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Summary

The Bidirectional Texture Function (BTF) is becoming widely used for accurate represen-
tation of real-world material appearance. In this work a novel BTF compression model is
proposed. The model resamples input BTF data into a parametrization, allowing decom-
position of individual view and illumination dependent texels into a set of multidimensional
conditional probability density functions. These functions are compressed in turn using a
novel multi-level vector quantization algorithm. The result of this algorithm is a set of index
and scale code-books for individual dimensions. BTF reconstruction from the model is then
based on fast chained indexing into the nested stored code-books. In the proposed model,
luminance and chromaticity are treated separately to achieve further compression. The pro-
posed model achieves low distortion and compression ratios 1 : 233− 1 : 2040, depending on
BTF sample variability. These results compare well with several other BTF compression
methods with predefined compression ratios, usually smaller than 1 : 200. We carried out a
psychophysical experiment comparing our method with LPCA method. BTF synthesis from
the model was implemented on a standard GPU, yielded interactive framerates. The proposed
method allows the fast importance sampling required by eye-path tracing algorithms in image
synthesis.
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Souhrn

Prostorově rozš́ı̌rená dvousměrová distribučńı funkce odrazivosti povrchu (angl. bidirectional
texture function), tedy funkce reprezentuj́ıćı prostorově závislou odrazivost fyzikálńıch povrch̊u,
se zač́ıná v́ıce a v́ıce použ́ıvat pro reprezentaci vizuálńı podoby skutečných materiál̊u. Navržený
model pro kompresi BTF dat nejprve převzorkuje data do nové parametrizace, která umožňuje
rozklad funkce pro individuálńı úhly pozice kamery a osvětleńı na funkce odpov́ıdaj́ıćı marginálńı
hustotě pravděpodobnosti. Tyto funkce jsou následně komprimovány pomoćı v́ıceúrovňové
vektorové kvantizace, která použ́ıvá vyhledáváńı nejpodobněǰśı funkce z množiny již uložených
kódových vektor̊u reprezentuj́ıćıch komprimovaná data. Z větš́ı části výpočet komprimace
BTF dat odpov́ıdá vyhledáváńı. Datově jsou komprimovaná BTF data reprezentována jako
vektor index̊u a škálovaćıch koeficient̊u s t́ım, že jednotlivé dimenze v́ıcerozměrné funkce
jsou komprimovány jednotlivě. Rekonstrukce dat z tohoto modelu je založena na zřetězeném
indexováńı vnořených kódových vektor̊u. V navrženém modelu jsou jas a chromacita dat kom-
primovány nezávisle pro dosažeńı ještě vyšš́ıho kompresńıho poměru. Tento ztrátový model
pro kompresi BTF dat dosahuje ńızkého zkresleńı při dosažeńı velkého kompresńıho poměru
1 : 233− 1 : 2040 v závislosti na obsahu informace v BTF datech. Dosažené výsledky lze
porovnat s daľśımi metodami pro kompresi BTF dat, které typicky maj́ı předdefinované kom-
presńı poměry, často menš́ı než 1 : 200. Výsledky pro navržený model porovnáváme s modelem
LPCA pomoćı psychovizuelńıho experimentu. Dekomprimace dat z modelu je implementována
jak na standardńım procesoru tak i na grafickém hardware s t́ım, že je dosaženo reálného času
zobrazováńı při osvětleńı jedńım bodovým světlem. Model nav́ıc umožňuje rychlé vzorkováńı
BTF dat pro zadaný vektor kamery, které je vyžadováno algoritmy trasováńı cest (angl. path
tracing) a fotonových map.
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1 Introduction

Realistic visualization of surface appearance has always been one of the main challenges
in computer graphics. In particular, the increasing attention is paid in almost all industrial
sectors to such applications as computing visual safety simulations and computer aided design
(CAD) that require realistic reproduction of material behavior under complex illumination
and viewing conditions.

One method to capture real material appearance is based on the measurement of re-
flectance with respect to varying light and viewing directions. This so called Bidirectional
Reflectance Distribution Function (BRDF) was first described in [NJH∗77]. The BRDF itself
does not preserve texture information, so it is suitable only for homogeneous materials. How-
ever, a large number of real, rough surfaces have a complicated spatial structure that causes
effects such as shadowing, masking, inter-reflection, and subsurface scattering, all of which
vary with illumination and viewing directions.

To preserve at least some of these effects, a new representation of real-world materials, the
Bidirectional Texture Function (BTF), was presented in [DvGNK99]. A monospectral BTF is
a six-dimensional function which, unlike BRDF, accounts for the dependence of viewing and
illumination measurements on planar material position. An appropriately measured BTF
contains information about material properties as anisotropy, masking, or self-shadowing.
Examples of rendered images using BTF are depicted in Figure 1.

foil1 corduroy wood2 wood1 impalla
C.R. 1:2039 1:418 1:278 1:352 1:522

C.R. 1:806 1:257 1:418 1:780 1:1002
proposte walkway corduroy ceiling alu

Figure 1: Example images rendered by the proposed BTF compression methods for illumina-
tion by point light and by different environment maps.

