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Summary: This paper is devoted to the topic of mathematical modelling
and numerical simulation of the interaction of two dimensional incompress-
ible viscous flow and a vibrating structure. A solid airfoil with two degrees
of freedom is considered. The numerical simulation consists of the finite el-
ement solution of the Navier-Stokes equations coupled with the system of
ordinary differential equations describing the airfoil motion. The time de-
pendent computational domain and a moving grid are taken into account
with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation of the
Navier-Stokes equations. High Reynolds numbers up to 106 require the ap-
plication of a suitable stabilization of the finite element discretization. Here,
the modified Galerkin Least-Squares stabilization is applied and modified
within the context of ALE formulation of Navier-Stokes system of equations.
The fluid model is coupled with the nonlinear structure model for the solid
airfoil. The method is applied on several technical problems.
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Souhrn: Tato práce se zabývá modelováńım a numerickou simulaćı interakce
nestlačitelné vazké tekutiny a struktury. Je uvažován model tuhého leteckého
nosńıku se dvěmi stupni volnosti. Numerická simulace se sestává z aproxi-
mace Navierových-Stokesových rovnic pomoćı metody konečných prvk̊u spo-
jeného se systémem diferenciálńıch rovnic popisuj́ıćı pohyb nosńıku. Problém
časově proměnné oblasti je řešen pomoćı Arbitrary Lagrangian-Eulerian (ALE)
formulace Navierových-Stokesových rovnic. Vysoká Reynoldsova č́ısla (až
106) vyžaduj́ı aplikaci vhodné metody stabilizace. Zde je použita modifiko-
vaná Galerkinova Least-Squares metoda stabilizace a použita na ALE formu-
laci Navierových-Stokesových rovnic. Model tekutiny je spojen s nelineárńım
modelem popisuj́ıćım pohyb leteckého nosńıku. Výsledná metoda je použita
na vybrané technické problémy.
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1 Introduction

The interaction of fluid flow and an elastic structure plays an important role
in many technical disciplines - airplane industry (e.g., wings deformations),
blade machines (turbines, compressors, pumps), civil engineering (stability of
bridges), etc. The interaction between moving fluids and vibrating structures
is usually studied [see, e.g., [4], [11]]. In technical applications typically
only special problems of aeroelasticity or hydroelasticity are solved mainly
limited to linearized models with the consideration of small deformations.
Flutter at large deformations can be studied by analytical methods [9] only
in some special cases. The real situation is usually much more complicated.
It is necessary to consider viscous flow, changes of the flow domain in time,
turbulence effects, nonlinear behaviour of the elastic structure and to solve
simultaneously the evolution systems for the fluid flow and for the oscillating
structure.

This paper focuses on the numerical simulation of aeroelastic problem
of two-dimensional viscous incompressible air flow and an airfoil with two
or three degrees of freedom. The airfoil is considered as a solid flexibly
supported body, allowing vertical and torsional vibrations. Transient motion
of the airfoil before or after the loss of stability is addressed.

The mathematical model of the fluid flow is represented by the system
consisting of the 2-D Navier-Stokes equations and the continuity equation,
equipped with initial conditions and mixed boundary conditions. For ap-
proximation the finite element method is applied, but for the incompressible
flow problem several important obstacles need to be overcome. First, it is
necessary to take into account that the finite element velocity/pressure pair
has to be suitably chosen in order to satisfy the Babuška-Breezi condition,
which guarantees the stability of the scheme – see, e.g., [13] or [14]. Further,
the dominating convection requires the introduction of some stabilization of
the finite element scheme. Here the residual based stabilization is employed,
cf. [6]. Moreover, it is necessary to design carefully the computational mesh,
using adaptive grid refinement in order to allow an accurate resolution of
time oscillating thin boundary layers, wakes and vortices. In our case we
use the anisotropic mesh adaptation technique of [3] for the construction and
adaptive refinement of the mesh.

Due to the motion of the airfoil, the computational domain is time-
dependent. This requires to use techniques working on moving meshes. A
suitable choice is to apply the Arbitrary Lagrangian-Eulerian (ALE) method,
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which is based on the reformulation of the Navier-Stokes equations (12, 10)
using an ALE mapping of the reference configuration onto the current con-
figuration for the time under consideration. The ALE formulation of the
Navier-Stokes equations is coupled with the structural model, describing the
airfoil vibrations.

