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Summary

We present a randomized data mining method that finds clusters of spatially
overlapping images. The core of the method relies on the min-Hash algorithm
for fast detection of pairs of images with spatial overlap, the so-called cluster
seeds. The seeds are then used as visual queries to obtain clusters which
are formed as transitive closures of sets of partially overlapping images that
include the seed. We show that the probability of finding a seed for an image
cluster rapidly increases with the size of the cluster.

The properties and performance of the algorithm are demonstrated on
datasets with 104, 105, and 5 · 106 images. The speed of the method de-
pends on the size of the database and on the number of clusters. The first
stage of seed generation is close to linear for databases sizes up to approxi-
mately 234 ≈ 1010 images. On a single 2.4GHz PC, the clustering process
took only 24 minutes for a standard database of more than hundred thousand
images, i.e. only 0.014 seconds per image.
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Souhrn

V této práci představujeme metodu randomizovaného vytěžovánı́ dat, který
nacházı́ shluky obrázků s překrývajı́cı́m se obsahem. Metoda je založena
na algoritmu min-Hash pro rychlou detekci párů obrázků s překrývajı́cı́m
se obsahem, takzvaná semı́nka shluků. Semı́nka jsou následně použita jako
vizuálnı́ dotazy k zı́skánı́ shluků. Ty jsou vytvořeny jako komponenty souvis-
losti v grafu, kde vrcholy jsou obrázky a hrany představujı́ částečný překryv.
Ukazujeme, že pravděpodobnost nalezenı́ semı́nka shluku obrázků rychle
roste s velikostı́ shluku.

Vlastnosti a chovánı́ algoritmu jsou demonstrovány na množinách 104,
105 a 5 · 106 obrázků. Rychlost metody záležı́ na velikosti databáze a na
počtu shluků. Prvnı́ část algoritmu – generovánı́ semı́nek – je téměř lineárnı́
pro databáze velikosti přibližně 234 ≈ 1010 obrázků. Na jednom standardnı́m
2.4GHz PC trvá nalezenı́ shluků v databázi o velikosti vı́ce než sto tisı́c
obrázků pouze 24 minut, tedy přibližně 0.014 sekundy na obrázek.
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Chapter 1

Introduction

Collections of images of ever growing sizes are becoming common both due
to commercial efforts, such as Google street view, and as a result of photo and
video sharing of individual people (e.g. Flickr [8]). Structuring and browsing
large images databases is a challenging problem. Developments like Photo
Tourism [22] show that access to images based on the 3D acquisition location
or on the spatial overlap of the scenes they depict is intuitive and has high
user acceptability. Commonly, the sets of relevant spatially related images
are obtained using manual annotations. We propose a method for discovering
spatial overlaps using image content only via image retrieval techniques.

We formulate the task of discovery of spatially related images as finding
connected components in a graph. Vertices of the graph represent images.
Two images are related (connected by an edge) if they depict the same scene.
From the point of view of the fast clustering algorithm, we adopt a pragmatic
definition: a pair of images depicts the same scene if they can be matched by
some robust matching method. An example of a matching graph is shown in
Figure 1.1.

While the vertices of the graph are defined as the image database, the edge
structure is not known a-priori and has to be discovered by the clustering
algorithm. An image-retrieval system (e.g. [16]) can be thought of as an
efficient method that, given one vertex (an image), returns all edges to related
images. In most current retrieval systems, a query has complexity linear in
the number of images in the database, but is many orders of magnitude faster
than actually attempting to match every single image to the query image.

The min-Hash, on the other hand, is a hashing method for fast retrieval
of edges. However, the price paid for the efficiency of the method is a low
recall: each edge is only discovered with a certain probability. The probability
is proportional to the image pair similarity based on the fraction of common
visual words shared by the images. The probability is high (close to one) only
for near duplicate images, which is the domain where the min-Hash has been
used so far [1, 3]. The complexity of this approach is linear in the number of
images in the database.
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Figure 1.1: Visualization of a part of a cluster of spatially related images au-
tomatically discovered from a database of over 100K images (Oxford 105K
dataset). Overall, there are 113 images in the cluster, all correctly assigned.
A sample of geometrically verified correspondences is depicted as links be-
tween images. Note that the images show the tower from opposite sides.

