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Summary

The document concerns application of optimization approach when dealing with thermo-
dynamic modelling in internal combustion engine using detailed 0-D/1-D model. Three
different possibilities are mentioned – calibration of ICE mathematical model, engine
setting optimization and engine control from system simulation point of view (controller
optimization is not meant by this term). These possibilities are listed in order of importance
(based on author’s opinion).

Calibration is critical phase of engine model work-flow – only properly calibrated
model can provide sound conclusions. Optimization is supposed to provide a great help
due to the fact that an error between prediction and measurement can be minimized. This
is in line with main goal of calibration which is to find the values of calibration parameters
so that the mathematical model matches experimental data as closely as possible. On the
other hand, user’s experience is invaluable as each calibration is a unique process – there is
no general method to calibrate engine model properly, moreover there might be significant
errors in experimental data.

Optimization of engine setting under steady-state operation is a standard task. Due
to increase in computer power, complex multi-variable multi-target multi-constraint prob-
lems can be solved within reasonable time – this allows to perform optimizations of higher
quality as internal combustion engine features strong non-linear interaction of many input
parameters.

Engine control optimization is very challenging task due to the need to simulate tran-
sient response and the fact that optimization is more difficult from theoretical point of view.
Strong development is expected in this application field before it becomes an industry
standard task. At present time, a common approach is to derive a model which is much
simpler from complexity level point of view. Such model is significantly faster however
it usually ’looses’ most of its physical meaning hence its predictive ability is limited or
even lost.

Some examples are briefly presented to show application of optimization in all three
above-mentioned categories. Some results are shown in each example so that the quality
of optimization/calibration process can be estimated.
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Souhrn

Předložený dokument se zabývá použitím optimalizačního přístupu pro případ termody-
namických simulací spalovacího motoru užitím detailního 0-D/1-D modelu. Tři různé
možnosti jsou zmíněny – kalibrace matematického modelu motoru, optimalizace nas-
tavení motoru a řízení motoru z pohledu celkové systémové simulace (nejde o optimalizaci
regulátoru). Tyto možnosti jsou řazeny dle své důležitosti (podle názoru autora).

Kalibrace je kritickou fází při tvorbě modelu – pouze řádně zkalibrovaný model může
poskytnout rozumné výsledky. Očekává se, že optimalizace zde může významně pomoci,
nebot’ je možné minimalizovat odchylku mezi výsledky simulací a naměřenými daty. To je
v souladu s hlavním cílem kalibrace, což je najít takové hodnoty kalibračních parametrů,
aby matematický model odpovídal co nejlépe experimentálním poznatkům. Na druhé
straně zkušenost uživatele je neocenitelná, protože každá kalibrace je unikátní proces –
neexistuje obecná metoda jak korektně kalibrovat model motoru, navíc naměřená data
mohou obsahovat chyby.

Optimalizace nastavení motoru odpovídající ustálenému stavu je dnes již standardní
úlohou. Díky nárůstu výpočetního výkonu je možné řešit komplexní problémy (vícepara-
metrická optimalizace omezená mnoha limity s cílem optimalizovat více výstupních
parametrů) v rozumném časovém úseku – to umožní provádět optimalizace vyšší kval-
ity, protože spalovací motor se vyznačuje silnou nelineární interakcí mnoha vstupních
parametrů.

Optimalizace řízení motoru je velmi obtížný úkol, nebot’je třeba simulovat přechodový
režim a tato optimalizace je mnohem náročnější z teoretického hlediska. Značný vývoj lze
očekávat v této oblasti předtím, než se tato optimalizace stane standardním úkolem. V
současné době je běžným postupem řešit tyto obtíže za pomoci značně zjednodušených
modelů z hlediska fyzikální složitosti. Takovýto model je výrazně rychlejší avšak obvykle
ztrácí mnoho ze své fyzikální podstaty, a tedy jeho prediktivní schopnost je omezena nebo
dokonce ztracena.

Stručně jsou zmíněny příklady, aby demonstrovaly použití optimalizace ve všech třech
výše uvedených oblastech. Jsou ukázány některé výsledky, takže je možné posoudit kval-
itu optimalizace/kalibrace.
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1 Introduction

An internal combustion engine (ICE) has been used widely as a source of mechanical
energy. Its application is dominated by automotive industry, mainly passenger cars and
light/heavy duty vehicles. Despite the fact that its ’age’ is more than one century, it is
still an important machine, which is expected to be the main power source in vehicles
during the next decades. Its main advantages are high power density, high efficiency and
reasonable prices. However, limited supplies of oil, increasing oil prices and significant
pollutant production have been leading to an increased social pressure to improve ICE
efficiency while decreasing emission of pollutants.

Simulation has been an important tool to achieve these ambitious goals. Its importance
has been ever increasing during the course of the whole development process. Many
different tools – ranging from simple algebraic ones up to 3-D CAE tools – are available to
enhance the development procedure. These tools differ in physical complexity, moreover
different tools are applied in different phases of development process (simple tools are
used usually at early development stage while detailed 3-D tools are applied during
later stages). All these tools require some kind of a calibration to improve confidence
in predicted results. There is a clear trend to apply more profound models (i.e., level of
physical complexity is higher) during early development stages. This leads to the situation
in which these models have to be reliable although there are no experiments to verify them
as the machine might not even exist at that time. That requires highly qualified users with
profound knowledge and extensive experience with similar engines. Moreover, 3-D CAE
tools might be applied as initial source of calibration before any experimental data are
available. Such procedure is clearly very demanding, however advantages are obvious –
improved design is available sooner, hence development process can be shortened.

One of the main advantages of any simulation tool (once properly/reasonably cali-
brated) is the potential for relatively fast optimization. The possibility to optimize is very
important as it enables to find a potentially promising designs for a following detailed
analysis – it can save a lot of time due to the fact that ’dead-end’ designs are avoided.

