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Summary

Factor and suffix automata accept all factors and suffixes, respectively, of a given text T

for which they are built. These automata allow us to find whether a given pattern P is
located in text T in time linear with the length of pattern P . The automata represent
a complete index of text T therefore they are called indexing automata. There are
many other tasks over the indexing automata. There are also other data structures for
indexing the text like suffix trie, suffix tree, and suffix array. However, suffix and factor
automata are more memory efficient than suffix trie and suffix tree and they allow faster
searching than suffix array. We present survey of indexing structures as well as efficient
implementations of factor automata.
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Souhrn

Faktorové a sufixové automaty přijímají všechny faktory (podřetězce) a sufixy (přípony)
textu T , pro který jsou vytvořeny. Tyto automaty nám umožní zjistit, zda daný vzorek
P je obsažen v textu T v čase lineárním k délce vzorku. Tyto automaty vytváří tzv. kom-
pletní index textu T , a tak jsou nazývány indexujícími automaty. Existuje mnoho úloh,
které indexující automaty řeší. Dále existuje mnoho dalších datových struktur pro úplné
indexování textu jako suffix trie, suffix tree a suffix array. Nicméně faktorové a sufixové
automaty jsou paměťově méně náročné než suffix trie a suffix tree. V této přednášce
představujeme přehled indexovacích struktur a efektivních implementací faktorových au-
tomatů.
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1 Introduction

The amount of information to be processed by computers is increasing in extremely
rapid speed. Together with the grow of amount of information the need for efficiency of
information processing, storing (compressing), sorting and searching is more and more
important. The best developed area is a processing of structured data. The structured
data can be easily stored in relational databases. The query language, storage and
concurrent access is already very efficient. Besides this strictly structured data including
XML databases (with query languages like XPath) the importance of Internet grows
where data are presented in HTML form. Here, the basic elements are individual words
that compose sentences, paragraphs and pages. One of the companies processing such
data is Google who announced in 2006 that it already processed more than 25 × 109

pages.
Unstructured data is another class of information that is needed to be searched in.

A typical representative is DNA sequence which is composed of four elements called
nucleotides (Adenine, Cytosine, Guanine, and Thymine). DNA sequence is completely
unstructured text which is very long. For example Escherichia Coli, which is a bacterium
commonly found in the lower intestine of warm-blooded animals, has about 4 × 106 nu-
cleotides. On the other hand the human genome has about 3×109 nucleotides. Searching
for some pattern in a statistically relevant collection of human genomes is a complicated
task. It is not possible to read all DNA sequences and search for the pattern. We have
to preprocess the DNAs first.
This lecture focuses on structures called factor automata which store the information

in a space efficient form. Although the number of all factors (substrings) in a text
T = t1t2 . . . tn (of length n) is n2 the resulting factor automaton is linear with n. Moreover
it allows to search for the pattern P = p1p2 . . . pm (of length m) in the time linear to
the length m of pattern regardless the size n of the text. This is very important since in
biology the pattern size is usually dozens of nucleotides.
Automata for indexing text are discussed below and their relation is presented in

Fig. 1. Suffix trie [Fre60, UW93] is a basic deterministic finite automaton with a tree
structure where each substring is represented by a state (a leaf or an internal node in
the transition diagram) in the tree. Some states are called final states. The path from
the initial state (root node) to a final state then spells the suffix represented by the final
state. Each transition is labelled by exactly one symbol. We distinguish two operations
on the suffix trie: compaction and minimization.
The compaction is a process replacing each non-branching path by a transition labelled

by a string spelling the path while all final states must be preserved. When we apply
operation compaction to the suffix trie we get the suffix tree [Wei73, McC76, Ukk95] as
shown in Fig. 1. Since no final state can disappear due to compaction, the suffix tree in
Fig. 1 contains two internal states and not only one.
The minimization is the standard minimization of number of states of finite automa-

