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Summary

Casimir invariants and generalized Casimir invariants play an im-
portant role in the theory of Lie algebras, in particular in the theory
of their representations. They are also crucial for many applications of
Lie algebras in modern physics.

We introduce the notion of Casimir invariant as an element of the
center of the universal enveloping algebra of the given Lie algebra and
indicate its relevance for the theory of representations of Lie algebras,
in particular for identification of irreducible representations.

Next, we discuss some of its applications in quantum physics: in
the theory of angular momentum; irreducible representations of the
Poincaré algebra, i.e. mathematical description of particles in quantum
field theory; and Lie–algebraic computation of the hydrogen spectrum.

It turns out that Casimir invariants also can be naturally identified
with polynomial invariants of the coadjoint representation of the given
Lie algebra. We call the nonpolynomial invariants of the coadjoint
representation generalized Casimir invariants. We present two basic
computational approaches to their determination, i.e. the infinitesimal
one and the method of moving frames, and show an example of an ex-
plicit calculation using both methods. We indicate where these objects
appear in our own research. Finally, we review several applications of
generalized Casimir invariants, e.g. in the problem of identification of
Lie algebras and in symplectic mechanics.
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Souhrn

Casimirovy invarianty a zobecněné Casimirovy invarianty hraj́ı d̊ule-
žitou úlohu v teorii Lieových algeber, zejména v teorii jejich reprezen-
taćı. Jsou též kĺıčové pro mnoho aplikaćı Lieových algeber v moderńı
fyzice.

Zavád́ıme pojem Casimirova invariantu jako prvku centra univerzál-
ńı obalové algebry dané Lieovy algebry a nastiňujeme jeho význam
pro teorii reprezentaćı Lieových algeber, zvláště pro identifikaci ire-
ducibilńıch reprezentaćı.

Dále diskutujeme některé jeho aplikace v kvantové fyzice: v teorii
momentu hybnosti; v popisu ireducibilńıch reprezentaćı Poincaréovy
algebry, tj. v matematickém popisu částic ve kvantové teorii pole; a
výpočet spektra atomu vod́ıku s využit́ım Lieových algeber.

Ukazuje se, že Casimirovy invarianty mohou být přirozeným zp̊uso-
bem ztotožněny s polynomiálńımi invarianty koadjungované reprezen-
tace dané Lieovy algebry. Nepolynomiálńı invarianty koadjungované
reprezentace nazýváme zobecněné Casimirovy invarianty. Představuje-
me dva základńı př́ıstupy k jejich určeńı, tj. infinitesimálńı př́ıstup a
metodu pohyblivých reper̊u, a ukazujeme př́ıklad explicitńıho výpočtu
s využit́ım obou metod. Dále nastiňujeme, kde tyto objekty vystupuj́ı
v našem vlastńım výzkumu. Na závěr zmiňujeme několik aplikaćı
zobecněných Casimirových invariant̊u, např. v úloze identifikace Lieo-
vých algeber nebo v symplektické mechanice.
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1 Introduction

Casimir invariants and their generalizations play an important role in
the theory of Lie algebras and in particular of their representations. As
we shall see they are also relevant for their applications in physics.

In order to introduce them we shall start with a review of several
notions in the theory of Lie algebras. Next, we define Casimir invari-
ants and discuss some of their properties and applications. Finally, we
describe their generalization, i.e. the invariants of coadjoint represen-
tation, together with some of its applications.

A Lie algebra g is a vector space over a field F equipped with a
bracket, i.e. an antisymmetric bilinear map [ , ] : g× g→ g, such that

0 =
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
(Jacobi identity) (1)

holds for all elements x, y, z ∈ g. For the sake of simplicity we shall
consider the fields F = R, C and finite–dimensional Lie algebras only.

A representation ρ of a given Lie algebra g on a vector space V is
a linear map of g into the space gl(V ) of linear operators acting on V

ρ : g→ gl(V ) : x→ ρ(x)

such that for any pair x, y of elements of g

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) (2)

holds. A subspace W of V is called invariant if

ρ(g)W = span{ρ(x)w|x ∈ g, w ∈W} ⊆W.

A representation ρ of g on V is

• reducible if a proper nonvanishing invariant subspace W of V
exists,

• irreducible if no nontrivial invariant subspace of V exists,

• fully reducible when every invariant subspace W of V has an
invariant complement W̃ , i.e.

V = W ⊕ W̃ , ρ(g)W̃ ⊆ W̃ . (3)

An important criterion for irreducibility of the given representation is

6



Theorem 1 (Schur Lemma). Let g be a complex Lie algebra and ρ its
representation on a finite–dimensional vector space V .