The properties and performance of the algorithm are demonstrated on
datasets with 104, 105, and 5 · 106 images. The speed of the method de-
pends on the size of the database and on the number of clusters. The first
stage of seed generation is close to linear for databases sizes up to approxi-
mately 234 ≈ 1010 images. On a single 2.4 GHz PC, the clustering process
takes only 24 minutes for a standard database of more than hundred thousand
images, or equivalently, only 0.014 seconds per image.

1.1 Related work on unsupervised object and scene discovery

The problem of matching (organization) of an unordered image set was in-
troduced by Schaffalitzky and Zisserman in [19] for sets of tens of images.
The approach closest to ours is [21] by Sivic and Zisserman who aimed at
unsupervised discovery of multiple instances of particular objects in feature
films. The is quadratic in the number of images and hence not suitable for
large scale clustering. Large scale clustering has been recently demonstrated
by Quack et al. in [18], who use the GPS information to reduce the large scale
task down into a set of smaller tasks. Further related methods are described
and discussed in detail in [7].
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Chapter 2

Background Review

This chapter briefly reviews the adopted image representation and the basic
min-Hash algorithm that are necessary to understand the topic and the contri-
butions presented in this thesis.

2.1 Image representation

Recently the majority of image retrieval systems has adopted the bag-of-
words image representation [20]. The details vary from method to method,
but most of the approaches follow a common scheme: 1) detection of local
features, 2) feature description, 3) vector quantization of the feature descrip-
tors. The three steps are visualized in Figure 2.1.

First, local regions of interest are detected [14]. Typically, detectors co-
variant with a similarity transformation (DoG [12], or with an affine trans-
formation (MSER [13], Harris-affine [14], or Hessian-affine [16]) are used.
Features covariant with an affine transformation are more general. Such fea-
tures are designed to be repeatedly detected under a projective transformation
of a close-to-planar surface. Such a mapping is locally well-approximated by
an affine transformation. A comprehensive comparison of different feature
detectors is provided in [14].

(a) (b) (c) (d)

Figure 2.1: Construction of the bag of words for image representation: (a)
affine co-variant features, (b) examples of features transformed into a canoni-
cal frame, (c) the SIFT descriptor – histogram of gradients over the canonical
frame – image taken from [12], (d) k-means is used to construct a visual vo-
cabulary – each cell represents a different visual word wi.
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In feature description stage, each image feature is assigned a vector from
a vector space called the descriptor space. The feature similarity is then de-
fined as a distance (typically L2) in the descriptor space. The invariance of
the descriptor to a geometric transformation is achieved by geometric normal-
ization into a canonical frame. Any descriptor computed over the canonical
frame can be used, the most popular being the SIFT descriptor [12].

To reduce the memory footprint and to enable a fast access to features
with similar descriptors, the descriptor space is vector-quantized into a vi-
sual vocabulary. Instead of the full descriptors, only (the identifier of) the
vector quantized prototype for visual word is kept. Different vector quan-
tization methods have been proposed for visual vocabulary construction: k-
means [20], hierarchical k-means [15], approximate k-means [17] and others.

The images are represented as bags (multi-sets) of visual words. Such a
representation has been shown to be well-suited for large-scale image search
and analysis. The local-feature approach introduces robustness to occlu-
sions and viewpoint change. The vector-quantized descriptors are a reason-
ably compact representation that allows for efficient search using techniques
adopted from large-scale text-retrieval community.

2.2 Introduction to min-Hash

The min-Hash algorithm, introduced in [1], is a Locality Sensitive Hashing
[9] for sets. In the min-Hash method, images are represented as sets of visual
words. This is a weaker representation than a bag of visual words since word
frequency information is reduced into binary information (present or absent).
However, it was shown that for large vocabularies the set-of-words and bag-
of-words representations are almost identical [2].

There is a number of equivalent definitions of the min-Hash. It will be
convenient to use the definition exploiting ordering of the vocabulary by a
random permutation π. Let W be the set of visual words, N = |W| be the
size of the vocabulary and

π(i) : {1 . . . N} → {1 . . . N}

a permutation of N elements. Let p(i) be an inverse function to π(i). That
is, π(i) gives the rank of visual words wi ∈ W , while p(i) is the index of ith
smallest visual word in the ordering induced by π. The random permutation
π is often implemented as a hash function f(wi), so that π(i) < π(j) iff
f(wi) < f(wj).

