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Summary

We consider the nonstandard deformation U, (sos3) of the envelop-
ing algebra U(so3) and analyze its center. This algebraic structure
differs, as expected, when considered parameter ¢ is/is not primitive
root of unity. In the first case the center has structure of a polynomial
ring in one variable, it is shown here by using Bergman's Diamond
lemma. When ¢" = 1, the size of the structure increases. We en-
counter three more Casimir elements which are no more algebraically
independent. We analyze the structure of central variety and explore
explicit polynomial dependence between Casimir elements. This de-
pendence differs for » having form 2m+1, 2(2m+1) and 4m.



Shrnuti

Uvazujme nestandardni deformaci U, (so3) obalové algebry U(sos) a
analyzujme jeji centrum. Tato algebraicka struktura se vyrazné lisi,
pokud je/neni deformacni parametr ¢ kofenem jednotky. V prvnim
pripadé ma centrum strukturu okruhu polynomi v jedné proménné,
jak je zde ukazano pomoci Bergmannova Diamantového lemmatu.
Pokud je 4* = 1, velikost centra se zvétSuje. Detekujeme tfi dalsi
Casimirovy elementy, které jiz nejsou algebraicky nezavislé. Ana-
lyzujeme strukturu centralni variety a objevujeme explicitni polyno-
mialni zavislost mezi Casimirovymi elementy. Tato zavislost se 1isi
pro n majici tvar 2m+1, 2(2m+1) a 4m.
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1 Introduction

One of the basic questions when one considers quantum groups
or similar deformation algebra structures is to build the adequate
representation theory for these associative algebras. Usually we deal
with two main cases which are of different difficulty. When deforma-
tion parameter, typically denoted by ¢, is not root of unity, i. e. when
¢* # 1 for all integer n, this theory is similar in many aspects to the
classical case, that is to the case of enveloping algebras of classical
Lie algebras. On the other hand, when ¢ is a root of unity, classifi-
cation of finite dimensional representations even in the easiest cases
is not easy task. It is not surprising that one must undergo, before
building representation theory as a whole, various preparatory steps.
One of suitable supporting knowledge which helps in doing such a
classification is detailed information about the center of the consid-
ered algebra. When ¢ is not root of unity, the center of the universal
enveloping algebra of a semi simple Lie algebra is a free polynomial
algebra, it means it is isomorphic to the ring of polynomials of one or
several variables. When we are in the field of quantum groups, there
exists one uniform method which can be used to describe this struc-
ture quite explicitly. It is called Harish-Chandra homomorphism (it
is an analogy to the non-deformed case, see [1]).

For the example, in the simplest case of the algebra U, (sly), gen-

erated by generators E, F, K, K~ and relations

KK '=K'K=1, KEK'=¢E, KFK'=¢F,

-1
[E,F]:EF—FE:I; 5_ -

the center is generated by

Kg'+K g

C,=EF+ ,
1 (g—¢71?

the Casimir element (for the proof of this example see [2], theorem
45).



When ¢ is root of unity, say ¢" = 1, the situation is much more
difficult. Center is typically much larger and the central elements sat-
isfy nontrivial polynomial relations [3]. In the case of U,(sly), there
are four more additional elements in the center, namely

E, P, K, K?,

where p = n if n is odd and p = n/2 if n is even. These five elements
(together with C,) are no more algebraically independent. One can
compute with the help of induction that

p-1
11C-G-a) &g +K g7 ) =B,

j=0
which means
GG+t y 1 G (-1 (g D HE -K ) =E' P,

where y; € C are certain complex coefficients. This relation describes
the central variety of U,(sl) in the case when ¢ is root of unity.

The quantum groups are not the only sort of quantum deforma-
tions. For example, ¢-deformation U, (sos3) of the universal envelop-
ing algebra U(sos), which does not coincide with the Drinfeld-Jimbo
quantum algebra U,(so3) is constructed without using the Cartan
subalgebra and roots by deforming Serre-type relations directly. We
substitute simply 2 — [2], where [4], = (¢*-¢9/Ag—¢™") in cubic
defining relations of U(so3). As a result we obtain complex associa-
tive algebra with unity generated by elements Iy, 39 satisfying the
relations

I3, Isg—(g+q Dot Isoloy +Iso I3, = — 19,

I3y —(g+q DIsalo Isg+ Byloy = —Iy;.

