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Summary

Many contemporary treatises dealing with realistic simulations of vehicular
streams discuss possibilities for application of thermodynamic approaches to
the traffic modeling. These attempts have been partially successful if the lo-
cal thermodynamics was adopted. Specifically, introducing the socio-physical
particle scheme with mutual interactions described by repulsive forces among
the subsequent elements one can obtain surprisingly good analytical estima-
tions for microscopic traffic quantities or their statistical distributions. In
spite of the fact that the initial scheme is of thermodynamic substance (con-
trary to the fact that vehicular traffic is the system driven far from equilib-
rium) the alternative formulation of the model leads to an interesting insight
into the psychological background of traffic interactions.

This habilitation lecture introduces the thermal-like particle ensemble
whose intelligent elements are interconnected by the psychological short-
ranged interactions and stochastically influenced by the nonzero level of
mental strain. The analytically-derived probability densities for individual
velocities of agents and clearances among them are discussed with respect to
real-road traffic data-samples. The found similarity is utilized in a vicarious
detection of mental strain of car drives.
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Souhrn

Mnoho současných prací zabývajících se realistickými simulacemi dopravních
proudů diskutuje možnosti aplikace termodynamických přístupů v dopravním
modelování. Tyto pokusy byly částečně úspěšné zejména v okamžiku, kdy
byla aplikována lokální termodynamika. Například vytvořením socio-fyzi-
kálního částicového schématu, v němž jsou vzájemné interakce popsány re-
pulzivními silami mezi sousedními elementy, dostáváme překvapivě kvalitní
analytické odhady pro mikroskopické dopravní veličiny, resp. jejich statistická
rozdělení. Navzdory faktu, že původní schéma je termodynamické povahy
(oproti všeobecně známé skutečnosti, že automobilová doprava je řízeným
nerovnovážným systémem), vede alternativní formulace modelu k zajímavé-
mu vhledu do psychologického pozadí dopravních interakcí.

Tento habilitační spis diskutuje kvazitermalní částicový soubor, jehož in-
teligentní elementy jsou propojeny psychologickými krátkodosahovými in-
terakcemi a stochasticky ovlivněny nenulovou hladinou psychického vypětí.
Analyticky odvozené hustoty pravděpodobnosti pro rychlosti jednotlivých
vozidel či jejich rozestupy jsou diskutovány v kontextu reálných dopravních
experimentů. Nalezená podobnost je zužitkována v nepřímé detekci psychic-
kého vypětí řidičů.
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1 Introduction

Movements of an arbitrary group of humans or animals show many common
features originated from group dynamics ([21],[3], and [20]). For purposes of
this habilitation lecture the animal/human groups are understood as a self-
organized systems whose individual agents are influenced by other agents in
the group (see for example [19]). It means that each agent adapts its behavior
to the behavior of the rest of group. Such a influence is naturally restricted
to the interactions with agents occurring in the close neighborhood (short-
ranged interactions). Moreover, the decision-making process of the moving
agent is influenced by the various factors (individuality of the agent, actual
mental strain, control signals, information inflow, random factors and so on).
Typically, the mediated collective decision-making of a group leads to effects
of crowding, i.e. to the formation of congested states when the movement
of one agent is strongly restricted by other agents. One of these effects is
visualized in the figure 1.
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Figure 1: Schematic Representation of Fundamental Diagram of Traf-
fic Flow. Traffic flux J as a function of traffic density %. The diagram
is divided into three regions: 1. The free flow region (up to % = %1)
where cars move without any restrictions. 2. The region of metastable
traffic (%1 6 % 6 %2) where the heightened density causes the rein-
forcement of mutual interactions among vehicles. 3. The congested flow
region (% > %2) where the traffic is fully saturated and the movement
of cars is therefore significantly restricted. Transitions among different
traffic phases are schematically indicated by arrows. In the insert the
schematic representation (main part of the figure) is compared to the
empirical fundamental diagram.

It is obvious that mutual interactions among the agents cause the changes
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in the system dynamics, which finally results in relevant changes of macro-
scopic quantities for the system investigated (see [9] and [7]). Furthermore,
macroscopic relations describing the global behavior of transport systems in-
fluence significantly the microscopic structure of the system. Such a structure
is, as understandable, of statistical nature, which is caused by the individu-
ality of each agent. Whereas for free flow states one can detect the random
distribution of the system elements, for congested states the strong psycho-
logical repulsion among crowding agents leads to the strong systemization
of the ensemble (see [13], [8]). Recently, these microscopic phenomenons are
measurable ([1],[16],[15]), which opens new possibilities to inspect a local be-
havior in animal/human groups.