Uncompressed BTF requires a very large amount of data storage such as several giga-bytes
per sample in raw format. The storage space requirements of raw BTF data prevents their
direct use for fast rendering in modern graphics hardware. Hence a BTF data compression
that produces a compact representation is necessary. Such a method should provide: (a)
reasonably high compression ratios, (b) fast random access data synthesis (convenient for
GPU implementation and rendering algorithms), (c) visual fidelity comparable with existing
BTF compression algorithms.
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Additionally, the method should allow fast importance sampling for high-quality rendering
applications using eye path tracing algorithms, and spatial enlargement of measured BTF
samples. The processing/workflow pipeline for BTF data is shown in Figure 2.

Figure 2: BTF data processing pipeline.

We present a novel BTF compression technique based on efficient multi-level vector quan-
tization, allowing fast importance sampling for a given viewing direction as well as efficient
multi-sample compression into a single shared database. To our knowledge there is no other
BTF compression method that has these features.

The following section describes the basic terminology. Section 3 outlines prior work in the
fields of BTF compression and importance sampling. Section 4 explains individual parts of the
proposed model. Section 4.1 proposes a novel BTF data parametrization and interpolation.
In Section 4.2 a vector quantization algorithm of interpolated data is explained, and this
is followed by a description of a novel multi-level vector quantization method introduced in
Section 4.3. Section 4.4 discusses a similarity measure applied throughout the model for
BTF and BRDF data. Section 4.5 describes the use of scalar quantization to achieve further
compression. Properties of the model and its application to fast importance sampling are
discussed in Section 5. The results of our method are described in Section 6. A comparison
of the method with other existing methods is shown in Section 7. Section 8 concludes the
description of the method.

2 Basic Terminology and Notation

In this section we describe basic terminology and notation used below. The incoming light
direction is denoted by ωi = [θi, ϕi] and viewing direction by ωv = [θv, ϕv]. BRDF is a four-
dimensional function BRDF (ωi, ωv) and has two main important properties [DF97]. The first
one is the Helmholtz reciprocity rule stating that if the illumination and viewing direction are
reversed, the value of the BRDF should not change. The second property is the energy
conservation law, which states that the ratio of total outgoing radiance from the material
and incoming total radiance from the light sources must be less than or equal to one for all
possible illumination directions.

Monospectral BTF is a six-dimensional function, BTF (x, ωi, ωv) depends on viewing and
illumination measurements on planar material position x = [x, y]. BTF can be decomposed
into a set of illumination and viewing direction dependent texels specifying pixel-wise BRDFs.
We will call such a texel as an apparent BRDF and denote it as Fx(ωi, ωv). Due to masking,
shadowing, and light scattering effects the apparent BRDF fulfills neither the Helmholtz
reciprocity rule nor energy balance.
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3 Previous Work

We refer for BTF compression methods by the full and recent review of previous work related
to our approach to the full version of our paper by Havran et al. [HFM10], and to thorough
recent reviews by Filip and Haindl [FH09], and the tutorial by Lensch et al. [LGC∗05].

Figure 3: The proposed BTF model scheme; dependencies of individual VQ code-books.

4 A Novel BTF Model

The scheme of the proposed BTF model is shown in Fig. 3. The compression scheme is based
on subsequent decomposition of 4D, 3D, 2D, and 1D dimensional slices of BTF data. These
slices are obtained by resampling original BTF data to a novel parametrization of illumination
and viewing directions. The model’s compression is achieved by vector quantization of slices
to individual dimensions to obtain a set of code-books. These code-books work as nested
look-up tables of indices and scales of the individual slices while only the code-books at the
lowest level contain the resampled original BTF data.

4.1 Model Parametrization

The key motivation of the model was to propose a light direction parametrization over a
hemisphere that enables not only efficient data compression but also fast rendering and im-
portance sampling. In addition, as the proposed model decomposes the function to parts in
the individual dimensions separately, we want to align the data at these individual dimensions.

