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Summary
This talk reviews selected applications of relational machine learning in ge-
nomic data analysis. The machine learning task relevant to the applications is
that of learning classification functions from examples. In conventional ma-
chine learning, examples are described through attribute tuples. In domains
where the relational structure of examples is important, attribute-value de-
scriptions are inappropriate. To this end, relational machine learning deals
with learning from structural example descriptions. In its most extensively
elaborated subfield, inductive logic programming, first-order predicate logic
is used as the representation language. Examples are usually expressed as
first-order clauses and the learned classifier is a clausal theory (set of clauses).
A further clausal theory, describing relevant background knowledge, may be
supplied to and exploited by the learner. In the first application of relational
machine learning, we aim at learning classifiers predicting gene groups that
will be differentially expressed over given phenotypes. These classifiers are
learned from gene expression measurement data and the gene groups are cha-
racterized by the learner in terms of relational background knowledge pertai-
ning to the gene ontology and to known gene-gene interactions. In the second
application, we want to learn classifiers predicting whether or not a given pro-
tein is able to bind DNA. The classifiers are learned from structural (3D) de-
scriptions of proteins. Here we combine the first-order logic based approach
with the conventional attribute-based approach, obtaining predictive accura-
cies that improve upon the state of the art. We conclude by briefly reviewing a
few other applications of relational machine learning in genomics, including
studies by other authors.
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Souhrn
Přednáška představuje vybrané aplikace relačnı́ho strojového učenı́ v analýze
genomických dat. Úloha strojového učenı́ relevantnı́ k těmto aplikacı́m se
týká učenı́ klasifikačnı́ funkce z přı́kladů. V tradičnı́m strojovém učenı́ jsou
přı́klady popsány n-ticemi přı́znaků. V oblastech, kde je pro klasifikaci důležitá
relačnı́ struktura přı́kladů, nenı́ přı́znakový popis vhodný. Za tı́mto účelem
pracuje relačnı́ strojové učenı́ se strukturnı́mi popisy přı́kladů. V jeho nejšı́řeji
prozkoumané podoblasti, induktivnı́m logickém programovánı́, je jako re-
prezentačnı́ jazyk využita predikátová logika prvého řádu. Přı́klady jsou ob-
vykle vyjádřeny jako prvořádové logické klauzule a naučený klasifikátor je
klauzálnı́ teoriı́ (tedy množinou klauzulı́). Učı́cı́ se algoritmus může také využı́t
dalšı́ klauzálnı́ teorii popisujı́cı́ relevantnı́ apriornı́ (předem danou) znalost.
V prvnı́ aplikaci relačnı́ho strojového učenı́ je našı́m cı́lem naučit se klasi-
fikátory předpovı́dajı́cı́, které genové skupiny budou rozdı́lně exprimovány
mezi zadanými fenotypy. Tyto klasifikátory jsou natrénovány z měřených
dat genové exprese a genové skupiny jsou popsány algoritmem v termı́nech
relačnı́ apriornı́ znalosti vyplývajı́cı́ z genové ontologie a známých vzájemných
interakcı́ genů. V druhé aplikaci chceme natrénovat klasifikátory predikujı́cı́,
zda je zadaná bı́lkovina schopna vázat DNA. Klasifikátory jsou natrénovány
na strukturnı́ch (3D) popisech bı́lkovin. V tomto přı́padě kombinujeme me-
tody založené na predikátové logice s konvenčnı́m přı́znakovým učenı́m, čı́mž
dosahujeme prediktivnı́ch přesnostı́ překonávajı́cı́ch dosud použı́vané klasi-
fikátory. Přednášku uzavı́ráme krátkým přehledem několika dalšı́ch aplikacı́
relačnı́ho strojového učenı́ v genomice, včetně studiı́ jiných autorů.

