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Summary

We present new image similarity criteria based on high-dimensional mu-
tual information using a nearest neighbor entropy estimation. Mutual
information is the image similarity criterion of choice for inter-modality
image registration. We propose to use mutual information with higher
dimensional features. We show that these features are more power-
ful than standard scalar mutual information. Earlier attempts to use
high dimensional features were limited to very low dimensions or used
simplifying normality assumptions. The reason is a poor performance
of a standard histogram estimator in higher dimensions. We use the
Kozachenko-Leonenko estimator based on nearest neighbor distances,
which is usable in higher dimensions.

The main drawback of this approach is that calculating the nearest
neighbor (NN) distances is computationally expensive. That is why an
essential part of our approach is an approximate nearest neighbor search
algorithm tailored for this application. It is based on constructing
a k-d tree augmented with tight bounding boxes, best bin first strategy,
pruning, and incremental tree updating. Both the NN search algorithm
and the estimator can also handle multiple points in the data. An
experimental comparison of our nearest neighbor search algorithm with
the state of the art ANN library shows that our method is superior for
exact search and high number of points as well as for approximate
search in small to moderate dimensions or when a fast approximation
is needed.
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Souhrn

V této práci představ́ıme nová kritéra podobnosti obraz̊u založená na
vzájemné informaci vysoké dimenze, použ́ıvaj́ıćı odhadu entropie ze
vzdálenost́ı nejbližš́ıch soused̊u v datovém souboru. Vzájemná infor-
mace je nejčastěji použ́ıvané kritérium podobnosti pro registraci ob-
raz̊u r̊uzných modalit. Novou myšlenkou je použit́ı vzájemné informaci
vysoké dimenze. Ukážeme, že na ńı založená nová kritéria funguj́ı lépe
než standardńı vzájemná informace použ́ıvaj́ıćı pouze skalárńı intenzitu
obrazu. Dř́ıvěǰśı práce se omezovaly na vzájemnou informaci ńızké di-
menze nebo použ́ıvaly zjednodušuj́ıćı předpoklad normálnosti hustoty
pravděpodobnosti. Důvodem bylo špatné chováńı standardńıho odhadu
pomoćı histogramu ve vyšš́ıch dimenźıch. V této práci proto použ́ıváme
Kozačenko-Leoněnk̊uv odhad založený na vzdálenosti nejbližš́ıch sou-
sed̊u. který se ve vyšš́ıch dimenźıch chová lépe.

Výpočetně nejnáročněǰśı část postupu je nalezeńı nejbližš́ıch sou-
sed̊u. Proto je d̊uležitou část́ı naš́ı metody algoritmus pro přibližné
hledáńı nejbližš́ıch soused̊u, vyvinutý zvlášt’ pro tuto aplikaci. Je
založený na použit́ı rozš́ı̌reného k-d stromu, prohledávaćı heuristiky
nejlepš́ıho uzlu, prořezáváńı a inkrementálńıch změn stromu. Jak algo-
ritmus vyhledáváńı nejbližš́ıho souseda, tak odhad entropie umı́ pra-
covat s násobnými body. Experimentálńı porovnáńı našeho algoritmu
hledáńı nejbližš́ıch soused̊u se špičkovou knihovnou ANN ukazuje, že
náš algoritmus je v mnoha př́ıpadech lepš́ı, zejména v př́ıpadě přesného
vyhledáváńı pro velký počet bod̊u a pro přibližné a rychlé vyhledáváńı
ve malých a středńıch dimenźıch.
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Chapter 1

High dimensional mutual informa-

tion image similarity criterion

1.1 Image registration

We define image registration as a multidimensional optimization prob-
lem: given two images F and G′ and a family of geometrical trans-
formations parameterized by a finite number of parameters (such as
translations, affine transformations, or general non-linear warpings),
we search for a geometrical transformation T such that a warped test
image G = G′ ◦T is as similar as possible to a reference image F in the
sense of maximizing an image similarity criterion J .

1.1.1 Image similarity criteria

One of the simplest criteria is the sum of square differences The SSD
criterion is simple, fast, and optimal for additive i.i.d. Gaussian noise
corruption. It can be extended to vector pixel values, e.g. for color
images. Other alternatives are the sum of absolute differences (SAD)
or normalized correlation (NCC) [1]. Normalized correlation allows for
a linear dependence between the intensities in both images.