A min-Hash signature of a set A ⊂ W is defined as h(A), where

h(A) = min
i:wi∈A

π(i). (2.1)
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Such a function has the property that the probability of two sets having the
same value of the min-Hash signature for a random permutation π is equal to
their set overlap [1, 3], i.e. the ratio of the cardinalities of the intersection and
union of the two sets. Let A1 and A2 be sets of visual words. To simplify
the notation and terminology, in connection with min-Hash, we use the term
‘similarity’ for the set overlap:

sim(A1,A2) =
|A1 ∩ A2|
|A1 ∪ A2|

∈ [0, 1]. (2.2)

The probability of two images having the same min-Hash signature is then

P [h(A1) = h(A2)] = sim(A1,A2).

To estimate the similarity of two images, multiple independent min-Hash
functions hj (i.e. independent permutations πj of the vocabulary) are used.
The fraction of the min-Hash functions that assigns an identical min-Hash
signature to the two sets is an unbiased estimate of the similarity of the two
images.

Retrieving similar images. So far, a method to estimate the similarity of
two images was discussed. To efficiently retrieve images with high similarity,
the values of min-Hash functions hi are grouped into s-tuples called sketches.
Similar images have many values of the min-Hash function in common (by
the definition of similarity), and thus have a high probability of having the
same sketches. On the other hand, dissimilar images have a low chance of
forming an identical sketch. Identical sketches are efficiently found by hash-
ing [10].

The probability of two sets having at least one sketch out of r in common
is

PC(A1,A2) = 1− (1− sim(A1,A2)
s)r. (2.3)

The probability depends on the similarity of the two images and on the two
parameters of the method, which are the size of the sketch s, and the number
of (independent) sketches r. Figure 2.2 visualizes the probability of collision
plotted against the similarity of two images for fixed s = 3 and r = 512.
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Figure 2.2: The probability of at least one sketch collision for two documents
plotted against their similarity; with r = 512 sketches, s = 3 min-Hashes per
sketch. Image pairs of different similarities are added to relate to the ’visual
similarity’. The bottom plot shows a close-up of the bottom left corner of the
left plot. Note the logarithmic vertical axis.
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Chapter 3

Randomized Clustering

3.1 Cluster seed generation

In this section, a randomized procedure that generates seeds of possible clus-
ters of images is described. Let us first look at the plot of the probability of
sketch collision as a function of image similarity depicted in Fig. 2.2. The
sigmoid-like shape of the curve is important for the near duplicate detection
task [3]. Image pairs with high similarity are retrieved with a probability close
to one. The probability drops rapidly – through similar image pairs (typically
images of the same object from a slightly different viewpoint) that are oc-
casionally retrieved to unrelated image pairs (with similarity below 1%) that
have close to zero probability of being retrieved.

Now, for the purpose of data mining, let us focus on the bottom left
corner of the graph. According to eqn. (2.3), an image pair with similarity
sim = 0.05 has probability 6.2% to be retrieved (using 512 sketches of size
3). Such a poor recall is certainly below acceptable level for a retrieval sys-
tem. However, we do not aim at retrieving all relevant images from the image
clusters in a single step. The task is to quickly detect seeds from the clusters
– it is sufficient to retrieve a single seed per cluster, and we are fortunate that
the importance of a cluster is related to its size in the database.

The probability that not a single image pair (seed) is found by the min-
Hash depends on two factors – the similarity of the images in the cluster
and the number of image pairs that actually observe the same object. In the
following analysis, which demonstrates an approximate lower bound on this
probability, we assume that a particular object or landmark is seen in v views.
The probability that none of the pairs (Ai,Aj) of v views is retrieved is ap-
proximated by

P{fail} =
∏
i 6=j

1− PC(Ai,Aj) = (1− ε)
v(v−1)

2 . (3.1)

Here, ε stands for an “average” collision probability. The “average” cluster
similarity is then defined by eqn. 2.3. The plot in Fig. 3.1 shows that for pop-
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Figure 3.1: Probability of failure to generate a seed in a set of images depict-
ing the same object using min-Hash with 512 sketches of size 3 (left) and 4
(right); note the different scales on the horizontal axes. The three curves show
the dependence for different ‘average’ similarity equal to 7% (lowest curve),
6% (middle) and 5% (highest).

ular places (i.e. those where photos are often taken from) the probability of
failure to retrieve an image pair vanishes. There are three plots for similari-
ties 5%, 6% and 7%. Since the similarity is defined as a ratio of the size of
the intersection over the size of the union, the difference between similarity
6% and 5% is substantial. Going from 6% to 5% similarity means removing
17.5% of elements that were in the intersection.