1. Let ρ be irreducible. Then any linear operator A on V which
commutes with all ρ(x),

[A, ρ(x)] = 0, ∀x ∈ g,

has the form A = λ1 for some complex number λ.

2. Let ρ be fully reducible and such that every linear operator A on
V which commutes with all ρ(x) has the form A = λ1 for some
complex number λ. Then ρ is irreducible.

The adjoint representation of the Lie algebra g is a linear map from
g into the space gl(g) of linear operators acting on g

ad: g→ gl(g) : x→ ad(x)

defined for any pair x, y of elements of g as

ad(x) y = [x, y]. (4)

Now we introduce the notion of the universal enveloping algebra
U(g) of g which is defined as a factoralgebra of the tensor algebra of
the given Lie algebra g. Casimir invariants will be defined as certain
distinguished elements in U(g).

The tensor algebra of the vector space V over the field F is the
vector space

T (V ) = ⊕∞k=0V
⊗k = F⊕ V ⊕ V ⊗ V ⊕ . . .⊕ V ⊗k ⊕ . . .

equipped with the associative multiplication generated by the multipli-
cation of decomposable elements

(v1⊗ v2⊗ . . .⊗ vk) · (w1⊗ . . .⊗wl) = v1⊗ v2⊗ . . .⊗ vk ⊗w1⊗ . . .⊗wl.

When the vector space V is in addition a Lie algebra V = g, one may
consider a two–sided ideal J in the associative algebra T (g) generated
by the elements of the form x⊗ y − y ⊗ x− [x, y], i.e.

J = span {A⊗ (x⊗ y − y ⊗ x− [x, y])⊗B |x, y ∈ g, A,B ∈ T (g)} .

The factoralgebra
U(g) = T (g)/J (5)
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is called the universal enveloping algebra of the Lie algebra g. Universal
enveloping algebras are by construction associative algebras, i.e. the
notion of universal enveloping algebra allows us to construct an infinite
dimensional associative algebra out of any Lie algebra in a canonical
way.

The main reason why universal enveloping algebras are useful is
the following observation: any representation ρ of a Lie algebra g on
a (finite–dimensional, for simplicity) vector space V gives rise to a
representation ρ̃ of the tensor algebra T (g) defined by

ρ̃(x1 ⊗ x2 ⊗ . . .⊗ xk) = ρ(x1) · ρ(x2) . . . ρ(xk).

We have ρ̃(J ) = 0. Consequently, ρ̃ defines also a representation ρ̂ of
the universal enveloping algebra U(g) on the vector space V

ρ̂(a) = ρ̃(A), a = Amod J ∈ U(g), A ∈ T (g).

2 Casimir invariants

The elements of the center of the universal enveloping algebra U(g) of
the Lie algebra g, i.e. such c ∈ U(g) that

c · a = a · c

holds for all a ∈ U(g), are called Casimir invariants of g. A necessary
and sufficient condition for c to be a Casimir invariant is

c · x = x · c, ∀x ∈ g ' g⊗1/J .

We shall consider nontrivial Casimir invariants only, i.e. those different
from elements of F/J ' F.

The first known example of a Casimir invariant was the so–called
quadratic Casimir invariant constructed by H. Casimir in [3] for any
semisimple Lie algebra g. Let us take any basis (e1, . . . , edim g) of g and
find the basis (ẽ1, . . . , ẽdim g) dual with respect to the Killing form on
g (which is nondegenerate if and only if g is semisimple). Then the
following element C of the universal enveloping algebra U(g)

C =
dim g∑
k=1

ẽk ⊗ ek (6)

is a Casimir invariant of g. The original motivation for H. Casimir
came from quantum mechanics: he was looking for differential opera-
tors whose eigenfunctions are matrix elements of a given irreducible rep-
resentation of g. Shortly after its introduction, the quadratic Casimir
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invariant was employed by H. Casimir and B. van der Waerden in [4] to
prove in a purely algebraic manner Weyl’s theorem on full reducibility
of representations of semisimple Lie algebras. All higher order Casimir
invariants of semisimple Lie algebras were later determined by G. Racah
in [8] when he considered the problem of identification of irreducible
representations of the given Lie algebra.

The importance of Casimir invariants for the representation theory
of complex Lie algebras comes from the Schur lemma, Theorem 1. In
any representation ρ we have

[ρ̂(c), ρ(x)] = 0, ∀x ∈ g.