2 Mathematical model

2.1 ALE method

In order to simulate flow in a moving domain, we employ the Arbitrary
Eulerian-Lagrangian (ALE) method, based on an ALE mapping

At : Ω0 → Ωt, ξ 7→ x(ξ, t) = At(ξ), (2.1)

of the reference configuration Ωref = Ω0 onto the current configuration Ωt.
Any function f = f(x, t) defined for and t ∈ I and x ∈ Ωt can be

transformed on the original configuration Ω0. The transformed function will
be denoted by f̂ = f̂(ξ, t) defined for any t ∈ I and ξ ∈ Ω0 by equation

f̂(ξ, t) = f(At(ξ), t). (2.2)

Further, by the time derivative of the ALE mapping At we get the domain
velocity wD = wD(x, t) defined for any t ∈ J and x ∈ Ωt, i.e.

wD(x, t) =
∂At(ξ)

∂t
, where x = At(ξ). (2.3)

Further, the time derivative with the respect to the reference configuration
Ω0 is called the ALE derivative DA/Dt, i.e.

DAf

Dt
(x, t) =

∂f̂

∂t
(ξ, t), x = At(ξ),

where functions f̂ and f satisfy equation (2.2). The ALE derivative and the
time derivative are related by

DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t), (2.4)

where wD is the domain velocity defined by (2.3).
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2.2 Fluid model

In the domain Ωt we consider the Navier-Stokes system written in the ALE
form, cf. [12]:

DA

Dt
v + [(v − wD) · ∇]v + ∇p − ν△v = 0, (2.5)

∇ · v = 0, (2.6)

where v is the fluid velocity, p is the kinematice pressure, and ν is the kine-
matic viscosity. To equation (2.5) we add the initial condition

v(x, 0) = v0, x ∈ Ω0, (2.7)

and boundary conditions

(a) v|ΓD
= vD, (b) v|ΓWt

= wD|ΓWt
, (2.8)

(c) −(p − pref)n + ν
∂v

∂n
= 0 on ΓO.

Here n is the unit outer normal to the boundary ∂Ωt of the domain Ωt,
ΓD represents the inlet (and, possibly, fixed impermeable walls), ΓO is the
outlet and ΓWt is the boundary of the airfoil at time t. Condition (2.8b)
represents the assumption that the fluid adheres to the airfoil. We denote by
pref a prescribed reference outlet pressure. The choice of a suitable boundary
condition on the outlet is a delicate question. In order to allow a good
resolution of a wake propagation through the outlet, we use here the “soft”
boundary condition (2.8c).

2.3 Structure model

A solid flexibly supported airfoil is shown in Figur 2.1. The airfoil can be
vertically displaced and rotated. The nonlinear equations of motion of the
airfoil reads (see [5])

m ḧ + Sα α̈ cos α − Sα α̇2 sin α + khh h = −L(t), (2.9)

Sα ḧ cos α + Iαα̈ + kαα α = M(t).

In order to evaluate the aerodynamical forces one needs to start with the
definition of the airfoil boundary ΓWt (the airfoil boundary moves in time).
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Figure 2.1: The elastic support of the airfoil on translational and rotational

springs.

Then, the aerodynamical lift force L acting in the vertical direction, and
the torsional moment M are defined by

L = − l

∫

ΓWt

2∑

j=1

τ2jnj dS, M = l

∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (2.10)

where

τij = ρ

[
−pδij + ν

(
∂vi

∂xj

+
∂vj

∂xi

)]
, (2.11)

rort
1 = −(x2 − xEO2), rort

2 = x1 − xEO1,

and xEO = (xEO1, xEO2) is the position of the elastic axis (lying in the interior
of the airfoil).

3 Numerical approximation

3.1 Time discretization

We consider a partition 0 = t0 < t1 < · · · < T, tk = kτ , with a time step
τ > 0, of the time interval [0, T ] and approximate the solution v(·, tn) and
p(·, tn) (defined in Ωtn) at time tn by vn and pn, respectively. For the time
discretization we employ a second-order two-step scheme using the computed
approximate solution vn−1 in Ωtn−1

and vn in Ωtn for the calculation of vn+1

in the domain Ωtn+1
= Ωn+1.
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Then, on each time level tn+1, the second-order two-step ALE time dis-
cretization yields the problem of finding unknown functions vn+1 : Ωtn+1

→
R2 and pn+1 : Ωtn+1

→ R satisfying the equations

3vn+1 − 4v̂n + v̂n−1

2τ
+

(
(vn+1 − wn+1

D ) · ∇
)
vn+1 − ν∆vn+1 + ∇pn+1 = 0,

divvn+1 = 0, (3.1)

in Ωtn+1
, and the boundary conditions (2.8).

3.2 Weak formulation

We define for a fixed time t = tn+1 the finite element velocity spaces W,X
by

W = H1(Ωtn+1
), X =

{
z ∈ W : z = 0 on ΓD ∪ ΓWtn+1

,
}

,

and the pressure space
Q = L2(Ωtn+1

).

