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Summary

In this talk we formulate known results on identities of octonion algebras. We show how
the superalgebra method can be used to describe all skew-symmetric identities and central
polynomials of octonions.
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Souhrn

V této přednášce zformulujeme známé výsledky o identitách algebry oktonion̊u. Ukážeme
jak metoda superalgeber může být použita k popisu všech antisymetrických identit a
centrálńıch prvk̊u algebry oktonion̊u.
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1 Introduction

Octonion algebras play an important role in algebra and geometry and have been
studied from different points of view by many authors. Nevertheless, identities of octonions
have not been described until now.

We recall that an octonion algebra over a field F is an 8-dimensional composition
algebra over F . In other words, it is a unital non-associative algebra A over F with a
(strictly) nondegenerate quadratic form n such that n(xy) = n(x)n(y) for all x, y ∈ A.

One form of the octonions, the Cayley octonions O over the reals, has a particularly
symmetrical base 1, e1, e2, e3, e4, e5, e6, e7, with multiplication defined by

1ei = ei = ei1, e2
i = −1,

eiei+1 = ei+3 = −ei+1ei,

ei+1ei+3 = ei = −ei+3ei+1,

ei+3ei = ei+1 = −eiei+3,

where 1 ≤ i ≤ 7, and where subscripts are to be interpreted modulo 7.
We also recall that an element f(x1, . . . , xn) ∈ F{X} of the free non-associative algebra

is called an identity (or a polynomial identity) of the algebra A if

f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A.

All identities of A form a T -ideal, i.e. an ideal of F{X} which is invariant under endo-
morphisms of F{X}. An element f(x1, . . . , xn) ∈ F{X} is called a central polynomial (or
a central function) for A if it is not an identity of A and f(a1, . . . , an) belongs to the
center of A for any a1, . . . , an ∈ A. A multilinear element f(x1, . . . , xn) ∈ F{X} is called
skew-symmetric if, for any σ ∈ Sym(n),

f(x1, x2, . . . , xn) = sign(σ)f(xσ(1), xσ(2), . . . , xσ(n)).

An exact base for the T -ideal of identities of an octonion algebra was found by Isaev [6]
only in the case of a finite field F . Il’tyakov [5] proved that, over a field of characteristic
zero, the T -ideal of identities of an octonion algebra is finitely generated, without giving
a set of generators.

The identities of small degrees of octonion algebras were studied by Racine [11] and
Hentzel and Peresi [4]. We classified all multilinear skew-symmetric identities and central
polynomials of an octonion algebra over a field F of characteristic zero. Our main result
is the following theorem [21].

Theorem. Every skew-symmetric identity of an octonion algebra over a field of char-
acteristic zero is a consequence of the following skew-symmetric identities:∑

Alt

[x1, x2](x3, x4, x5) = 0,∑
Alt

(12[x1, x2][x3, x4][x5, x6]− [x1, x2, x3, x4, x5, x6]) = 0,∑
Alt

([[x1, x2, x3, x4], [x5, x6]] + [x1, x2, x3, x4, x5, x6]) = 0.
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Every skew-symmetric central polynomial of an octonion algebra is a consequence of the
skew-symmetric central polynomials:∑

Alt

[x1, x2][x3, x4],∑
Alt

(12[x1, x2][x3, x4]x5 − [x1, x2, x3, x4, x5]).

Here
∑

Alt means the alternating sum over all of the arguments,

(x, y, z) = (xy)z − x(yz)

is the associator of x, y, z,
[x, y] = xy − yx

is the commutator of x, y, and [x1, . . . , xn−1, xn] denotes the “long commutator” of the
elements x1, . . . , xn which is defined by induction:

[x1, . . . , xn−1, xn] = [[x1, . . . , xn−1], xn].