Consequently, if the representation ρ is irreducible, ρ̂(c) must be a mul-
tiple of the identity operator, λ1. The number λ depends on the choice
of the representation ρ and the Casimir invariant c. If two irreducible
representations ρ1 on V1 and ρ2 on V2 are equivalent, i.e. if a linear
transformation T : V1 → V2 exists such that

ρ2(x) = T ◦ ρ1(x) ◦ T−1, ∀x ∈ g,

then necessarily we have λ1 = λ2 for the given Casimir invariant c.
That means that the eigenvalues of ρ̂(c) can be used to distinguish
inequivalent irreducible representations. The operator ρ̂(c) is called
Casimir operator in the given representation ρ. Very often the terms
Casimir invariant and Casimir operator are used interchangeably, their
meaning, i.e. an element of the enveloping algebra vs. an operator on
the representation space, being clear from the context.

If ρ is fully reducible but not irreducible then we may use the knowl-
edge of Casimir operators of g in the decomposition of ρ into irreducible
components. In particular, we construct common eigenspaces of all
known Casimir operators and we know that each of them is an invari-
ant subspace (not necessarily irreducible in the case of nonsemisimple
Lie algebra g, i.e. in general the values of Casimir invariants may not
determine a unique representation).

Casimir invariants are known to exist for certain classes of Lie alge-
bras, e.g. for semisimple ones or Lie algebras with nonvanishing center,
including all nilpotent ones. On the other hand some Lie algebras are
known to have no nontrivial Casimir invariants.

3 Casimir operators in physics

Casimir invariants are of primordial importance in physics. They often
represent such important quantities as angular momentum, elementary
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particle mass and spin, Hamiltonians of various physical systems etc.
Let us now review some of these applications.

Example 3.1. The angular momentum algebra

so(3) = span{L1, L2, L3}

has the nonvanishing Lie brackets

[Lj , Lk] =
3∑
l=1

εjklLl. (7)

The quadratic Casimir invariant (6) is

C = −1
2

3∑
l=1

L2
l , (8)

i.e. it coincides up to a numerical factor 1/2 with the square of angular
momentum, familiar from the construction of irreducible representa-
tions of the angular momentum algebra in quantum mechanics.

Example 3.2. The Poincaré algebra iso(1, 3) is spanned by Mµν , Pµ,
µ, ν = 0, . . . , 3, with the nonvanishing commutation relations

[Mµν , P ρ] = ηνρPµ − ηµρP ν , (9)
[Mµν ,Mρσ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ,

where η is the Minkowski metric ηµν = ηµν = diag(1,−1,−1,−1). We
denote by εµνρσ the covariant totally antisymmetric tensor.

There are two independent Casimir invariants of iso(1, 3), which are
usually expressed as

P 2 =
3∑

µ=0

ηµνP
µP ν and W 2 =

3∑
µ=0

ηµνW
µW ν

where the quadruplet of quadratic elements of U(g)

Wµ = −1
2
εµνρσM

νρPσ

is called the Pauli–Lubanski vector. In this case one of the Casimir in-
variants is of 2nd order in generators whereas the other is of 4th order.
These two Casimir invariants are essential in the construction and la-
belling of irreducible representations of the Poincaré algebra iso(1, 3) in
relativistic quantum field theory. Notice that in this case one considers
infinite dimensional anti–selfadjoint representations of iso(1, 3).
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Example 3.3. Energy spectrum of hydrogen in quantum mechanics
The Hamiltonian of an electron in hydrogen atom is

Ĥ =
1

2M

∑
j

P̂jP̂j −
Q

r
, (10)

where P̂j = −i~ ∂
∂xj

are operators of linear momenta in R3 with the co-

ordinates x1, x2, x3, r =
√
x2

1 + x2
2 + x2

3, M is the mass of the electron
and Q = e2

4πε0
in SI units.

The Hamiltonian (10) has three obvious integrals of motion, namely
the angular momenta

L̂j =
1
~
∑
k,l

εjklX̂kP̂l,

and three less obvious integrals of motion, namely the components of
the Laplace–Runge–Lenz vector

K̂i =
1

2MQ

∑
k

∑
j

εikj(P̂kL̂j + L̂jP̂k)− 1
~
xi
r
. (11)

The operators L̂j , K̂j satisfy the following commutation relations

[L̂j , L̂k] = i
3∑
l=1

εjklL̂l, [L̂j , K̂k] = i
3∑
l=1

εjklK̂l,

[K̂j , K̂k] = − 2i
MQ2

3∑
l=1

εjklL̂lĤ. (12)

That means that they form a Lie algebra on any given energy level, i.e.
on a subspaceHE of the Hilbert spaceH consisting of all eigenvectors of
Ĥ with the given energy E. When E < 0 the Lie algebra is isomorphic
to the Lie algebra so(4) = so(3)⊕ so(3). The two independent Casimir
operators of so(4) can be expressed as

C1 =
1
4

3∑
j=1

(
L̂j +

√
MQ2

2|E|
K̂j

)2

, C2 =
1
4

3∑
j=1

(
L̂j −

√
MQ2

2|E|
K̂j

)2

.

