

České vysoké učení technické v Praze
Fakulta jaderná a fyzikálně inženýrská

Czech Technical University in Prague
Faculty of Nuclear Science and Physical Engineering

Ing. Miroslav Virius, CSc.

Fyzikální experiment COMPASS z hlediska informačních
technologií

Physical Experiment COMPASS in terms of the Information
Technology

 2

Summary

COMPASS is an international fixed target experiment in CERN at the SPS accelerator. Its
goal is to study the hadron structure and the hadron spectroscopy by means of the high energy
beams of hadrons and muons.
Heavy use of information technologies is indispensable in any high energy physics
experiment. It is applied not only during late stage of the data processing, but also in the data
acquisition process, control and checking of the devices, producing test data for the purpose
of analytical software debugging and testing, etc. The object oriented approach on one hand
and the efficiency of the final code on the other hand were emphasized during the software
design and development process. The C++ programming language, used for the software
development, was new for many programmers in the time when the software development
started. (Up to middle 90s, Fortran was used in CERN as the main programming language.)
Thus, not only the object oriented programming theory, but also the C++ features leading to
inefficiencies, and innovative optimization methods, such as template metaprogramming,
were investigated to overcome these problems.
General aspects of the COMPASS experiment, as well as author’s contribution will be
discussed in the presentation.

 3

Souhrn

COMPASS je mezinárodní fyzikální experiment s pevným terčem v CERN na urychlovači
SPS. Jeho cílem je studium struktury hadronů a hadronové spektroskopie za pomoci
vysokoenergetických svazků hadronů a mionů.
Jakýkoli experiment v oboru fyziky vysokých energií je nemyslitelný bez rozsáhlého nasazení
informačních technologií. Jedná se nejen o zpracování naměřených dat, ale i o sběr dat a
jejich předzpracování, ovládání a kontrolu přístrojů, získávání testovacích dat pro ladění a
testování analytického softwaru před započetím sběru dat atd. Při návrhu a vývoji softwaru
byl kladen důraz na jedné straně na objektově orientovaný přístup a na straně druhé na
efektivitu vytvořeného kódu. Situaci komplikovala skutečnost, že v době, kdy tvorba softwaru
pro COMPASS začínala, byl pro většiny programátorů jazyk C++, použitý při vývoji
softwaru, nový (do té doby se v CERN používal jako hlavní programovací jazyk Fortran).
Proto jsme se věnovali nejen teorii objektově orientovaného programování, ale i vlastnostem
jazyka C++, které mohou působit ztrátu efektivity, a netradičním optimalizačním technikám,
jako je šablonové metaprogramování.
V prezentaci budou diskutovány jak obecné aspekty experimentu COMPASS, tak i přínos
autora.

 4

Klíčová slova: COMPASS, sběr dat, ROOT, COOOL, objektově

orientované programování, optimalizace, šablonové
metaprogramování, generické konstrukce

Keywords: COMPASS, DAQ, ROOT, COOOL, Object Oriented

Programming, Optimization, Template Metaprogramming,
Genericity

Table of Contents

 5

Table of Contents

Summary .. 2
Souhrn .. 3
Table of Contents ... 5
1. Introduction: The COMPASS Experiment .. 6

1.1 Brief History... 6
1.2 COMPASS aim .. 7
1.3 Information Technologies in COMPASS .. 8

2. COMPASS Data Acquisition System .. 9
2.1 Requirements and conditions ... 9
2.2 DAQ Architecture .. 9
2.3 Data Migration to CDR.. 10
2.4 Data organization ... 11
2.5 COOOL .. 11
2.6 Data Processing .. 11

3. Object Oriented Computing ... 13
3.1 Basics ... 13
3.2 Object Oriented computing in the COMPASS Experiment... 15

4. Migration to C++ – Efficiency Problems... 15
4.1 Sources of C++ inefficiency... 16
4.2 What is not source of inefficiency.. 17

