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Summary

In the last two decades, the theory of heterogeneous materials has
made a significant process from mainly theoretical discipline to an ap-
plicable engineering tool. Major advances have been achieved in the
field of modelling material systems with deterministic properties of
individual constituents and widely separated lengthscales. Neverthe-
less, most real-world materials display random features, both in the
intrinsic material properties as well as due to limited information on
the mutual arrangement of phases. Moreover, the assumption of sep-
arated lengthscales may often be a limiting factor, especially when ad-
dressing systems with localized response. Therefore, the focus of this
lecture is on heterogeneous material systems without clearly defined
hierarchy of lengthscales and with geometry distribution specified in
terms of the second-order spatial statistics.

The methods investigated include a representative of perturbation
methods, the Karhunen-Loève expansion technique coupled with the
Monte-Carlo simulation and a solver based on the Hashin-Shtrikman
variational principles. In all cases, parameters of the underlying ran-
dom field of material properties are directly derived from image anal-
ysis of a real-world structure. Added value as well as limitations of
individual schemes are illustrated by a case study of an irregular his-
torical masonry panel.
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Souhrn

Teorie heterogennı́ch materiálů v poslednı́ch dvou desetiletı́ch prošla
bouřlivým rozvojem od převážně teoretické disciplı́ny až k apliko-
vatelnému inženýrskému nástroji. Hlavnı́ho pokroku bylo dosaženo v
oboru modelovánı́ materiálových systémů s deterministickými vlast-
nostmi složek a jasně oddělenými měřı́tky. Většina inženýrských ma-
teriálů nicméně vykazuje náhodné chovánı́, a to jak v materiálových
datech tak i kvůli omezené informaci o uspořádánı́ jednotlivých složek.
Navı́c může předpoklad oddělených měřı́tek představovat zásadnı́
omezenı́, a to předevšı́m při zkoumánı́ systémů s lokalizovanou odezvou.
Proto je tato přednáška zaměřena na heterogennı́ materiálové systémy
bez jasně definované hierarchie délkových měřı́tek a s geometriı́ speci-
fikovanou pouze pomocı́ prostorové statistiky druhého řádu.

Prezentované metody zahrnujı́ reprezentanta perturbačnı́ch metod,
techniku Karhunen-Loèveho rozvoje spojenou se simulacı́ Monte-Carlo
a řešič založený na Hashin-Shtrikmanových variačnı́ch principech. Ve
všech přı́padech jsou parametry náhodného pole materiálových vlast-
nostı́ přı́mo odvozeny z obrazové analýzy skutečné konstrukce. Přidaná
hodnota stejně jako omezenı́ jednotlivých schémat jsou ilustrovány
pomocı́ pilotnı́ studie nepravidelného historického zdiva.
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sion; Hashin-Shtrikman variational principles
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1 Introduction

Analysis of material with heterogeneous microstructure is a fascinat-
ing subject with far-reaching applications in virtually all areas of ap-
plied sciences and engineering. In essence, the implicit assumption
adopted in the majority of the heterogeneous media-oriented studies
is that on the lowest relevant scale of resolution, the behavior of in-
dividual constituents is relatively ease to characterize in terms of uni-
versal intrinsic properties, whereas the intricately complex response
seen in the macroscopic world can be rationally deduced from field
equations of continuum physics, supplemented with an appropriate
scale-bridging scheme and eventually with the stochastic aspects of
the problem at hand. The foundations of this research programme
were established in the sixties of the last century by Hill and, since
then, the field has witnessed a rapid development, resulting in a thor-
ough understanding of engineering, physical, numerical and mathe-
matical aspects of the problem.

In general, it can be stated that the dominant mechanisms govern-
ing the response of heterogeneous media are well-understood when
fulfilling the assumptions of

• separation of scales hypothesis, which requires the characteristic
dimensions of the heterogeneous microstructure on individual
levels of resolution as well as the characteristic wavelength of
the fields involved to be widely separated,

• deterministic description of geometry of individual constituents.

