q0, Q1 and Q2, for details see [10] and [25].

N(r) = Q0
1

r ln(σg)
√

2π
exp

(
− ln2(r/rg)

2 ln2(σg)

)
, (7)

where

rg =
r

exp(0.5 ln2(σg))
, σg = exp

√
ln(c2

v + 1),

r =

√
Q2

Q0

, cv =

√
Q0Q2

Q2
1

− 1.

(8)

0 5e-08 1e-07 1.5e-07 2e-07
droplet radius [m]

N
(r

)

Figure 1: Example of log-normal droplet size distribution used in [25].

The model has been also successfully tested with alternative equation of state for steam
from [16]

p

ρvT
= Rv

(
1 +Bρv + Cρ2

v

)
. (9)

The variables T and ρv denote the temperature and the density of vapor respectively,
the pressure p is considered the same for both phases. Models with this equation of state
are denoted as the AVG-V and the DSDF-V models.
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The number of new droplets due to homogenous nucleation per second and per unit
volume is computed using a classical formula [4]

J =

√
2σ

πm3
v

· ρ
2
v

ρl
· exp

(
−β · 4πr2

cσ

3kBT

)
, (10)

where the surface tension σ of water is a function of temperature and β is the correction
coefficient proposed in [13]

β = 1.328p0.3
cor, pcor = psaturated(s01)10−5, (11)

where s01 is the entropy corresponding to the inlet total conditions and pcor is consid-
ered in [bar] unit. This correction is applied for the AVG-P and DSDF-P models based
on the perfect gas assumption in order to match the onset of nucleation. This correc-
tion is not needed for models AVG-V and DSDF-V. The new droplet appearing due to
homogenous nucleation has the initial radius equal to the critical radius

rc =
2σ

Lρl ln(Ts/T )
, (12)

where L(T ) is the latent heat of condensation/evaporation and ρl(T ) denotes the density
of water. The saturation temperature Ts is evaluated according to IAPWS-IF97 formu-
lation. An existing droplet is growing or it can also evaporate depending on the vapor
temperature. We consider the Gyarmathy’s droplet growth model

ṙ(r) =
λv(Ts − T )

Lρl(1 + 3.18 ·Kn)
· r − rc

r2
, Kn =

ηv ·
√

2πRvT

4rp
, (13)

where vapor thermal conductivity λv and vapor viscosity ηv are functions of temperature
and r is the droplet radius. Critical radius rc goes to infinity for vapor temperature ap-
proaching the saturation temperature. This growth is compensated by the term (Ts−T ),
which is going to zero at the same time, so ṙ(r) remains finite, however direct implemen-
tation of the Eq. (13) is dangerous, since the product of ’almost infinity’ with ’almost
zero’ has unpredictable behavior. Therefore we implement the formula (14)

ṙ(r) =
λv

Lρl(1 + 3.18 ·Kn)

(
Ts − T
r
− 2σ

Lρlr2
· Ts − T

ln Ts

T

)
, (14)

where the term
Ts − T
ln Ts

T

(’zero’ divided by ’zero’ for T going to Ts) is approximated using

Taylor expansion

Ts − T
ln Ts

T

= T
Ts

T
− 1

ln Ts

T

= 1 +
1

2
ϑ− 1

12
ϑ2 +

1

24
ϑ3 − 19

720
ϑ4 +

3

160
ϑ5, ϑ =

Ts
T
− 1. (15)

The later implementation of droplet growth formula yields a stable numerical algorithm
also for cases with steam parameters close to saturation line.
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3 Problem formulation
Designers of turbines use several types of flow simulations ranging from one- to three-
dimensional cases. An important role has a through-flow simulation of two-dimensional
circumferentially averaged flow, which is used to compute span-wise distributions of flow-
field parameters upstream and downstream each considered blade row. Another frequent
simulation is the simulation of two-dimensional flow in a blade to blade plane ’parallel’ to
hub or shroud, which is used to predict a performance of blade profile and which corre-
sponds to experimental setup for plane cascade. One of the most complex are simulations
of three-dimensional steady flow in a cascade or even unsteady flow in single/multiple
stage setup.

The problem formulated for the system (2) or (3) is a non-linear problem, which is
still not fully covered by mathematical theory of existence and uniqueness of solution.
The choice of boundary and initial conditions is based on the properties of linearized
model and also on the best practice knowledge. Let explain a typical problem formulation
for two cases of two-dimensional flow in a nozzle or single blade channel of plane cascade,
see the Fig. 2.