5. Template metaprogramming in C++ as an optimization tool in physics computation 18
5.1 Basics ... 18
5.2 Computational completeness.. 19
5.3 Loop unwinding ... 19

6. Generic programming – the implementation ... 21
6.1 What is generics ... 21
6.2 Main goals of the generics ... 22
Implementation of generics.. 22

References .. 24
Ing. Miroslav Virius, CSc.: Curriculum Vitae ... 25

1. Introduction: The COMPASS Experiment

 6

1. Introduction: The COMPASS Experiment
COMPASS is an international high-energy physics fixed target experim-

ent that runs at the SPS (Super Proton Synchrotron) accelerator at CERN in
Geneva, Switzerland. The main purpose of this experiment is to study the
hadron structure and hadron spectroscopy with high intensity muon and hadron
beams.

The code of this experiment at CERN is NA-58.

1.1 Brief History
This experiment was proposed in 1995, approved conditionally at CERN

in February 1997 and finally approved in September 1998. Technical run started
in 2000, physics run, as well as the data acquisition of this experiment started in
2002. More than 240 scientists from 28 universities and research institutes in 10
countries take part in this experiment now, including the Joint Czech Group.

The proposed setup and the initial setup of the COMPASS experiment are
shown in Fig. 1.

Fig. 1 Proposed and initial setup of the COMPASS experiment [2]

1. Introduction: The COMPASS Experiment

 7

In this figure, the particle beam from the accelerator comes from the left
side and hits the polarized target (PT), that consists of the 6LiD or NH3 (the first
behaves like polarized deuterons, the second like polarized protons). This target
is cooled to the temperature about 50 mK and is embedded into the intense
magnetic field – this allows to achieve and hold the polarization of the nuclei
(deuterons or protons) in the target.

Behind the polarized target follows the line of detectors. Note that the
initial setup did not contain all the proposed detectors – these devices were
constructed and installed later and this process continues up to now.

1.2 The COMPASS aim
 COMPASS was established as a union of two different initially proposed
experiments, so it runs in two basic modes – with muon beam and with hadron
beam [3].

The aim of the COMPASS experiment at CERN is to study in detail how
nucleons and other hadrons are made up from quarks and gluons. At hard scales,
Quantum Chromodynamics (QCD) is well established and the agreement of
experiment and theory is very good. However, in the nonperturbative regime,
despite the wealth of data collected in the previous decades in laboratories
around the world, a fundamental understanding of hadronic structure is still
missing.

The COMPASS Experiment uses muon and hadron beams of very high
intensity from the SPS accelerator at CERN. It investigates the spin structure of
nucleons a hadron spectroscopy. Outgoing particles (one or more) are detected
in coincidence with incoming muons or hadrons.

Large polarized target embedded in a superconducting solenoid is used for
the measurement with muon beam. Outgoing particles are detected by large
angle spectrometer with large momentum range. The apparatus consists of
tracking detectors of different types corresponding to the expected amount of
collisions necessary for the requested spatial and angular resolution. For the
particle identification, the RICH detector (Ring Imaging Cherenkov) is used, as
well as hadron and electromagnetic calorimeters.

One basic feature of the COMPASS experiment is the detection of large
statistical samples of charmed particles. The gluon polarization (∆G)
measurement is based on the measurement of the open charm cross section
asymmetry in deep inelastic scattering of polarized muons on polarized nucleons.
There are predictions of the value of this quantity based on some numeric
calculations and on the QCD models.

The hadron beams enable us to study semileptonic decays of the charmed
and doubly charmed baryons.

1. Introduction: The COMPASS Experiment

 8

Both these measurements enable us to solve the basic problems of the
structure of the hadrons and to examine the computations from the effective
Heavy Quark Effective Theory (HQET).

The setup of the experiment allows to perform the basic physical
measurements with very high precision and sensitivity. This permits to
investigate the exotic states, that are predicted by the QCD, but were not yet
observed.