The main goal of this lecture is to obtain meaningful predictions for the
microstructure of traffic sample (similarly to [2] or [10]) and compare the
results obtained to freeway measurements.

2 Formulation of socio-physical transport model

Based on principles of quantitative sociodynamics sumarized in the book
[5] we introduce the one-dimensional space-continuous thermal-like model
whose microstructure (analyzed in the associated steady state) is in a good
correspondence with that measured among real vehicles.

2.1 General model based on principles of quantitative sociodyna-
mics

Consider N identical particles (agents) on the unit sphere (see the figure 2)

S =
{

~ξ ∈ R3 : ‖~ξ‖e = 1
}

,

where the symbol ‖.‖e corresponds to the standard (euclidean) norm, i.e.

‖~ξ‖e =
√

ξ2
1 + ξ2

2 + ξ2
3 .

Let ~xi = (ϑi, ϕi) (i = 1 . . . N) denote the position of the ith particle, where
ϑi and ϕi represent the spherical angles (latitude and longitude) of standard
spherical coordinates. Let ~vi stand for the actual velocity of ith particle and
parameter ~vd is the desired velocity (the same for all agents). Denoting the
general metric in the system as ‖~x− ~y‖ one can define the ε−neighborhood
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of the particle i according to

O(~xi) =
{

~ξ ∈ R3 : ξ2
1 + ξ2

2 + ξ2
3 = 1 ∧ 0 < ‖~ξ − ~xi‖ < ε

}
.

Thus, the indexing set

Ii =
{
k : ~xk ∈ O(~xi)

}

cumulates all the particles being inside the ε−neighborhood of the ith par-
ticle. We remark that the general metric ‖~x − ~y‖ can be chosen arbitrary
(with reference to the systems observed), but the most usual choice is the
euclidean metric.

Figure 2: Agents on the Unit Sphere. The selected agent (magenta) and
his/her ε−neighborhood. The magenta agent reacts only to the agents
(yellow) occurring in his/her ε−neighborhood O.

Aiming to quantify the mutual interactions among the agents we introduce
the short-ranged potential energy

U ∝
N∑

i=1

∑

k∈Ii

V (rik) ,

where V (ri) corresponds to the repulsive two-body potential depending on
the general distance rik = ‖~xi − ~xk‖ between the ε−neighboring particles
only. The interaction of such a kind is chosen with the respect to the realistic
behavior of animals/humans (see [13]). Besides, the potential V (r) has to
be defined so that limr→0+

V (r) = ∞, which prevents particles from passing
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through each other. The socio-physical hamiltonian of the described ensemble
reads as

Hε =
m

2

N∑
i=1

‖~vi − ~vd‖2
e + c

N∑
i=1

∑

k∈Ii

V (rik) ,

where m represents a mass of particles and c is a calibrating coefficient.
Whereas the second summand in the previous formula describes the particle
attraction/repulsion the former takes into account the fact that driver mov-
ing with the desired velocity (being sufficiently far from other cars, where
V (r) ≈ 0) does not accelerate/decelerate.

2.2 Thermal alternative of the socio-physical transport model

The above-mentioned description is strictly deterministic and does not reflect
statistical features of realistic human/animal communities. Therefore we in-
troduce a thermodynamical alternative of the model (see [8] or [24]) where
the entire system is exposed (if using the thermodynamical terminology) to a
"heat bath" of a given temperature T , i.e. to random influences of a certain
variance and statistics. Denote

β = (kBT )−1

where kB is the usual Boltzmann factor. The thermal parameter β can be
interpreted as a psychological coefficient describing a level of the mental pres-
sure under the driver is while driving his/her car. Hence, in the next part of
this habilitation lecture we call β as a mental strain coefficient.

Implementing this thermal component into the originally deterministic
system we have obtained the statistical ensemble whose thermal equilibrium
is described statistically. It means that the microscopical quantities (gaps
among the cars, velocities of single vehicles, time intervals among the sub-
sequent cars and so on) measured in thermal equilibrium are determined by
means of corresponding probability densities. This fact fully corresponds to
the ascertainments observed during the traffic experiments (see [25] and [22]).