ton. When we apply the minimization to the suffix trie we get the suffix automaton (also
called DAWG, Directed Acyclic Word Graph) [BBE+85, Cro86]. Further compaction
leads then to the compact suffix automaton (also called CDAWG, Compact DAWG)
[BBE+85, BBE+87, CV97b], which has less states and transitions labeled by strings.
The compact suffix automaton can also be constructed by minimization of the suffix tree.
Direct constructions, avoiding a preliminary suffix automaton construction, has been de-
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Figure 1: Relation among suffix trie, suffix tree, suffix automaton, and compact suffix
automaton (T = baaba)

signed in [CV97b] and [IHS+01]. See the difference between suffix and factor automaotn
in Fig. 2.
The suffix automaton of text T recognizes all suffixes and factors of T . On the other

hand the factor automaton of text T is able to recognize only all factors of T . Since the
suffix automaton is easier to build and it is not much larger than the corresponding factor
automaton, the suffix automaton is usually used instead of the factor automaton. Well
known notion DAWG (resp. CDAWG) does not distinguish between factor automaton
and suffix automaton (resp. compact factor automaton and compact suffix automaton).
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Figure 2: Factor automaton versus suffix automaton (T = aabab)

In this lecture we describe our implementation of compact suffix automaton and
compare it with other similar structures allowing fast pattern searching. While previous
implementations of compact suffix automata required from 7n to 23n bytes of memory
space [Kur99], we show that ours achieves 1.7n to 5n bytes for a text T of length n.
This proves that the implementation is suitable for large data files, since it minimizes the
number of disk accesses.
We also would like to mention a basic non-automata-based data structure for indexing

text. It is very popular structure called suffix array. It is an array of pointers to all
suffixes of T sorted lexicographically. Each pointer references the first symbol of the
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corresponding suffix in T . The structure is popular among programmers, because it is
simple to construct and it performs fast string matching algorithm. The basic binary
search takes O(m log n) comparisons. Using some additional information the complexity
can be decreased to O(m + log n).

2 Factor Automata

Let Σ be a nonempty input alphabet, Σ∗ be the set of all strings (words) over Σ, ε be the
empty string, and Σ+ = Σ∗ \ {ε}. If w ∈ Σ∗, then |w| denotes the length of w (|ε| = 0).
If a ∈ Σ, then a = Σ \ {a} denotes a complement of a over Σ. If w = xyz, x, y, z ∈ Σ∗,
then x, y, z are factors (substrings) of w, moreover, x is a prefix of w and z is a suffix
of w.
Deterministic finite automaton (DFA) is a quintuple (Q, Σ, δ, q0, F ), where Q is a

set of states, Σ is a set of input symbols, δ is a partial mapping (transition function)
Q×Σ 7→ Q, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. We extend δ to
a function δ̂ mapping Q × Σ+ 7→ Q. DFA with complete mapping δ is called complete,
otherwise it is called incomplete. Terminal state denotes a state q ∈ Q that has no
outgoing transition (i.e., ∀a ∈ Σ, δ(q, a) = ∅ or using δ̂: ∀u ∈ Σ+, δ̂(q, u) = ∅).
The suffix automaton of a text T is defined [CH97] as the minimal DFA (not neces-

sarily complete) that recognizes the (finite) set of suffixes of T and the factor automaton
of a text T is defined as the minimal DFA that recognizes the (finite) set of factors of T .
The suffix automaton of a text T recognizes word w as a suffix of T if both of the

following conditions hold:

1. it reads whole word w (i.e., δ̂(q0, w) = q, q ∈ Q),

2. it finishes in a final state (i.e., δ̂(q0, w) = q, q ∈ F ).