As mentioned above, reliable simulation results cannot be achieved without proper
calibration. Once the confidence in predicted results is high, optimization approach is
usually applied to find an optimal design. The following text deals with application of
optimization approach in different phases of ICE model creation and usage. As the author
deals with thermodynamic simulation of ICE, all below mentioned text and examples
concerns thermodynamic simulation tools. However many conclusions (presented below)
are generally valid, i.e., they do not hold for thermodynamic modelling cases only.
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2 Application of Optimization Approach

It is well known that one of the main reasons why to build a thermodynamic model of
ICE is to perform some kind of optimization. It is a very important feature as theoretical
thermodynamic analysis is usually much faster and much cheaper when compared with
experimental one. It was already mentioned above that each thermodynamic model needs
some kind of calibration – the more precise calibration, the higher confidence in predicted
results. When using the word ’calibration’ in this document, it is meant to calibrate a mathe-
matical model of ICE (it does not mean to calibrate a control unit). The author’s experience
is that the calibration phase of model creation is usually the most important one. That is
why sufficient amount of time is required to perform this critical step in a best possible
way. Based on that, both the optimization and the calibration are important phenomena
regarding ICE thermodynamic modelling. The following text is aimed at describing them
in detail.

When dealing with thermodynamic simulation of ICE, the optimization approach
might be typically applied in three different ways – the first one is the calibration of
ICE model, the second one concerns engine setting/design optimization (this is a typi-
cal standard application) and the third one deals with engine control optimization from
system point of view. Each of them has its own specific features that is why they are dealt
separately in the following sections – general comments and example(s) are presented to
demonstrate main features. The examples concern engine models built in 0-D/1-D code
(c.f. [1, 2]) – such models are suitable for engine system simulations.

It was mentioned above that the standard task is to optimize engine setting/design
– that usually means to search for optimum solution under steady-state operating con-
ditions. Such approach is described in section 2.1. However, if a mathematical model of
ICE is supposed to provide reliable prediction, it has to be properly calibrated – this is
a complex issue which is commented in detail in section 2.2. It is also well known that
engine control (from system point of view) is a critical factor. There is a lot of potential
to improve engine control by means of both simulation and optimization, however it is
relatively difficult task as engine transient response has to be considered. This is briefly
described in section 2.3. It is obvious that transient simulation is more difficult (from the
physics point of view) when compared with steady-state one – this makes calibration even
more important (and more difficult).

The optimization methods can be divided into three different categories – deterministic,
stochastic and combined. The deterministic methods are based on deterministic approach,
their output is usually only single optimum design. The following methods belong to this
category – mathematical analysis (calculus), simplex method, linear/quadratic program-
ming. In ICE applications, gradient based methods are widely applied. The stochastic
methods are based on certain random features, the Monte Carlo method is example from
this category. These are not applied frequently in ICE optimization tasks. The combined
methods combine both approaches. Special sub-category of such methods consists of

7



evolutionary algorithms (EA), which generate solutions to optimization problems using
techniques inspired by natural evolution, such as inheritance, mutation, selection, and
crossover. Genetic algorithm is one possible method from this sub-category – recently it
has been widely used to solve complex optimization problems (multi-variable multi-target
multi-constraint optimization). It is surprisingly effective in the field of ICE applications.
However its main disadvantage is that it is ’method only’ – it is not based on principles of the
ICE physics which means that analysis of optimal population evolution cannot generate
hitns/advices how to improve ICE design from general point of view.

2.1 Optimization of ICE Setting/Design
It was mentioned above that one of the main reasons why to create a thermodynamic
ICE model is to perform optimization which is supposed to be faster and cheaper when
compared with experimental optimization. Development/research based on application
of thermodynamic ICE model has been done for a long time and model-based optimization
has been ever present. That is why it is a standard task to perform optimization when
thermodynamic ICE model is available. Initially optimization tools were relatively simple
(e.g, gradient-based methods, design of experiments). However as more computer power
was available it was possible to run multi-variable multi-target multi-constraint tasks,
which are relatively complex. Due to non-linearity of equation set 2.1 (located below in
section 2.2) to be solved, there are many local optima. Moreover, there is strong non-linear
interaction of input parameters. All these facts lead to a conclusion that simple optimiza-
tion methods are not suitable for such complex tasks. At first full factorial combination of
all input parameters were calculated so that a user can obtain robust optimal solution – it
is clear that such approach is very time consuming. The author was surprised that genetic
algorithm, which is suitable for describing ’live’ system evolution, is very good tool in such
complex optimization tasks (described above). It was proven that genetic algorithm [3] is
both reliable/robust and relatively time effective tool. At present time, it has been widely
used at Department of Automobiles, Internal Combustion Engines and Railway Vehicles at
Faculty of Mechanical Engineering at the Czech Technical University in Prague to perform
various optimization tasks.

From mathematical point of view, more detailed description of a general thermody-
namic ICE mathematical model is presented in section 2.2, equations 2.1-2.5. Application
of a optimization approach is also described in that section, equations 2.6-2.7. When
performing optimization of engine setting/design, mathematical model is run in a ’normal’
way. That means that unknown variables yi are determined by solving 2.1 numerically. The
calibration procedure (section 2.2) is finished, hence the vector cn is known and the math-
ematical problem 2.1-2.4 is properly defined. The optimization task 2.6 (or its simplified
version 2.7) is solved with respect to engine design parameters, i.e., certain components of
km (equation set 2.3) are optimized.

From optimization point of view, typical variables to be optimized are the following
– compression ratio, intake valve open/close timing, exhaust valve open/close timing,
turbocharger matching (selection of the best possible turbochargers to provide required
boost pressure), etc. These parameters can be considered as engine design ones. There are
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usually other variables to be optimized – they may be regarded as control ones as they
can be ’adjusted’ during engine operation. Injection/ignition timing, turbocharger setting
(waste-gate, variable geometry position), air excess are typical examples of them. Their op-
timized values correspond to ICE steady-state operation (transient response is dealt with in
the following section 2.3). The targets of optimization depend on ICE application. There are
usually two typical examples, which can be considered as single-target optimization task
– the first one is to find the lowest possible brake specific fuel consumption (BSFC) while
satisfying engine power requirement∗, the second one deals with maximum achievable
engine power. Regarding multi-target optimizations, typical example concerns minimiza-
tion of BSFC while minimizing pollutant production (or at least not exceeding certain
limits). Optimization constraints are very important in a case of engine setting/desing
optimization – they limit achievable optimal solution considerably. It may also happen
that there is no solution due to them. Typical constraints are the following – maximum
in-cylinder pressure, minimum air excess, maximum inlet turbine temperature, maximum
turbocharger speed, compressor surge, knocking, maximum/minimum exhaust gas recir-
culation (EGR), etc.