3
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1 Background

1.1 Machine Learning
To introduce relational machine learning, we will set off from the conventio-
nal statistical attribute-value machine learning setting [7] since the latter is a
framework familiar to many. Within this framework, we specifically focus on
supervised learning algorithms that are used to learn a classification function
from a set of classified examples. More precisely, we consider a finite set of
n random variables a1, a2 . . . an called attributes. An attribute-value descrip-
tion of a learning example is a particular assignment

x ∈ X = dom(a1)× dom(a2)× . . .× dom(an)

of values to these attributes where, for simplicity, we consider all the doma-
ins discrete (countable). Further we consider a random class variable y taking
values from a finite set Y , and a joint probability distribution PX,Y . A trai-
ning set is a finite multiset drawn i.i.d. from PX,Y and its elements are called
training examples. A learning algorithm receives a training set and outputs a
representation of a function f : X → Y . In a widely adopted Bayesian view,
f would ideally minimize the risk1

R(f) =
∑
x∈X

∑
y∈Y

L (f(x), y)PX,Y (x, y)

involving an apriori defined loss functionL(., .) quantifying the importance of
all possible misclassifications, i.e. L(y, y) = 0 for all y ∈ Y . If L(y, y′) = 1
whenever y 6= y′, then R(f) is called the classification error of f ; in what
follows we will always assume this to be the case. The risk R(f) usually
cannot be computed exactly since PX,Y is typically not known. We therefore
work with empirical estimates E(f, S) of R(f) computed on an i.i.d. sample
S of m elements from PX,Y

E(f, S) =
1
m

∑
(x,y)∈S

L (f(x), y)

If S is the training set used for learning f , then E(f, S) is called the training
error. If S is a sample independent of the training set, then S is called a testing
set and E(f, S) is called the testing error, which is an unbiased estimate of
R(f).

Given a training set T , a learning algorithm seeks a suitable classifier f
from among a predefined class of functions F . F is said to define a hard bias

1In all sums over possibly infinite domains, we silently assume these converge.
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of the algorithm; depending on the respective domains of the n attributes, it
may e.g. be the class of linear discrimination functions in Rn, functions re-
presentable as decision trees, propositional-logic rules, neural networks, etc.
In choosing a function fromF , the algorithm may proceed simply by minimi-
zing the training error E(f, T ), however, this approach would typically result
in overfitting. So termed is the situation where R(f) is large despite E(f, T )
being small. Overfitting is the more eminent the larger (‘more flexible’) the
hard bias F is.2 Often therefore, learners minimize E(f, T ) + λρ(f) where
λ ∈ R and ρ(f) is a regularization term, defining the soft bias. One often
chooses ρ(f) such that it assigns lower values to simple classifiers (usually
measured by their description length) and thus penalizes the complex ones.
This way, flexibility of F is reduced by an extent parameterized by λ. The art
of designing a machine learning experiment rests in the good choice of the
hard and soft biases, depending on the background of the data.

1.2 Relational Machine Learning
Conventional machine learning is suitable when there is a natural way to de-
scribe data through the values of attributes. In some important domains, this is
not the case. Consider e.g. that data are organic chemical molecules classified
as carcinogenic or non-carcinogenic. Adhering to the attribute-tuple represen-
tation, we could easily represent properties such as charge, weight, number
of carbon elements and so forth, for each molecule. However, carcinogenicity
is mostly determined by the structure of the molecules rather than the menti-
oned properties. We would thus like to be able to learn classifiers predicting
through relational reasoning, such as a molecule is carcinogenic if it conta-
ins a benzene ring that in turn contains an element connected to an oxygen
atom through a double bond. In principle, we could manually formulate re-
lational conditions such as the above, check their truth values for each data
instance, and present them as Boolean-domain attributes to a conventional
learner. However, the number of possible statements of the exemplified kind
is combinatorially vast and usually we have no clue to judge which ones are
relevant for classification. Therefore, we want the learning algorithm itself to
be able to construct such logical assertions as part of learning.

Relational machine learning algorithms aim at solving this problem. This
talk focuses on the family of relational learners based on the framework of in-
ductive logic programming (ILP). As the name suggests, this framework uses
formal logic for data and classifier representation as well as for inference.
Though in scope of current vital research, this talk does not cover recent ex-

2Entire branches of machine learning theory elaborate this simple statement into precision,
see e.g. [22, 23].
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tensions of ILP dealing with probabilistic representation of uncertainty [3] or
approaches to relational learning based on grounds different from logic [5].