If only the first condition holds, then w is recognized as a factor of T .
On the other hand the factor automaton has all states final so it recognizes word w

as a factor of T if it reads whole word w.
The number of states of the suffix automaton of text T ranges from |T |+1 to 2|T |−1

[CH97] while the number of states of the factor automaton of text T ranges from |T |+ 1
to 2|T | − 2 [CH97].
As one can see the suffix automaton covers the functionality of the factor automaton

while it is not much larger. Therefore in practice the suffix automata are used instead of
the factor automata since they are easier to build.
Both the factor automaton and the suffix automaton with all states set to final will

be considered as factor automaton (the minimality condition is relaxed) further in the
text.

3 Application of Factor Automata

The basic task for the factor automaton of text T is to decide if pattern P is located in
text T (i.e., if P is a factor of T ). In addition it can report the number of occurrences
and their positions.
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The factor automaton is also used in backward exact string matching—Backward
DAWG Matching algorithm (BDM) [CR94]—where it is build for reversed pattern. Its
nondeterministic version is also used for fast backward exact string matching—Backward
Nondeterministic DAWG Matching (BNDM) [NR00].
The factor automaton can be used also for approximate pattern matching where we

allow some errors in each occurrence as shown in [HM00]. The number and nature of
errors is given by Hamming distance [Ham50], Levenshtein distance [Lev65], or Damerau
distance [Dam64]. In this case we build an approximate pattern matching automaton
M(P ) and perform intersection between M(P ) and the factor automaton of text T . If
we reach the final state, the approximate pattern was found.
The factor automaton can also be used for findings exact and approximate repeats as

shown in [Mel04]. However, for approximate repeats it has to be build with respect to
the edit distance used.

4 Implementation

The algorithm at the origin of our implementation of compact suffix automaton processes
in two steps: first, we construct the compact suffix automaton as described in [CV97a]
and we sort states according to their topological order; then, we classify the states into
three classes according to their maximum length of incoming transition label (maxLen)
and we add fourth class for the terminal state qT , from which no transition leads:

• Class I (QI): the initial state q0 and the states with maxLen = 1,

• Class II (QII): the states with 1 < maxLen ≤ Limit ,

• Class III (QIII): the states with maxLen > Limit ,

• Class IV (QIV): the terminal state qT (no transition leads from qT ).

(isFinal)

Label
′Class II.

(EndPos)

List of outgoing transitions

Class I.

(isFinal)

EndPosClass III.

(isFinal)

Length of Label
′

(EndPos)

List of outgoing transitions

List of outgoing transitions

Figure 3: Representation of nodes

The typical distribution of states according to maxLen is shown in Table 1. As we
can see the most of the labels are very short. That is the reason, why we have decided to
create Classes. The most frequent Class I occupies the smallest part of memory. For each
state with maxLen > 1, a parameter Limit distinguishes what implementation (either
Class II or III) is more space-efficient.
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maxLen 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · ·
no. of states 2546 464 231 142 86 57 40 27 25 16 5 3 11 6 3 1 2 0 2 1 0 · · ·

Table 1: Distribution of states according to their maxLen in Calgary Corpus file paper4.
The maximum maxLen for file paper4 is 28.

The structure of information stored for each Class is shown in Fig. 3. For states
QI we store just outgoing transitions. For states QII and QIII we have to store also
incoming transition label. While in Class II we store the whole label (label1, the longest
of all incoming transition labels), in Class III we store only a pointer to the source text
(EndPos). The terminal state (the state in QIV) is not stored.
We can also store some optional additional data. In Classes I, II, and III we can store

one bit (isFinal) indicating, whether the corresponding state is final or not. Doing so,
the compact suffix automaton recognizes all suffixes and factors of T , otherwise it cannot
distinguish between factors and suffixes of T considering that all states are final. To be
precise, when we store isFinal we implement compact suffix automaton while without
isFinal we should talk about implementation of compact factor automaton even though
it may not be minimal. In Classes I and II we can also store the corresponding position
in text (EndPos). The terminal state is always final and has EndPos = n.
Then we store outgoing transitions as shown in Fig. 4. We store the number (NoTrans)

of outgoing transitions and the string FirstSymbols containing the first symbols of all
outgoing transition labels (string of first symbols—SFS ). Then we store the outgoing
transition records as shown in Fig. 5.