This claim can be fully justified by rapidly increasing applications of
the homogenization principles to wide range of civil engineering ma-
terials such as wood [9], cement paste [21], masonry [12], or even to
complex historical structures [23]; see also [20] for an up-to-date re-
view.

Nevertheless, most real-world materials display random features,
both in the intrinsic material properties as well as due to limited infor-
mation on the mutual arrangement of phases. Moreover, the assump-
tion of separated lengthscales may appear to be a limiting factor, es-
pecially when addressing systems with localized reponse. Therefore,
the focus of this lecture is on heterogeneous material systems without
clearly defined hierarchy of lengthscales and with geometry distribu-
tion specified in terms of the second-order spatial statistics.

In particular, three numerical approaches to the determination of
the overall response of heterogeneous media with comparable macro-
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and meso-lengthscales are presented. A unifying feature is the de-
scription of mechanical properties in the form of a random field with
the second-order statistics consistently derived from image analysis
of the investigated structure. In Section 2, this procedure is briefly
summarized following the exposition of Falsone and Lombardo [5].
The second level of representation involves the determination of ba-
sic statistics related to the response of a finite size heterogeneous ma-
sonry structure. In particular, the improved perturbation method is
introduced first in Section 3, followed in Section 4 by the Monte-Carlo
approach with individual realizations of the random field generated
using the Karhunen-Loève expansion. Section 5 is concerned with the
application of the Hashin-Shtrikman variational principles, coupled
with the Finite Element discretization to allow for the treatment of
finite-size bodies. In Section 6, the results obtained with the selected
methods are mutually compared on the basis of elastic analysis of an
irregular masonry panel. Finally, Section 7 introduces possible exten-
sions and refinements of the studied approaches.

2 Quantification of random geometry

Before getting to the heart of the matter, we begin by summarizing es-
sential terminology related to the theory of random fields [19]. Given a
complete probability space {Θ,F ,P} with sample space Θ, σ-algebra
F on Θ and probability measure P on F , a scalar random field H de-
fined on an open set Ω ⊂ Rd is a mapping

H : Θ×Ω→ R, (1)

such that, for every x ∈ Ω, H(x; θ) is a random variable with respect
to the triple {Θ,F ,P}. The mean of a random field is then given as

µH(x) = E [H(x; θ)] =
∫

Θ
H(x; θ) dP(θ), (2)

for any x ∈ Ω, whereas the covariance of two random fields H and G
is defined by

RHG(x, x′) = E
[
(H(x; θ)− µH(x))

(
G(x′; θ)− µG(x′)

)]
, (3)

with the symbol RH(x, x′) = RHH(x, x′) reserved for the autocovari-
ance, reducing to a variance for x = x′:

σ2
H(x) = E

[
(H(x; θ)− µH(x))2

]
. (4)
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A random field H(x; θ) is said to be homogeneous if all its joint proba-
bility distribution functions (PDFs) remain invariant under the trans-
lation of the coordinate system, leading to substantial simplification
of the considered statistics. Finally, assuming that the autocovariance
function can be well-approximated by an exponential function, the
correlation length λH is defined by means of inequality:

∀‖x− x′‖ ≥ λH : RH(x− x′) ≤
σ2

H
exp(1)

, (5)

hence quantifying the characteristic dimension of the spatial fluctua-
tions. Finally, a random field is ergodic if all information on joint PDFs
are available from a single realization of the field.

Of particular importance is the characteristic function related to the
spatial distribution of the i-th phase:

χ(i)(x; θ) =
{

1 if x ∈ Ω(i)(θ),
0 otherwise,

(6)

where Ω(i)(θ) is the domain occupied by the i-th phase for realization
θ and i can take values {s, m}, where s denotes the stone phase and
m refers to the mortar phase. The characteristic functions of individ-
ual phases are not independent, once e.g. the “stone” characteristic
function is provided, the complementary descriptor follows from

χ(m)(x; θ) + χ(s)(x; θ) = 1. (7)