Data, from which ILP systems learn, are relational structures. Specifically,
in the normal setting of ILP, they are first-order predicate clauses. Using the
clausal representation, a fragment of a training example in the chemical do-
main would e.g. be

Carc(M1)←Atom(M1, A1) ∧ Type(A1,Carbon) ∧ Atom(M1, A2)
Type(A2,Oxygen) ∧ Bond(Double, A1, A2) ∧ . . .

that is to be interpreted as Molecule M1 is carcinogenic as a result of con-
taining a carbon atom and an oxygen atom connected by a double bond
. . . (the full example would contain the description of the entire molecular
structure). The training examples are partitioned into the set of positive exam-
ples E+ (here, carcinogenic molecules) and negative examples E− (non-
carcinogenic). An ILP algorithm seeks a first-order clausal theory (set of
clauses, also called a hypothesis in the learning context) H that explains the
training data. That is to say, H |= e for as many as possible e ∈ E+ but for
as few as possible e ∈ E−. Here, the sign |= denotes logical entailment. For
example, the clause shown above is entailed by the single-clause theory

∀x, y : Carc(x)← Atom(x, y) ∧ Type(y,Carbon)

stipulating that any molecule is carcinogenic if it contains a carbon atom. Ob-
viously, such an overly general hypothesis would be eliminated since it would
likely entail many negative examples as well. In what follows, we will omit
the universal quantification in the clauses and always assume all variables to
be universally quantified in the clause.

The entailment relation |= is in general undecidable even if the theory H
is a single clause. This comes at little surprise given the high expressiveness
of the first-order predicate logic. Therefore, |= is usually approximated by the
decidable relation�θ called θ-subsumption, that is only defined between sin-
gle clauses. If relying on�θ, multi-clause theories must be learned iteratively
(adding a clause at a time), e.g. using the covering strategy well known from
rule learning [13]. The relation �θ is verified by syntactical inspection of the
two clauses and this verification is known to be NP-complete.

A more general formulation of the normal ILP setting additionally invol-
ves a clausal theory B acting as an input to the learning task. Through B, one
can express background knowledge relevant to classification. For instance, by
the following background knowledge clause
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Fig. 1: Left: The central dogma of molecular biology describing the flow of information
from DNA to proteins. In this talk we are not interested in the processes of re-
verse transcription or RNA replication. Right: An simple scheme of a gene ex-
pression regulatory network. (From Wikimedia Commons)

BRing(x1, x2, . . . , x6)← Type(x1,Carbon) ∧ Bond(Single, x1, x2)
∧ Type(x2,Carbon) ∧ Bond(Double, x2, x3) . . .

we would define that six carbon atoms in a particular bonding constitute a
benzene ring. The learner can then exploit the predicate BRing in forming H ,
e.g. by plugging it as a literal in a considered clause. To check entailment, the
learner considers H ∪ B |= e instead of just H |= e. If �θ is used instead of
|=, computational tricks must be employed to approximate the multi-clause
theory H ∪B by a single clause.

Relating ILP to the conventional machine learning framework we explai-
ned initially, we see that ILP considers binary classification, i.e. Y = {0, 1}.
This comes without loss of generality. Instead of the attribute-value tuples x
representing data, ILP assumes clauses e. The learned hypothesis H repre-
sents a classifier fH such that fH(e) = 1 iff H |= e. The hard bias of the
learner is given by B and a specification of the particular language for ex-
pressing H . The soft bias usually penalizes syntactically complex theories
H . Given these bridges, all the statistical rationale explained for conventional
machine learning translates also to ILP.

1.3 Molecular Genomics
Here we briefly introduce the aspects of molecular genomics3 relevant to
the relational learning applications addressed subsequently. Hereditary infor-

3Molecular genomics is the intersection of genomics and molecular biology. Other branches
of genomics study e.g. the Mendelian inheritance principles.
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mation prescribing the construction of an organism is stored in a deoxyribo-
nucleic acid (DNA). Eucaryotes store one copy of the same DNA template in
the nucleus4 of each of its cells. From the information-theoretic viewpoint, the
DNA is a sequence of symbols drawn from a 4-symbol alphabet. In humans,
it is about 3.109 symbols long. The symbols are called bases and correspond
to the respective molecules guanin, cytosin, thymin and uracil. Most of the
time, the DNA in fact consists of two parallel sequences (strands, follow left
panel in Fig. 1) of the said length, which are however complementary in that
a symbol at a position of one strand uniquely determines the symbol at the
same position of the other strand. This parallelism serves DNA-replication
purposes in processes such as cell multiplication.