Due to limited extent of this document, no detailed example is presented in this section.
As the engine setting/design optimization has been a standard task for a long time (at least
two decades), almost every paper, which deals with ICE thermodynamic modelling, con-
tains information regarding optimization using ICE model – c.f. [13–18], some papers con-
cern an application of complex optimization methods (c.f. [4, 7, 20]). However, Figure 2.1
shows a comparison of different charging concepts of unspecified spark ignition (SI) en-
gine. Each engine concept is fully optimized at each engine speed including (turbo)charger
matching while taking into account many constraints including knocking. This example
demonstrates a possibility to perform huge complex optimization tasks (genetic algorithm
was applied as optimization tool) including selection of proper design concept.

Figure 2.1: Comparison of different charging concepts – best variant of each concept is presented; engine
torque (left sub-figure) and BSFC (right sub-figure).

∗The requirement to obtain desired power is usually achieved by a controller which is directly built-
in thermodynamic model. It may happen that the required output cannot be reached – if this is a case, a
properly defined constraint is supposed to ensure that the design is dropped.
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It has been verified many times in the past that theoretical optimization (using ther-
modynamic ICE model) is powerful tool to verify potential of proposed design and to
understand the complex links of interaction between ICE and other thermodynamic de-
vices (e.g., 2-stage turbocharger system). Both of these features are valuable. It should be
stressed that genetic algorithm produces an optimal solution in such a way which is not
straightforward from the physics point of view – in this sense, genetic algorithm is simply
only a robust method to find optimal solution. If understanding of thermodynamic links
is of primary interest, it is recommended to perform sensitivity studies – it is a sweep of
results when only one variable is varied while all remaining ones are set to be constant.

2.2 Calibration of ICE Model
When applying 0-D/1-D thermodynamic model, it is based on 1-D fluid dynamics [5, 6] –
it means that non-linear partial differential equation set 2.1 is solved to take into account
basic conservation laws (mass, momentum and energy).

Li(t, x, yi, km, cn) = 0 (2.1)

Where yi, for i = 1, 2, ..., Ni is the vector of unknown thermodynamic properties to be
solved by numerical integration of 2.1. Unknown thermodynamic functions are supposed
to be dependent on time and and single space coordinate, i.e., yi = f(t, x). User has to
define vectors km and cn, where km, for m = 1, 2, ..., Nm is the vector of constants/functions
which are supposed to be known (material properties, machine design including geometry,
etc.) while cn, for n = 1, 2, ..., Nn is the vector a calibration parameters. Initial/boundary
conditions 2.2 have to prescribed to be able to solve the equation set 2.1.

Jj(t, x, yi, km, cn) = 0 (2.2)

The sub-models are supposed to add particular relations among yi, km and cn to be able to
solve 2.1 and 2.2. In-cylinder heat transfer, which may be modelled by Woschni empirical
formula [19], can be considered as an example of such a sub-model – it defines heat
losses via combustion chamber walls. From mathematical point of view, these sub-models
consists of differential equations∗ and algebraic ones.

km = Km(t, x, yi) (2.3)

cn = Cn(t, x, yi, km) (2.4)

Hence the whole equation set to be solved, namely 2.1, 2.2, 2.3 and 2.4, is relatively complex
– generally speaking, it is a non-linear hyperbolic system. However, there is still too many
unknown parameters (yi and cn) – the calibration procedure is supposed to assign values
of cn, which means to define a particular form of 2.4.

The above-mentioned equation set is supposed to represent a particular thermody-
namic machine – this is achieved by appropriate structure of the model and calibration

∗Typically ordinary differential equations are used, however there are some sub-models which are based
on partial differential equations (e.g., multi-zone direct diesel injection model in [1]).
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procedure. The former one means that suitable sub-models are selected for each part of the
machine, the parts are properly linked to represent real flow of mass/momentum/energy
and to consider interaction among the parts. As mentioned above, the latter one is sup-
posed to assign all necessary parameters so that the equation set can be solved by numeri-
cal solver – it may sound simple but it is actually difficult.

Before calibration process is started, some parameters have to be known – with-
out that knowledge, calibration is much more difficult or even impossible. Complete
geometrical information is needed to build all important parts from geometrical point
of view, moreover appropriate links among the parts are created to take into account
mass/momentum/energy fluxes. Chemical species have to be known as well to assign
correct thermodynamic properties to fluid mixtures which are passing through the parts
of the machine. Knowledge concerning engine control has to be available as well. From
mathematical point of view, all that means that values of km in equation set 2.3 are known.
It may happen that due to ’conversion’ of complex 3-D parts into 0-D/1-D simulation tools,
some geometrical properties have to be calibrated during calibration procedure so that vol-
ume and ’equivalent’ length is preserved to predict proper interaction of pressure waves.

The calibration of 0-D/1-D model cannot be avoided. This is very important phase (per-
haps the most important) of the simulation work. Without proper calibration, it is difficult
to trust the model. Moreover, the calibration process is generally very time consuming
as many iterations are needed. There is no general procedure how to calibrate 0-D/1-D
model as it strongly depends on particular application and available experimental data of
existing thermodynamic machine. User’s experience with similar cases is very important
and helpful as it can speed up the whole process significantly.

From mathematical point of view, there are many parameters (of selected sub-models)
to be assigned, namely cn in 2.4. To achieve that, experimental data have to be available
so that the mathematical model is capable of representing the considered thermodynamic
machine. The vector of measured values is denoted as rmeas

k while the corresponding vector
of values calculated from the solution of 2.1 is written in 2.5.

rk = Rk(t, x, yi, km) (2.5)

Where k = 1, 2, ..., Nk and Nk is the amount of available measured properties. To match
model with experimental data, prediction should equal measurements, i.e., rmeas

k = rk. The
user needs at least so many measured values to match the amount of unknown parameters,
i.e., Nn ≤ Nk.