Therefore, we concentrate on the stone phase in the sequel.
When assuming the statistically uniform and ergodic media, the

basic spatial statistics is provided by

µχ(s) = c(s), Rχ(s)(x− x′) = S(s)
2 (x− x′)−

(
c(s)
)2

, (8)

where c(s) is the volume fraction of the relevant phase and S(s)
2 co-

incides with the two-point probability function, defined for generic
phases i, j ∈ {s, m} as [18]

S(ij)
2 (x, x′) = E

[
χ(i)(x; θ)χ(j)(x′; θ)

]
, (9)

hence quantifying the probability of two points x and x′ being located
in phases i and j (with S(i)

2 abbreviating S(ii)
2 ).
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The statistical descriptors of real mesostructures can be evaluated
on the basis of a digitized images of the investigated sample. Under
the periodic boundary condition, the statistics can be efficiently eval-
uated using the Fast Fourier transform techniques; see e.g. [6]. To au-
tomate the acquisition of these functions, a software working in MAT-
LAB was implemented [5], covering all the basic steps of mesostruc-
ture quantification with the data provided in the form of a color image,
see Figure 1 for an illustration of the procedure.

Figure 1: Example of the program used to obtain correlation function
for a chaotic masonry panel (San Marco d’Alunzio, Italy).

The phase characteristic functions allow us to directly express the
matrix-valued field of material properties in the form

C(x; θ) = χ(s)(x; θ)C(s) + χ(m)(x; θ)C(m), (10)

where C(s) and C(m) are the deterministic material stiffness matrices
of the two constituents. The mean and the covariance functions then
follow from Equations (2) and (3):

µCij(x) = C(m)
ij + c(s)(C(s)

ij − C(m)
ij ), (11)

RCijCkl (x− x′) = Rχ(s)(x− x′)
(

C(s)
ij − C(m)

ij

) (
C(s)

kl − C(m)
kl

)
,(12)

see [5] for additional discussion.
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3 Improved pertrubation method

Consider a mechanical system with the randomness in material prop-
erties specified in terms of the random field χ(s)(x; θ). In the context
of finite element analysis of static problems, the discretized form of
equilibrium equations reads [2]

Kh(χ(s)(x; θ))uh(θ) = Fh, (13)

where h is a characteristic element size, the force vector Fh is assumed
to be deterministic and the global stiffness matrix Kh is stochastic due
to uncertainty in the material properties.

The widely used mid-point method is employed to represent the
random field consistently with the underlying finite element mesh.
Therefore, two different considerations control the size of an element h,
cf. [1]. In addition to the determinisitc requirement, the distance be-
tween two adjacent random variables has to be short enough to cap-
ture the essential features of the random field. The general recom-
mendation is to choose 2h ≈ λχ(s) to describe the stochastic field with
sufficient accuracy [14].

In the current implementation, the value at the element center is
used to characterize the stochastic field, thus yielding a representation
in the form of a vector of random variables

χ
(s)
h (θ) =

[
χ

(s)
h,1(θ) χ

(s)
h,2(θ) . . . χ

(s)
h,Ne

(θ)
]

T, (14)

with χ
(s)
h,e (θ) being the value of χ(s)(x; θ) at the e-th element centroid

and Ne denoting the number of elements. The element stiffness ma-
trix is calculated from the standard finite element methodology and is
expressed as [2]

Kh,e

(
χ

(s)
h,e (θ)

)
=
∫

Ωe
Bh,e

T(x)Ce

(
χ

(s)
h,e (θ)

)
Bh,e(x) dx, (15)

where Bh,e is the deterministic displacement-to-strain matrix related
to the e-th element and the element material stiffness matrix Ce fol-
lows from Eq. (10). After the assembly procedure, the global form of
equilibrium equations becomes

Kh(χ
(s)
h (θ))uh(θ) = Fh. (16)

Among the various perturbative SFE approaches proposed in lit-
erature, an improved perturbation technique proposed in [4] is em-
ployed in this work. When compared to the traditional first-order ex-
pansion schemes, the added value of the adopted method is that the
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mean value of the response variables depends on the covariance infor-
mation on uncertain input parameters, thereby optimally utilizing the
available second-order statistics. Following this approach, the mean
of the response vector uh is given by