Ω
Γ

Γ

Γ

Γi
o

w

w

flow

x

y

Ω
Γ Γ

Γ

Γ

Γ

+

-

i

w

o

p

p

flow

x

y

(a) nozzle (b) turbine cascade

Figure 2: Examples of solution domains.

The following boundary conditions are used for the inviscid flow model. Consider
flow, which is subsonic in the perpendicular direction to the inlet boundary Γi and which
enters the solution domain Ω in each point of the inlet boundary Γi (one has to avoid
recirculating flow). Then ’the number of unknowns minus one’ parameters have to be
set according to the 1D theory of characteristics of linearized problem. We prescribe
a constant values of reservoir conditions T0 and p0, the flow direction, χ, Q0, Q1 and
Q2. The non-permeability condition (u, v)~n = 0, where ~n denotes the normal vector to
boundary, is considered along walls Γw. The flow in the perpendicular direction to the out-
let boundary Γo is typically subsonic for turbine cascade, therefore according to the 1D
theory of characteristics for linearized problem one parameter has to be specified. It is
natural to prescribe a value of outlet pressure. Because of possible presence of pressure
gradient along the outlet boundary Γo it is better to fix only the mean value of pressure
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and to let the pressure profile compute as a results of simulation. This condition allows
shock wave passing through outlet boundary. However the fixed mean value of pressure
works well only for steady flow, the constant distribution of pressure has to be used for
unsteady flow. The homogeneous Neumann’s condition for the temperature has to be
added in the case of unsteady two-phase flow to avoid temperature oscillations. The flow
in the perpendicular direction to the outlet boundary Γo of nozzle can be supersonic,
in such case there is no boundary condition along Γo. The computational domain for
turbine flow calculations consists usually of one blade passage, i.e. a spatial periodicity
of solution is considered, i.e. WΓ−

p
(x) = WΓ+

p
(x). The boundary conditions for viscous

flow are similar, the system of the above mentioned conditions is completed by proper
Neumann’s conditions. The non-permeability condition along walls is of course replaced
by the no-slip condition u = 0, v = 0 and the adiabatic wall condition ∂T/∂~n = 0.
The equation (2) describes the time evolution of W from given initial condition. We are
interested in two types of solution. The first one is the steady solution, which is obtained
as a limit of W for t→∞ provided all boundary conditions are time independent (time
marching method). The second type is time dependent periodic solution, which is ob-
tained also as a certain limit of W = Wtransient+Wperiodic for sufficiently large t to satisfy
‖Wtransient‖ → 0 provided all boundary conditions are periodic in time.

4 Numerical method
The numerical method has to cover very different time scales of convection, nucleation
and droplet growth. Numerical method is therefore based on the symmetrical splitting
method [15], which allows separate solution of each phenomena by individual numerical
method. The original problem for the system (2) is approximated by the solution of three
successive sub-problems

∂

∂t

∫∫
Vk

W∗ dV =

∫∫
Vk

Q(W∗)dV (16)

∂

∂t

∫∫
Vk

W∗∗ dV = −
∮
∂Vk

(F(W∗∗),G(W∗∗))~n∂Vk
dS (17)

∂

∂t

∫∫
Vk

W∗∗∗ dV =

∫∫
Vk

Q(W∗∗∗)dV (18)

where the equation (16) is solved with initial data W∗(t) = W(t). The advance ∆t/2
in time for the solution of (16) yields the initial data for the equation (17), i.e. W∗∗(t) =
W∗(t + ∆t/2). Then the shift ∆t in time for the solution of (17) yields the initial data
for the equation (18), i.e. W∗∗∗(t) = W∗∗(t + ∆t). The time shift ∆t/2 for the solution
of (18), i.e. W∗∗∗(t+ ∆t/2), corresponds to the time shift ∆t for the solution W(t+ ∆t)
of the original un-split system (2). The single step of Lax-Wendroff finite volume method
is applied for (17) and several steps of Runge-Kutta method evaluate the source term
contribution in (16) and (18). The algorithm of the splitting method reads

W
(j+1)
K = RK(W

(j)
K ,

∆t

2m
), j = 0, . . . ,m− 1

W
(m+1)
K = FV(W

(m)
K ,∆t)

W
(j+1)
K = RK(W

(j)
K ,

∆t

2m
), j = m+ 1, . . . , 2m

(19)
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where W
(0)
K = Wn

K , W
n+1
K = W

(2m+1)
K , FV(Wn

K ,∆t) denotes one step of finite volume
method (Lax-Wendroff, CFFV, SRNH method) with initial data Wn

K and time step ∆t
(subscript ·K denotes the K-th cell and superscript ·n the n-th time level). Similarly
RK(Wn

K ,∆t) denotes one step of the Runge-Kutta method. The local number of sub-
steps is m = ∆t/τ , where τ is the time scale of condensation and ∆t is the time step
of the finite volume method for the equation (17).