We considered several different parametrizations proposed for BRDFs e.g., half-angle
parametrization by Rusinkiewicz [Rus98], by Stark et al. [SAS05], and Edwards et al. [EBJ∗06].
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However, we decided to abandon them for three reasons. First, the published parametriza-
tions do not preserve monotonicity between the generated direction and the bivariate uniform
variable in the input domain. That is, when we generate a similar pair of random numbers
we want to get a similar generated direction for all random pairs. This is discussed in more
detail in Section 5.2. Second, many BTF samples have distinct properties from BRDF sam-
ples. Typically, in BTF data there can be several specular highlights that are not aligned
with the direction of an ideal reflected ray. The third reason is that we want to compress not
only one but many apparent BRDFs. We want to align their perceptually similar features as
we expect similarity among apparent BRDFs across a BTF sample. Hence the design of the
parametrization proposed here specifically for BTF data compression is tightly coupled with
a multi-level vector quantization method described in Section 4.3.

The proposed parametrization defines BTF slices that can be represented as conditional
probability density functions (PDF). These PDFs are treated as input data into the vector
quantization scheme proposed in the Section 4.2.

The proposed [α, β] parametrization is based on an ”onion slices” concept of a hemisphere
of illumination directions, as illustrated in Fig. 4. The hemisphere is divided into a set
of meridian slices running between points A and B lying at its bottom part. Each slice
is parametrized by angle β ∈ 〈−π/2, π/2〉 with a zero value at the upper pole E of the
hemisphere. A uniform placement of individual 1D slices over a hemisphere is controlled by
angle α ∈ 〈−π/2, π/2〉 with zero value at the upper pole as well. A mapping M between

Figure 4: Illumination direction parametrization over a hemisphere.

standard hemispherical [θ, ϕ] parametrization and the proposed [α, β] parametrization can be
stated as follows:

M(θ, ϕ) → {α, β} (1)

θ ∈ 〈0, π/2〉 α ∈ 〈−π/2, π/2〉
ϕ ∈ 〈0, 2π〉 β ∈ 〈−π/2, π/2〉 .

A corresponding unit 3D directional vector can be specified by means of the [θ, ϕ] and [α, β]
parametrization respectively as

[x, y, z] = [cosϕ · sin θ, sinϕ · sin θ, cos θ] (2)

[x, y, z] = [sinβ, sinα · cosβ, cosα · cosβ] .
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While the illumination direction ωi is specified by [α, β], the viewing direction ωv is given
by standard [θ, ϕ] parametrization only resampled to regular sampling steps of angles θ and ϕ.
On one hand this resampling causes dense sample distribution near the pole of the hemisphere
but on the other hand it allows direct factorization of samples along angles θv and ϕv. Such
a resampling consequently allows better compression of underlying data samples.

Now we describe how Fx is resampled from original spherical parametrization θ′i, ϕ
′
i, θ
′
v, ϕ
′
v:

{α, β, θv, ϕv} ←M(θ′i, ϕ
′
i, θ
′
v, ϕ
′
v) (3)

θv = θ′v β = arcsin(sin θ′i · cos(ϕ′i − ϕ′v))

ϕv = ϕ′v α = arccos

(
cos θ′i
cosβ

)
.

Note that the hemisphere is oriented in such a way that an outline between points A and
B is always perpendicular to the azimuth of viewing direction ϕv. Additionally, we need to
achieve equitable distribution of samples on the hemisphere in [α, β] parametrization. Due to
this reason the sample distribution along β slice is not chosen uniformly according to β angle
shift, but uniformly in cosβ so that the projection of the samples is equidistant.

To test the algorithm BTF data from [SSK03] were used. These data provide uniform
distribution of measurement points in at 81 illumination and 81 viewing angles over the
hemisphere. Such a distribution is obtained by using variable quantization of azimuth angle ϕ
for individual elevation angles θ. These BTF data were resampled into proposed illumination
[α, β] and viewing [θv, ϕv] direction parametrization by means of a two-step interpolation
scheme based on radial basis functions [CBC∗01]. The resulting data of interpolation (see
example in orange part of Fig. 3) are then used as direct input into the proposed multi-level
vector quantization based BTF model.

4.2 Vector Quantization

The proposed BTF compression model utilizes lossy block coding often referred to as vector
quantization (VQ) [GG92]. VQ is based on an assumption that a set of data vectors can
be represented by its representative subset – the code-book. This subset is obtained by
representing similar vectors m by a suitable code-vector m̂ according to a predefined maximal
allowed distance. The similarity between them is defined by a distance measure d(m, m̂) > 0.

Let us mention the important theorem for lossy compression methods related to our
work [GG92, p.313]: When the code-book is set optimally then no other coding system ex-
ists that can do better than VQ. So a careful design of the code-vectors is the main issue.
This theoretical result both motivates and justifies the use of vector quantization in lossy
compression schemes.