It can be shown that this is isomorphic to an algebra generated by
three generators Iy, Iy, I3 and relations [5]

4%1112—4_%1211 =13,
gt hl—g L =1, M
q%13[1 —q_%lllg =Iz.
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One can quickly explore the following Casimir element, which be-
longs to the center of this algebra:

C=421%+I§+42[§—(q% —q%)lllglg.

Similarly as in the case of ordinary Hopf quantum groups, one can
expect that when ¢ is not root of unity, this element should generate
the center of the algebra U, (so3). However, there is no analogy of
Harish-Chandra homomorphism to use when trying to prove such a
hypothesis.

2 Diamond lemma

In 1978, M. Bergmann recalled rather deep and forgotten result
of Newman (see [6], section 3) from the graph theory, often called Di-
amond lemma and reformulated it to the theory of associative rings.
The original Newman formulation was as follows (see [7]). Let G be
an oriented graph. Now suppose that

1) The oriented graph g has descending chain condition. That
is, all positively oriented paths in G terminate.

2) Whenever two edges, ¢ and ¢, proceed from one vertex a of
G, there exist positively oriented paths p, ' in G leading from the
endpoints b, 4’ of these edges to a common vertex ¢. (This is often
called “confluence” or “diamond” condition.)

Then every connected component C of G has an unique minimal
vertex m¢. This means that every maximal positively oriented path
beginning at a point of C will terminate at m.

Let us now shortly describe the procedure Diamond lemma is
based on in theory of associative rings. Having R associative alge-
bra with 1 over complex numbers, its presentation by a family X of
generators and family S of relations, where each relation o is of the
form W, =f,, where W, is monomial (product of elements of X) and

Jo is complex linear combination of monomials, the Diamond lemma
states that R has a basis consisting of all irreducible monomials (i. e.
on which cannot be applied any of relations from S) if the following
condition holds: all ambiguities that arise from S are resolvable, that
means, all monomials which can be written as product ABC with ei-
therAB=W,and BC=W., B#1, or withABC=W, and B=W, (c #7),
reduce to a common value.



3 Example of use

M. Bergmann in his article [7] gave various examples of use of
Diamond lemma. Let us mention typical of them.

The problem, as mentioned in [8] is as follows. We study ring R
defined by generators 4, b, ¢, d and relations

a=a, b =b, F= &)

(a+b+0)*=a+b+c. 3)

The question is does it follow from these relations that b =0? We can
easily answer this question constructing basis of R and seeing how
element ab is expressed in this basis. Relation (3) can be rewritten to
the form

ch=—ab—ba—ac—ca—bc. “)

Now we test if (2) and (4), used as reduction relations, yield unique
canonical forms for elements of R. There are five ambiguities we must
check:

@, v, &, ad?, b ®)

Whereas first three are clearly resolvable, the last two cases yield to
two different expressions:

c(bb) =cb=—ab—ba—ac—ca—bc
and
(cb)b = (—ab—ba—ac—ca—bc)b = —ab®—bab—ach—cab—bch =

—ab—bab—a(—ab—ba—ac—ca—bc)—cab—b(—ab—ba—ac—ca—bc) =
—ab—bab+a®b+aba+a®c+aca+abc—cab+bab+b*a+bac+boa+ b c=
—ab—bab+ab+aba+ ac+aca+abc—cab+bab+ba+bac+beca+be =
aba+ac+aca+abc—cab+ba+bac+bca+be.

Hence we have
—ab—ba—ac—ca—bc=aba+ac+aca+abc—cab+ba+bac+bca+be.
This equality can be rewritten to the form
cab=aba+2ac+aca+abc+2ba+bac+bea+2bc+ab+ca. 6)
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From the equality
c(ch) = (co)b

we get the same condition. Using (6) as another reduction relation,
all ambiguities (5) are resolvable. However, two new ambiguities

arise:
Zab, cab®.