µuh
= A−1

h Fh, (17)

where

Ah = Kh,0 −
Ne

∑
i=1

Ne

∑
j=1

R
χ

(s)
i χ

(s)
j

K′h,i

(
Kh,0

−1
)

K′h,j, (18)

with the stiffness matrix sensitivities provided by

Kh,0 = Kh(χ
(s)
h )
∣∣∣
χ

(s)
h =E

[
χ

(s)
h

], K′h,i =
∂Kh(χ

(s)
h )

∂χ
(s)
h,i

∣∣∣
χ

(s)
h =E

[
χ

(s)
h

]. (19)

In addition, the autocovariance matrix of displacements follows from

Ruh = K−1
0,hChK0,h

−1, (20)

where

Ch =
Ne

∑
i=1

Ne

∑
j=1

R
χ

(s)
i χ

(s)
j

K′h,iµuh

(
µuh

)
TK′j, (21)

see [4] for additional details.

4 Karhunen-Loève expansion

With reference to the mesostructure-based random fields considered
in the current work, we start from the KLE of the characteristic func-
tion χ(s)(x; θ) in the form

χ(s)(x; θ) = µχ(s)(x) +
∞

∑
i=1

√
λiξi(θ) fi(x), (22)

where λi and fi(x) are the eigenvalues (decreasing in magnitude) and
eigenfunctions of the autocovariance Rχ(s)(x, x′), {ξi(θ)} is a set of
random variables [17]. Since the kernel Rχ(s)(x, x′) is bounded, sym-
metric and non-negative, it has all eigenfunctions mutually orthogo-
nal and forming a complete set spanning the function space to which
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χ(s)(x; θ) belongs. Therefore, the autocovariance function can be de-
composed into

Rχ(s)(x, x′) =
∞

∑
i=1

λi fi(x) fi(x′), (23)

with eigenfunctions fi(x) and eigenvalues λi found as the solutions of
the homogeneous Fredholm integral equation of the second kind∫

Ω
Rχ(s)(x, x′) fi(x′) dx′ = λi fi(x). (24)

The parameter ξi(θ) in Eq. (22) corresponds to an uncorrelated stan-
dardized random variable expressed as

ξi(θ) =
1√
λi

∫
Ω

[
χ(s)(x; θ)− µχ(s)(x)

]
fi(x) dx. (25)

In practical implementations, the series (22) and (23) are truncated
after M terms, yielding the approximations

χ(s)(x; θ) ≈ µχ(s)(x) +
M

∑
i=1

√
λiξi(θ) fi(x), (26)

Rχ(s)(x, x′) ≈
M

∑
i=1

λi fi(x) fi(x′). (27)

A careful convergence study of truncated KLE presented in [10] has
demonstrated, for specific classes of stochastic fields, the dependence
of the optimal value of M on the ratio of the characteristic domain
length L to the correlation parameter λχ(s) . For weakly correlated pro-
cesses (λχ(s) /L� 1), the higher order eigenvalues cannot be neglected
without having a serious impact on the accuracy of the simulation.

Such behavior is illustrated by means of Figure 2, showing the de-
cay of eigenvalues of KLE with the covariance kernel determined for
the masonry sample presented in Section 2. In addition, several as-
sociated eigenfunctions are collected in Figure 3. Clearly, the random
field under consideration is weakly correlated as λχ(s) /L ≈ 10/120,
see Figure 1, and a large number of terms (M ≈ 200) is needed to
capture fine features of the covariance, cf. Figure 3(d).

With a KLE of the spatial autocovariance function at hand, the in-
dividual realizations of the heterogeneous body can be efficiently gen-
erated once an appropriate model for the random field χ(s)(x; θ) is
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Figure 3: Examples of eigenfunctions fi; (a) i = 1, (b) i = 2, (c) i = 12,
(d) i = 24.
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adopted. In the current study, we assume that the random field is
Gaussian, for which the coefficients ξi(θ) in Eq. (25) become indepen-
dent standard Gaussian variables of zero mean and unit variance.