Observe that the first identity
∑

Alt[x1, x2](x3, x4, x5) = 0 has minimal possible de-
gree 5 and hence may be considered as an analogue for octonions of the famous Amitsur-
Levitsky skew-symmetric identity

S2n(x1, . . . , x2n) =
∑
Alt

x1 · · ·x2n = 0

for the matrix algebra Mn. Moreover,
∑

Alt[x1, x2](x3, x4, x5) is a non-zero element of a
minimal degree from the radical of the free alternative algebra of rank n > 4 (see [20]).

It is known that the radical R = Rad(Alt[X]) of the free alternative algebra coincides
with the set of all nilpotent elements of Alt[X] and is equal to the intersection of the
associator ideal of Alt[X] and the T -ideal of identities of an octonion algebra [14], [25]. Till
now, the smallest degree for known elements from the radical R was 6. For example, such
is famous “Kleinfeld’s element” ([x1, x2]2, x3, x4) or the element [[x1, x2] ◦ (x3, x4, x5), x6],
where

x ◦ y = xy + yx

is the Jordan product of x, y.

For the proof of our results we used the superalgebra approach to the study of skew-
symmetric identities developed in [16], [20]. We constructed a base of the free quadratic
alternative superalgebra generated by one odd element and described the ideal of super-
identities and the subsuperalgebra of central polynomials of this superalgebra. The stan-
dard procedure of taking a Grassmann envelope gave a description of skew-symmetric
identities and central polynomials in quadratic alternative algebras. Then we checked
that there are no additional identities or central polynomials in octonions.

Quadratic alternative algebras over an arbitrary field of characteristic 6= 2 were com-
pletely classified by Elduque [1]. They include the quaternion and octonion algebras, but
also many other non-associative algebras used in physics. The identities of small degrees
of arbitrary quadratic algebras were studied by Hentzel and Peresi in [3].
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2 Identities of octonion algebras

In this section we formulate known results on identities of octonions.
Isaev [6] proved that over a field F with q elements the T -ideal of identities of an

octonion algebra is generated by the polynomials f1(x), f2(x, y), f3(x, y, z), where

f1(x) = (x− xq)(x− xq2),
f2(x, y) = (x− xq) ◦ (y − yq)− ((x− xq) ◦ (y − yq))q,

f3(x, y, z) = g1(x, y, z)g2(y, z)g3(x, y, z),

g1(x, y, z) = (x− xq)((y − yq2)(z − zq2)),
g2(y, z) = (1− yq2−q)(1− zq2−q)(1− (y ◦ z)q−1),

g3(x, y, z) = (1− (x ◦ y)q
2−q)(1− (x ◦ z)q

2−q)(1− (x ◦ yz)q
2−q),

and the order of the parentheses in f3, g2, g3 is arbitrary.

Racine [11] studied minimal identities of octonions over an arbitrary field F of cha-
racteristic not equal to 2, 3, or 5. He proved that (modulo identities of alternativity) there
are no polynomial identities of degree less than 5 of an octonion algebra, and that all
polynomial identities of degree 5 of an octonion algebra are consequences of the following
two ones:

[[x, y]2, x] = 0,

S+
3 (x1, x2, x3)(x2)− S+

3 (x1, x2, x3)(x) ◦ x = 0.

Here S+
3 (x1, x2, x3) = S3(Vx1 , Vx2 , Vx3), where S3 stands for the standard associative poly-

nomial of degree 3 and Vx(y) = y ◦ x.

Hentzel and Peresi [4] continued looking for identities and central polynomials of small
degrees of octonion algebras with the aid of a computer. In addition to the known central
polynomial of degree 4 (see [25])

C4(x1, x2, x3, x4) = [x1, x2] ◦ [x3, x4],

they found a new multilinear central polynomial of degree 5

C5(x1, x2, x3, x4, x5) =
∑
Alt

(24x1(x2(x3(x4x5)))+8x1((x2, x3, x4)x5)−11(x1, x2, (x3, x4, x5))).

They also proved that there are no new central polynomials of degree 6. Moreover, the
only new multilinear polynomial identity of degree 6 is [C5(x1, x2, x3, x4, x5), x6] = 0.