The setup of the experiment allows to investigate both the longitudinal
and the transverse spin distribution functions. The aims of the experiment may
be summarized as follows:

Muon beam experiments
• Measurement of ∆G/G,
• Measurement of g1,
• Transverse spin effects,
• Flavor decomposition of spin distribution functions,
• Vector meson production,
• Spin transfer in Λ-hyperon production.
Hadron beam experiments
• Pion and kaon polarizability,
• Diffractive production of exotic states,
• Glueball search,
• Light meson spectroscopy,
• Double charmed baryon production.

1.3 Information Technologies in COMPASS
 The main areas, where information technologies in COMPASS apply, are:

• Data acquisition (DAQ),
• Control of several parts of the apparatus,
• Slow control,
• Monte Carlo simulation,
• Data management
• Data analysis.

In this text, we will shortly discuss the DAQ and slow control. The main
part will be devoted to special problems – mainly the optimization – of the
software for the data analysis.

2. COMPASS Data Processing System

 9

2. COMPASS Data Processing System

2.1 COMPASS Data Acquisition System
The COMPASS Data Acquisition system is derived from the DAQ system

of the CERN LHC ALICE experiment.

2.1.1 Requirements and conditions
 The beam that hits the polarized target consists of the so called “spills” of
particles. One spill is random flow of about 2 . 108 particles, which are
approximately uniformly distributed in time interval about 6 seconds long. It is
followed by a pause about 12 seconds long.

Data from the detectors are collected by about 200.000 channels. The total
data amount produced by one event, i.e. by the pass of one particle through the
apparatus, is 40 – 50 KB. The exact value depends on the noise of the apparatus
and on the settings of some triggers.
 The total data amount for one spill is from 900 MB to 18 GB.
 The data must be collected, preprocessed and saved; this is an on-line
process. Next, the data are processed – analyzed; this is done off-line.

2.1.2 DAQ Architecture
The DAQ architecture consists of several layers. The first layer is the

front end, i.e. the electronic equipment of the detectors. The front end converts
analogue data to digital form, and gives it the format expected by the following
layers. Beside this, the front end delays the data according to the distance from
the polarized target to the given detector, so that all the data form one particle
have the same time stamp. This enables to scan the events in this “time
windows”.

The next layer consists of the so called CATCH computers. (For GEMs
and silicon detectors, there is a specialized version GeSiCa.) These computers
are interconnected by the VME high speed bus. The CATCH computers check
the formal consistence of the data and pass them to the next layer.

Serial optical link to the next layer is based on the S-link standard
developed at CERN. This is serial FIFO and connects the CATCH computers to
Read Out Buffer computers (ROBs). ROBs serve as buffers for the collected
data. Data wait in this layer to be taken by the Event Builder layer (EVB).

The EVBs are interconnected with the previous layer by the gigabit
Ethernet network available at CERN. EVBs eliminate unnecessary data and
create files ready for further processing from the correct data. In these files, the
data are composed into events – i.e. in the form describing the pass of single
particles.

2. COMPASS Data Processing System

 10

Fig. 2 DAQ of the COMPASS experiment. [2]

Data are stored in EVBs at least 24 hours. After that, they are transferred

to the Central Data Recording.
Fig. 2 shows the schema of the DAQ system of the COMPASS exper-

iment.

2.3 Data Migration to CDR
Central Data Recording is a tool for the transfer of the raw physical data

from the on-line running DAQ system to the permanent data store. CDR exploits
the CERN network infrastructure. It is based on the CASTOR system, that was
developed at CERN.

Castor runs now on 4 dedicated Linux file servers with RAID; these disks
are organized as an array with 10 file systems.

2. COMPASS Data Processing System

 11

A specialized computer inspects the EVBs twice per hour, selects data
older than 24 hours and transfers them to CDR. Data are stored on magnetic
tapes. At the same time, metadata describing the stored files are generated. The
metadata are stored in the Oracle database system.