The final step of the KLE-based solver involves the determination
of the response statistics for a structure with material stiffness deter-
mined from Eq. (10):

C(x; θ) ≈ C(m) +

(
c(s) +

M

∑
i=1

√
λiξi(θ) fi(x)

)
(C(s) − C(m)). (28)

The frequently adopted framework of spectral SFE [7], where the re-
sponse variable is discretized using the polynomial chaos expansion
in the stochastic coordinate, is not applicable in the current case as the
high number of KLE terms results in unmanageable number of poly-
nomial chaos components. Therefore, a simple Monte-Carlo approach
is adopted in the present study.

Once the sampling phase is completed, the unbiased mean and co-
variance of displacement vectors are provided by

µuh
=

1
n

n

∑
j=1

uh(θj), (29)

Ruh =
1

n− 1

n

∑
j=1

[
uh(θj)

(
uh(θj)

) T − nµuh

(
µuh

)
T
]

, (30)

where n denotes the number of simulations and θj is used to denote
the j-th deterministic realization.

5 Hashin-Shtrikman variational principles

The last approach investigated here builds on the classical Hashin-
Shtrikman variational principles for the heterogeneous media [8], ex-
tended to the stochastic setting by Willis [22]. The basic idea of the
method is the introduction of a reference homogeneous body with
stiffness tensor C0, employed in the analysis instead of an inhomo-
geneous realization C(x; θ), recall Eq. (10). The heterogeneity of the
material is compensated using the polarization stress τ(x; θ), result-
ing from the stress equivalence condition:

σ(x; θ) = C(x; θ)ε(x; θ) = C0ε(x; θ) + τ(x; θ), (31)
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with σ and ε denoting the configuration-dependent stress and strain
fields. The additional unknown follows from stationarity conditions(

u(x; θ), τ(x; θ)
)

= arg min
v(x)

stat
ω(x)

ΠHS (v(x), ω(x); θ) (32)

where ΠHS stands for the Hashin-Shtrikman (HS) energy functional

ΠHS (v, ω; θ) = 1
2

∫
Ω

εT(v(x))C0ε(v(x)) dx−
∫

Ω
vT(x) f (x) dx

−
∫

Γt
vT(x)t(x) dx +

∫
Ω

εT(v(x))ω(x) dx

− 1
2

∫
Ω

ωT(x)
[
C(x; θ)− C0

]−1
ω(x) dx. (33)

In Eq. (32), v and are ω denote trial values of displacement field and
polarization stresses, while f (x) are deterministic body forces and
t(x) boundary tractions acting on Γt, respectively, cf. [13].

The elementary statistics of displacements and polarizations asso-
ciated with probability density P(θ) follow directly from a stochastic
variant of Eq. (32):

(
µu, µτ

)
=
∫

Θ

(
arg min

v(x;θ)
stat

ω(x;θ)
ΠHS (v(x; θ), ω(x; θ); θ)

)
dP(θ). (34)

Following the approach of Willis [22], the previous problem is solved
approximately by considering the following ansatz for displacements
and polarizations:

u(x, θ) = u0(x) + u1(x; θ), (35)

τ(x; θ) ≈ χ(s)(x; θ)τ(s)(x) + χ(m)(x; θ)τ(m)(x), (36)

where u0 is the deterministic displacement of the reference body sub-
ject to distributed body forces and tractions, u1 stores the configuration-
dependent displacement due to the polarization stress expressed us-
ing a non-local operator Γ0, cf. Eq. (38) bellow,

u1(x; θ) = −
∫

Ω
Γ0(x, x′)τ(x′; θ) dx′, (37)

and τ(i) denotes the deterministic value of the polarization stress re-
lated to the i-th phase.