It is well known [25] that octonion algebras are quadratic and alternative. We recall
that an algebra is called alternative if it satisfies the following identities:

(x, x, y) = 0 (left alternativity),

(x, y, y) = 0 (right alternativity).

A unital algebra A is called quadratic over F if each element x ∈ A satisfies the equality

x2 − τ(x)x+ n(x)1 = 0,
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where τ(x) is a linear form (a trace) and n(x) is a quadratic form (a norm) on A, and
n(1) = 1 (equivalently, τ(1) = 2).

It is easy to see that the minimal identities of Racine are true in any quadratic alter-
native algebra. The same is true for the centrality of C4, but not evident at all for C5.
In this connection, it seems interesting that our results on skew-symmetric identities and
central polynomials are also true for any quadratic alternative algebra. Notice that for
our central polynomials it holds ∑

Alt

[x1, x2][x3, x4] = 1
2

∑
Alt

C4(x1, x2, x3, x4),∑
Alt

(12[x1, x2][x3, x4]x5 − [x1, x2, x3, x4, x5]) = 2C5(x1, x2, x3, x4, x5).

3 The superalgebra method

Let A be an algebra over a field F of characteristic zero. It seems natural to try to
reduce the number of different variables in the identities.

It is well known that reduction of this kind exists for symmetric multilinear poly-
nomials: every such polynomial on n variables may be obtained by a linearization or
polarization of a polynomial of degree n on one variable.

Now, we assume that f : An → A is a skew-symmetric multilinear function. Take
the Grassmann algebra G over F generated by Grassmann variables e1, e2, . . .; that is the
unital associative algebra over F subject to the relations eiej = −ejei, i, j = 1, 2, . . . .
Form the tensor product G⊗ A, and extend the function f to it by setting

fG(g1 ⊗ x1, . . . , gn ⊗ xn) = g1 · · · gn ⊗ f(x1, . . . , xn).

Then fG becomes a symmetric function on the variables yi = ei ⊗ xi; moreover,

n!e1 · · · en ⊗ f(x1, . . . , xn) = fG(z, . . . , z),

where z = e1 ⊗ x1 + · · · + en ⊗ xn. It is clear, for example, that f(x1, . . . , xn) = 0 if and
only if fG(z, . . . , z) = 0, and the identity f(x1, . . . , xn) = 0 is reduced to an identity in
one variable over G ⊗ A. So, in a skew-symmetric case we also can reduce the number
of variables, only the new variables lie not in A but in G ⊗ A. Notice that a similar
trick works also for a symmetric identity which may be reduced to an identity in a single
variable z = e1e2 ⊗ x1 + · · ·+ e2n−1e2n ⊗ xn over G⊗ A.

The problem is that in general G ⊗ A does not belong to the same variety as A; for
instance, if A = F then G ⊗ F = G is already not commutative. Nevertheless, G ⊗ A
satisfies certain graded identities related with those of A.

Recall that, in general, a superalgebra means a Z2-graded algebra, that is an algebra A
which may be written as a direct sum of subspaces A = A0 + A1 subject to the relations
AiAj ⊆ Ai+j (mod 2). The subspaces A0 and A1 are called the even and the odd parts of
the superalgebra A; and so are called the elements from A0 and from A1, respectively.
Below all the elements are assumed to be homogeneous, that is, either even or odd, and
for an element x ∈ Ai, i ∈ {0, 1}, the symbol x̄ = i denotes its parity.
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The Grassmann algebra G has a base over F consisting of 1 together with all the pos-
sible products eiej · · · ek with 1 ≤ i < j < . . . < k. It can be considered as a superalgebra
G = G0 +G1, where G0 is spanned by the products of even length, and G1 is spanned by
the products of odd length. Then GiGj ⊆ Gi+j (mod 2). If g ∈ G0 and h ∈ G then gh = hg.
But if g, h ∈ G1 then gh = −hg.