Due to the stability problems of the fully explicit method in three-dimensional case,
the explicit method for the parts (16) and (18) has been replaced by the implicit Euler
method. The nonlinear equation is solved by iterative method.

W
(0)
K = Wn

K

W
(j+1)
K = W

(0)
K +

∆t

2
Q(W

(j)
K ), j = 0, . . . ,M− 1

W
(M+1)
K = FV(W

(M)
K ,∆t)

W
(j+1)
K = W

(M+1)
K +

∆t

2
Q(W

(j)
K ), j =M+ 1, . . . ,L

Wn+1
K = W

(L+1)
K .

(20)

5 Examples of numerical results

5.1 Flow in a convergent-divergent nozzle

Consider transonic flow of steam in a nozzle (subsonic velocity at the inlet and the super-
sonic velocity at the outlet), see the Fig. 2(a). Presented case is defined by the Dirichlet
boundary conditions at the inlet, given by the Table 1.

ptotal,inlet Ttotal,inlet Q0 Q1 Q2 χinlet

78390 373.1 0 0 0 0

Table 1: Inlet boundary conditions for the nozzle flow case.

The results have been obtained by the 1D version of the fully explicit code, tak-
ing into account the varying cross-sectional area. The main reason of choosing the 1D
code is to focus attention on the flow model and to avoid additional numerical errors
caused by multi-D domain discretization. The stopping criterion for the time marching
method is the value of time derivative of W, which goes to ’machine zero’ for the 1D
code. The domain has been discretized using 200 cells along the axis, the grid spacing
in the convergent-divergent part of the domain is equal to 1.4 ·10−3 and the time step has
been set to ∆t = 1.2 · 10−7. Figure 3 shows the comparison of four different flow models
achieved by the L-W method. The correct position of nucleation start for models based
on the perfect gas equation of state (the models AVG-P and DSDF-P) is achieved thanks
to the correction (11). This correction is not applied for the models based on the virial
equation of state (9), i.e. for the models AVG-V and DSDF-V. All models yield nearly
the same distribution of pressure and wetness, see the Fig. 3. The best agreement with ex-
perimental data is achieved by the model DSDF-V. The models AVG-P and DSDF-P do
not reach the local maximum of pressure at x = 0.04 m. Nucleation starts for smaller
x-values for the AVG-V model.
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Figure 3: Results achieved by four presented models, experimental data from [3]

Significant difference between results achieved by all models can be observed in the av-
erage droplet size prediction, where the DSDF-V model yields the smallest and the AVG-V
the biggest droplets. The results show relation between the average droplet size and the
size of the pressure rise in the nucleation zone. Bigger pressure rise is most probably linked
with higher nucleation rate J at the start of the nucleation, i.e. the mixture contains
higher amount of smaller droplets. The average droplet size depends also on the position
of the nucleation start, later start means higher sub-cooling of the vapor and therefore it
is linked to smaller droplets. These observations are also consistent with numerical results
published in [5], where earlier nucleation start, compared to our results, yields the outlet
average droplet radius around 7 · 10−8 m. Similar effect has the amount of numerical dis-
sipation introduced by finite volume method FV used for the convection step (17). More
dissipative methods yield smaller magnitude of pressure jump and the mixture therefore
contains smaller amount of bigger droplets (i.e. bigger average radius), see the Fig. 4,
where more dissipative Lax-Wendroff method yields the outlet average droplet radius
around 3.5 · 10−8 m and less dissipative CFFV and SRNH methods yields smaller outlet
average droplet radius around 2.5 · 10−8 m. All methods give nearly identical wetness.

Also an interesting observation is as follows. Additional grid refinement, which reduces
numerical dissipation, leads to smaller droplets and has practically no effect on wetness.
The wetness is relatively insensitive to all presented modifications of the flow model as
well as of the numerical method, i.e. numerical simulation can provide relatively reliable
prediction for wetness. It seems the droplet size prediction unfortunately strongly depends
on the used model, method, grid etc.
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Figure 4: Distributions along axis of Barschdorff nozzle [3], different numerical methods
for AVG-P model.