When taking into account a typical model of ICE at present day, there are really many
sub-model parameters (cn) – these parameters are usually labelled ’tuning’ ones due to
the fact that after tuning their values, the mathematical model represents the considered
machine. It is usually not easy to measure so many different thermodynamic properties in
ICE when only single engine operating point∗ is considered – it is obvious that only certain
thermodynamic properties can be measured at ICE with reasonable accuracy while the

∗It is usually sufficient to define each ICE operating point by means of two parameters only – engine
speed and engine load.
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measurement itself is not too expensive∗. That is why Nn > Nk which means that there is
not enough information to assign cn. Typically the following information is available when
performing standard ICE experiments at engine test bed – average values of pressure,
temperature and mass-flow rate at different locations of ICE, in-cylinder pressure pattern
(with sufficient resolution in time domain) and integral parameters which represent the
whole engine cycle (power, speed, efficiency, pollutant production, etc). Unfortunately, the
averaging procedure means that some information is lost – e.g., average 4-stroke engine
torque is calculated as Mt,avg = ηm

4π

∫
p(t) dV (p(t) is instantaneous in-cylinder pressure,

V = V (t) is inst. in-cylinder volume, ηm is mechanical efficiency and the integral operation
is performed over the whole engine cycle – 2 engine revolutions for 4-stroke engine), where
p(t) is thermodynamic property which is solution of 2.1 while V (t) is known parameter
from 2.3. The average torque is measured at test bed in different way (taking into account
torque balance of test bed rotor). It is obvious that the loss of information is not desired due
to the fact that if model predicts correct engine torque, it does not necessarily mean that
in-cylinder pressure p(t) is predicted correctly. It would be better to measure instantaneous
values, i.e., rk = yk to avoid any transformation from yk to rk, so that calibration procedure
avoids comparison of average values. It is obvious that such measurements are much more
demanding, hence more expensive.

To get enough information (at least to match the amount of unknown tuning para-
meters), the experiments are repeated for different operating points. This usually leads
to a status that there are more equations than unknown tuning parameters (Nn < Nk).
Moreover due to non-linearity, there is strongly varying sensitivity of mathematical model
with respect to tuning parameters – in other words, some tuning parameters are more
important than other ones. On top of that, there is no guarantee that any reasonable
solution† of the problem exists (especially when there is more equations than variables),
i.e., that it is possible to find cn so that rmeas

k = rk. All these features make the calibration
procedure more difficult.

It is clear from above-mentioned text that there are some difficulties from mathemat-
ical point of view. That is why an efficient method to find the tuning parameters cn is
required. At present day standard approach to perform calibration procedure is to to use
’trial-and-error’ method. Usually the calibration is divided into many steps – in each step,
only single sub-model (e.g., in-cylinder heat transfer model) is being calibrated/tuned
while all other ones are kept unchanged – this means that only certain values of cn are
modified while all remaining ones are kept constant during the step. Due to non-linearity,
modified properties of any sub-model result in changes of performance of almost all
other sub-models, c.f. equation set 2.4. This leads to requirement to adjust slightly their

∗The selection of measured parameters cannot be random – the measured properties have to respect
important physical links among parts of considered thermodynamic machine (only such information is
valuable for calibration procedure) and obviously these properties have to be measurable.

†The author is aware that the term ’reasonable’ is not suitable for mathematical description. However it is
obvious that when there is more equations that unknown parameters (Nn < Nk), it is very unlikely that a
solution exists from mathematical point of view. That is why the term ’reasonable’ solution is introduced – it
means that such a solution is a set of calibration (tuning) parameters cn which causes that difference between
mathematical model prediction and experimental data is within reasonable limits, i.e., |rmeas

k − rk| ≤ εk.
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tuning parameters to compensate that effect∗ – iterations are necessary. Fortunately, the
sub-model interaction is usually not too strong, hence iterative procedure converges in
relatively fast way. It is obvious that this approach is not very effective – user’s experience
is invaluable and it can speed up the procedure significantly.

It seems that optimization approach may provide a great help. Theoretically, all
sub-model tuning parameters cn may be considered as variables to be optimized while
minimizing the difference between predicted data and experimental ones. This is writ-
ten in 2.6.

rmeas
k − rk = min (2.6)

The amount of targets is Nk while the amount of optimized variables is Nn. Hence 2.6
defines a multi-variable multi-target optimization task. It is possible to slightly simplify 2.6
by means of creating multi-variable single-target optimization problem 2.7, however a user
has to define weight factors βk.

∑

(k)

βk (rmeas
k − rk)

2 = min (2.7)

If the optimization procedure (using either 2.6 or 2.7) is applied to the whole engine
model (0-D/1-D model of engine system simulation), it leads to too many variables to
be optimized (Nn) and too many optimization targets (Nk in a case of 2.6) – this would
result in too long computation times. As far as the author’s knowledge is concerned,
this has not been done yet (when dealing with system simulation using 0-D/1-D ICE
model). Moreover, there is no guarantee that it will produce realistic results in terms of the
values of calibration parameters – there are many of them which can compensate errors
caused by other ones. This leads to the fact that there is usually not single ’reasonable’
solution. Typically there might be more of them and a user has to decide which of them
is really reasonable – if the set of variables is too large, it is difficult for a user to check all
relations and consequences. That is why the application of optimization approach during
calibration phase has been limited to calibration of certain sub-models only. The author
believes that application of optimization during calibration will increase significantly in
near future.

From optimization point of view, the variables to be optimized are the tuning parame-
ters (cn) of sub-models. The optimization criterion is defined in 2.6 means to minimize a
difference between model prediction and measured data taking into account all considered
engine operation points† – this usually leads to multi-target optimization (each measured
property is taken into account). It is obvious that if multi-target optimization is performed,
the output of the procedure is a Pareto set (c.f. Figure 2.2 which concerns example of 1-D

∗Typically each tuning parameter has different influence on predicted results – some of them are more
important than the other ones. This enables to fix the values of the less important parameters and to modify
only the most important ones when performing adjustments due to non-linear effects.