For a given variety V of algebras, a superalgebra A = A0+A1 is called a V-superalgebra
if its Grassmann envelope

G(A) = G0 ⊗ A0 +G1 ⊗ A1

belongs to V . It is easy to see that the Grassmann superalgebra G = G0 +G1 is commu-
tative.

Every algebra A in a variety V can be imbedded into the V-superalgebra G ⊗ A by
means of the extension of the field of scalars F to the “domain of superscalars” G. Indeed,
G⊗A inherits naturally Z2-grading of G: (G⊗A)0 = G0⊗A, (G⊗A)1 = G1⊗A, and is
a V-superalgebra, since G(G⊗ A) = G(G)⊗ A and G(G) is an associative commutative
algebra.

Passage to superscalar extensions allow us to reduce the number of variables in the
identities that are multilinear and either symmetric or skew-symmetric on certain vari-
ables.

It was Kemer [7] who first applied superalgebras to the investigation of varieties of
associative algebras, in his solution of the famous Specht problem. Then this method was
extended in the papers by Zel’manov [23] and Zel’manov-Shestakov [24] to investigation of
nilpotence and solvability problems in non-associative algebras. Finally, Vaughan-Lee [22]
applied superalgebras to reduce the number of variables for his computer calculations in
the variety of associative nil-algebras of degree 4.

Notice that some times it is more convenient to define a V-superalgebra by super-
identities. To pass from V-algebras to V-superalgebras one has for any identity of V find
an equivalent system of multilinear identities, and then apply to each multilinear identity
so called “superization rule” (or “Kaplansky’s principle”) that whenever two odd variables
are transposed a negative sign is introduced. For example, a commutative superalgebra is
defined by

xy − (−1)x̄ȳyx = 0,

and an alternative superalgebra is defined by

(x, y, z) + (−1)x̄ȳ(y, x, z) = 0 (left super-alternativity),

(x, y, z) + (−1)ȳz̄(x, z, y) = 0 (right super-alternativity).

Denote by
[x, y]s = xy − (−1)x̄ȳyx

the super-commutator of the homogeneous elements x, y, and by

x ◦s y = xy + (−1)x̄ȳyx

their super-Jordan product.

Let V [S;X] denote the free V-superalgebra over a field F of characteristic zero gener-
ated by a set S of even generators and a set X of odd generators.
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We use the following correspondence between the free V-superalgebra V [∅;x] on one
odd generator x and the subspace of multilinear skew-symmetric elements Vskew[S; ∅] of
the free V-algebra V [S; ∅] on countable set of even generators S = {s1, s2, . . .}.

Let f = f(x) be a homogeneous non-associative polynomial of degree n on one
variable x. It may be written in the form f(x) = f̃(x, x, . . . , x), for a certain mul-
tilinear polynomial f̃(s1, s2, . . . , sn). Define the skew-symmetric polynomial Skew f =
Skew f (s1, s2, . . . , sn) as follows:

Skew f(s1, s2, . . . , sn) =
∑
Alt

f̃(s1, s2, . . . , sn).

Then, f(x) = 0 in the superalgebra V [∅;x] if and only if Skew f (s1, s2, . . . , sn) = 0 in the
algebra V [S; ∅].

4 Free (super)algebras

In this section we formulate some open problems and state the main results of our
research on free (super)algebras.

The construction of effective bases of free algebras is one of the most important and
difficult problems in the theory of non-associative algebras. There are not many classes of
algebras where such bases are known: free non-associative, free (anti)commutative and free
Lie algebras are the most well-known examples besides polynomials and free associative
algebras.

For every variety V of algebras, one can consider the corresponding V-Grassmann
algebra (see [17], [20]), which is isomorphic as a vector space to the subspace of all skew-
symmetric elements of the free V-algebra. Thus, it seems interesting to construct a base for
this subspace. Due to the superalgebra method described above, the problem is reduced
to the free V-superalgebra on one odd generator, which is easier to deal with.