5.2 Three-dimensional flow in a cascade

The results of three-dimensional two-phase flow in a stator cascade have been obtained
by the numerical method with the implicit Euler method for the integration of source term
and the AVG-P flow model. The computational grid consists of the single block of struc-
tured hexahedral grid with 91x25x18 points in downstream, tangential and span-wise
directions, see the Fig. 5. We consider the constant inlet total temperature T01 = 336 K,
the constant inlet total pressure p01 = 37534 Pa, zero inlet pitch angle, linear distribution
of yaw angle between hub and tip casings and dry meta-stable steam at the inlet, i.e.
zero inlet wetness and zero Hill’s moments Qi at the inlet. The outlet static pressure is
a function of radial coordinate and is constant in circumferential direction. The effect
of surface tension correction term (11) was published in [21].
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Figure 5: Computational grid for 3D stator cascade, several blade channels are plotted,
computation is performed using only one blade channel.

Figure 6: Wetness contours.
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5.3 Unsteady stator rotor interaction

Numerical code for the three-dimensional single-phase unsteady stator/rotor interaction
in an axial turbine cascade has been developed during cooperation with VKI. Extensive
comparison of unsteady experimental data with unsteady numerical results for the BRITE
stage was published in [26] and [22]. Another results for NASA core turbine stage were
published in [20]. These simulations helped to fix boundary conditions for unsteady single
phase flow. Implementation of AVG-P two-phase flow model into two-dimensional ver-
sion of unsteady stator/rotor interaction code has brought the need to modify the outlet
boundary condition. The condition of constant outlet pressure has been supplemented
by the homogeneous Neumann condition for the temperature to avoid non-physical os-
cillations of wetness along the outlet boundary [23]. The last development of the code
for the computation of unsteady two-dimensional two-phase flow in stator/rotor interac-
tion has been aimed at extension for the cases with non-zero wetness of incoming steam.
The droplet growth model has been regularized [25] to enhance the code robustness.

Following figures show example of unsteady flow of wet steam in turbine stage of low
pressure part of turbine with wet steam already at the inlet. Figure 7 shows isolines of pres-
sure in two consequent positions of rotor cascade during the rotor movement of one rotor
pitch (the time necessary for the rotor shift of one pitch is denoted as τR). The flow field
in the stator cascade does not contain shock waves, the pressure field between stator and
rotor is without strong gradients. The structure of isolines for different rotor positions
is therefore very similar. The following figures 8 - 10 show isolines of wetness, vapor
sub-cooling and average droplet radius respectively.

(a) t = t0 (a) t = t0 + 0.5τR

Figure 7: Stator-rotor interaction - pressure field.
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(a) t = t0 (b) t = t0 + 0.5τR

Figure 8: Stator-rotor interaction - wetness.

(a) t = t0 (b) t = t0 + 0.5τR

Figure 9: Stator-rotor interaction - vapor temperature minus saturation temperature.

(a) t = t0 (b) t = t0 + 0.5τR

Figure 10: Stator-rotor interaction - average droplet size [µm].
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6 Conclusions
The original model published in [17] has been substantially extended. Original numerical
method based on the finite volume method (Lax-Wendroff, CFFV or SRNH) for the con-
vection part and the Runge-Kutta or implicit Euler method for the production part has
been developed. Modifications of flow model as well as modifications of numerical method
have been verified for the case of transonic flow of condensing steam in the Barschdorff noz-
zle. This test case is characterized by the flow accelerating in the whole domain. The one-
dimensional model with variable crossection has been used to avoid errors introduced
by spatial discretization. Therefore all steady one-dimensional simulations converged
to ’machine zero’. The effect of numerical dissipation on the wetness and the droplet size
was published in [24] and [25]. Numerical method based on the Lax-Wendroff finite vol-
ume method has been successfully extended for the cases of two- and three-dimensional
steady flow in a turbine cascade and results were published in [23] or [21]. Numerical
code for the solution of unsteady stator/rotor interaction, which was initially developed
for single-phase flow problems, details about this code are available in [26], [22] and [20],
has been extended for two-phase flow of condensing steam. This extended code is based
on the AVG-P model for two-phase flow, the Lax-Wendroff finite volume method and has
modified outlet boundary condition for constant pressure with additional homogeneous
Neumann condition for the temperature to avoid non-physical oscillations of wetness along
the outlet boundary. First results of two-phase flow of condensing steam in unsteady sta-
tor/rotor interaction were published in [23]. Numerical method has been also recently
extended for the cases with non-zero wetness of incoming steam and the droplet growth
model has been regularized, details were published in [25].
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