It is important to point out that the probability of finding a seed depends on
the image similarities and the number of views and is completely independent
of the size of the database. The v views have the same chance to be discovered
in a database of 5000 images as in a database of several millions of images
without any need to change the method parameters or re-hash. This is not
true for many topic discovery approaches.

Time complexity. The method is based on hashing with a fixed number M
of bins. The number of bins is based on the size of the vocabulary which
cannot be infinitely increased without splitting descriptors of the same phys-
ical region. Assuming the uniform distribution of the keys, the number C of
keys that fall into the same bin is a random variable with a Poisson distribu-
tion where the expected number of occurrences is λ = D/M (the number of
documents divided by the number of bins in the hashing table). The expected
number of key pairs that fall into the same bin (summed over all bins) is

M∑
i=1

E(C2) =

M∑
i=1

(
λ2 + λ

)
=
D2

M
+D. (3.2)

The asymptotical time complexity is O(D2) for D, i.e. size of the image
database, approaching the infinity. However, for finite databases of sizes up
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to D ≤ M , the method behaves as linear in the number of documents since
D2/M +D ≤ 2D. In the min-Hash algorithm, the number of keys depends
on the size of the vocabularyw and the size of the sketch s and is proportional
to M = ws. In the experiments in this paper, we used w = 217 and s = 3 or
s = 4. This gives the number of different hash keys M = 251 and M = 268.
We believe that this number is sufficient to conveniently deal with web scale
databases.

3.2 Growing the seed

We build on the query expansion technique [4] to increase the recall. The
idea is as follows: an original query is issued and the results are then used
to issue new query. Not all results are used, only those that have the same
spatial feature layout (for more details on spatial verification see the following
section). The spatial verification prevents the query expansion from so-called
topic drift, where an unrelated image is used to expand the query.

Time complexity. Each query is linear in the number of images in the
database. Hence, the time complexity of completing the connected compo-
nents is O(DV ), where D is the size of the database and V is the number of
images in all clusters. The worst case behaviour of this step is thus quadratic,
when every image is assigned to one of the clusters. In practice, however, we
observe that V � D, which brings immense computational savings.

Further reduction of the time complexity can be achieved by the follow-
ing observation. The number of images of one object (say the Colosseum in
Rome) will typically grow with the size of the dataset, but the number of dif-
ferent viewpoints gets saturated after certain amount of images is exceeded.
Grouping images into similar viewpoints (based on a global descriptor) has
been used in [11]. In the proposed approach, for very large clusters (over 500
images), we exclude all images with large number of matches (more than 50)
from the query expansion step. This does not have a significant impact on
the recall, since well matching images usually do not carry sufficient amount
of new information to be used in the enhanced query. It also reduces the
time complexity toO(DL), where L is the number of clusters rather than the
number of images in all clusters.

3.3 Experimental Evaluation

We have conducted two experiments. The first one checks whether the proba-
bility of seed generation is sufficiently high on real data as predicted by theo-
retical estimates presented in Section 3.1. In the second experiment, clusters
of spatially related images are discovered in a database of 100K images.
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3.3.1 Seed generation success rate

To evaluate the success rate of the seed generation stage on real data, we
use a standard image retrieval benchmark dataset (the University of Kentucky
dataset) introduced in [15]. This database contains 10200 images; a group
of 4 images depicts the same object / scene, i.e., there are 2550 clusters of
size four. The dataset provides images, detected image features and SIFT
descriptors. The provided features and descriptors were used.

The objective is to measure for how many clusters (all of size four) the
proposed method generates at least one seed. For this experiment, we have
used a visual vocabulary of 217 visual words. For each image, 512 inde-
pendent random min-Hash functions were evaluated and grouped into 512
sketches of size 3 (individual min-Hashes were used multiple times). With
this setting, there are 11556 pairs of images with at least one common sketch
value (a sketch collision) of which 3553 passed the similarity test at 0.045
(step 2 of the clustering procedure); out of the 3553 seeds 3210 were within
a ground-truth defined group of four images. The number of clusters of four
images for which at least one pair was suggested by the hashing is 1196 (out
of 2550 possible clusters). In other words, a seed for a cluster of size four
is generated with a probability of 46.9%, which is very close to the expected
value of failure, see Fig. 3.1, left plot. The approximately 50% probability
of detecting a cluster might seem low, but a cluster of four images is much
smaller than typical clusters in image collections containing 105 − 107 im-
ages. The experiment shows performance of the algorithm for the smallest
practical cluster size.