2.4 Data organization
Data are stored in the CASTOR system. They are divided into the so

called chunks. A set of the chunks containing data from all the detectors is called
run. A run together with the metadata and data in the log-book (log of the
measurements) contains all the necessary information for the determination of
the conditions (and problems) that occurred during the data taking for that run.

Average size of one chunk is 0.82 GB; average run contains 200 chunks.

2.5 COOOL
The COOOL (COMPASS Object Oriented On-Line) program system is

independent on the DAQ. The COOOL is a system of programs, that takes data
from the CASTOR, or takes them on-line and preprocesses them: It finds data
describing trajectories of single particles, rings indicating some particles in data
from the RICH detectors etc.

COOOL contains the tools for the data visualization, too.
The COOOL is based on the ROOT system, which is an object oriented

programming environment for data analysis written in C++. Some parts of the
COOOL system serve for the graphic output used by the shift crew to check the
examples of the measured data. This allows to check, whether all the apparatus
works in preset bounds.

Output of the COOOL system may be stored to be used later by the
ROOT system.

2.6 Data Processing
We need to extract relevant data from the raw data stored on the CASTOR

system; it follows from the size of the data, that the time necessary for these
computations is a very important criterion. Special analytical program packages,
named CORAL (CORe AnaLysis) and PHAST (PHysics Analysis Software
Tool) are used for this purpose.

Both the program packages need many subsidiary software tools; it is
necessary to preset the environment for the programs, too. This is done by
means of the so called option files. The options in these files may be considered
as a kind of metadata controlling the behavior of the analytical software.

The processing runs on the cluster at CERN. It follows that it is necessary
to balance the load of single computers as uniformly as possible. Nevertheless, it

2. COMPASS Data Processing System

 12

is necessary to be aware which data were already processed and which are still
waiting to be processed.

The cluster provides the mechanism for submitting a job for processing.
The user has no means to access single nodes of the cluster, it is all solved by
means of the cluster software.

We implemented our own mechanism (see Fig. 3) for the control of the
processing.

Fig. 3 Diagram of the data processing

This system has the following properties:
• The system can prepare one file for the processing.
• The system can set the environment of the cluster so that it

 corresponds the needs of the analytic software tools.
• The system can communicate with the cluster.
• The system can submit a job for the processing.
• The system can identify the current state of the job.
• The system is aware of the current state of all the computations
• The system can show the summary of the current sate of the system

 it the form of the tables and graphs.
• The system can properly respond to the errors of the system (data
 storage is not available, the processing is interrupted for reasons of
 the breakdown of the computing node, there is an error in the
 analytical software, etc.)
• The system can process partial results of single jobs so that they are

 stored in the form suitable for the physicist that will evaluate them.

2. COMPASS Data Processing System

 13

The system detects non standard behavior of the job, and in the case of an
error during the processing, it tries to recover (it prepares the job once again and
resubmits it) or it informs the administrator by an e-mail.

3. Object Oriented Computing
The IT division of CERN decided to stop supporting the Fortran

programming language, which had been used as the main programming
language for the scientific computation, in the middle of 1990s. It was replaced
by the C++ language. Special program libraries, such as the GEANT simulation
library, had to be translated to the C++ language.

Some problems emerged:
• Object oriented computing, which is the most prevailing

programming paradigm now, was new in the 90’s for many
programmers.

• The C++ programming language contains some constructs, that
appear to be relatively ineffective under some circumstances. It was
necessary to analyze the language and to find those ineffective
constructs, that may appear in the analytical software.

• In cross check computation, some new optimization techniques
 were tested. This is the case of the so called template
metaprogrammig.

• The differences of the C and C++ languages may be confusing in
 some context. Analysis of the relation of the C++ standard (issued
 in 1998) and the new C standard (issued in 1999) was necessary.

3.1 Basics
Object oriented programming (OOP) is a methodology for the analysis of

the requirements imposed on the software to be developed and for the
development process. It is prevailing methodology now.

Object oriented program consists of the program constructs called objects,
that cooperate by sending messages to each other, and of course they respond to
these messages. The OOP is based on four basic concepts in the simplest form –
the class, the encapsulation, the inheritance and the polymorphism.