†The considered set of operation points may not necessarily be the whole set of measured data – some-
times it is of advantage to split the operating points into smaller domains and perform calibration in each
domain separately. By doing that, tuning parameters cn may vary with engine speed/load. Such approach
is usually applied when calibrating simple combustion models, knock model or pollutant production ones.

13



turbine model calibration based on [10–12]; more information is also presented in the text
below including Figures 2.4-2.5) – a user has to select final particular solution from the
Pareto set using his/her experience. It has to be stressed that a formulation of multi-target
optimization 2.6 is not simple – each measured property has its own specific meaning and
its influence on calibration quality is different. E.g., combustion model is critical one while
heat transfer in pipes located downstream of turbine has only minor significance. When
using single-target optimization problem 2.7, the different importance of rmeas

k components
can be taken into account when assigning values of βk. Moreover, certain domain of engine
operation may be more important than other ones (e.g., full load at low engine speeds is
clearly more important than low load at high engine speeds). It is a user’s experience
which is important when selecting the final solution from a Pareto set (or setting values
of βk). On top of that, experimental data usually feature a ’noise’ or even significant errors
– they may be difficult to detect but they have usually non-negligible consequences when
performing calibration procedure. Regarding the constraints of optimization procedure,
there are usually no direct constraints.

Figure 2.2: Pareto front and the trade-off between turbine efficiency and
discharge coefficient for constant calibration parameters in the whole pres-
sure ratio / BSR ratio range. [1] means dimensionless parameter.

Based on above-mentioned text, the calibration is complex and difficult task which has
many specific features depending on considered thermodynamic machine and available
experimental data. Optimization approach may offer improvements to speed up the whole
process while improving its quality. However the author doubts that an automatic proce-
dure can be developed in near future – it is too complex and too specific. On the other hand,
it is a user who acts as limiting factor – his/her influence has to be minimized. Perhaps
certain procedures for calibration of specific sub-models can be developed which can run
automatically using either iterative approach or even optimization – they can produce high
quality outputs while the amount of user inputs is minimized (hence the probability of
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user error is decreased). An example of such procedure may be the three pressure analysis
(TPA) briefly mentioned in the text below.

It should be stressed that there is one feature of calibration which is similar to opti-
mization of engine control (section 2.3). It is the way how a curve of chemical heat release
is derived. Even if the engine operates at steady state, the rate of heat release (ROHR)
has to be known. The output of a ROHR model is curve (not a single number). This
curve is a critical factor which influences heat transfer in the cylinder, indicated efficiency
and temperature of exhaust gases – all these parameters have strong consequences with
respect to engine performance. That is why special attention has to be paid to calibration
of ROHR. There are many ROHR models (ranging from simple Vibe approach up to
relatively complex turbulence-driven multi-zone models). However the first step of ROHR
calibration is usually evaluation of experimental in-cylinder pressure traces – the output
is a table of data which corresponds to instantaneous rate of heat release with respect to
engine crank angle. Once this curve is known, considered ROHR model is calibrated to
match that curve as close as possible while checking also the difference between measured
and predicted in-cylinder pressure. Unfortunately, the ROHR is strongly influenced by
heat transfer model and in-cylinder species composition. That is why it cannot be done
separately – iterations are needed again. Moreover, when calculating ROHR curve using
measured pressure traces, the mathematical model 2.1 is solved with respect to different
variables – it is usually called ’inverse’ run∗ and the goal is to find mass/energy source
terms to obtain measured in-cylinder pressure. This causes some troubles and there are
usually special executables which run the mathematical model in inverse mode. These
executables are often simplified to avoid too high complexity (e.g., there is only simple
model of wall heat temperature) – this simplification leads to additional errors. The way
how to avoid all these troubles is to use the three pressure analysis (TPA), c.f. [2]. It requires
three measured pressures – intake, in-cylinder and exhaust, hence the name, three pressure
analysis. For this analysis, no estimation of the residual fraction, trapping ratio and other
thermodynamic parameters are needed as inputs. This approach requires an engine model
including valves and ports at a minimum. The simulation is run for multiple cycles until
the model has converged. As a result, in-cylinder species composition (based on trapping
ratio, residual fraction and other trapped quantities) will be calculated, which is why it
is not needed as input. All that means that mathematical model is run in normal mode
and all selected sub-models are applied in the calibration procedure as well (hence no
additional errors are introduced). The TPA is not based on optimization – it still uses
iterative approach in automatic way while there are no additional simplifications. The
improvement of calibration quality is obvious, however it is not for free – additional
information is needed, namely intake/exhaust pressure. More details can be found in [2].

An example of engine model calibration is presented in [15] – it is a standard procedure
of calibrating turbocharged engine. In this case, optimization approach is used only rarely.

∗When 0-D/1-D solver runs in ’normal’ mode, it has to know all source terms in 2.1 and the outputs of
numerical solution are density, velocity, internal energy and species mass fractions in each control volume (all
other properties can be calculated using additional equations, e.g., perfect gas equation of thermodynamic
status).
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Typically, ’manual’ calibration done by a user is sufficient. If optimization is needed, full
factorial combination is computed and a user selects the best possible combination –
example of engine knock model tuning is presented in [15], Section 3.2.

The importance of users’s experience is clearly shown in Figure 2.3 – this example
deals with unspecified diesel engine calibration. The first attempt (labelled ’Calib_1’)
corresponds to application simple sub-models (which may seem to be calibrated in easy
way) while the second one (labelled ’Calib_2’) represents application of more complex sub-
models (which are usually more difficult to be calibrated). Moreover, the first attempt was
done by a less experienced user. The fist attempt of calibration took more iteration steps
(hence longer time) and yet the calibration quality is lower. It is the author’s experience
that when high-complexity sub-models with predictive ability are selected to be applied, it
brings many advantages. It may be slower at the beginning, however it is usually sufficient
to take into account ’border’ operating points only (definitely not all measured data) and
the models can ’interpolate’ due to their predictive ability (they can be used for ’reasonable’
extrapolation as well).

The example presented below concerns calibration procedure of advanced 1-D turbine
model [10–12], which is also described in detail in [15], Section 4.2. The 1-D turbine model
is relatively complex one and the relations among all calibration parameters (more than 10)
is not straightforward while there are only two properties to be matched with experimental
data (efficiency and discharge coefficient). Moreover, due to fine discretization (which is
needed due to physical reasons), computation times are relatively long. All these facts
cause ’manual’ calibration to be difficult and not time effective.