The DNA contains distinguishable regions known as genes (about 20
thousand genes in human DNA), which are subject to the process of gene
expression conducted by a cellular machinery whose details are out of the
scope of this talk. As an effect of this process, a gene is first transcribed into
a ribonucleic acid (RNA), which also is a 4-symbol alphabet just as the DNA
and serves for passing the information content from the cellular nucleus to the
cytoplasm.5 Here, the RNA is translated into a protein. To describe a protein,
we consider two perspectives. In a primary structure perspective, a protein is
a sequence of symbols drawn from an alphabet of about 20 symbols; these
correspond to various amino acids. To constitute a protein, amino acids lose
a water molecule and as such are called residues. From an expressed gene, a
protein primary structure is formed by following the gene’s sequence; each
three consecutive DNA bases (commonly called a codon) determine which
residue to attach to the protein under construction. Since 34 = 81 > 20,
multiple codons may map to a single amino acid. Codons mapping to the
same amino acid usually have similar base sequence and this contributes
to resistance against translation errors. From a higher-order structure per-
spective,6 a protein folds into a spatial form uniquely defined by its primary
structure and determining the protein’s physiological function such enzyma-
tic activity, cellular scaffolding, or cell to cell signaling. In effect, the genes
expressed into proteins in a tissue specify the structure and function of the
tissue, modulo external influences. The principles explained so far are infor-
mally referred to as the central dogma of molecular biology.

Cell functioning depends on which genes get expressed in what situati-
ons. Proteins known as transcription factors (TF) regulate the expression of
genes. A TF is able to physically bind to a region on the DNA, called the

4Small pieces of DNA are also located in mitochondria. We ignore them here.
5area bounded by the cellular membrane, outside the nucleus and other organelles.
6Secondary, ternary, and quaternary structures are distinguished. Here we treat them collecti-

vely.

10



promoter region (PR) of a gene, located in the vicinity of that gene. This bin-
ding is specific in that each TF binds to the PR’s of certain target genes only,
although multiple TF’s can bind to a single gene’s PR. Whether or not bin-
ding occurs is given by the spatial conformation of the TF and the sequential
content of the PR. A TF may catalyze the expression of a gene by ‘dragging-
and-dropping’ it to the transcription machinery, or inhibit it by merely binding
to the gene’s PR and thus blocking the access of any catalyzing TF. Through
TF’s, a cell is able to react to external stimuli and produce situation-specific
proteins. This is because TF’s floating in the cytoplasm are, by their default
structure, usually inactive (cannot bind to a PR) and only activate upon in-
teraction with a signal carrier7 usually coming through the membrane from
outside the cell. Since TF’s are proteins, they are also regulated by other TF’s
or even by themselves. This gives rise to an extremely complex network of
regulatory interactions including omnipresent feedback loops (see the right
panel of Fig. 1). Consequently, the concentrations of proteins in a cell can be
seen as a state-space vector in a mass-dimensional non-linear dynamic sys-
tem. Steady states of the cell have been shown to correspond to attractors in
this system, and their transitions are a result of external perturbations combi-
ned with intrinsic stochastic fluctuations [12].

2 Applications

2.1 Learning Descriptions of Gene Groups
Here we employ relational machine learning to characterize which families
of genes are expressed in given situations. This application was enabled by
recent progress in biotechnology which made it possible to measure expres-
sion of genes on a massive scale. Traditional techniques for measuring gene
expression are laborious and provide estimates relating to only a few apriori
selected genes. In the 1990’s, however, expression chips (also called DNA
chips, gene chips, microarrays) emerged, manufactured using technologies
derived from computer-chip production (see Fig. 2, left panel). These can
measure the expression of thousands of genes simultaneously, under different
conditions.