In Fig. 3.2, we compare the predicted success / failure rate (from
eqn. (3.1)) and the empirical failure rate. In the experiment, the “average”
collision probability ε was computed (exactly) for each cluster by enumer-
ating all image pairs within the cluster. For each cluster, we also observe
whether a seed has been generated in the cluster or not. Fig. 3.2 plots the
frequency of observed seed generation success rate for different levels of pre-
dicted success rate. The histogram closely follows the grey identity line. We
conclude that the prediction given in eqn. (3.1) is precise for the Kentucky
dataset.

3.3.2 Clustering on the 100K Oxford Landmark Database

The experiment was conducted on a large database of images downloaded
from Flickr [8]. This database contains 5, 062 images from publicly available
Oxford Landmark Database1 and 99, 782 from Flickr1 dataset2 used in [17].
Both sets are composed of high resolution images (1024× 768). The dataset

1http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
2Courtesy of VGG, University of Oxford
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Figure 3.2: Histogram of observed success rate plotted against the expected
success rate on the Kentucky dataset.

consists of images, as well as detected features with SIFT descriptors – these
standard features and descriptors were used in the experiment. Together, there
are 104, 844 images with 294, 105, 803 features (2805 features per image on
average). The SIFT descriptors of the features occupy 35GB. In this dataset,
images of 11 landmarks were manually labelled. Presence of each landmark
in an image is characterized by one of four labels: (i) Good – a nice, clear
picture of the object, (ii) OK – more than 25% of the object is clearly visible,
(iii) Junk – less than 25% of the object is visible, or there is a very high level
of occlusion or distortion, and (iv) Absent – the object is not present.

As in the previous experiment, we used a vocabulary with 217 visual
words for min-Hash seed generation and with 1M words for seed growing.
The Oxford Landmark Database contains clusters with 102− 103 images. To
show the potential of the method, we used 512 min-Hashes grouped into 512
sketches of size three. These settings allow to discover even small clusters of
several images with reasonable probability and are the same as in the Univer-
sity of Kentucky database experiment. On average, the min-Hash generated
38.4 sketch collisions per image. These were reduced to 1.23 potential seeds
per image by thresholding the estimated similarity at 0.045 – this corresponds
to 129, 341 seeds. Out of those, 3103 images were found to have an exact du-
plicate in the database (the same image was downloaded under different user
tags), and 289 images were found to have a near duplicate. Both exact and
near duplicates were dropped and the remaining potential seeds were subject
to spatial verification, leaving 441 verified seeds. This number is an upper
bound on the number of clusters, since typically there are multiple seeds per
cluster. The seed growing by query expansion discovered 354 distinct clusters
covering 2, 643 images.

Table 3.1 summarizes the results on objects with ground truth informa-
tion. For each landmark, we found cluster containing the most positive
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Good OK sketch 3 unrelated sketch 4
All Souls 24 54 97.44 0 97.44
Ashmolean 12 13 68.00 0 0
Balliol 5 7 33.33 0 0
Bodleian 13 11 95.83 1 95.83
Christ Church 51 27 89.74 0 89.74
Cornmarket 5 4 66.67 0 0
Hertford 35 19 96.30 1 0
Keble 6 1 85.71 0 0
Magdalen 13 41 5.56 0 1.85
Pitt Rivers 3 3 100.00 0 0
Radcliffe Camera 105 116 98.64 0 98.46

Table 3.1: Results for annotated images in the Oxford Building Dataset. The
first two columns show the number of ground truth images labelled ‘Good’
and ‘OK’ respectively. The column ‘sketch 3’ displays the percentage of la-
belled images that were clustered into a single cluster using min-Hash with
sketches of size three, ’unrelated’ gives an absolute number of unrelated im-
ages in that cluster. The column ‘sketch 4’ presents results for sketches of
size four.

(Good and OK) images of that landmark and computed the fraction of positive
ground truth images in this cluster. Also, the absolute number of unrelated
images is reported by eye-balling these clusters. Other buildings that appear
in the same cluster are not considered unrelated if images linking these ob-
jects exist. For example, images of All Souls and the Radcliffe Camera are
all in one cluster – they are right next to each other and appear together on
several images.