The class is the same as an object data type. It is a data type describing
some class of concepts from the problem domain – it serves as a program model
of this concept. Of course this model reflects only the aspects of the concept that
are important for the solution of the problem.

An instance of the class is an object in object oriented program.
The class is given by

3. Object Oriented Computing

 14

• the data representation (data components of the separate instances
and data of the class, i.e. data shared by all the instances), and

• the operations that may be performed with single instances or with
the class as a whole – the methods.

The encapsulation is the hiding of the implementation and the separation
of the interface and the implementation. No class should publish (present to
other parts of program) more parts of the implementation than necessary for the
use of it in the program.

Note that the encapsulation concept is not new in OOP; this principle was
first formulated in the modular programming in early 60s. In the context of the
modular programming, the encapsulation is applied to the module; in the context
of the OOP, it is applied to the class.

The object oriented programming languages contain many tools that
support – or even enforce – the encapsulation on the syntactic level. This
enables to transform the encapsulation violations – i.e. the possible errors of the
program design – into syntactic errors, that may be found by the compiler.

The inheritance is a tool that allows us to derive a new object type form
an existing one (the so called base type). The derived type inherits all the
properties of the base type – i.e. it has all the data components and all the
methods. The programmer can add new methods and data components; he may
override existing method (define new implementation of it). He may not remove
any method or data component.

The derived class is always a subclass (specialization) of the base class. It
describes more special concept than the base class.

The concept of polymorphism represents the possibility to deal with
different instances of different classes in the same way. It means that we can
send the same message to a group of instances of different classes and all the
instances will accept it and any of them will process it in its own way.

In the most common programming languages, such as C++, the
polymorphism is achieved through the inheritance. Newer programming
languages, as Java or C#, use the implementation of the interfaces as another
way to achieve the polymorphism.

Object oriented analysis uses the Unified Modeling Language (UML).
This is the set of rules for the creation of diagrams describing different aspects
of the solved problem and designed program. Here are some most common
UML diagrams:

• The class diagram describes the classes in the solved problem and
 the relations (inheritance, composition, association etc.) of these
 classes.
• The object diagram describes the objects (i.e. the instances of the

classes) in the solved problem and their relations.

3. Object Oriented Computing

 15

• The activity diagram describes the activities of the objects in the
solved problem. It may be used for the description of the algorithms.

• The use case diagram describes ways the described system is used.
• The state diagram describes the states of the system or of its parts

and the possible transitions between these states.
• The deployment diagram describes the deployment of the applicat-

ion, i.e. the placement of different components of the application on
different computers of the target system.

3.2 Object Oriented computing in the COMPASS Experiment
The Joint Czech Group in the COMPASS experiment participated in the

preparation of this experiment since the beginning, even though at the start it
was under the flag of JINR (Dubna). One very important part of the preparation
was the development of the analytical software. In this stage, it was necessary to
decide, what parts of the software will be developed from scratch, what third
party software will be customized (this were usually programs used by previous
or running experiments – this is the case e.g. of the DAQ system), etc.

One the first task was the program model of the prepared experiment
COMPASS based on the Monte Carlo Method. This model served

• to examine some alternatives in the experiment setup, and
• to get test data for the debugging of the analytical software that was

developed.
The program model of the apparatus consisted of the models of its parts.

Some of its basic components were e.g.
• the particle class, describing an abstract particle,
• the target class, describing the polarized target,
• the detector class, describing an abstract detector.
The abstract classes, like detector and particle, served as base classes for

the so called instance classes describing concrete detectors and particles.
Similar models were used in other software pieces developed for the

control of the apparatus etc.
I participated on the design of this model and used its basic parts in [3].

Of course, the [3] does not contain the whole model, but only some selected
parts of it.