Expression measurements are performed on a sample of RNA extracted
from the investigated tissue. The amount of RNA corresponding to a given
gene is considered a surrogate measure for the amount of protein made from
that gene (recall Fig. 1, left panel). The RNA sample is colored and spread
on the surface of a DNA chip that is an array of DNA probes (follow Fig. 2,

7Physically, activation corresponds e.g. to adding a phosphorylation or binding a ligand mo-
lecule.
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Fig. 2: Left: An expression chip produced by Affymetrix. Right: The principle of its ope-
ration. (From Wikimedia Commons)

right panel). A DNA probe is a string of about 20 bases, complementary to a
substring of a gene of interest. Currently, microarrays may encompass probes
for up to tens of thousands of genes, i.e. entire genomes. If the applied sample
contains RNA of a particular gene, it will hybridize (attach) to the correspon-
ding probe due to the complementarity principle (recall Section 1.3). Due to
the RNA coloring, these spots are then easily identified optically (see Fig. 3,
left panel). Microarrays in fact contain multiple probes for each gene interro-
gated; the more RNA is present for a gene, the more of probes for that gene
are hybridized. In effect, the measured color intensity of the gene’s probe set
is a growing function of the level of the gene’s expression.

The output of a series of microarray experiments is a matrix with genes
spread along one dimension and RNA samples (relating to different conditi-
ons) along the other dimension. Often, only few different conditions are con-
sidered (e.g. cancerous vs. control) and multiple samples are taken in each of
the conditions. As a result, collected gene expression measurements acquire
the form of classified attribute-value data wherein genes are attributes and
the respective conditions represent classes. Therefore machine learning can
be applied to induce classifiers predicting the sample class from expressions
of genes in that sample. The utility of such classifiers, at least for diagnostic
purposes, is unquestionable [6]. Unfortunately, the cost of a single microarray
experiment is high ($100’s). Thus in most real-life lab experiments the num-
ber of attributes is much larger than the number of samples (usually tens of
thousands of genes against units or tens of samples). This causes an extre-
mely high risk of overfitting and often prevents the algorithm from learning a
reliable classifier.
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Due to the described obstacle to machine learning application, the most
common way of analyzing gene expression data is to rely on standard sta-
tistical techniques to identify a set of ‘suspicious’ genes. Suspicious genes
are usually those exhibiting largely different expression across the different
classes. The problem of this approach is that long lists of genes are produced,
usually with no apparent mutual relationships. These are then very difficult to
interpret in terms of biological processes and link them to any concise phe-
nomena underlying the differential expression.

The two problems described above are so characteristic of expression data
analysis they have earned their aliases in the folklore of the field (the large
n / small m syndrom, and the gene list syndrom). In [21], we presented a re-
lational machine learning application that contributes to solving both of them
simultaneously. In particular, we aimed at learning compact characterizati-
ons of differentially expressed gene sets in terms of background knowledge.
Viewed as a classification task, we wanted to learn classifiers predicting whe-
ther or not a gene will be differentially expressed between given conditions,
according to background knowledge about that gene.

Note that in this formulation of the learning task, genes correspond to
learning examples rather than to attributes. While their sheer number was a
problem in the above described conventional application of machine learning,
in our approach it is a benefit. A transition from attribute-value learning to re-
lational learning techniques is however required here, since available genomic
background knowledge is relational.

In particular, we used two sources of background knowledge. The first
is the Gene Ontology (GO, www.geneontology.org), which provides a cont-
rolled vocabulary for the description of cellular components, molecular functi-
ons, and biological processes. Terms in this vocabulary are linked through
two kinds of binary relations (‘part of’ and ‘is a’, see Fig. 3, right panel).
A GO-based annotation of a gene is a subset of terms of the GO. The se-
cond source of relational background knowledge we used is the database of
reported gene-gene interactions sourced from the US National Center of Bi-
otechnology Information.

The input list of gene sets was first extracted using gene expression data
from previous research. In particular we considered the studies [6, 16, 15]. For
each of the three gene expression datasets, we extracted both a set of positive
examples (gene differentially expressed) and negative examples (other genes)
according to a statistical test. See [21] for details on the preliminary gene
selection.