The calibration procedure of 1-D turbine model (which represents a variable geometry
turbine) is very time consuming∗. Genetic algorithm [3] is applied to find the best combina-
tion of the model calibration parameters to fit the experimental data (efficiency, mass flow)
– approach based on equation 2.7 is applied, i.e., simplified multi-variable single-target
problem. The best fit may be sought for in every measured point of a map or it can be
evaluated from grouped results. In this case, the proven way is to substitute the range
of blade speed ratio (BSR) 0.4 - 0.8 at certain pressure ratio by the common calibration
parameters, which are functions of pressure ratio only. The optimized deviations can be
evaluated between measured and simulated product of discharge coefficient (mass flow
rate) and isentropic efficiency, because turbine power depends on them.

As it is demonstrated in Figure 2.4, the results of calibration feature reasonable stability.
They are dependent on pressure ratio in some cases, which is well-known feature of the
loss-coefficient model due to low Reynolds and Mach number dependence of losses. The
dependence on BSR was excluded by finding the best fit for all measured points at the
same pressure ratio. Most of pipe diameters are almost constant except for the impeller
exit one where outlet velocity-dependent flow separation occurs. Angles of flow at noz-
zle are reasonably constant, as well, including the deviation delta alpha2N between mass

∗Algebraic turbine model (steady state model build in MS Excel – details can be found in [10–12]) can be
used to speed up the procedure. Genetic algorithm is applied to calibrate this simplified model. The results of
that (the values of calibration parameters) provide a good estimate for 1-D model calibration, thus enabling
to reduce the search range for each calibration parameter.

16



(a) BMEP (b) BSFC

(c) turbocharger speed (d) trubine inlet avg. pressure

Figure 2.3: Comparison of different results in terms of engine model calibration under full-load operation
– green curve (labelled ’exp_data’, symbols: empty triangles) represents experimental data while red curve
(labelled ’Calib_1’, symbols: circles) resp. blue one (labelled ’Calib_2’, symbols: squares) corresponds to
the first calibration data set resp. the second one.

and momentum averaged exit angles. Leakage discharge coefficients and correction of
incidence angle loss are negligible for this case.

This experience was repeated – Figure 2.5 – for the case of opened stator vanes.
The trends are mostly logical (compare, e.g., the outlet angles for both rack positions in
Figures 2.4 and 2.5 – the impeller outlet angle without changes, the nozzle outlet angle
changed according to the rack, reduced impeller losses due to more suitable nozzle angle
for opened turbine). It is promising for the future development of the model. The traces
of calibration parameters can be smoothed by repeated optimization where the less sig-
nificant parameters are kept at fixed values. The other parameters can be approximated
by simple regression dependence on pressure ratio without significant loss of accuracy
then. In the case of current turbine, the loss of accuracy is negligible if smoothing of the
parameters found by optimization is done using additional regression.
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Figure 2.4: Turbine model parameters found by optimization procedure using genetic algorithm without
additional smoothing procedure, variable geometry turbine, rack position R0 (closed vanes).

Figure 2.5: Turbine model parameters found by optimization procedure using genetic algorithm without
additional smoothing procedure, variable geometry turbine, rack position R1 (opened vanes).

The overall comparison of simulation and measurements smoothed by regression for a
variable turbine is presented in Figure 2.6 through Figure 2.7. The ’dispersion’ of parameters
is caused by different BSR at the same pressure ratio or vice versa. The 1-D model was
operated under steady conditions at a virtual turbocharger test rig. The data include all
turbine losses. The discharge coefficients are evaluated for fixed reference cross-section of
blades, namely 4.52 cm2, which is physically valid for ’open’ vanes.

Figure 2.6: Turbine model calibration results with rack position R0 (closed vanes), turbine discharge
coefficient normalized by fixed reference turbine area 4.52 cm2 – comparison of measured smoothed results
and simulated ones.
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Figure 2.7: Turbine model calibration results with rack position R0 (closed vanes), turbine isentropic
efficiency – comparison of measured smoothed results and simulated ones.

It was proven that optimization approach (genetic algorithm in this case) is powerful
tool for calibration of complex sub-models (e.g, advanced 1-D turbine model). After gain-
ing experience with reasonable ranges of calibration parameters, it can run automatically
while producing reasonable results. It was verified that for such a case, ’trial-and-error’
method is not effective – it is difficult to get such a good match (between predicted results
and experimental data) which was achieved by application of optimization approach. The
downside is that optimization takes relatively a lot of time to find the optimal solution.

2.3 Optimization of ICE Control
It is well known that engine control (from system point of view) is a critical factor –
even if the ICE design is good, a poor control will most likely lead to sub-optimal engine
performance. That is why modelling of ICE control has become very important especially
in the last decade. It is obvious that engine control is strongly connected to ICE transient
behavior – control unit has to adjust engine setting continuously to deal with changeable
operating conditions. Based on that, engine transient performance has to be simulated if
engine control is to be tested/optimized by simulation tools. It is clear that such approach
is much more demanding when compared with steady-state simulations – it leads to a
fact that simulation times of ICE transient response are at least one order of magnitude
longer. Due to recent increase in computer performance, it has been possible to perform
such simulations. Once engine model is amended by a model of control algorithm, there
are many possibilities how to use such a model to improve ICE performance.

Optimization of engine control is one of them. It has to be stressed that the term
’optimization of engine control’ is supposed to mean to find optimal way of engine control
in time domain. It does not mean to optimize setting of certain controller (e.g., PID) to
obtain the best possible engine response. Based on that, optimization of engine control is
considered from system simulation point of view.