In our method a vector code-book is based on selective elimination of input data-vectors
until a final set of input data-vectors remains as the code-book, a procedure also known as
pruning [TG74]. This idea of code-vectors generation can be explained in three steps: Step 1:
Put the first input data-vector V1 in the empty code-book. Step 2: With each new input
data-vector Vx, find the nearest code-vector VNN in the code-book. Step 3: If the minimum
found distance between the vector Vx and VNN is not within some threshold ε, add the input
data-vector Vx to the code-book and return its index. Go to step 2. Otherwise, return index
of the nearest code-vector VNN and continue to step 2.
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The selection of a distance measure appropriate for input data and the setting of the
corresponding threshold ε have a crucial influence on the performance of the vector quantizer.

4.3 Multi-Level Vector Quantization

Now we can connect all the building blocks described above and explain our BTF compression
model. As input data a Fx is converted from original θ′i, ϕ

′
i and θ′v, ϕ

′
v data parametrization

into a novel parametrization [α, β] and [θv, ϕv] as described in Section 4.1. An example of Fx

for lacquered wood material is depicted in the orange part of Fig. 3.
The general scheme of the proposed BTF model is shown in Fig. 3. The resulting four-

dimensional function Fx(α, β, θv, ϕv) is decomposed along a viewing azimuth angle ϕv into a
set of three-dimensional functions. Similarly, each 3D function is decomposed along a viewing
elevation angle θv into a set of two-dimensional functions. Each 2D function describes the
behavior of material reflectance along all slices in [α, β] parametrization, where data of a
single slice can be considered as a one-dimensional function. To enable perceptually correct
matching of individual data patterns and sharing of some common material features, the
input BTF data were converted from standard RGB space into more perceptually uniform
color space. YCrCb color space was used for LDR BTF samples and LogLUV [Lar98] for
HDR BTF samples. In the rest of the text, regardless of the color-space that is used the
luminance channel is denoted by L and chromaticity channels by a and b.

The original 1D, 2D, 3D, and 4D luminance functions are normalized to obtain corre-
sponding conditional probability functions (PDF), which are used as training vectors for our
VQ scheme. The proposed BTF model is based on BTF data decomposition into several
code-books of indices and scale coefficients, while only the code-books on the lowest level
contain the resampled original BTF data as one-dimensional vectors.

The vector quantization of luminance BTF data is carried out separately for individual
dimensions as shown in Fig. 3. As a result of 1D PDFs quantization we obtain code-book
P1(size S1 × nβ) of normalized 1D data slices along illumination angle β. This code-book is
indexed by the P2(size S2×nα) code-book of 2D PDFs representing luminance values where
each item contains indices and scales cP2 of individual 1D slices along illumination angle α
in P1. Items in P2 are indexed from the auxiliary code-book M(size SI2 × 2). M in fact
only merges indices pointing into luminance and color code-books (P2 and I2) and is indexed
from the code-book of 3D PDFs P3(size S3×nθv), where for each item indices and scales cP3

corresponding to viewing angle θv are stored. The Fx encoding is finished by the last shared
code-book P4(size S4 × nϕv), which provides items corresponding to viewing angle ϕv with
indices and scales cP4 to P3.

Chromaticity channels a and b (Cr/Cb or U/V) of BTF data are quantized in a slightly
different way. The C(size SC × 2) code-book stores basic a and b color values. Possible color
variations along 1D slices are described in items of the I1(size SI × nβ) code-book and the
corresponding color can be looked-up by indexing into C. Color variations for all illumination
directions are obtained by means of items of the I2(size SII ×nα) code-book. Each such item
of length nα determines which color variations from I1 are used for individual positions of
angle α.

The code-books P2 and I2 are stored separately to allow the use of different color variations
for the same luminance distribution over a hemisphere of different illumination directions.
This arrangement also makes it possible to save considerably fewer P2 slices when, e.g.,
BTFs of similar material structure but different color are encoded. The luminance and color
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information is merged by means of the auxiliary code-book M indexed from P3. M contains
only index to P2 and index to I2. The remaining P4 and P3 code-books have the same
function as in the luminance channel.

During BTF compression, individual Fx are compared with reconstructed F̂x in P4 by
means of nested indexing through all code-books. If a similar code-vector is not found, Fx is
decomposed into a set of less dimensional slices and the same process continues on all levels
of the model either until the similar slice is found, or the P1 or C code-books are reached.
Then the new unique data are inserted into the code-book P1 in the form of a luminance
vector of length nβ along a slice parametrized by angle β or a chromaticity in the code-book
C. The insertion to P1 and C corresponds to standard vector quantization. During insertion
the data-vector is compared so that the luminance is normalized in both the inserted data-
vector and the data-vector in the code-book. When the match is found, this then provides a
corresponding scale for upper-level code-book.

All the code-books described so far enable efficient coding of color Fx and can be shared by
more BTF samples (i.e., materials). However, individual apparent BRDFs Fx do not provide
any information about sample structure, so for coding of an entire BTF a material-specific
planar index is needed. Such an index is obtained by VQ of individual Fx and stored in a
form of P6(nxm ×nym) code-book where nxm ×nym is the spatial resolution of the m-th BTF
sample. P6 contains an index to P4 together with its scale value cP6 .