Learning of relational descriptions of gene groups was then formulated as
a task that technically slightly differs from the normal ILP setting as introdu-
ced in 1.2 (see [21] for details) but the difference is not important in this talk.

13



Fig. 3: Left: A scan of a microarray with hybridized probes. Right: The Gene Ontology
provides a structured vocabulary to describe genes.

As a result, we obtained characterizations such as

Diff(x)←Interaction(x, y) ∧ Process(y, Phosphorylation)∧
Interaction(x, z) ∧ Process(z,Negative regulation of apoptosis)
∧ Component(z, intracellular membrane-bound organelle)

describing genes differentially expressed between the central nervous system
cancer class on one hand and other classes on the other hand. The reliability
of the learned characterizations was tested through cross-validation and the
results demonstrated an acceptable decay from the training to the testing set
in terms of classification error. See [21] for performance details as well as for
biological comments on the learned characterizations.

2.2 Predicting Protein-DNA Interactions
Whereas the study above did yield some concise characterizations of expres-
sed gene groups, it admittedly had an air of a fishing expedition due to the
high generality and—to some extent—vagueness of the information sources
used as background knowledge. In our latest experiments [18, 10], we wan-
ted to study the expression phenomenon in a more constrained and sharply
defined manner. Recall from Section 1.3 that gene expression needs the as-
sistance of transcription factors, which are proteins able to physically bind
the DNA (see Fig. 4). We wanted to be able to classify whether a protein is
able to bind DNA given the spatial structure of the protein. To this end, we
decided to learn classifiers using data about proteins previously reported as
DNA binding.

Solving this problem is important for several reasons. In particular, current
art is far from knowing all proteins acting as DNA binders and their identi-
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Fig. 4: A DNA (blue in the middle) bound to a protein (other colors). Balls represent
atoms. Spatial motifs within the protein are distinguished by color (green – heli-
ces, red – sheets, cyan – turns).

fication may help in hypothesizing about yet-unknown expression regulatory
networks. Of equal importance, DNA binding proteins are currently in scope
of excited research in the area of gene therapy where they represent an instru-
ment for DNA editing [8]. One of the challenges in this stream of research is
to build a library of DNA binders.

We were not the first to try to predict DNA binding proteins. Previous
approaches include learning with neural networks [17, 1], support vector ma-
chines [2], or logistic regression [19]. What they had in common is that classi-
fiers were learned using the attribute-value data representation. The involved
attributes of proteins had a coarse-grained nature, relating to protein’s pro-
perties such as overall electric charge, amino acid composition distribution,
the asymmetry of the spatial distribution of specific residues and the dipole
moment of the protein. The study [19] reported a ranking of such features by
their power to predict DNA binding.

In contrast to these studies, we wanted to predict DNA binding directly
from the three-dimensional conformation of the proteins. For comparative
purposes we decided to work with the same set of protein examples as [19].
We downloaded the atom-level structural descriptions of 54 DNA binding
proteins and of 110 non-DNA-binding proteins from the Protein Data Bank
(www.pdb.org) to act as positive (negative, respectively) examples. For com-
putational feasibility we first recalculated the descriptions from the atom le-
vel to the residue level. Eventually, each protein description consisted of facts
pertaining to two predicates that respectively described the presence of a resi-
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due, and the spatial distance between two residues in Angstroms. For exam-
ple, this beginning of a clause

Binds(P1)← Res(P1,R1,His) ∧ Res(P1,R2, Arg) ∧ Dist(R1,R2, 10.0) ∧ . . .

asserts that protein P1 contains the amino acids Histidine and Arginine that
are 10 Angstroms apart. A complete description of a protein addresses all
involved residues, and their all pairwise spatial distances that do not exceed
40 Angstroms as computed from coordinates of the residues’ alpha carbons
(distinguished atoms representing residue centroids). The full description of a
single protein contained up to tens of thousands of literals. A possible theory
is e.g. one assuming three specific residues and two pairwise distances

Binds(x)←Res(x, y, Arg) ∧ Res(x, z,Gln) ∧ Dist(y, z, 10.0)
∧ Res(x,w, Leu), dist(y, w, 10.0) (1)