It is necessary to emphasize that optimization of engine control is significantly more
demanding when compared with steady-state engine setting optimization. When dealing
with steady-state case, the output of optimization procedure is a set of numbers which rep-
resents engine optimal setting/design under considered ICE operating conditions. Con-
cerning engine control, the output of optimization is a set of curves – each curve represents
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an optimal time-dependency of one engine control parameter under considered change
of engine operating conditions. If steady-state setting is applied during relatively fast
transient change, engine may perform poorly (e.g., turbo-lag) – this is valid especially for
turbocharged ICEs due to ’pneumatic’ connection between cylinders and turbocharger(s).
When engine is about to reach steady-state operating conditions, control variables are
supposed to approach the values from steady-state optimizations. It is obvious that such
general approach is significantly more complex, thus more demanding. If both limiting
factors are taken into account, namely the need to simulate transient response and the fact
that optimization is more difficult from theoretical point of view, it is no surprise to state
that engine control optimization using full 0-D/1-D thermodynamic ICE model has been
limited up to now. There are many methods and approaches how to deal with that – each
method/approach applies a kind of simplification. It is out of the scope of this document
to describe them. Relatively simple example is shown in the text below to demonstrate a
potential to use a simulation as a tool to optimize ICE control. Other examples of engine
control optimizations are shown in [8, 15] – they deal with combination of 0-D/1-D model
with 3-D CFD tool to minimize engine transient response time while pollutant production
is also taken into account.

From mathematical point of view, it is the same status as in section 2.1, i.e., the equa-
tions set 2.1-2.4 is solved numerically with respect to unknown variables yi. Generally
speaking, the optimization problem can be defined by means of the equation 2.6 (or the
simplified version 2.7). The variables to be optimized are certain components in vector km

(equation 2.3) – these variables are usually regarded as control ones. It may seem that it
is a similar case as described in section 2.1. However there is one significant difference
– when dealing with engine control, the importance of time dependency is high. On the
other hand, the time variable t in definition of 2.3 can be neglected in a case of steady-state
optimization. Optimization of ICE control emphasizes the dynamic feature of equation
set 2.1 – this was not so important when dealing with calibration (section 2.2) or engine
setting/design optimization (section 2.1).

From optimization point of view, optimized variables are the ones which can be ad-
justed by ICE control unit. Depending on ICE application, the following properties are
usually optimized – injection/ignition timing, air excess, turbocharger setting (waste-gate,
variable geometry position), injection strategy. The target of optimization is usually a sin-
gle one – to minimize ICE transient response time. In a case of more complex optimization
tasks, additional target(s) might be to minimize pollutant production during transient.
Concerning constraints, they are usually few of them – maximum turbocharger speed,
engine knocking (if applicable) or minimum air excess.

The example presented below is based on the application of fully calibrated detailed
0-D/1-D model of 2-stage turbocharger gas SI engine – it is described in [16] and also
in [15], Section 4.5. It is a rather simple case – the main target was to evaluate the potential
of different control strategies (not to apply the general approach described above to find
optimal time-dependency of control variables) from ICE response time point of view.
’Pseudo-transient’ simulations were calculated to verify engine transient performance. The
word ’pseudo’ means that engine speed was kept constant during the course of such simula-

20



tion while all other parameters can be varied in the time domain (e.g., engine load, throttle
angle position, VTA∗ setting). Starting point of such simulation is usually steady operation
at 1.5 MW†. The optimization of engine control is very easy in this case – different strategies
of engine control were simulated, each strategy being clearly different in certain aspect(s) –
more details can be found in Table 2.1. These strategies are combined (if possible) and then
compared, finally some general conclusions are drawn – the author is aware of the fact
there is still some potential to improve each control strategy. The main target was to verify
thermodynamic potential of each strategy. Engine control in time domain is represented
by single PID controller which controls engine power by means of controlling variable
geometry setting of HP turbine (PID may adjust throttle flap if necessary).

Strategy Label Description

Throttle Control Standard control – it is a combination of VTA control and
intake throttle control. The former one is always active
while the latter one is applied only in the case that the VTA
is limited by its application range and hence it cannot be
actuated any more. Once the ’pseudo-transient’ simulation
starts, the throttle is fully opened and the VTA is set to its
lowest possible turbine effective area position (the VTA is
’fully closed’).

WG Control Standard control – it is a combination of waste-gate control
and intake throttle control. It is similar to Throttle Control,
the only difference is that the applied HP turbine has no
VTA, that is why it is control by waste-gating (instead of
VTA).

Lambda=1.5 It means that air excess is kept at the value of 1.5 for both
steady state calculation‡ at engine power of 1.5 MW and
’pseudo-transient’ calculation.

Table 2.1: Large-bore SI engine: description of different strate-
gies of engine control during ’pseudo-transient’ simulation (ta-
ble continues on the next page).

∗VTA stands for variable turbine actuation – it is a way to control turbine effective flow area, however it
may not necessarily be achieved by rotating stator blades.

†When performing ’pseudo-transient’ simulation, the calculation always consists of 2 cases. The first case
is performed to obtain steady state for all important engine parameters, the power level equals the initial
value of that for transient cycle. The second case is the transient simulation itself.

‡The steady state calculation always precedes the ’pseudo-transient’ calculation itself. The main reason
is to obtain steady state status of the engine from which the transient load change can start. Most impor-
tant parameters, which need to be stabilized before change of engine load, are pressures (they react fast),
temperatures, mass-flow rates and turbocharger speeds.
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Strategy Label Description

HPclosed If this strategy is applied, the VTA control is switched off
during steady state calculation. The VTA is set to the po-
sition of the lowest possible turbine effective area. This
leads to the fact that the boost pressure is relatively high
and a significant throttling is necessary to obtain 1.5 MW.
Once the ’pseudo-transient’ calculation is started, the intake
throttle is fully opened (the opening of intake throttle is
infinitely fast – no time constant for this process is taken
into account). This approach can be described as pressur-
izing both intake manifold and exhaust one to keep tur-
bocharger speeds at high level. Increased boost pressure at
the beginning of the ’pseudo-transient’ simulation improves
the situation significantly.

ExhThrottling It is the same as the variant Throttle Control, the only dif-
ference is that there is exhaust throttle (instead of intake
throttle) which is located downstream of LP turbine.