We approximate the ALE velocity wD(tn+1) by wn+1

D and set v̂i = vi ◦Ati ◦
A−1

tn+1
. The vector-valued functions v̂i are defined in the domain Ωtn+1

.
The weak formulation of the time discretized problem then reads:

Problem 3.1. Find U = (v, p) such that satisfies

a(U ; U, V ) = f(V ), for all V = (z, q) ∈ X ×Q, (3.2)

and conditions (2.8a,b). The forms are defined for U = (v, p), V = (z, q),
U∗ = (v∗, p) by

a(U∗; U, V ) =

(
3v

2τ
, z

)

Ωn+1

+

∫

Ωn+1

((v∗ − wn+1

D ) · ∇)v · z dx +

+ν (∇v,∇z)
Ωn+1

− (p, div z)
Ωn+1

+ (div v, q)
Ωn+1

,(3.3)

f(V ) =

∫

Ωn+1

4v̂n − v̂n−1

2τ
· z dx −

∫

Γout

prefz · n dS.
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3.3 Space discretization

In order to apply the Galerkin FEM, we approximate the spaces W, X, Q
from the weak formulation by finite dimensional subspaces W△, X△, Q△, △ ∈
(0,△0), △0 > 0, X△ = {v△ ∈ W△;v△|ΓD∩ΓWt

= 0}. The couple (X△,Q△) of
the finite element spaces should satisfy the Babuška–Brezzi (BB) condition
[see, e.g., [7], [8] or [17]]. In practical computations we assume that the
domain Ωn+1 is a polygonal approximation of the region occupied by the fluid
at time tn+1 and the spaces W△, X△, Q△ are defined over a triangulation T△

of the domain Ωn+1, formed by a finite number of closed triangles K ∈ T△.
We use the standard assumptions on the system of triangulation. Here △

denotes the size of the mesh T△. The spaces W△, X△ and Q△ are formed
by piecewise polynomial functions. In our computations, the well-known
Taylor-Hood P2/P1 conforming elements are used for the velocity/pressure
approximation: The approximate solutions of the time-discretized problem
(3.1) will be sought in the spaces X△ and W△ defined by

H△ = {v ∈ C(Ωn+1); v|K ∈ Pk+1(K) for each K ∈ T△},

W△ = [H△]d , X△ = W△ ∩ X, (3.4)

Q△ = {v ∈ C(Ωn+1); v|K ∈ Pk(K) for each K ∈ T△}.

Further, the dominating convection requires to introduce some stabiliza-
tion of the finite element scheme, as, e.g. upwinding or streamline-diffusion
method. Here, the modified Galerkin-Least Squares stabilization method is
applied, cf. ([6]). We start with the definition of the local element reziduals:
the local element rezidual terms Ra

K and R
f
K are defined in the interior of the

element K ∈ T△ by

Ra

K(w̃;v, p) =
3v

2∆t
− ν△v +

(
wn+1 · ∇

)
v + ∇p,

R
f
K(v̂n, v̂n−1) =

1

2∆t
(4v̂n − v̂n−1).

The stabilization terms are defined as

L(U∗

△
; U△, V△) =

∑

K∈T△

δK

(
Ra

K(w̃;v, p),
(
wn+1 · ∇

)
z + ∇q

)

K
,

F(V△) =
∑

K∈T△

δK

(
R

f
K(v̂n, v̂n−1),

(
wn+1 · ∇

)
z + ∇q

)

K
, (3.5)
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where the function wn+1 stands for the transport velocity, i.e. wn+1 = v∗ −
wn+1

D . Moreover, the additional grad-div stabilization

P△(U, V ) =
∑

K∈T△

τK(div v, div z)K , (3.6)

is introduced with suitably chosen parameters τK ≥ 0. The choice of the
parameters δK and τK is carried out according to [6] or [15]:

δK = δ∗h2
K , τK = τ ∗, (3.7)

where τ ∗ > 0 and δ∗ > 0 are fixed constants.

Problem 3.2 (SUPG stabilized discrete problem). The SUPG stabilized

discrete problem reads: Find U△ = (v△, p△) ∈ W△×Q△ such that z△ satisfies
approximately conditions (2.8), a), c) and

a(U△; U△, V△) + LSUPG(U△; U△, V△) + P△(U△, V△) = f(V△) + FSUPG(V△)

for all V△ = (z△, q△) ∈ X△ ×Q△. (3.8)

4 Numerical Results

4.1 Dynamic effects

First, the comparison of the computed pressure coefficients for the NACA
0012 profile with theoretical and experimental results from [16] and [1] is
shown. The chord of the airfoil is c = 0.1122 m, the prescribed oscillations are
defined by α = α0 sin(2πt/f), the frequency f = 30 Hz, the far-field velocity
U∞ = 136 m/s and the elastic axis is located at 25% of the chord measured
from the leading edge. In Figures 4.1 – 4.1, we present the distribution of
the mean value of the pressure coefficient cp, its real part c′p and imaginary
part c′′p in dependence on the length of the chord measured from the leading
edge for α0 = 1◦.