2.3 Circular variant of the model

Restricting the particle movement to the circular curve

C =
{

~ξ ∈ R2 : ‖~ξ‖e = 1
}
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the previous thermal-like scheme converts to the simple model of one-lane
traffic. In this case the location of each particle is unambiguously described
by its angular coordinate ϕi. Then the hamiltonian of this one-dimensional
system reads as

H =
m

2

N∑
i=1

(vi − vd)
2 + c

N∑
i=1

V (ri) ,

where
ri := |ϕi+1 − ϕi|N

2π

corresponds to the re-scaled circular distance between (i + 1)th and ith par-
ticles. Denoting ϕN+1 = ϕ1 for convenience, the following equality holds true

N∑

i=1

ri = N. (1)

Figure 3: Vehicles on the Unit Circle. The interaction among the agents
(drivers) is strictly short-ranged, which means that the particle (pink)
interacts with two neighbors only (yellow). We remark that the circum-
ference of the ring is equal to the number of particles. Thus, the mean
distance between elements is equal to one.

As published in [14] the suitable choice for two-body traffic potential is the
power-law function V (r) = r−1. Under these conditions the corresponding
partition function is of a form

Z =

∫

R2N

δ

(
N −

N∑
i=1

ri

)
N∏

i=1

e−
m
2 β(vi−vd)2

N∏
i=1

e
− β

ridridvi. (2)

Here δ(x) stands for the generalized function called usually the Dirac δ−func-
tion. After 2N − 1 integrations we find out that individual velocity v of
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particles is Gaussian distributed, i.e.

q(v) =
1√
2πσ

e−
(v−vd)2

2σ2 (3)

is the associated probability density, where σ−1 =
√

mβ. Similarly, denoting
by Θ(x) the Heaviside’s step function

Θ(x) =

{
1, x > 0
0, x 6 0

and by Kλ(x) the modified Bessel’s function of the second kind (the Mac-
Donald’s function) there has been derived in the article [14] that probability
density for gap among the succeeding cars (clearance distribution) reads as

℘(r) = A Θ(r) e−
β
r e−Br, (4)

where

B = β +
3− e−

√
β

2
, (5)

A−1 = 2

√
β

B
K1

(
2
√

Bβ
)
. (6)

We remark that ℘(r) fulfils two normalization conditions
∫

R
℘(r) dr = 1 (7)

and ∫

R
r ℘(r) dr = 1. (8)

The latter represents a scaling to the mean clearance equal to one.

3 Microscopic distributions in freeway-traffic samples

In this section we briefly summarize the methods for measurement and analy-
sis of real-road traffic data. Furthermore, we will demonstrate that statistical
properties of traffic micro-quantities (gaps among the cars, velocities of single
vehicles, time intervals among the subsequent cars and so on) can be very
well estimated by the steady-state distributions derived analytically for the
above-mentioned thermodynamic traffic gas.
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3.1 Traffic measurements

The first attempts to describe certain vehicular ensembles systematically, i.e.
using mathematical techniques, were noticed more than seventy years ago.
Indeed, in 1935 there was published the first scientific paper [4] on elemen-
tary relations among traffic quantities. Bruce Douglas Greenshields - author
of this text - was probably the first man who carried out the traffic flow
measurements (using photographic measurement techniques) and predicted
the linear speed-density relation. Many mathematicians, physicists, or traf-
fic engineers have followed up to his pioneering work since then. Recently,
knowledge on behavior of traffic systems is very extensive (see reviews [17],
[9], [7], or [11]) as well as the methods used for gaining individual traffic data.

Globally, the traffic measurement are divided into the following categories.
Intrusive methods are mediated by measuring devices which are tightly in-
built in a road surface. On contrary, non-intrusive methods are based on
outlying measurements which are realized without any tight interconnection
to a road surface. The intrusive methods include

• induction-loop detector measurements represented by the induction coil
placed inside the road surface. The magnetic field of the induction loop
is disturbed by the moving metallic bodywork of vehicle, which allows
a registration of individual passages through the fixed point of freeway,

• induction-double-loop detector measurements represented by the two
inter-connected induction coils placed inside the road surface. These
double-loop detectors facilitate the detection of individual vehicle data,
i.e. by mean of them we can analyze lengths of cars, individual velocities,
time headways, or distance headways.