Through experimentation, we determined that to obtain good predictive
accuracies, we need to slightly deviate from the standard ILP framework. In
particular, it was not appropriate in the current domain to assign only truth
values to each pair of a theory and example, as standard in ILP. For class
discrimination, it turned out important to count the number of occurrences
of the spatial pattern defined by the theory in the exemplary protein. Techni-
cally, we thus proceeded as follows. We constructed a large number of single-
clause theories. Then we considered each of them to represent an attribute,
calling it a spatial feature. For each example, the occurence count for a gi-
ven spatial feature was assigned to it as the value for that example. Thus we
derived an attribute-value description of each example, based on its spatial
structure. We also explored the option where coarse-grained attributes sug-
gested in previous research [19] were also computed and added alongside the
spatial features. In the described protocol, we employed our recently pub-
lished algorithm [9] since it can scale to rather large structures corresponding
to proteins, which would be prohibitively large for mainstream inductive lo-
gic programming algorithms. This algorithm exhaustively constructs a set of
relational features which are not redundant, comply with a user-defined lan-
guage bias and have frequency higher than a given threshold. As a result,
we maintained about 1500 spatial features. The final attribute-value represen-
tations were then passed to seven different state-of-the-art machine learning
algorithms.

Analyzing predictive accuracy results over 10 folds of cross-validation
and the 7 employed learning algorithms, the design where our spatial features
were combined with existing coarse-grained features significantly improved
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Fig. 5: Example proteins containing the most discriminative spatial feature. Residues
assumed by the feature are indicated. Their pairwise distances (not shown) are
conserved over the positive examples of proteins.

on state-of-the-art accuracies. When the two sets of attributes were isolated
from each other, our spatial count-based approach outperformed the state-of-
the-art approach based on coarse-grained attributes.

Besides outperforming the state-of-the-art approach, another advantage of
our method is that its results have a visual representation that can be interpre-
ted. To show an example, we consider the most discriminative spatial feature
according to the χ2 criterion. This feature was in fact already presented as an
example in Eq. 1 and is graphically shown in two different proteins in Fig. 5.

2.3 Other Applications
Lastly, we briefly review a few more significant applications of relational ma-
chine learning, particularly inductive logic programming, in genomics and
proteomics. We do so chronologically.

In the pioneering work [14], protein secondary structure was predicted
from the primary structure and background knowledge. Recall from Section
1.3 that primary structure (i.e., the sequence of specific residues) determines
the secondary structure (i.e., the 3D motifs of the protein). Remarkably, this
deterministic mapping has never (even to date) been exactly deciphered. In
the early 90’s, the ILP system Golem learned classifiers discriminating helix
motifs from sheet motifs (see Fig. 4) from the sequence data and background
knowledge pertaining to chemical properties of amino acids such as polarity
or hydrophobicity. The accuracy of the method was, at the time, unmatched
by other prediction methods.

17



More recent efforts concentrated on the reconstruction of metabolic ne-
tworks from data. Metabolic networks are principally similar to the expres-
sion regulation networks we have reviewed but encompass a wider set of en-
tities and relations that act in the processing of energy. Besides enzyme pro-
teins, the entities include substrates, metabolites and ligand molecules and
the relations include e.g. signaling instruments such as protein phosphory-
lation. In [20], missing parts of metabolic networks were completed through
ILP-based learning.

The study [4] presented an application of ILP, where the goal was to pre-
dict the expression regulation of a gene from information relating to the pro-
moter site, state of transcription factors and from additional information. This
application thus had a goal similar to that in Section 2.2 but it did not exploit
protein 3D structural information.

In our most recent experiments [11], we contributed to the task of estima-
ting covariance matrices of random variables corresponding to expressions
of genes. This task is routine in systems biology. Due to the scarcity of ex-
pression samples, such estimated matrices are unstable and the undesirable
estimation variance is compensated through regularization. The standard ap-
proach is to bring the initially estimated matrix closer (w.r.t. a suitable matrix
metric) to the diagonal unit matrix. In [11] we have proposed a knowledge-
based way to matrix regularization using biological rules learned by ILP.
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