The scale values are used for scaling of the stored PDFs to obtain correct reconstruction
of 4D PDF function, i.e., Fx, in the form of a compound function as follows

cscale = cP6 · cP4 · cP3 · cP2 (4)

k = P3(P4(P6(x, y), ϕv), θv)

FxL = cscale ·P1(P2(M(k, 1), α), β)

Fx{a,b} = C(I1(I2(M(k, 2), α), β), {1, 2})
Fx{L,a,b} → Fx{R,G,B} .

4.4 Similarity Measure

For VQ in the proposed BTF compression model we need a similarity measure between the
input data-vector and the stored code-vector; this is of crucial importance for the compression
algorithm. The data-vector corresponds to either a 1D, 2D, 3D, or 4D slice of Fx of BTF
at a given planar position. We studied and tested several possibilities used for probability
density functions (PDF) and traditional distance measures such as Euclidean function. Below
we describe our final choice for our compression method, but the selection of the optimal
similarity measure in BTF compression remains an open problem and can be improved in
future.

4.4.1 BRDF Data Compression

As BRDF data lacks the spatial neighborhood information, we decided to use the mean
square error (MSE) as a distance function between the original and the compressed data.
The computation of MSE, which corresponds to computing Euclidean distance, has one big
advantage. We can specify for each code-book P1,P2,M,P3, and P4 the maximum MSE
that is acceptable for compression. While the maximum MSE for P4 is user specified, the
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MSE thresholds for other code-books are smaller by multiplicative constants such as 0.4 and
squares of multiplicative constants among code-vectors.

The MSE for P4,P3, and M is computed directly in sRGB color space according to the
definition of MSE, but the MSE for P2 and for P1 is computed for luminance only. The
thresholds for code-books I1, I2,C of color components of YCrCb/LogLUV space are set to
small constants; I2 threshold=0.5, I1 threshold=0.2, C threshold=0.1.

4.4.2 BTF Data Compression

After experiments with several similarity measures we finally decided to analyze BTF samples
using a structural similarity index measure (SSIM) [WBSS04]. Another advantage of SSIM
over other standard image quality measures as MSE, PSNR, etc. is that SSIM also takes into
account both the surroundings of the compared pixels and local visual masking effects. SSIM
measures the local structure similarity in their local neighborhood of an R × R window of
pixels in an image (usually 11×11, [WBSS04]). The basic idea of SSIM is to separate the task
of similarity measurement into comparisons of luminance, contrast, and structure combined
into one similarity function:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
, (5)

where µx, µy, σx, σy and σxy are mean values, standard deviations, and mutual variance of
values in the local neighbourhood of compared images X and Y . C1, C2 are specific non-zero
constants. The valid range of SSIM for a single pixel is [−1, 1], with higher values indicating
higher similarity. The mean value accross the set of pixels in two images is understood as
MSSIM in the rest of the text.

The MSSIM is computed for P2 and for P1 over luminance only, for P4,P3, and M in
YCrCb/LogLUV color space, for I1 and I2 and C in two chromaticity channels of YCrCb/LogLUV
color space. To combine luminance and chromacity in SSIM we propose a novel method. For
example for P4 we compute MSSIM for all three channels (e.g Y, Cr, and Cb) for all combina-
tions of viewing and illumination direction for the selected discretization over the hemisphere,
which yields 3× nϕv × nϑv × nα × nβ values. As a similarity measure, we then compute the
98th-percentile from MSSIM values for all three channels.

The proposed approach is computationally efficient, as it allows us to prune the vector
comparisons during the search as soon as we achieve the percentile value already found as
the current best in the code-book found. The Nth-percentile of MSSIM values is consistently
computed over all code-books either from luminance (P2,P1), two chromaticity channels
(C, I2, I1), or all three channels (P4,P3,M). There is no need for a multiplicative factor for
thresholds as the percentile method propagates the results from code-book of higher dimen-
sionality to those of lower dimensionality.

4.5 Scalar Quantization and Compact Indices for Code-books

Scalar Quantization. During compression, we store the indices and scale values in code-
books simply by 32-bits for an integer index and for floating point in 32-bits in IEEE-754
format. As the scale values are limited to a small range of values we apply a simple scalar
quantization [GG92] for floating point values. For simplicity and ease of decompression we
use scalar quantization to 8 bits for LDR BTF samples for all levels. For HDR BTF samples
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it is necessary to increase the precision for P2 to 16 bits. The maximum relative error is far
below 1% in all cases, the relative error yields values in range from 10−4 to 10−3.
Compact Indices. Similarly, the size of code-books is reduced. Therefore the index in a
code-book Pi pointing to another code-book Pi−1 of size Si−1 can be represented only by
N = dlog2 (Si−1)e bits instead of 32 bits.