In order to obtain our results on skew-symmetric identities of an octonion algebra we
first construct a base of the free quadratic alternative superalgebra generated by one odd
element. It was done in several steps.

4.1 The free Malcev superalgebra on one odd generator

Let us denote by A− the algebra obtained from an algebra A by replacing the product
xy with the commutator [x, y] = xy − yx. Starting with an associative algebra A, one
obtains in this way a Lie algebra A−, and conversely, the celebrated Poincaré-Birkhoff-
Witt Theorem establishes that every Lie algebra is isomorphic to a subalgebra of A− for
some associative algebra A. A weaker condition than the associativity for an algebra is
the alternativity. For any alternative algebra A, the commutator algebra A− is a Malcev
algebra. However, at this time it remains an open problem whether any Malcev algebra
is special [2], [16], i.e. isomorphic to a subalgebra of A− for some alternative algebra A.

We recall that an anticommutative algebra is called a Malcev algebra if it satisfies the
identity

J(x, y, z)x = J(x, y, xz),
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where J(x, y, z) = (xy)z + (yz)x+ (zx)y is the jacobian of x, y and z [8], [10], [13]. Since
for a Lie algebra the jacobian of any three elements vanishes, Lie algebras fall into the
variety of Malcev algebras. Among the non-Lie Malcev algebras, the traceless elements of
an octonion algebra with the product given by the commutator [x, y] = xy − yx is one of
the most important examples [8], [9], [13].

Notice that some methods used for associative and Lie algebras can be generalized for
alternative and Malcev algebras. However, no effective bases are known for free alternative
algebras or for free Malcev algebras.

In [16] Shestakov constructed a base of the free Malcev superalgebraM = Malc[∅;x]
on one odd generator: define inductively xi+1 = xix then the elements

xk, x4kx2, x4k+1x2,

where k > 0, form a base of M. He also found an infinite family of skew-symmetric
elements that are central in any Malcev or alternative algebra. At the time it was an open
question whether the given family formed a base of all central skew-symmetric elements.

In [17] we constructed a base of the universal multiplicative envelope of M. This
allowed us to solve the question from [16] on a base of the space Malczskew[S; ∅] of cen-
tral skew-symmetric elements of the free Malcev algebra Malc[S; ∅] of countable rank in
characteristic zero: the elements

Skew (x4kx2) (si1 , si2 , . . . , si4k+2
), k > 1,

Skew (x4k+1x2) (si1 , si2 , . . . , si4k+3
), k > 0,

where i1 < i2 < · · · < i4k+3, form a base of the space Malczskew[S; ∅].
In is known that Bol algebras generalize the notion of Malcev algebras. It would be

interesting to investigate the free left Bol superalgebra on one odd generator in order to
construct its base.

4.2 The free alternative superalgebra on one odd generator

The universal alternative envelope of M is isomorphic to the free alternative super-
algebra A = Alt[∅;x] generated by an odd element x with the universal homomorphism
ϕ :M→A− defined by ϕ(x) = x. In [18], [20] we used a quantization deformation of the
Malcev Poisson superalgebra related with M according to [15] to construct a base of A:
define by induction

x[1] = x, x[i+1] = [x[i], x]s, i > 0,

and denote
t = x[2], z[k] = [x[k], t], u[k] = x[k] ◦s x[3], k > 1,

then the elements

tmxσ, m+ σ ≥ 1, tm(x[k+2]xσ),

tm(u[4k+ε]xσ), tm(z[4k+ε]xσ),

where k > 0, m ≥ 0; ε, σ ∈ {0, 1}, form a base of the superalgebra A.
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The homomorphism ϕ maps the base ofM to the linearly independent elements in A,
therefore, the superalgebra M is special. Notice that, in [19] we proved speciality of M
directly, without knowing a base of A.