FirstSymbols

NoTrans

Transition Transition· · ·

Figure 4: Representation of list of outgoing transitions

At the beginning of each outgoing transition we store the number of Class of the
destination state. For Classes I, II, and III we store a pointer to the beginning of the
destination state (number of bits to be skipped to reach the destination state). For
Classes II, III, and IV we store also the length of outgoing transition label (Len − 1).

State Len − 1

State

Len − 1

State

Class of destination state

01

00

10

11

Len − 1

Class II.

Class III.

Class IV.

Class I.

Figure 5: Representation of outgoing transitions

1Actually we store label′ which has the first symbol deleted, since it is already stored.
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We do not store the first symbol of the label since it is already stored in the SFS .
Removing the SFS and storing entire label strings in destination states, could decrease
space requirements, but using the compact suffix automaton and searching for the desired
transition, would force to read from as many parts of the compact suffix automaton data-
file as the number of outgoing transitions. Thus this is likely to require more disk accesses
and would significantly increase the resulting searching time.
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Figure 6: Distribution of numbers EndPos (the right scale) and PosInFile (the left scale)
according to their lengths in bits for file bible.

We did an analysis of distribution of integers used in the implementation (pointer
to the source text file EndPos and pointer in the index file PosInFile). Unfortunately
the distribution is unsuitable for any variable length encoding (like Elias, Fibonacci, or
Golomb codes) so we had to use block binary code whose length is specified in the header
of the output bit stream (index file).

5 Results

Kurtz [Kur99] presents implementation experiments on several of indexing structures
(suffix automaton, compact suffix automaton, suffix tree).
There is an implementation of suffix automaton by Balík [Bal98]. His implementation

is focused on minimization of the size of the index file. On the other hand our implemen-
tation focuses on the speed of traversing. Some data are usually stored on several places
in the output bit stream while they are stored only once in his implementation. On the
other hand it increases the number of disc accesses. Moreover, his implementation uses
Huffman encoding for some data.
We made some experiments on Calgary and Canterbury Corpora test files2 [Bel]. The

comparison with other methods is shown in Table 2. A single character in the second

2File ptt5 from Canterbury Corpus and pic from Calgary Corpus are the same.
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file type |Σ| length SA CSA Suff.Tree SA.B CSA.HC1 CSA.HC2

book1 e 81 768771 30.35 15.75 9.83 3.66 4.42 3.78
book2 e 96 610856 29.78 12.71 9.67 3.17 3.67 3.14
paper1 e 95 53161 30.02 12.72 9.82 2.98 3.26 2.72
paper2 e 91 82199 29.85 13.68 9.82 3.06 3.58 3.01
paper3 e 84 46526 30.00 14.40 9.80 3.12 3.62 3.02
paper4 e 80 13286 30.34 14.76 9.91 3.04 3.46 2.82
paper5 e 91 11954 30.00 14.04 9.80 2.97 3.34 2.72
paper6 e 93 38105 30.29 12.80 9.89 2.96 3.27 2.73
alice29 e 74 152089 30.27 14.14 9.84 3.20 3.82 3.23
lcet10 e 84 426754 29.75 12.70 9.66 3.12 3.56 3.03
plrabn12 e 81 481861 29.98 15.13 9.74 3.52 4.15 3.53
bible e 64 4047392 29.28 10.87 7.27 2.94 3.26 2.88
world192 e 94 2473400 27.98 7.87 9.22 2.53 2.43 2.09
bib f 81 111261 28.53 9.94 9.46 2.68 2.68 2.24
news f 98 377109 29.48 12.10 9.54 3.15 3.44 2.91
progc f 92 39611 29.73 11.87 9.59 2.87 3.06 2.54
progl f 87 71646 29.96 8.71 10.22 2.40 2.39 2.03
progp f 89 49379 30.21 8.28 10.31 2.35 2.28 1.92
trans f 99 93695 30.47 6.69 10.49 2.35 1.95 1.66
fields.c f 90 11150 29.86 9.40 9.78 2.43 2.39 1.96
cp.html f 86 24603 29.04 10.44 9.34 2.64 2.58 2.12
grammar f 76 3721 29.96 10.60 10.14 2.36 2.44 1.97
xargs f 74 4227 30.02 13.10 9.63 2.75 2.99 2.40
asyoulik f 68 125179 29.97 14.93 9.77 3.34 3.84 3.23
geo b 256 102400 26.97 13.10 7.49 3.18 2.66 1.92
obj1 b 256 21504 27.51 13.20 7.69 2.98 2.39 1.67
obj2 b 256 246814 27.22 8.66 9.30 2.67 1.96 1.51
pic b 159 513216 27.86 8.08 8.94 1.63 2.17 1.79
kennedy b 256 1029744 21.18 7.29 4.64 1.57 1.65 1.10
sum b 255 38240 27.79 10.26 8.92 2.53 2.86 2.29
E.coli d 4 4638690 34.01 23.55 12.56 4.46 5.46 5.24