Clusters corresponding to all ground-truth objects were successfully dis-
covered with the exception of the Magdalen Tower. The percentage of im-
ages assigned to the relevant cluster is consistent with the retrieval results in
[17, 4] and is related to the ‘difficulty’ of each landmark. This also holds
for the ‘Magdalen’ – reported retrieval results were by far the worst for this
landmark. In our experiment, three images of the tower were discovered and
the method was unable to spatially verify and grow to any other image.

Setting sketch size to three is suitable for demonstrating the method on
a database of 100K images. It allows retrieving even small, perhaps uninter-
estingly small, clusters. These settings will not be acceptable for web scale
database size of more 107 images or more. To simulate real conditions, we
have also used 512 sketches of size four, which is suitable for very large
databases, but returns with acceptable probability only larger clusters. Still,
the size of discovered clusters is comparable (or smaller) than the size of clus-
ters used in Photo Tourism [22]. The four largest clusters from the Oxford
Landmark ground truth were discovered (together with other larger clusters
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22,440 : sagradafamilia; sagrada; familia; gaudi; lasagradafamilia

10,682 : colosseum; coliseum; colosseo; coliseo; colloseum

4,539 : oldtownsquare; czechrepublic; czech; astronomicalclock; prague

Figure 3.3: Sample of large clusters discovered in the 5M database. Size of
the cluster and the five most discriminative Flickr tags are shown beneath the
images. Note the variety in scale, viewpoint, and illumination conditions.

that are not included in the ground truth).

Timing. The seed generation took 7 min 47 sec and the seed growing took
16 min 20 sec on a 2.4GHz PC using a single processor (MATLAB / MEX
implementation). The complete processing of the database took thus slightly
more than 24 minutes (the time does not include the feature extraction, SIFT
computation, vector quantization, nor database indexing), which corresponds
to 0.014 seconds per processed image. Note that all steps of the proposed
method are easy to parallelize.

3.3.3 Large-scale clustering of 5 million images

We have executed the clustering on a database of 5 million Flicker images. In
this experiment we have used: Hessian affine features [16], a vocabulary of
1M visual words, sketch size s = 4, and k = 512 sketches. The clustering
took slightly under 28 hours on a single machine (3.0GHz PC, 64GB memory,
using a single core), which is 0.020 seconds per image. Out of the 5M images,
474434 were assigned to 16957 clusters. Fig. 3.3 shows samples of some
detected clusters together with the five most discriminative user tags for that
particular cluster.

3.4 Conclusions

We have proposed a method for discovering spatially-related images in large
scale image databases. Its speed depends on the size of the database and is
very fast in practice and close to linear for database sizes up to approximately
234 ≈ 1010 images. The success rate of cluster discovery is dependent on the
cluster size and the average similarity within the cluster and is independent
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of the size of the database. The properties and performance of the algorithm
were demonstrated on datasets with 104, 105, and 5 · 106 images.
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Mgr. Ondřej Chum, Ph.D.
cmp.felk.cvut.cz/∼chum
Born on 11th November 1976 in Nymburk, Czech Republic

since 2007 Senior researcher at CMP, Dept. of Cybernetics,
Faculty of EE, Czech Technical University in Prague

2006–2007 Postdoc at the VGG, University of Oxford, United Kingdom
2005–2006 Researcher at CMP, Dept. of Cybernetics, FEE, CTU in Prague
06–12 2002 University of Surrey, Guildford, United Kingdom
2001-2005 PhD at CMP, Dept. of Cybernetics, FEE, CTU in Prague
1996–2001 Master at the Faculty of Mathematics and Physics,

the Charles University, Prague

Awards:
• The runner up award for the “2012 Outstanding Young Researcher in Im-

age & Vision Computing” by the Journal of Image and Vision Computing
for researchers within seven years of their PhD

• Winner of VOC PASCAL 2007 challenge detection task at the ICCV
2007, Rio de Janeiro, Brazil.

• A member of CMP team that came second at the ICCV 2005 Localization
Contest, Beijing, China.

• British Machine Vision Association award for the best scientific pa-
per at British Machine Vision Conference 2002, Cardiff, United Kingdom

Currently, O. Chum is co-supervising two PhD students and leading a
number of master students. He is lecturing Processing of Medical Images
and a graduate course Understanding State of the Art Methods, Algorithms,
and Implementations. He was/is leading a team of 4–6 master and 2–6 PhD
students under CTU SGS grants. He has (co-)acquired a number of grants,
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