(13)
In our representation defined by operators L̂j , K̂j the difference of these
two Casimir operators vanishes identically

C1 − C2 =

√
MQ2

2|E|

3∑
j=1

L̂jK̂j = 0.
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The quadratic Casimir operator of so(4) is the sum C = C1+C2. Using
the theory of composition of independent angular momenta it can be
derived that in any irreducible representation of so(4) the operator C
must take the form 2p(p + 1)1 for some nonnegative integer or half–
integer constant p. The equation (13) then implies a relation between
p and the energy E of the form

2p(p+ 1) = −MQ2

4E

(
2E
MQ2

+
1
~2

)
(14)

which is just a different formulation of the celebrated Rydberg formula

E = −MQ2

2~2

1
(2p+ 1)2

(15)

where the parameter p is usually replaced by an integer n = 2p+1 > 0.
To sum up, we have just seen that the spectrum of hydrogen atom

can be derived using the theory of Lie algebras, without need for an
explicit construction of eigenfunctions. The original algebraic deriva-
tion of the hydrogen spectrum, which is essentially equivalent to the
one reviewed here, was presented by W. Pauli in [7]. It preceeded both
the discovery of Schrödinger equation and considerations of H. Casimir
and was based solely on W. Heisenberg’s matrix mechanics.

4 Generalized Casimir invariants

As was shown by Abellanas and Martinez Alonso in [1], Casimir in-
variants are in one–to–one correspondence with polynomial invariants
characterizing orbits of the coadjoint representation of g. The invari-
ants of the coadjoint representation are not necessarily polynomials and
we shall call the nonpolynomial ones generalized Casimir invariants.

For certain classes of Lie algebras, including semisimple Lie alge-
bras, perfect Lie algebras and nilpotent Lie algebras, all invariants of
the coadjoint representation are functions of polynomial ones [1]. On
the other hand, for many solvable and Levi decomposable Lie alge-
bras their functionally independent invariants of the coadjoint repre-
sentation cannot be chosen as polynomials, i.e. they can be genuinely
generalized Casimir invariants.

Let us consider a connected Lie group G together with its Lie al-
gebra g. The coadjoint representation Ad∗ of the Lie group G is its
representation on the vector space g∗ dual to the Lie algebra g ob-
tained via transposition of the operators in the adjoint representation

〈Ad∗(g)φ, y〉 = 〈φ,Ad(g−1)y〉, ∀x ∈ G, y ∈ g, φ ∈ g∗.
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The coadjoint representation ad∗ of the Lie algebra g on g∗ is obtained
by differentiation of Ad∗. Explicitly, we have

〈ad∗(x)φ, y〉 = −〈φ, ad(x)y〉, ∀x, y ∈ g, φ ∈ g∗.

The invariants of the coadjoint representation, i.e. the generalized
Casimir invariants, are functions on g∗ which are constant on orbits of
the coadjoint representation of the Lie group G on g∗. Equivalently, the
invariants of the coadjoint representation are solutions of the following
system of partial differential equations

ÊkI(e1, . . . , en) = 0, k = 1, . . . , n. (16)

where Êk are first order differential operators acting on functions on
g∗, i.e. vector fields,

Êk =
n∑

a,b=1

ebcak
b ∂

∂ea
, 1 ≤ k ≤ n (17)

and cjk
l are structure constants in the chosen basis (e1, . . . , en) of g,

[ej , ek] =
n∑
l=1

cjk
lel.

In equation (17) the quantities ea shall be interpreted as commuting
independent variables – the coordinates in the basis of the space g∗,
dual to the algebra g. Using the canonical isomorphism (g∗)∗ ' g we
can identify them with the basis vectors of g.