4. Migration to C++ – Efficiency Problems
Owing to the amount of the data, that should be processed, the efficiency

of the analytical software is crucial. The migration of the programmers from
Fortran to C++ brought some unexpected problems in this area. The C++
programming language contains some constructs, where “no code is written, but

4. Migration to C++ – Efficiency Problems

 16

the compiler generates some”. The first analysis of this language was aimed to
this “secret code” and to the ways how to avoid it. The result was published in
[4].

Three basic levels of program optimization are usually distinguished:
• The algorithmic level. This is the topmost level optimization and is

of course the most important. This is done solely by a programmer; a good
example is the choice between the bubblesort algorithm, which has the O(n2)
complexity, and the quicksort algorithm with complexity O(n.log2n).

• The second level is performed by the compiler in cooperation with
the programmer: The programmer indicates to the compiler, what optimization it
could do. A good example of this level of optimization is the inline modifier in
the function declaration or the register modifier in the local variable declaration.
The effect of the optimization on this level is usually less than the effect of the
algorithmic optimization.

• The third level is performed solely by the compiler, sometimes even
in the case when the programmer disables all the optimizations. This
optimization consists of the common subexpression elimination or the
substitution of one instruction by another, which produces the same result, but
faster. The results of this level optimization is usually negligible in comparison
with the other two levels.

4.1 Sources of C++ inefficiency
Optimizations based on the result of the C++ inefficiencies analysis is

usually on the second level, even though there are examples, when it may
change the order of the complexity of the algorithm.

The following main sources of the inefficiencies in the regular C++ code
were found:

• automatic conversions using the conversion constructor,
• automatic conversions using the conversion operator defined by the

programmer,
• automatic constructor and destructor call,
• superfluous use of named local variables.
In the first three points, the programmer will not notice the potential

inefficiency, because he or she does not write any code; the code is generated
by the compiler.

The automatic conversions in first two points may lead to the creation of
temporary variables of object types. This produces additional constructor and
destructor calls; under some circumstances, it may cause even the use of an
algorithm with worse complexity.

To the last point: The compiler can optimize out anonymous temporary
variables. It is allowed to replace the creation of the temporary variable

4. Migration to C++ – Efficiency Problems

 17

containing the return value of a function and the process of copying it to the
destination address by direct creation of the result in the destination address (this
is the so called return value optimization). On the other hand, the compiler is not
allowed to remove (“optimize out”) any named local variable during the
optimization process.

4.2 What is not source of inefficiency
The programmers often believe that OOP as a whole is inefficient. The

same delusion about the operator overloading is quite common.
Analysis of the disassembled code of OOP programs in C++ shows that

this is not the case.
An object is usually stored in the computer memory in the same way as

the C structure and method call is a function call with one parameter more
(pointer to the object, on which the method is called). Thus the use of objects in
C++ has in many cases the same complexity as the use of the structures in
analogous structured (not object oriented) program.

The possible source of the inefficiency on OOP is the virtual method call
and the use of virtual inheritance.

The algorithm of the virtual method call in C++ seems to be quite
complex, but analysis of the disassembled code shows, that only one additional
instruction per method call is necessary (in comparison with the call of
nonvirtual methods).

If the virtual inheritance is used, some data members of the instance must
be accessed by means of hidden pointers stored in the instance. This brings some
overhead, but the access of the virtually inherited data members is a constant
time algorithm.

Note that virtual inheritance is feature that is seldom used in the programs
and in physical computations is not used at all.

The operator overloading is a syntactic feature of the language, that
affects the compiler complexity, but it does not affect the complexity of the
produced code. The use of an overloaded operator in the source code is
equivalent to the function call and this is the way it is compiled.

To be more precise: Overloaded operators are in C++ code declared as
functions or as methods of object types. Given two instances, a and b, of object
type T, and an overloaded operator +, that accepts operands of type T, the
expression a + b is compiled as a function or method call in the form
a.operator+(b) or operator+(a, b), depending on the declaration of
this operator.

It follows that the use of the overloaded operators leads to the programs of
the same complexity as the use of the functions or the methods computing the
same result.