5 Discussion

This section discusses features of the proposed model and its application for importance
sampling of BTF data.

5.1 Vector Quantization Scheme

There are several advantages of the proposed model. The individual code-books of luminance
and color slices and their indices can be shared by an arbitrary number of BTF samples and
can therefore enable even higher compression. Data compression is carried out on all levels of
the proposed model. We set the thresholds for code-books so that the low-level code-books
contain most of the code-vectors. In contrast methods based on PCA [MMK03, VT04] or
spherical harmonics [WL03], which have predefined compression ratios, our approach can
adapt to variance in input data-vectors. Additionally, whenever a new BTF sample arrives it
can be easily processed by our model. This is much more difficult or infeasible with the other
methods mentioned above.

5.1.1 Generation of Optimized Code-Books

The order of processing apparent BTFs across a BTF sample has a large impact on the
final results. To guarantee that code-books describe a perceptual variety of pixels across a
whole BTF sample, and to ensure a sufficient compression ratio, the individual code-books are
generated in a progressive sampling algorithm. First, a small set (e.g. 1%) of apparent BTFs
Fx across the whole BTF sample is randomly progressively sampled from BTF data with a
predefined threshold and is used in the VQ scheme. The samples are taken from a sampling
sequence by two-dimensional Halton random number generator. Second, the threshold is
increased (e.g. by 2.5 times) and the same process is repeated for a larger set of Fx (e.g. 4%),
again for the whole BTF sample. In the third step we do not modify the code-books and
compress the rest of the pixels (e.g. 95%) in any order.

The number of generated items in individual data sets can become so high that finding
the closest code-vector can be very slow. For BRDF data comparison we take advantage of
the fact that we are using MSE, which is a true metric, and so we address this problem by
implementing a dynamic version of the LAESA method [MOV94] (see book [Sam06] for other
nearest neighbor search algorithms in high dimensional spaces). For SSIM a 98th-percentile
the efficient search pruning is implemented as described in Section 4.4.

5.1.2 Thresholds Setting

A common problem of all VQ algorithms is finding the optimal quantization thresholds that
provide either a required compression ratio or satisfy a defined quality measure. In our case,
such a measure is the computational model of perceived difference between rendered images
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using the VQ BTF compression scheme and images rendered using the original BTF data.
When MSE is used as similarity measure, the maximum MSE difference allowed or required
for each generation of a code-book is specified by an user.

When SSIM is a similarity measure the situation is also simple, because the measure
directly estimates the perceptual difference between the original and the modeled data. The
setting of thresholds effectively controls the trade-off between the compression ratio of the
proposed VQ compression scheme and the visual fidelity of the resulting rendered images.
There is an obvious limitation of our current approach - the SSIM is only a mathematical
model of visual fidelity given two images. So the visual fidelity achieved is limited by accuracy
of SSIM.

5.1.3 Mipmapping

Since rendering at different scales is important for direct visualization of BTF data on the
visible object, it is necessary to address an anti-aliasing. In our model, mipmapping [Wil83]
can be used in the same way as for ordinary textures. The reflectance data are averaged, and
the data are compressed from fine scale to coarse scale, each level separately. This requires
extension of the spatial index P6. Obviously, the compression ratio is decreased up to one
third as for standard texture mipmapping.

5.2 Importance Sampling

Importance sampling is not supported by current BTF models, but our algorithm design
allows it efficiently. It is implemented via a standard inverse transform method for discrete
PDFs [Fis96] directly from the P2 code-book, without the necessity to compute the 2D PDF,
as in for several other BTF compression methods. The proposed parametrization over 2D
slices guarantees that for strictly positive values Fx, and given the viewing direction ωv and a
couple of random numbers ξ1,2 ∈ [0− 1]2, we can generate the illumination direction ωi using
proper interpolation.

In contrast to [Mat03, LRR04, EBJ∗06] our hemispherical parametrization of apparent
BRDF allows us to preserve monotonicity between the generated direction and the bivariate
uniform variable in the input domain, and avoids discontinuities at the same time over the
surface of the hemisphere. If for random numbers ξ1, ξ2 the function generating direction is
ωi = DirIS(ξ1, ξ2), then it holds limδ1→0,δ2→0 |DirIS(ξ1 + δ1, ξ2 + δ2) − DirIS(ξ1, ξ2)| = 0
for ∀ξ1, ξ2 ∈ [0, 1]2.