Two levels of approximation are generally needed to fully discretize
the problem (34). The first step involves discretizing the Γ0 operator
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together with the “reference” strain distribution, which in the context
of the adopted Finite Element approximation become [13]

Γ0(x, x′) ≈ Bu
h(x)K−1

h,0 Bu
h
T(x′), ε(u0(x)) ≈ Bu

h(x)u0,h, (38)

where, in analogy with Section 3, Kh,0 denotes the stiffness matrix
of the reference structure, Nu

h is the matrix of shape functions and
Bh = ∂Nu

h is the displacement-to-strain matrix and u0,h stands for
nodal displacement vector determined for the reference problem [2].
In the second step, phase polarization fields are parameterized in the
form, cf. [13]

τ(i)(x) ≈ Nτ
h(x)d(i)

h , (39)

where Nτ
h is the matrix of shape functions to approximate the polar-

ization stresses.
Employing the approximations (38) and (39), the discretized sta-

tionary conditions of problem (34) become:

K(i)
h d(i)

h + ∑
j

K(ij)
h d(j)

h = R(i)
h , (40)

with the individual terms provided by

K(i)
h =

∫
Ω

Nτ
h
T(x)c(i)[C(i) − C0

]−1Nτ
h(x) dx, (41)

K(ij)
h =

∫
Ω

∫
Ω

Nτ
h
T(x)S(ij)

2 (x− x′)Γ0,h(x, x′)Nτ
h(x′) dx dx′, (42)

R(i)
h =

∫
Ω

Nτ
h
T(x)c(i)Bu

h(x)u0,h dx. (43)

Once the degrees of freedom related to the phase polarization stresses
are determined from system (40), the mean of displacement value be-
comes [13]

µuh
(x) = Nu

h(x)
(

u0,h − K−1
0,h

∫
Ω

Bu
h
T(x′)µτh

(x′) dx′
)

, (44)

with
µτh

(x′) = Nτ
h(x′)

(
c(m)d(m)

h + c(s)d(s)
h

)
. (45)

In addition to the mean response, the HS approach offers an alterna-
tive way to establishing confidence-like bounds on the expected dis-
placements by varying the auxiliary stiffness C0. In particular, select-
ing the reference medium such that C0 = mini(C(i)) yields an up-
per bound of the stored energy (and therefore the upper “energetic”
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Figure 4: Scheme of an illustrative example

bounds of the displacements), whereas the choice C0 = maxi(C(i)) re-
sults in a lower bound on displacements. Finally, selecting C0 such
that the difference (C − C0) becomes indefinite provides variational
estimates of the basic statistics.

6 Numerical example

In this Section, the essential features of the proposed numerical meth-
ods are illustrated by studying elastic response of an irregular ma-
sonry structure with dimensions shown in Figure 4 and constant thick-
ness of 0.12 m. The plane stress assumptions were adopted in the anal-
ysis; the structure was subject to a uniform pressure applied at the top
edge and to the self-weight (a deterministic specific gravity equal to
20 kNm−3 was assumed for simplicity). Material constants of individ-
ual constituents were considered to be deterministic, the concrete val-
ues of the Young moduli E(m) = 1, 200 MPa, E(s) = 12, 500 MPa and
of the Poisson ratios ν(m) = 0.3 and ν(s) = 0.2 were selected follow-
ing [3]. The geometrical uncertainty due to irregular configuration of
individual phases was quantified on the basis of image analysis data
presented in Figure 1.

The finite element model of the example problem was based on
a regular discretization of the domain using 24 × 24 square bilinear
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elements with four integration points. Note that such a resolution cor-
responds to the element edge approximately equal to a half of the geo-
metrical correlation length, which is fully consistent with general rules
discussed in Sections 3–5.

The results presented for the KLE-based solver were derived from
n = 1, 000 simulations. For simplicity, only the Young modulus E
considered in the form of a random field, whereas the Poisson ratio
was set to a deterministic value determined from the Voigt estimate of
the homogenized stiffness matrix

µC = c(m)C(m) + c(s)C(s). (46)

Finally, based on a systematic one-dimensional study of the HS ap-
proach presented in [16], the element-wise constant discretization of
the phase polarization stresses with four-point integration scheme was
adopted to ensure sufficient resolution of the spatial statistics.