The mutual information image similarity criterion is used when the
dependence between the image intensities is unknown, such as in the
case of registering images from two different modalities [2, 3, 4, 5]. It
can capture very general and not necessarily functional dependences.
Mutual information can be defined as follows:

JMI(F ,G) = I(F,G) = H(F) +H(G)−H(F,G) (1.1)

where H() stands for entropy and F and G are random variables cor-
responding to the two images. In most cases the scalar grayscale pixel
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intensities fi = f(xi), gi = g(xi) are used as descriptors (features); they
are assumed to be independent realizations of the random variables F
and G (fi ∼ F, gi ∼ G); the index i denotes a particular pixel. The joint
random variable (F,G) corresponds to the concatenation of the pixel de-
scriptors of the two images at the same location, with (fi, gi) ∼ (F,G).
To estimate the entropies, we shall use the sample sets F =

{

fi
}

i∈Ω
,

G =
{

gi
}

i∈Ω
, FG =

{

(fi, gi)
}

i∈Ω
, where Ω is the set of all pixels.

1.1.2 Higher dimensionality MI criteria

We propose to use more general and more powerful d-dimensional fea-
ture vectors instead of using just a simple scalar pixel values (d = 1)
as described above. Each sample vector f i will correspond to one spa-
tial location xi of the image F , and similarly for the image G. Let us
present two examples of criteria with higher dimensional features:

1) The 3D color component vector (for color images)

fCo

i = (fR(xi), f
G(xi), f

B(xi)) (1.2)

leads to a color MI (CoMI) criterion JCoMI = I
(

F
Co,GCo

)

. It adapts
automatically to any changes of the image colors, e.g. due to dif-
ferent (even radically different) lighting conditions. It is straight-
forward to extend JCoMI to more dimensions, e.g. for multispectral
imaging.

2) The neighborhood criterion JNbMI = I
(

F
Nb,GNb

)

forms feature vec-
tors of dimension d = (2h+1)2 from pixel values in the neighborhood
of a current location:

fNb

i =
(

f(x−∆x, y −∆y)
)

|∆x|≤h, |∆y|≤h
(1.3)

The variant presented here is for the 2D case and grey-level images
but it can be obviously extended to 3D and color images. This cri-
terion learns correspondences between image details such as peaks,
ridges and transitions.

Some modest attempts to use high dimensional MI criteria for image
registration have appeared in the literature: the second-order MI [6],
regional MI [7], or combining intensity and gradient information [8].
However, these criteria either use very small dimensional features (d =
2), or their probability distribution is assumed to be Gaussian, which
is a gross simplification. The main obstacle is the predominantly used
standard histogram-based plug-in estimator [4] .
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1.2 Nearest neighbor entropy estimation

Kozachenko and Leonenko (KL) [9, 10, 11] proposed to estimate the
entropy H(F) from the pairwise NN distances. Given a set of n samples
S of a random variable F in R

d with a probability density distribution
f , then the Shannon entropy of F

H(F) = −

∫

x∈Rd

f(x) log f(x)dx (1.4)

can be estimated as

HKL(F) =
1

n

(

∑

q∈S

d log ̺q

)

+ γ + log
(n− 1)πd/2

Γ(1 + d/2)
(1.5)

for the ℓ2 NN distance ̺q. We have also derived a variant for the ℓ∞
NN distance ̺q:

HKL(F) =
1

n

(

∑

q∈S

d log ̺q

)

+ γ + log 2n(n− 1) (1.6)

In both cases n is the number of samples F, d is the dimensionality of
the space, and γ ≈ 0.577 is the Euler constant. The estimator (1.5) is
asymptotically unbiased and consistent .

In our target application of image registration, the image intensity
values are often quantized and conflicts (i.e. ̺q = 0) happen frequently.
We replace d log ̺q by a thresholded version d log′ ̺q [12]

d log′ ̺q =

{

d log ̺q for ̺q ≥ ε

log
(

εd/χS(q)
)

for ̺q < ε
(1.7)

where the threshold ε corresponds to the measurement accuracy and
χS(q) is the multiplicity of the point q. We will call the modified
estimator HKLD. A more principled approach is found in [13].