6 Results

For our experiments we have used BTF data from the University of Bonn [SSK03] having
spatial resolution 256× 256 and angular resolution |ωi|× |ωv| = 81× 81. Single BTF material
in RGB for LDR data (8 bits per color channel) takes up to 1.2 GBytes. HDR data are
considered to have resolution 12 bits per color channel (1.8 GBytes per material). All results
presented below were computed for resampling of the original data using the discretization
nα = 11, nβ = 11, nθv = 7, and nϕv = 16.

Implemented on a CPU, our model achieves 310,000 - 1,360,000 BTF evaluations per
second. According to our comparison, it is about 1.5 times faster than the standard single-
lobe Lafortune model [FH05]. All the tests were performed on a single core of PC with the
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processor 2.83 GHz, Intel(R) Xeon(R) CPU, 6 MBytes L2 cache, 16 GBytes RAM DDR2
400 MHz. The performance of the proposed model GPU implementation was tested on two
graphics cards and their results for various 3D objects. The speed achieves from 8 to 170
frames per second for ATI Mobility graphics cards and NVidia GeForce 8800 GT for 3D
models with 2k and 115k triangles.

BTF our our our our size2 time our LPCA‡

No sample C.R.1 C.R.2 C.R.3 (Bytes) [h] SSIM SSIM
1 alu∗ 1:253 1:1002 – 80,460 0.39 0.850 0.941
2 corduroy 1:128 1:418 1:484 3,084,692 19.2 0.748 0.916
3 fabric1 1:117 1:362 1:419 3,558,788 29.3 0.737 0.915
4 fabric2 1:217 1:710 1:822 1,815,996 18.1 0.779 0.993
5 foil1 1:574 1:2040 1:2364 632,352 19.5 0.859 0.923
6 foil2 1:334 1:1138 1:1319 1,133,896 17.2 0.814 0.994
7 impalla 1:162 1:522 1:604 2,466,808 21.8 0.730 0.970
8 leather 1:366 1:1244 1:1441 1,036,352 17.2 0.802 0.994
9 proposte 1:236 1:806 1:934 1,599,412 18.0 0.710 0.988
10 pulli 1:87 1:264 1:306 4,873,008 27.1 0.699 0.955
11 wallpaper 1:222 1:728 1:843 1,771,420 28.8 0.776 0.963
12 wood1 1:101 1:352 1:408 3,664,060 22.3 0.866 0.811
13 wood2 1:75 1:278 1:322 4,625,772 17.2 0.886 0.957
14 wool 1:77 1:233 1:270 5,514,260 50.2 0.684 0.964
15 ceiling� 1:235 1:780 1:1102 2,653,188 20.1 0.711 –
16 floortile� 1:136 1:360 1:509 5,383,352 28.7 0.772 –
17 pinktile� 1:711 1:2267 1:3205 853,496 15.6 0.961 –
18 walkway� 1:102 1:257 1:363 7,514,860 37.4 0.884 –

1:230 1:764 1:924 average C.R. – 1:275

∗ sample size 64× 64 only, � HDR sample
‡ 128× 128 pixels only due to extreme computational demands

Table 1: Comparison of our method with three other methods in terms of compression ratio
and MSSIMW [WBSS04] values in YCrCb space for all tested materials. The range of MSSIM
is 〈0.0, 1.0〉, where value 1.0 corresponds to equal images. C.R.1 is the compression ratio for
representing code-book indices by 32-bits and floating point values by 32 bits. C.R.2 and size2

is the compression ratio and the compressed size of BTF sample for representing indices by
minimum numbers of bits and floating point values by 8 bits for LDR samples and 16 bits
for HDR samples. Compression ratio C.R.3 uses the same representation as C.R2, but several
BTF samples are compressed together for sharing luminance characteristics.

Compression ratios achieved for individual BTF samples with corresponding compression
times are shown in columns 2–6 of Table 1. From the results we can conclude, that lower
compression ratios correspond to textile materials having higher structural variability and
complex occlusion/translucency effects, such as corduroy, impalla, proposte, and pulli.

The average compression time of a BTF sample (size 2562) using unoptimized implemen-
tation of the proposed VQ algorithm on a single CPU core, was about 23.4 hours, including
BTF data resampling to the proposed parametrization. When we compress 13 BTF LDR
samples (except alu) to a shared representation, the compression ratio is increased further
by a factor from 15%. When compressing 4 HDR samples to a shared representation, the
compression ratio is increased by 40% (not reported in Table 1). Images rendered using our
BTF model for point light and environment lighting (Grace Cathedral, St. Peter’s Basilica
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courtesy of Paul Debevec (http://www.debevec.org), and grassplain) are depicted in Fig. 1.
The proposed BTF compression method can also be used for BRDF when the BRDF

samples are understood as apparent BRDFs. We compressed 100 isotropic BRDF measured
samples (courtesy of Wojciech Matusik and MERL BRDF database [Mat03]) with an original
data size of each sample of 90×90×180×3 numbers (=16.69 MBytes of data) for various dis-
cretizations. For example, for the discretization nα = 91, nβ = 91, nθv = 45, and nϕv = 1
we compressed 100 BRDF samples with a negligible average MSE error to 41 MBytes (com-
pression ratio C.R.≈1:42). The shared data in the code-books are luminance characteristics
in the code-books P1 and P2.