The non-intrusive methods include

• photo-measurements represented by terrestrial or aerial photography,

• video-measurements realized by terrestrial or aerial camera, or by float-
ing cars,

• toll-measurements connected to the infrastructure of toll systems (toll
gates),

• ultrasonic detectors based on principles of Doppler’s radar,

• microwave radars,
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• laser scanning gauger.

Majority of the devices mentioned above provides huge amounts of indi-
vidual traffic data which can subsequently analyzed by the statistical or/and
mathematical methods. Some of those techniques are introduced (and dis-
cussed) in the next part of this habilitation lecture.

3.2 Velocity distribution in freeway-traffic samples

Within the bounds of some older researches (published ten years ago) there
have been studied the statistical distributions of individual velocities in de-
tail. As published in the article [6] or summarized in the review [7] these
distributions are depending on an actual traffic phase. It means that ve-
locity distributions are different for free flows and congested flows. Recent
investigations have substantially amplified this knowledge. In fact, statistical
distributions of velocities are significantly influenced not only by the changes
of phases but also by the slight changes of traffic densities. Indeed, analyzing
data-samples from European highways we detect a marked dependence of
function q(v) on traffic density. Moreover, in all density intervals the proba-
bility densities for car velocities fully correspond to the analytical predictions
(3) calibrated by the appropriate choice of parameters vd and σ. Maximum
likelihood estimation method (MLE) provides the relevant formulas for both
parameters mentioned. It holds that vd = 〈v〉 and σ2 = m2(v), where 〈v〉,
m2(v) represent the sample mean and the sample variance, respectively. The
chosen results of the corresponding analysis are presented in the figure 4.

3.3 Clearance distribution in freeway-traffic samples

Compared to the velocity distribution the distance clearance distribution has
been systematically analyzed during the last ten years only. The attempts on
meaningful predictions of distance statistics has been rare so far and are still
a subject of speculations. However, in our articles [12] and [13] we have pre-
dicted the traffic microstructure (using the above-introduced method) with
a marked success. Since then the thermal-like approach has been applied in
another works ([14], [15], [1], [16], and [23]) and led finally to the partial
solution of the traffic-clearances problem.

Considering now the tested choice for car-car potential V (r) = r−1 we
intend to compare the equilibrium distribution

℘β(r) = Ae−
β
r e−Br (9)
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Figure 4: Vehicle Velocity Distribution. The bars represent velocities
recorded on the Dutch freeway A9 using induction double-loop detectors.
The entire data file has been divided into small density regions (see
the texts inside the individual subplots) to separate the different traffic
regimes. The continuous curves display the predictions (3) specified for
vd = 〈v〉 and σ =

√
m2(v). Here m2(v) denotes the sample second central

moment (i.e. sample variance).

with the relevant distributions of single-vehicle data measured continuously
during approximately 140 days on the Dutch two-lane freeway A9. Macro-
scopic traffic density % was calculated for samples of N = 50 subsequent cars
passing a detector. For the purposes described above we divide the region of
the measured densities % ∈ [0, 85 veh/km/lane] into 85 equidistant subinter-
vals and separately analyze the data from each one of them. The sketched
procedure prevents the undesired mixing of the states with the different in-
verse temperature β, i.e. with the different density. Bumper-to-bumper dis-
tance ri among the succeeding cars (ith and (i − 1)th) is calculated (after
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Figure 5: Distance Clearance Distribution. The bars represent the inter-
particle gaps measured among the subsequent vehicles moving on a free-
way. The entire data file has been divided into small density regions
(see legend for details) to separate the different traffic regimes. The
continuous curves display the predictions (4) for fitted value of inverse
temperature β. Optimal value of βfit was obtained by minimizing the
χ2−statistics.

eliminating car-truck, truck-car, and truck-truck gaps) via standard formula

ri = vi(ti − ti−1),

by means of netto time-headway ti − ti−1 and velocity vi of ith car (both
directly measured by induction-loop detectors) supposing that velocity vi

remains constant between the times ti, ti−1 when ith car and the previous
one are passing a measure point. Such a condition could be questionable,
especially in the region of small densities where the temporal gaps are too
large. However, the influence of a possible error is of marginal importance,
as apparent from the fact, that cumulated distribution function plotted for
small-density data does not show any visible deviation from exponential be-
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havior of cumulated distribution function expected for independent events.