Table 2: Space requirements for suffix data structures applied to files of the Calgary and
Canterbury Corpora (values are in bytes per symbol of text)

column of the table denotes the type of file: e for English text, f for formal text (like
programs), b for binary files (i.e. containing 8-bit symbols), and d for DNA sequences. The
values for SA (suffix automaton, DAWG), CSA (compact suffix automaton, CDAWG),
and Suffix Tree are taken from [Kur99]; SA.B is the implementation of suffix automaton
designed by Balík [Bal98]; finally, CSA.HC1 is our implementation. If we do not care
about the number of disk accesses, we can move symbols from the SFS to the destination
state. The space requirements further decrease as we can see in column CSA.HC2. The
best results are highlighted.

We made also experiments on several other DNA sequences (of size n = 40 kB to
1.5 MB) and the space requirements were about 4.5n (CSA.HC1: 4.21–5.15, CSA.HC2:
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3.99–4.92).
The suffix array takes space 5n according to [MM90].
A further decrease of space requirements can be achieved, if the states are stored at

even addresses or addresses divisible by 4 or 8.

6 Conclusions

In the lecture we presented a survey of text indexing structures based on finite automata.
We have discussed their application and presented an efficient implementation of compact
suffix automaton. The space requirements are much lower than in the previous works
and vary from 1.65 to 5.46 bytes per symbol of input text. The implementation requires
that the source text is stored, so the total space increases by one byte per character, but
other implementations also need the source text. Only [Bal98] can reconstruct the source
text from its implementation of suffix automaton but it takes some time.
The space requirements can be further decreased. For instance we can compress the

labels or we can remove the SFS and store all incoming transition labels in the destination
states (CSA.HC2). However as mentioned above, it would increase the number of disk
accesses. In our implementation we require at most m + 1 disk accesses3 when searching
for a pattern of length m—we traverse at most m + 1 states (including the initial state)
and all outgoing transitions are located with the state. But in case of CSA.HC2, we
would get (mτ + 1) disk accesses, where τ is the average number of outgoing transitions
(related to the size of the alphabet). In such a case we need, for each outgoing transition,
to look at the destination state to find out the transition label.
It was shown how to implement the compact suffix automaton so that it can be used for

large source texts. In such a case we require minimum disk accesses that are in the worst
case (the required data are not in disk cache) 100,000 times slower than memory accesses.
When using compact suffix automaton, we traverse the resulting data-file forward (we do
not go backward). We can also set any size of compact suffix automaton buffer (the part
of compact suffix automaton stored in main memory) and thus control space requirements
when traversing compact suffix automaton.
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