We have measured the speed of the importance sampling algorithm using the proposed
model. Given a viewing direction the computed illumination direction achieves 450,000 -
1,600,000 samples per second on a single core CPU.

7 Comparison with Other Methods

We have compared the proposed method in terms of data compression with local PCA com-
pression (LPCA) method representing BTF clusters [MMK03] using 7 clusters, 5 compo-
nents/cluster.

(a) (b) (c)

Figure 5: Example comparison of the methods for corduroy sample. (a) LPCA based com-
pression (b) reference uncompressed data (c) the proposed method.

Fig. 5 shows compression of an example data for BTF sample corduroy, other results can
be found at http://www.cgg.cvut.cz/members/havran/btfbase/. In average the proposed
method provided subjectively comparable overall visual quality across all tested samples,
however, in average provides compression ratio more than twice higher than the LPCA method
(settings 7 clusters with 5 components per cluster - C.R. 1:275, our method on average C.R.
1:764).

In order to objectively compare visual fidelity of these two methods we performed a simple
psychological experiment with 19 participants. The subjects with normal or corrected vision
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of average age 27 years were shown 14 animated sequences of the rotating tablecloth objects
with mapped BTF as shown in Fig. 5, i.e., the video rendered from original data always in the
middle and from the compressed data by the proposed method and the LPCA, side-by-side in
random order. The video for each BTF sample has been shown for 25 seconds, the whole test
took between 7 to 9 minutes for each subject. The subjects’ task was to evaluate which of
the method provides more realistic visual experience given the reference data in the middle.
For each person 14 LDR BTF samples were shown, which gave 266 individual answers.

As can be seen in Figure 6 summarizing our perceptual experiment the LPCA works better
for materials with relatively small spatial appearance variations across images (please refer to
a list of materials in Table 1). This is typical for such materials as alu, fabric2, foil1, foil2, and
leather. Our compression allows better adaptation to complex materials having large variety
of non-typical features such as corduroy, impalla, proposte, pulli, wood1, and wool. This is to be
expected because our approach assumes a similarity on the level of apparent BRDFs allowing
the efficient representation of irregularities thanks to the multi-level decomposition of data,
while in LPCA the features are easier to represent by limited set of basis functions. The

Figure 6: Evaluation of the psychological experiment for 19 participants and 14 LDR BTF
samples. The error bars represent twice the standard error across subjects.

very small p-value (p = 2.210−16) of ANOVA test indicates that differences between samples’
means are highly significant. The mean evaluation is 5.15, where 5 means undecided and 6
very low preference of the LPCA. This means that the proposed method is comparable with
the LPCA in terms of visual performance. However, it has much lower memory requirements
during sample analysis, it compresses each sample according to its variability, it allows more
materials to be compressed efficiently into one data set, and it performs fast importance
sampling (about 300 times faster than approach using data reconstruction from LPCA).

We can also compare the proposed method based on multi-level vector quantization with
standard (i.e., one-level) vector quantization. We omit the discussion of the implementation
here due to the lack of space. The standard vector quantization for the same parametrization
reaches compression ratios up to 1:80, which is about 10 times less than achieved by the
multi-level approach.
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8 Conclusion and Future Work

The main contribution of this work is a novel BTF compression method based on vector quan-
tization enabling high compression ratios between 1 : 233− 1 : 2267 (on average 1 : 764) de-
pending on material sample variability suitable also for BRDF data. This is further increased
by 15% to 40% when several BTF materials are compressed to a common representation.
For compression of BTF samples we directly use the SSIM metric to control the estimated
visual similarity between the original and the compressed data. The proposed algorithm can
efficiently control quality versus a compression ratio. The quality metric can be changed in
future to a more efficient one. Additionally, the proposed method allows fast importance
sampling of BTF/BRDF data.

We tested the functionality of the algorithm for 18 distinct BTF materials in HDR and
LDR format, and have thoroughly compared the achieved results with results of LPCA
method. High fidelity of the results was also verified against true measured data in a z-buffer
based renderer for both point and environment lighting. Additionally, we have implemented
the BTF decoding algorithm on the standard GPU with framerates up to 170 FPS depending
on the scene complexity.

The proposed BTF framework can be further elaborated in several directions. First, other
similarity measures among apparent BRDFs that better exploit known perceptual properties
of human vision can be researched. Second, when multi-spectral BTF measurements are
available, we believe that our model can be simply extended by a more accurate color models.
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