In [17], [19] we proved that the elements

Skew z[k](s1, . . . , sk+2), k ∈ {4n, 4n+ 1}, k > 4,

are non-zero skew-symmetric central functions in Alt [S; ∅]. It would be interesting to find
all skew-symmetric central and nuclear functions for alternative algebras. Evidently, they
all should be of the type Skew f , where f ∈ Z(A) and f ∈ N(A) for central and nuclear
functions, respectively. We recall that the nucleus N(A) and the center Z(A) are defined
by

N(A) = {a ∈ A | (a, b, c) = (b, a, c) = (b, c, a) = 0, for any b, c ∈ A},
Z(A) = {a ∈ N(A) | [a, b]s = 0, for any b ∈ A}.

In [20] we proved that

N(A) = idA〈u[k], z[k] | k > 2〉,
Z(A) = vectF 〈tmz[k], tm(2z[k]x− u[k]) | m ≥ 0, k > 2〉.

Notice that not every element in Z(A) produces a central or nuclear function. For example,
z[4] ∈ Z(A) but Skew z[4] is neither a central function nor a nuclear function in the algebra
of octonions O.

4.3 The free quadratic alternative superalgebra
on one odd generator

We use a more general definition of a quadratic alternative algebra. For a unital
algebra A, we identify F with the subalgebra F · 1 of the algebra A.

We call a linear map τ of A into its center, Z(A), a trace if, for any x, y ∈ A, it satisfies

τ([x, y]) = τ((x, y, z)) = 0,

τ(τ(x)y) = τ(x)τ(y).

We call a unital alternative algebra (A, τ) with a trace τ a quadratic alternative if it
satisfies the linearized trace identity

x ◦ y − τ(x)y − τ(y)x− τ(xy) + τ(x)τ(y) = 0,

and τ(1) = 2. In particular, every unital associative commutative algebra A is quadratic
alternative in this sense if we put τ(a) = 2a for any a ∈ A.

The notion of a quadratic alternative algebra can be generalized to superalgebras.
We consider the free quadratic alternative superalgebra Bτ = (Bτ , τ) on one odd gene-
rator x, that is, the free one-odd-generator object in the category of unital alternative
superalgebras with supertrace τ that satisfies τ(1) = 2 and

x ◦s y − τ(x)y − (−1)x̄ȳτ(y)x− τ(xy) + τ(x)τ(y) = 0.
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By B we denote the subsuperalgebra of Bτ , generated by x without using the supertrace
operation.

In [21] we proved that the following elements

1, x, τ(x), t, τ(x)x, tx, τ(x)t, τ(tx), t2, τ(tx)x, τ(x)τ(tx), τ(x)tx, τ(tx)t,

τ(x)τ(tx)x, τ(x)t2, τ(tx)tx, τ(x)τ(tx)t, τ(tx)t2, τ(x)τ(tx)tx, τ(x)τ(tx)t2

form a base of the superalgebra Bτ . The subsuperalgebra B is nilpotent of degree 9, and
the elements

x, txσ, t2xσ, x[3]xσ, x[4]xσ, x[5]xσ, z[4]xσ, u[4]xσ,

where σ ∈ {0, 1}, form a base of B. Moreover, the T -ideal of super-identities on one odd
generator of quadratic alternative superalgebras is generated by

tx[3], z[4] + x[6], 12t3 − x[6].

The T -subsuperalgebra of central functions on one odd generator of quadratic alternative
superalgebras is generated by

t2, 12t2x− x[5].

Now, the images of these elements under the map Skew described in Section 3 give
us skew-symmetric identities and central functions of a quadratic alternative algebra in
characteristic zero. In order to obtain the Theorem from Introduction we proved that
the skew-symmetric identities and central functions of an octonion algebra coincides with
those for the class of all quadratic alternative algebras.

We conjecture that the T -ideal of identities of quadratic alternative algebras coincides
with the identities of octonions. As supporting evidence for this conjecture we mention the
case of associative algebras where the quadratic identity implies all identities of quater-
nions. This is a partial case of the Razmyslov theorem [12] which states that over a field
of characteristic zero the Cayley-Hamilton identity implies all identities of n×n matrices.
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