A simple way to avoid the computational complexity of the all NN
search for a high number of samples is the batch approach (KLBD): we
randomly divide the n samples into groups of m samples and calculate
the mean of the entropy estimates for each group. See Chapter 2 for
a better but more complex method.

1.3 Experiments

The first experiment (not shown here) measures the bias and variance
of the KLD, KLBD and histogram MI estimators for two 1D Gaus-
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Figure 1.1: Negative SSD, MI and CoMI (with M = 20) criteria all work
well when registering a Mandrill color image (top left) with itself. We show
the criteria (rescaled to [0, 1]) as a function of the rotation angle (top graph).
One standard deviation is shown for the CoMI criterion, since the estimator
is stochastic. When registering the original image with its color-modified
and noisy version (top right), the SSD and MI criteria break down, while
the proposed CoMI criterion still gives correct results (bottom graph).

sian random variables with varying dependency. We observe that all
KL-based estimators have about the same variance, larger than the
histogram estimator but still acceptable. The bias of the KLBD esti-
mator decreases with M , for M ≥ 50 it is already better than that of
the histogram and it essentially vanishes for the KLD estimate.

Second, we evaluate the new proposed MI-based image registration
criteria CoMI (1.2) and NbMI (1.3) on real images by a standard rota-
tion experiment [14]: Starting from two perfectly aligned images of size
5122 pixels, we rotate one of them by ±10◦ (using linear interpolation),
crop the images to a fixed size to avoid the influence of the background
and evaluate the criterion, showing also the standard deviation for the
stochastic KLBD estimator.

First of all we compare the CoMI (1.2), the vector SSD, and stan-
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Figure 1.2: The correct rotation angle can be determined from any of the
negative SSD, MI and NbMI criteria when registering a B&W Lena image
(top left) with itself. We show the criteria (rescaled to [0, 1]) as a function
of a rotation angle (top graph). One standard deviation is shown for the
NbMI criterion, since the estimator is stochastic. When registering a blurred
version of the original image with a blurred version of its edges (top right),
the SSD and scalar MI are clearly inadequate, while the proposed NbMI
criterion allows for the correct angle to be reliably detected (bottom).

dard scalar gray-scale histogram-based MI criteria when registering
a color Mandrill image with itself (Fig. 1.1), to verify that all crite-
ria work well in this simple case. We then modify the colors in one of
the images (by increasing the saturation and brightness and rotating
the colormap) and add some i.i.d. Gaussian noise to individual color
components. This confuses the SSD criterion beyond usability and the
standard MI is only slightly better, while the CoMI still provides correct
and almost undisturbed results. We also observe that the uncertainty
due to the stochastic character of the estimator (one standard deviation
shown) is below the level of changes we need to detect for a registration
accuracy that can be realistically expected, (i.e. around 1 pixel ∼ 0.2◦).

We perform the same kind of experiment comparing the grayscale
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SSD and MI criteria and the NbMI criterion (1.3) with neighborhood
size h = 2, leading to d = 25 dimensional features and estimation of the
joint entropy H(FG) in dimension 2d = 50. First we register a gray-
scale Lena image with itself, to find that all criteria work well. Then
we register a low-pass version of the image with a smoothed Sobel-
detected edges from the same image. The SSD and scalar MI criteria
are useless in this case, showing only irrelevant oscillations due to the
global orientation of the edges, while the NbMI criterion identifies the
correct alignment flawlessly.
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Chapter 2

Approximate best bin first k-d tree

all nearest neighbor search

2.1 Nearest neighbor search

In this chapter we describe a practical all-NN search algorithm that can
be used together with the KL entropy estimator for image similarity
evaluation in image registration. This application has a number of spe-
cific requirements which we believe cannot be found simultaneously in
any existing method — this justifies developing a specialized algorithm:

(i) The datasets are large and the all-NN search is run once for each
iteration of the optimizer. Therefore speed is very important.
The number of data points n (corresponding to the number of
pixels) is typically between 105 and 107. The typical number of
dimensions d is between 4 and 100.

(ii) Due to quantization, the dataset can contain the same point sev-
eral or many times. This can be for example caused by a homo-
geneous background in the images. The all-NN search algorithm
must handle these cases efficiently and report the data point mul-
tiplicities.