We note that mean distance among cars is re-scaled to one in all density-
regions. The thorough statistical analysis of the traffic data leads afterwards
to the excellent agreement between clearance distribution computed from
traffic data and formula (9) for fitted value of inverse temperature βfit (see the
figure 5). We have obtained the fit parameter βfit by a least-square method,
i.e. minimizing the error function χ2. The deviation χ2 between the theoret-
ical and empirical clearance distributions is plotted in the figure 6 (low part).
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Figure 6: Inverse Temperature βfit and Deviation χ2 as a Function of
Traffic Density %. Squares stand for values of fit parameter βfit, for which
the function (4) coincides with clearance distribution of traffic data. Bars
from lower part correspond to the sums of squared deviations between
the empirical and the theoretical netto distance distributions for βfit.

Dimensionless inverse temperature β of the traffic sample, representing
a quantitative description of mental strain under which the car-drivers are
in a given situation, shows non-trivial dependence on traffic density % (as
visible in the figure 6 – top part). For free flow states (% . 30 veh/km/lane)
one can recognize a rise in temperature having a linear behavior and visible
plateau above. In the intermediate region (between 40 and 50 veh/km/lane),
where free traffic converts to the congested traffic, we detect a sharp increase
in the first half. Such a behavior can be simply elucidated by the fact that
the drivers, moving quite fast in a relatively dense traffic flow, are under
a substantial psychological pressure, which finally results (for densities % ∈
[40, 50] veh/km/lane) in the transition to the congested flows a therefore in
the drop of inverse temperature. In the synchronized traffic regime (% &
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50 veh/km/lane) the drivers vigilance rapidly grows up which culminates by
the traffic-jam formation.

4 Summary and conclusions

Applying general methods of quantitative socio-dynamics we have presented
the original one-dimensional thermal-like particle-ensemble whose time evo-
lution (and the relevant steady state) is in deep consonance with time evo-
lution investigated empirically in vehicular systems. Introducing the power-
law repulsions among the neighboring particles of the model we have ob-
tained a socio-physical alternative of the well-known Dyson’s Coulomb gas
that is powerful in prediction of statistical properties for ensembles of ran-
dom matrices. Specifically, thermal-balance configurations of the particles
in the Dyson’s Coulomb gas are exactly the same as the set of random-
matrix-eigenvalues (see [18]). Similarly, the above-mentioned power-law al-
ternative of the Dyson’s gas successfully predicts certain statistical prop-
erties of the traffic microstructure, especially distribution of individual ve-
locities or distance/time headways/clearances. Whereas the prediction of
Gaussian-distributed velocities extends the familiar piece of knowledge only,
the predictions of clearance statistics have been a subject of speculations
for years. However, implementing the socio-physical interactions (described
by the power-law two-body potential V (r) = r−1 depending on distances
among the succeeding agents) into the original Dyson’s model, the associ-
ated analytically-derived distributions for distance clearances show an ex-
cellent correspondence to traffic clearances measured on various European
highways.

Moreover, the analyses of real-road traffic data-samples facilitate to in-
spect the behavior of vehicular ensembles in detail. Indeed, socio-physical
description (used for derivation of the relevant predictions for traffic mi-
crostructure) allows to determine a level of psychological strains under which
the drivers are if manoeuvring inside vehicular flows. Such a psychological
feature of all traffic systems can be (according to our approach) quantified
by the thermal-like indicator (here denoted β). As obvious from the empir-
ical observations the mental strain indicator β is negligible for those traffic
systems where density of vehicles is relatively small (compared to the critical
density). On contrary, the psychological pressure is increasing with traffic
density, which (after reaching the critical density) leads to the change of
traffic phases (from free traffic regime to regime of congested states). Such
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a change is accompanied by the deep drop of individual speeds that causes
therefore the temporal decrease of the strain indicator. If the number of cars
is still expanding the indicator β is further increasing, which finally culmi-
nates by the creation of wide-spread traffic jam (the so-called stop-and-go
phase).

To conclude, the presented thermal-like traffic model seems to be a suitable
theoretical simulator of real-road vehicular streams since it produces the
meaningful distributions of microscopic traffic quantities. The substantial
deficiency of the approach presented is the fact that our model is of local
substance and does not reproduce the macroscopical traffic effects (traffic
hysteresis, congestions, and so on). Therefore, macroscopic alternatives of
the thermal-like model are recently the topic of continuing researches.
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