LambdaChange_X This means that for steady state calculation, air excess is
kept at the constant value of X (default value is 1.8). Once
the ’pseudo-transient’ simulation starts, air excess is changed
to the value of 1.5. The change of air excess takes place at the
mixing device which is located upstream of LP compressor.
Therefore, it takes some time (approximately 1s) till the en-
riched mixture gets to the cylinders and the engine power
starts to increase more significantly when compared with
air excess of 1.8. The value of air excess 1.5 is kept constant
during the course of the whole ’pseudo-transient’ simulation.
The main advantage of this strategy over Lambda=1.5 strat-
egy is that there is higher boost pressure at the initial phase
of the ’pseudo-transient’ simulation which enables higher
fuel flow into the cylinders.

Table 2.1: Large-bore SI engine: description of different strate-
gies of engine control during ’pseudo-transient’ simulation (fi-
nal page of the table).

The most important results are presented in Figure 2.8. Different strategies to control
the engine during the ’pseudo-transient’ simulation are compared. The best strategy is to
keep the VTA fully closed under steady operation at low engine loads (to keep both boost
pressure and turbocharger speeds at high level). However, this leads to higher BSFC. Low
air excess is also suitable for the faster increase of the engine power (higher turbine inlet
temperature). Intake throttle can be easily used as a control means to keep the required
(low) engine power if the VTA is fully closed. Once there is a need for engine power
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increase, the throttle can be opened while the VTA is kept closed to build up boost pressure
as fast as possible. Air excess should be at the lowest possible value∗.

(a) engine power – detail: basic comparison (b) engine power – detail: basic comparison

(c) engine power – detail: basic comparison (d) engine power – detail: basic comparison

Figure 2.8: Comparison of different strategies of engine control under ’pseudo-transient’ operation, tur-
bocharger configuration 2xTCR16VTA + 1xTCR22, realistic turbocharger maps applied, engine power is
controlled by means of VTA + intake throttle (if not stated otherwise), constant air excess, engine setting:
ε = 14 (if not stated otherwise), Atkinson timing applied if not stated otherwise (IVMult = 1.8).

It was verified that optimization of ICE control is possible when using detailed 0-D/1-D
engine models – c.f. [8, 16]. However it is very time consuming which limits application
of optimization tools to simple cases only. At present days, it can be used to find suitable
strategies for further detailed analysis or to understand complex links of interaction among
different ICE parts – such information is still valuable, however there is some unexplored
potential. It is expected that optimization of ICE control using detailed 0-D/1-D model will
be applied more often in the future due to further increase in computer power.

∗Knocking can be problem during higher engine loads. This causes the necessity to increase air excess.
For fast engine power increase, air excess should be kept at the lowest possible value while avoiding engine
knocking and possibly not allowing HP turbine inlet temperature to get too high.
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3 Conclusions

It is well known that the thermodynamic simulation tools have necessary features to ad-
dress many important issues of contemporary internal combustion engines (ICEs). As the
simulation tools/methods become more ’advanced’, it is possible to apply them for more
complex cases. This allows higher quality of optimization, hence a better design. Moreover,
the confidence in predicted results has been ever increasing – this leads to possibility to
apply the simulation tools at earlier stages of ICE development process, hence cost saving
can be achieved (due to shorter development time). It has been proven many times that the
simulation is both powerful and effective approach when dealing with thermodynamic
optimization of ICE. Important issues of ICE simulation including both calibration and
optimization are discussed in detail in [9, 15].

For the case of ICE, typically there are three different possibilities how to apply opti-
mization approach. The first one concerns calibration of certain sub-models. The author
believes that the calibration (of ICE mathematical model) is the most important part of
the work-flow when dealing with thermodynamic ICE models. It was shown that op-
timization approach can deal with complex calibration problems while being relatively
time effective and still the results are meaningful from the physics point of view – the
author took an active part in the procedure to develop 1-D turbine model (c.f. [10–12])
including its effective calibration procedure based on optimization. The author has also
been involved in activities to enhance/improve quality of engine model calibration –
this mainly concerns application of sub-models which are based on principles of the ICE
physics. Such sub-models feature improved predictive ability, hence they enable certain
extrapolation outside the domain of calibration data – this is very valuable. However,
these sub-models are more difficult to calibrate. Such approach was applied in [8, 16–18]
and in many cases of co-operation with industrial partners.

The second possibility is to optimize engine setting/design under steady-state oper-
ation. This task has been performed for a long time and it is an industry standard now.
Due to recent increase in computer power, relatively complex multi-variable multi-target
multi-constraint optimization can be performed. It is expected that the trend is going
to continue and optimization tasks of higher complexity will be performed. However
the downside of complex optimization tasks is that due to a way how an optimization
algorithm (e.g., genetic algorithm) finds optimal solution, physical links among input
variables are less clear. If understanding of these links is of high interest, it is strongly
recommended to perform sensitivity studies of considered input parameters. The author
deals with optimization of engine setting/design for more than a decade. A lot of results
were published (c.f. [16–18]), moreover many calculations were performed for industrial
partners (VW, MAN Diesel, PBS Turbo, Škoda Auto, Porsche Engineering Services, John
Deer, CZ Strakonice, etc.) – these data are obviously not available for public access due to
non-disclosure agreement. Almost every student at Department of Automobiles, Internal
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Combustion Engines and Railway Vehicles, who deals with ICE simulation, is supposed
to perform certain optimization of ICE setting/design.

The third possibility is optimization of an engine control from system point of view.
This is the most challenging task from theoretical point of view, moreover it is very time
consuming. It has been increasingly performed mainly in the last decade. It is expected
that strong development in this field (regarding suitable methods to find optimal solu-
tion) is going to continue in near future before it becomes an industry standard. The
term ’optimization of engine control’ also means to select properly both control strategy and
control means – such approach enables to perform a configuration design. It is obvious
that simulation approach can save a lot of money as experimental optimization of engine
control is very expensive. The author has certain experience with issues of engine control
from system point of view (c.f. [8, 16, 18]).

The outlook is that optimization will play ever increasing role in terms of both ICE
design and ICE control. More complex optimization tasks have been performed – this
trend will continue. It will enable to exploit fully a potential of a certain ICE design
in complex transient test cases, e.g., NEDC (new European driving cycle) including fuel
consumption and pollutant production. This is in line with one of the main general targets
of ICE development which is to improve engine efficiency while decreasing pollutant
production.
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