If we test these two, they reduce to common values, for example
(cc)ab = cab = aba+2ac+aca+abc+2ba+bac+bca+2bc+ab+ca,

c(cab) =... = aba+2ac+aca+abc+2ba+bac+bea+2bc+ab+ca.

Therefore the irreducible monomials constitute basis of R. These are
those words in «, b, ¢ which no letters occurs twice in succession and
contain no subwords cab and ¢b. Note that all relations have on their
right hand sides linear combination of words that are lexicograph-
ically smaller than a word on the left hand side. Therefore partial
ordering exists which is compatible with the reduction relations, de-
scending chain condition is fulfilled. The word «b is irreducible and
nonzero.

4 Application: Center of U,(sos) when ¢ is not
root of unity

Let us return to our original problem concerning center of the al-
gebra U, (so3) when ¢ is not root of unity. We will make extensive use

of Diamond lemma in what follows. The key is to construct different
basis of the algebra, namely let us have the set

{ €85 Ualo) Ty | 7,0,620, ke 0,13 }.

We claim that this set forms linear basis of the algebra U, (sos). To
verify this claim using Diamond lemma, we have to consider the fol-
lowing rewrite rules:

Lol = (q+q Do Is9lo1 — I3, 139~ Is,

oIy = (g+q Dol Isg— I I3y~ Iy,

10



I3oI1Isolyy = C+[3)yIo1Io o1 Isg — (g +q~ ) (I3, +15, I3y +13,),
I39C=Cl3,
IyyC=Cly;.
We see that three ambiguities must be checked, namely
oI5, IsolgIsely), DolgiIsslsr.

One must verify that these expressions do reduce to a common value.
Let’s test for example the second one:

(U321 130191) 191 = <C+ (31,401 I59001 I3 — (g +¢~ ) (U3, +I§11§2+1§2))121 =

Clo1 +[31 001 Iso o1 I30Io1 — (g +q ) I3y + 13, g Io1 + I3gIo1) = ... =
(51,15, Tsa1a1 Is2 — [41, 13, I3, — (22 Is0 191 I3g — [4], 101 I3, —
[21,[31,13,+(g+¢~)*Clay +(g+¢ DI
And the other way:

Lol I I3, =Isglo) (Iso13)) = I3olo ((9+9_1)121132121 ~I I3 —132) =

(g+q D Isol} Inoloy —Iso 3 Isg—Isg I I39 = ... =
(51,05, I3alg: I3g — (41,131 I3y — [ 213 Isa o1 I3g — [4],To1 I35

(21,031,251 +(g+¢" ) *CLy +(g+¢ DIa1.

We see that the expressions reduce to a common value. The other
two ambiguities one can check similarly.

To prove that the center is equal to the set of all polynomials in
Cit is sufficient to show that any element X from U, (s03) of the form

X= Z[?a,k,ﬁ(c)l% Is1o)' 15y,

ok.pB

where p. , are any polynomials and indices «,f run from 0 to any
value, index £ from 0 to 1, and supposing X is from the center of the
algebra, which is equivalent to the condition that

[(X11=0,  [X[I3]=0, @)
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is polynomial in C, that is

Doi.p (C) =0

for all indices «,£,8 where («,£,8) # (0,0,0). Because of the basis we
have chosen this effectively reduces to computation of commutators

Loy dn], [l T, Ion].

But one does not need explicit form of these complicated commuta-
tors, because one can proceed by induction with respect to degree.