Two basic methods of calculating Casimir and generalized Casimir
invariants exist. The first method is an infinitesimal one and amounts to
solving the system of first order linear partial differential equations (16)
step by step. In each step, one uses the method of characteristics to
solve one of the equations of the system (16) and re-expresses the re-
maining equations in terms of its solution. An obvious disadvantage of
this method is that the equations become more complicated (e.g. non-
linear) in each step [6]. Nevertheless, it often leads to explicit solutions
if a suitable basis of the Lie algebra g was chosen to start with.

The second method is more global in nature; it uses the action of the
Lie group G on g∗. It is an application of Cartan’s method of moving
frames [2] and its modern formulation is due to M. Fels and P. Olver
[5]. It can be divided into the following steps:
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1. Integration of the coadjoint action of the Lie algebra g on g∗ as
given by the vector fields (17) to a (local) action Ψ of the group
G.

2. Choice of a (local) section Σ transversal to each of the orbits of
the action Ψ.

3. Construction of invariants. For a given point p ∈ g∗ we find group
elements transforming p into p̃ ∈ Σ by the action Ψ. The point p̃
is the intersection of the orbit through p and the section Σ, i.e. is
the same for any choice of p lying on the same orbit. Therefore, its
coordinates interpreted as functions of p are invariant under the
coadjoint action of G, i.e. any functionally independent subset of
them defines invariants of the coadjoint representation.

The difficulty in application of this method lies in its sensitivity to
the choice of the section Σ because only for a well–chosen section the
resulting algebraic equations can be solved explicitly.

In order to illustrate these concepts in a more illuminating manner
let us now perform an explicit computation of (generalized) Casimir
invariants of a given solvable Lie algebra using both methods.

Example 4.1. Let us consider the 4–dimensional Lie algebra s with
the nonvanishing Lie brackets

[e2, e3] = e1, [e2, e4] = e3, [e3, e4] = −e2. (18)

The vector fields (17) are

Ê1 =0, Ê2 = −e1∂e3 − e3∂e4 , (19)

Ê3 =e1∂e2 + e2∂e4 , Ê4 = e3∂e2 − e2∂e3 .

We take Ê2 as the first vector field to which we apply the method of
characteristics. We have

de3
e1

=
de4
e3

and the invariants of Ê2 are e1, e2 and ξ = e23 − 2e1e4. Therefore, any
Casimir invariant of the algebra s must be of the from J = J(e1, e2, ξ).
When we apply Ê3 to such J we get

Ê3J = e1

(
2e2

∂J

∂ξ
− ∂J

∂e2

)
(20)
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and we obtain solutions of Ê3J = 0 in the form η = e22 +e23−2e1e4 and
e1. Both e1 and η are also annihilated by Ê4. Altogether, we have found
that the algebra s has two functionally independent Casimir invariants

I1 = e1, I2 = e22 + e23 − 2e1e4. (21)

Let us now perform the same calculation using the method of moving
frames. The flows of the vector fields Ê1, . . . , Ê4 are

Ψα1bE1
(e1, e2, e3, e4) = (e1, e2, e3, e4),

Ψα2bE2
(e1, e2, e3, e4) = (e1, e2, e3 − α2e1,

α2
2

2
e1 − α2e3 + e4),

Ψα3bE3
(e1, e2, e3, e4) = (e1, e2 + α3e1, e3,

α2
3

2
e1 + α3e2 + e4),

Ψα4bE4
(e1, e2, e3, e4) = (e1, e2 cosα4 + e3 sinα4, e3 cosα4 − e2 sinα4, e4).

We compose the flows and obtain the action of a generic group element

g(~α) = exp(α4e4) exp(α3e3) exp(α2e2) exp(α1e1)

in the form

Ψ(g(~α)) = Ψα4

Ê4
◦Ψα3

Ê3
◦Ψα2

Ê2
◦Ψα1

Ê1
. (22)

We choose a section Σ given by the equations

e2 = 0, e3 = 1. (23)

The intersection of the section Σ with the orbit {Ψ(g(~α))(p)|~α ∈ R4}
starting from the point p = (e1, e2, e3, e4) has the following values of
α2, α3

α2 =
e3 − cosα4

e1
, α3 = −e2 + sinα4

e1
(24)

(generically, i.e. when e1 6= 0). The coordinates of the intersection(
e1, 0, 1,

2e1e4 − e22 − e23 + 1
2e1

)
(25)

are independent of the remaining two parameters α1, α4. That means
that we have found using the method of moving frames that two func-
tionally independent functions e1 and 2e1e4−e22−e