4.2 Stall flutter simulations

Further, numerical simulation of flow past the NACA0012 profile with a
prescribed vibration around the elastic axis was carried out. The profile
rotation was considered according to the formula α = 10(1 + sin(2πt/f))
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Figure 4.1: The mean value of the pressure coefficient cp, real part c′p and imagi-

nary part c′′p.

with frequency f = U∞/(2πc), where c is the airfoil chord and the Reynolds
number Re = 5 × 103. This type of process was examined experimentally
and the results are contained in [11, Section 7.3.2]. In Figures 4.2 – 4.2 we
present flow patterns, which we computed for several angles of attack. The
agreement with experimental results from [11] is very good.

4.3 Aeroelastic computations

Predominant Eigenfrequency Critical flow Instability Flutter

mode shape for U∞ = 0 velocity U∞ type frequency

Translation f1 = 5.537 Hz 37.7 m s−1 Divergence 0 Hz

Rotation f2 = 13.98 Hz 42.4 m s−1 Flutter 8.93 Hz

Table 1: The results obtained by NASTRAN code for the aeroelastic case.

Further, the aeroelastic simulations were performed for the airfoil NACA
632 − 415. The following quantities are considered: m = 0.086622 kg, Sα =
−0.000779673 kg m, Iα = 0.000487291 kg m2, khh = 105.109 N/m, kαα =
3.695582 N m/rad, l = 0.05 m, c = 0.3 m, ρ = 1.225 kg/m3, ν = 1.5 ·
10−5 m/s2. The position of the elastic axis EO and the centre of gravity T of
the airfoil measured along the chord from the leading edge are xT = 0.37c =
0.111 m and xEO = 0.4c = 0.12 m, respectively.

The simulation of fluid-structure interaction as a function of time is shown
in Figures 4.3- 4.6. The left and right panels show the angle of rotation α
and the vertical displacement h, respectively.

14



α = 10.86◦ α = 18.34◦

α = 20◦ α = 19.46◦

α = 12.05◦ α = 7.74◦

Figure 4.2: Streamlines of the flow around a moving airfoil for an angle of attack.

For lower velocities the vibrations die out in time and the system is stable.
For flow velocities higher than 32 m/s, one can observe the influence of
vortices separating from the airfoil. For U∞ ≥ 40 m/s we get an unstable
behaviour with large airfoil displacements.

In [2], the NASTRAN flutter analysis carried out with the aid of the
strip model for the fluid flow is presented. The NASTRAN calculations
are summarized in Table 1. According to this table the critical velocities
are U∞ = 37.7 m/s for divergence and U∞ = 42.4 m/s for flutter, which
correspond to our results.

5 Conclusion

The robust finite element method (FEM) for the numerical simulation of
interaction of incompressible flow and a vibrating airfoil is presented. It is
based on the combination of several techniques: the Arbitrary Lagrangian-
Eulerian (ALE) formulation of the laminar Navier-Stokes equations, suitable
time discretization, the finite element method using velocity/pressure finite
element pairs satisfying the Babuška–Brezzi condition, stabilization of the
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Figure 4.3: Divergence type instability. System response for U∞ = 2 m/s,
U∞ = 8 m/s, U∞ = 14 m/s and U∞ = 20 m/s m/s (respectively from the
top to the bottom).

finite element scheme, linearization of the discrete nonlinear problem, a fast
linear solver, the numerical scheme for the solution of ordinary differential
equations describing the vibrations of the airfoil and sufficiently accurate
method for the evaluation of fluid dynamical forces acting on the airfoil.
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Czech), 2002.

[3] V. Doleǰśı. Anisotropic mesh adaptation technique for viscous flow sim-
ulation. East-West Journal of Numerical Mathematics, 9:1–24, 2001.

[4] E. H. Dowell. A Modern Course in Aeroelasticity. Kluwer Academic
Publishers, Dodrecht, 1995.
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[15] P. Sváček and M. Feistauer. Application of a Stabilized FEM to Prob-
lems of Aeroelasticity. In Numerical Mathematics and Advanced Appli-
cation, pages 796–805, Berlin, 2004. Springer.

[16] H. Triebstein. Steady and unsteady transonic pressure distributions on
naca 0012. Journal of Aircraft, 23:213–219, 1986.

[17] R. Verfürth. Error estimates for mixed finite element approximation of
the Stokes equations. R.A.I.R.O. Analyse numérique/Numerical analy-
sis, 18:175–182, 1984.

19



RNDr. Petr Sváček, PhD.
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