The total degree of the element I (132121)k1§2 is o+2k+p. It is suf-
ficient to show that the highest coefficients are zero and the lower
coeflicients then follow by induction. To show that the highest co-
efficient are zero it is sufficient to compute the simplest (highest de-
gree) terms in (7). The highest degree terms we can get if we modify
commutation relations such way that we delete all terms on the right
hand sides with degree lower than maximal. We have

I, Iy ~[1-BlyIon By +[Bl, I3 Ion Iy '

and
I$, Iso Iy I, Iy ~ [ B+21, 05 o Ion Iy — [ A+11, 152 155

Now we rewrite the element X to the form

X=3" 3 parp(OLUsnln)' Iy,

d=0  okp
o+2k+f=d

and compute the commutator of maximum degree part only:

[ > ﬁa,k,ﬁ(c)l%(Iszle)klgz,lel~

a+2k+B=m

Y 1aks© <([(‘1)“1:3"'1"‘/6]4‘1)15[1“([32121)”52"‘

o+2k+B=m

DA+ 152 ) 1)
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From this system of linear equations follows that X has the form
X= Zl’: (OI3,
o

where p? are certain complex polynomials of one variable. Commut-
ing with I39 we easily get that all these polynomials with the excep-
tion of absolute term are equal identically to zero and the proof is
complete.

5 Center of U, (so3) when ¢ is root of unity

As we said at the beginning, the case when ¢ is root of unity is
much more complicated. For the illustration we first take ¢> =1.

Again, commuting general element of the algebra with genera-
tors Iy, Iy, we promptly discover the following four Casimir elements
from the center of the algebra: one old common to the case when ¢
is not root of unity and three new Casimir elements of the form

Cs1 =L+,
Cso=I3+15, ®
Css =I§+13.

Our conjecture, similar to the case of Hopf deformations, is that these
four Casimir elements are not algebraically independent. Indeed, we
can show this applies also for our case in the following way: the basis
of U,(s03) can now be chosen as

(G ChL BB | o720, kime{01,2}}. ©)

The proofis again easy due to Diamond lemma, we must compute all
ambiguities such as Igll etc. and show that they reduce to common
values.

Let's now compute the powers C, C%, (3 and express these powers
in the basis (9). For any power this is a finite sum having max. 3% =27
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terms with coefficients being polynomials in three variables Cs;, Csg
and Cs3. Putting together linear combination

o+ PBC+yC?+8C3

and investigating if the coefficients «, B, 7, § as polynomials in three
variables (31, C39 and Cs3 can be chosen such that this combination
becomes equal to zero leads us to the relation

C®—gC?— C2, — 3y~ C2+3(g+¢?) C31 C39 C3 =0. (10)

For the case ¢° =1 we've proved our hypothesis.

If we want to generalize the results for arbitrary case ¢" = 1
(primitive root of unity, n > 2), the proof of (9) becomes less trivial.
We present here only final results of computations.

Casimir elements (8) now take general form (cf. [10] and [9],
formula (5))

[(-D)2] . . %

) .
Cui = "'_])L< Z )1"‘2% k=123 1
=3 ()5 aa) i k2 ay

—
= J

Now define

2m
Pos1 (09,2,0) =62 +9%+22 =" (g—g~H? Lye— [ [ Co+qlR) [£+11,).

£=0
12)
and
m—1 2
Poy (x,9,2,0) = <x+y+z—H(w+q[2/c]q[2/c+ 1]4)> -
k=0
(¢g-¢H*xz  formodd,
P (,9,2,0) = x> +y*+22 =20 +x2+92) — (g —¢~ D) *"xpz— (13)
21
2 <x+y+z+—_12> ] Go+ql2£],[2k+1])%+
=975/ =%

14



2-1
[ Go+4l2k],[2k+1]))*  for m even.
£=0

Then we have

1. The dimension of algebra U, (sos3), seen as module over a commutative

polynomial ring generated by Casimir elements C, 1, C,9 and C, 3, is n>.

2. Let ¢" =1 be primitive root of unity. Then the Casimir elements C and
Gy j = 1,2,3, satisfy the relation Py (Cy,1,Cr9,C3,C) = 0, where P, is given
by (12) resp. (13).

6 Conclusions

We have shown the power and simplicity of Diammond lemma
when constructing various kinds of bases in quantum algebras. This
way we have found various informations about the structure of cen-
tral variety of given algebras. The technique used is available in stan-
dard Hopf algebras as well as in nonstandard deformations where
standard methods of proofs such as those using variants of Harish
Chandra homomorphism are no more available.
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