2
3+1

2e1
are generalized

Casimir invariants. Equivalently, e1 and e22 + e23 − 2e1e4, are Casimir
invariants of the algebra s.
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In our original research published in [9, 10, 11] we considered three
infinite series of nilpotent Lie algebras of particular structure, e.g.
model filiform algebras in [10]. For each of these nilpotent Lie alge-
bras we found all solvable Lie algebras whose nilradicals are isomorphic
to the given nilpotent algebra. While investigating properties of these
nilpotent and solvable algebras, we explicitly constructed the gener-
alized Casimir invariants of all of them. We used the infinitesimal
method to compute invariants of Lie algebras constructed in [10] and
the method of moving frames in [11]. Finally, in [9], whose nilradical
contains the nilradical of [10] as its codimension 2 subalgebra, we were
able to deduce the invariants of Lie algebras occuring there from the
invariants found in [10]. The resulting invariants of solvable algebras
were expressed in terms of polynomial invariants of their nilradicals
and were of several types: polynomials; ratios of powers of polynomials
(rational or transcendental); or involving nonremovable logarithms.

5 Applications of generalized Casimir in-
variants

The invariants of the coadjoint representation belong among important
characteristics of any given Lie algebra. For instance, their knowledge
may help us to distinguish Lie algebras whose nonequivalence may be
difficult to establish by other means, as the following example shows.

Example 5.1. Let us consider two real 6–dimensional solvable Lie
algebras s1, s2 with the nonvanishing Lie brackets

s1 : [e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3, [e6, e1] = e1,

[e6, e2] = −e2, [e6, e3] = 0, [e6, e4] = e2 − e4, [e6, e5] = e5,
(26)

s2 : [e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3, [e6, e1] = e2,

[e6, e2] = −e1, [e6, e3] = 0, [e6, e4] = −e5, [e6, e5] = e2 + e4.

These two algebras s1, s2 are real forms of a single complex Lie algebra
sC = C⊗ s1 ' C⊗ s2. The question is whether they are equivalent as
real algebras or define two distinct real forms of sC.

Their independent generalized Casimir invariants can be written as

s1 : e1e2, e21 exp
(
e23 − 2e1e4 + 2e2e5

e1e2

)
,

s2 : e21 + e22, (e21 + e22) arctan
e2
e1
− e1e2 − 2e1e4 + 2e2e5 + e23.
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Since no real transformation can convert trigonometric functions into
exponentials and vice versa we immediately see that the algebras s1, s2

cannot be isomorphic, i.e. must define two different real forms of sC.

The invariants of the coadjoint representation play an important
role in the Poisson and symplectic geometry. The vector space g∗ is
naturally equipped with a Poisson structure

{f1, f2}(φ) = 〈φ, [df1(φ),df2(φ)]〉, f1, f2 ∈ C∞(g∗), φ ∈ g∗, (27)

where the use of the isomorphism (g∗)∗ ' g is again understood. The
symplectic leaves of the Poisson structure (27) define many interesting
examples of symplectic manifolds. They turn out to be precisely the
orbits of the coadjoint action of G on g∗. The knowledge of the general-
ized Casimir invariants may allow us to express these symplectic leaves
as solutions of a system of algebraic and/of transcendental equations,
e.g. as algebraic varieties when all independent invariants are rational.

The invariants of the coadjoint representation together with semiin-
variants, i.e. common eigenfunctions of the operators (17) correspond-
ing to nonvanishing eigenvalues [1], are also essential in the construction
of Hamiltonian systems completely integrable in Liouville sense on the
cotangent bundle (phase space) of Lie groups. For example, Euler equa-
tions on spaces dual to Borel subalgebras of simple Lie algebras and
their integrals of motion were constructed by V. V. Trofimov in [12].

6 Conclusions

We have introduced the notions of Casimir invariant [3, 4, 8] and gen-
eralized Casimir invariant [1] and described their relationship.

We have reviewed some of their applications. We have seen that
in the case of quantum systems with symmetries Casimir operators of
the underlying symmetry algebra play an essential role as operators of
mass, square of angular momentum or other integrals of motion. On
the other hand, generalized Casimir invariants are of less relevance in
quantum physics because they cannot be easily identified with opera-
tors. Nevertheless, they play an important role in symplectic geometry
and in construction of integrable systems.

We have indicated where these objects appear in our own research,
in [9, 10, 11]. The results obtained there for particular classes of solv-
able algebras in arbitrary dimension shall be used to formulate and
test general conjectures concerning invariants of solvable Lie algebras,
whose general structural theory is presently almost nonexistent.
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• Distinguished doctoral thesis in Václav Votruba Prize competi-
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