(iii) The algorithm can take advantage of the fact that the query set is
identical to the set of data points and both are known in advance.

(iv) As exact all-NN search is likely to be too slow for moderate to
large n and d, we also need the ability to calculate an approximate
solution for a given time budget.

(v) The data points depend continuously on a geometrical transfor-
mation being controlled by an optimizer. We can therefore assume
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that especially at later stages of the optimization, the changes of
data point values between iterations will be small. Our all-NN
search algorithm can take advantage of this fact.

2.2 Extended k-d tree

We use an extended version of the k-d tree data structure [15, 16,
17]. A k-d tree stores data points in its leaves. Each node represents
a hyperinterval (an axis aligned hyperrectagle), which we shall call
a loose bounding box (LBB) of the node.

As a novelty, we also maintain and store a tight bounding box
(TBB) for each node. The TBB of a node Q is the smallest hyper-
interval (in the sense of inclusion) containing all points in the subtree
of Q.

For the purpose of the dynamic tree update procedure we introduce
a parameter δ ∈ 〈0, 0.5〉, limiting each child subtree to contain at most
(1
2
+δ)np points, where np is the number of points of its parent subtree.

2.2.1 Building the tree (BuildTree)

The tree building algorithm is standard, based on recursive splitting.
We start with the entire input multiset S as the root node and the whole
space RD as its loose bounding box LBB. Then, recursively from the
root, for each nodeQ we choose the splitting dimensionm as the longest
edge of the TBB. The splitting value ξ is the median of

{

xm;x ∈ Q
}

[18]. In this way, the tree is balanced with respect to the number of
points in each subtree at the same level.

2.2.2 Nearest neighbor search (SearchTree)

We loop through all leaves and through all points in each leaf. Each
point q acts as a query points and we find its nearest neighbor q̂.
The basis for the search is the BBF (best bin first) tree traversal [19],
with pruning, using a lower bound ηX of the distance from the query
q to yet unexplored points reachable from a node X . Additionally,
instead of starting from the global root, the search starts from the leaf
Q containing the query point q.

The approximative search is controlled by a parameter V that
bounds the number of visited points. If this number is exceeded, the
search is stopped and the best result so far is reported.
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(a)

(b)

Figure 2.1: A k-d tree example in a 2D space. (a) Solid blue lines
marked by uppercase letters represent the splitting hyperplanes hier-
archically subdividing the space into loose bounding boxes (LBB) cor-
responding to tree nodes. Dashed lines show the tight bounding boxes
(TBB). (b) The k-d tree itself, with round non-leaf nodes marked by
the corresponding dividing hyperplanes and rectangular leaf nodes each
containing a set of data points denoted by numbers.
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Figure 2.2: Relative mean square error of entropy estimation versus
elapsed time for BBF and ANN methods and the KL NN entropy esti-
mator. There were n = 105 normally distributed points in dimensions
d = 3 ∼ 20. The curves of the same color correspond to the same
d and are meant to be compared, solid lines correspond to the BBF
method and dashed lines to the ANN method. Each point in the graph
is a mean of 100 runs.

2.2.3 Updating the tree (UpdateTree)

The update routine detects points from the tree which have moved
out of the LBBs of their original leaves and attributes them to the
appropriate new leaves. The TBBs of affected nodes are updated. Fi-
nally, parts of the tree violating the balance condition are rebuilt. The
method consists of two depth-first recursive traversals of the tree.

2.3 Experiments

We have implemented the algorithm in C++ and performed several
experiments on an Intel 1.8GHz PCs with 2GB of RAM running Linux
to test its practical properties and its performance against some alter-
native approaches. We are comparing our results (the all-NN search
algorithm, denoted BBF) against the brute force algorithm (refered to
as ‘brute’) with time complexity O(N2) and a state-of-the-art approxi-
mate NN search implementation in the ANN library by Arya et al.[20]
(referred to as ANN), which uses a balanced box decomposition (BBD)
tree. For comparison, we have also implemented the n times repeated
NN search using our BBF approach, denoted BBF NNN.