Before presenting the comparison of individual approaches, we
concentrate first on the effect of reference media on the HS-based pre-
dictions. To this end, the expected values of nodal displacements are
plotted in Figure 5 for several representative choices of C0. In particu-
lar, owing to the dominant fraction of the stiffer phase (c(s) .= 67%) in
the considered structure, the lower energetic bound can be expected
to be substantially closer to the “true” statistics than the correspond-
ing upper bound, which in the current case seems to be too inaccurate
for practical use. Additional estimates can be generated by the Voigt-
type choice (46) or by setting the reference medium to the arithmetic
average of properties of individual constituents, the value commonly
adopted in the polarization-based numerical method due to Mouline
and Suquet [15]. As expected, the response corresponding to such
choices is comparable to the lower bound and will be used in the se-
quel for the comparison with the candidate approaches.

The basic statistics of nodal displacements, as predicted by differ-
ent methods, are mutually compared in Figure 6. In addition, we
present the confidence bounds in the form µuh

(x) ± σuh(x), deter-
mined on the basis of the second-order statistics for the improved
perturbation method (21) or KLE (30). In general, it can be seen that
the perturbative method leads to a substantially wider confidence in-
terval when compared to the Monte-Carlo simulation approach, in
spite of a moderate number of simulations used by KLE solver to
estimate the overall statistics. For both methods, the confidence in-
tervals remain bounded from above by the corresponding HS value.
Moreover, for appropriate choices of the reference stiffness matrix, the
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HS method recovers the predictions provided by the alternative ap-
proaches. For the current setting, selecting C0 according to the rule
of mixtures yields the displacement values almost identical to that of
the KLE solver, whereas the response related to the arithmetic aver-
age well approximates the improved perturbation result. These results
provide just another highlight of the importance of a proper choice of
the reference media in the HS-based schemes.

The final comment concerns the computational complexity of in-
dividual approaches. It can be stated that the cost of the improved
perturbation method and the HS-based solver is roughly comparable,
whereas the KLE approach leads to an approximately three-fold in-
crease in the simulation time. Higher cost of the latter method can be
attributed to a large number of terms appearing in the expansion (26);
the computational cost, however, is compensated by generality of the
Monte-Carlo framework and can be further reduced by parallelization
of the problem.

7 Conclusions

In this contribution, the applicability of three distinct approaches to
mesostructure-based random field simulation of irregular historic ma-
sonry was investigated. The numerical results obtained for a finite-
size elastic panel allow us to reach the following conclusions:

• The elements of quantification of random spatial statistics can
be efficiently used to construct realistic first- and second-order
statistics of stationary random fields.

• The improved perturbation method utilizes the second-order statis-
tics when determining the mean response of the system, which
generally leads to narrower estimates when compared with the
basic method. In the current case, however, the uncertainty in
the obtained statistics is higher than for the KLE algorithm, mainly
due to a relatively high contrast of phase stiffnesses.

• The Karhunen-Loève series representation coupled with the Monte
Carlo approach provides an interesting alternative to the pertur-
bation methods, even at increased computational cost. When
applied to realistic structures, however, a large number of terms
seems to be necessary to capture the available covariance in-
formation. Moreover, the validity of the Gaussian assumption
needs to be critically assessed.
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• The Hashin-Shtrikman approach takes advantage of the specific
form of the random field and therefore optimally utilizes the
available information. The overall response is in this case, how-
ever, highly dependent on the choice of the reference medium,
for which there is no general rule.
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[1] M. Šejnoha and J. Zeman, Micromechanical analysis of random composites,
vol. 6, CTU Reports, no. 1, Czech Technical University in Prague, 2002,
132 pp.

[2] J. Zeman, Analysis of composite materials with random microstructure, vol. 7,
CTU Reports, no. 5, Czech Technical University in Prague, 2003, 177 pp.

ISI Web of Science journal publications (2007–2008)
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