The first experiment compares the elapsed time for the three sub-
quadratic methods (ANN, BBF NNN, BBF) on the number of points n
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Table 2.1: The total time in seconds to find all NNs as a function of
the number of points n and dimension d for the three subquadratic
methods. The shortest time for each n and d is typeset in bold.

n d 1 2 3 4 5 10 15 20

10
4

BBF 0.01 0.01 0.04 0.07 0.12 0.84 2.52 7.74

NNN BBF 0.02 0.03 0.06 0.10 0.16 0.97 2.67 8.01

ANN 0.04 0.04 0.06 0.08 0.12 0.80 2.51 7.43

10
5

BBF 0.07 0.13 0.50 0.91 1.58 20.32 92.46 370.54

NNN BBF 0.34 0.48 0.91 1.70 2.75 26.32 97.56 372.00

ANN 0.50 0.60 0.93 1.48 2.26 25.04 107.24 434.44

10
6

BBF 1.10 1.91 5.33 10.22 17.56 335.54 2562.78 —

NNN BBF 6.10 7.77 11.75 22.44 34.81 417.34 2654.09 —

ANN 8.16 9.05 13.04 20.66 30.64 364.80 2989.96 —

for different dimensions d. We can see that for n ≥ 105, our BBF
method outperforms the ANN for all d, the difference is very pro-
nounced in low dimensions (a factor of 7 for d = 1) and decreases with
increasing d. This seems to be a general pattern: in higher dimensions
all methods struggle and their differences get smaller.

The second experiment compares the performance of the ANN
and BBF methods for approximative search by examining their time-
accuracy trade-off. The accuracy of the NN search is evaluated using
the reported approximate NNs to estimate the entropy of a given set
of points using the KL NN entropy estimator for n = 105 normally and
isotropically distributed points in dimensions d = 3 ∼ 20, which allows
the entropy to be calculated analytically. We can see (Figure 2.2) that
our BBF method outperforms ANN for small d. Starting from about
d = 7, BBF is better for operating points privileging shorter times and
larger errors, while ANN performs better at longer times and smaller
errors.

We have also performed tests with additional distributions, finding
that for n = 106 and d = 2 ∼ 20, BBF in almost all cases (26 out of
28) outperformed ANN.

Finally, we have evaluated the effectiveness of the tree update oper-
ation by taking uniformly distributed points from [−1; 1]d with d = 5,
perturbing them by additive uniformly distributed noise from [−σ, σ]d

and compared the speed of finding all exact NNs by updating a tree
built for the original dataset and by building the tree from scratch. We
have found that it is indeed always advantageous to update the tree
instead of rebuilding it anew, as long as we allow some unbalance δ.
The time savings in terms of the total time (tree building/update and
search) are relatively modest but the savings in terms of the update
versus build times are already more important, around 50%. This is
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relevant as in practice mostly approximative search will be used which
reduces the search times by one or several orders of magnitude, making
the build or update times dominate.

2.4 Conclusions

In the first chapter we address an import part of image registration
algorithms, the similarity criteria used to evaluate the quality of the
alignment. We propose to extend standard scalar mutual information
similarity criteria to use higher dimensional features. In particular,
we propose a color based criterion and a criterion taking into account
a small neighborhood around each pixel. In contrast to classical meth-
ods, the proposed criteria can adapt to and quantitatively evaluate
a much wider range of possible dependencies between the images be-
ing registered, resulting in a more robust registration. The key fac-
tor for successful evaluation of high-dimensional mutual information is
a Kozachenko-Leonenko entropy estimator, based on evaluating nearest
neighbor distances.

The second chapter attempts to solve the problem of efficiently find-
ing a nearest neighbor for each point from a given set, as this is the
computational core of the Kozachenko-Leonenko estimator employed
in Chapter 1. We have developed an approximate all nearest neigh-
bor search algorithm, based on an extended k-d tree and best bin first
search. It is a general algorithm, capable of dealing with a large num-
ber of points in high dimensions. It takes advantage of the fact that
all query points are known in advance and that the set of points often
changes only very slowly between subsequent evaluations of the crite-
rion. It can also successfully deal with multiple points — no other algo-
rithms combining these features is known to us. We have compared our
implementation of the algorithm with a state-of-the-art library ANN
for approximate nearest neighbor search with favorable results.

For more details, please see my habilitation thesis or my publica-
tions.
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