4. Migration to C++ – Efficiency Problems

 18

Of course, the use of automatic conversions, superfluous local variables
etc., as discussed in the previous section, may lead to inefficiency in the
overloaded operators as well as in usual functions and methods – but this is not
caused by the operator overloading.

5. Template metaprogramming in C++ as an
 optimization tool in physics computation

Template metaprogramming is an advanced tool for metacomputation, i.e.
for the computation in the time of the compilation. It is based on the C++
templates and may be used for some kind of control of the compiler and for
optimizations like loop unwinding. The use of the template metaprogramming
was considered as an optimization tool in the design of the cross check programs
for the COMPASS experiment.

5.1 Basics
The C++ template is a tool for the production of an infinite set of classes,

methods or functions in the program. Members of that set differ only in some
data types or integer constants. These data types and constants serve as template
parameters. Note that the term generic types or generic functions (or simply
generics) is often used instead of the term templates in the C++ language.

The original purpose of the C++ templates was to simplify the
programming of the co called containers (or collections) – data types like lists,
queues, hash tables etc., serving as a store for some amount of data, and
common algorithms, such as computing the maximum or minimum of two
numbers, sorting a container or applying a transformation to all the data pieces
stored in an array.

The C++ programming language allows the programmer to define the
following constructs side by side in one program:

• The primary template. This is a common template of the class that
 is valid for all the data types and for all the values of the constants
 that are used as template parameters.

• The partial specialization. This is another template with the same
name that is valid for a selected group of data types or for
selected values of the constants and selected (nonempty) group of
data types passed as template parameters.

• The full (explicit) specialization. It is the template definition for a
given data type or types and/or for selected values of the constants
passed as template parameters.

5. Template metaprogramming in C++ as an optimization tool in physics computation

 19

With the template mechanism of the C++ programming language, it is
easy to map existing data types to another data types, as well as the integer
constants to data types.

5.2 Computational completeness
It is easy to prove that the templates can be considered as a computation-

ally complete tool (in the domain of integer numbers) for the generation of the
data types.

Template mechanism enables us to map data types and integer constants
to data types of special kind (and to retrieve the mapped type or value).

It gives us the way implement the decisions in the algorithm of the
metaprogram, i.e. to declare different data types depending on some condition,
that is evaluated during the compile time. This is based on the partial
specialization mechanism.

There is a way to program the loops in metaprograms, too. This is done in
a way very similar to the implementation of the loops in functionally oriented
programming languages, e.g. in the Lisp programming language. There are no
explicit loops in the programming languages of this kind, the loops are replaced
by the recursion:

• The class template with an integer parameter may refer to an
 instance of the same template with another argument. This forces
 the compiler to create recursively a sequence of different instances
of the same template.

• The recursion may be stopped using partial or explicit specializ-
 ation for the final value of the template parameter.

It is easy to write metaprograms that compute e.g. the factorial of a given
number in the compile time; an example may be found in [5].

Note that all the above mentioned constructs do not need to reserve any
memory, thus they do not impose any overhead to the resulting program.

5.3 Loop unwinding
One possible use of the metaprograms is in program optimization, mainly

in the loop unwinding.
The loops appear very often it the physical computations. Usual

optimizations in the compilers suppose that the number of the iterations in the
loops are very large; this is contra productive in the case of the loops with a very
small number of iterations that are embedded in the loops with very large
number of the iterations. This is e.g. the case of the dot product of two vectors
with 2 or 3 components in a many times repeated loop.

5. Template metaprogramming in C++ as an optimization tool in physics computation

 20

It is easy to see that the best optimization of such a computation is to
unwind the inner loop (computing e.g. the dot product), i.e. to write a linear
code instead of the loop multiplying the components and summarizing the
partial products.

On the other hand, if we do not know the number if iterations of the inner
loop in the design time, such an optimization requires to write many times the
code that is almost the same with only slight changes. This violates one the basic
programming rule, which is “do not repeat yourself”. That would probably cause
some problems in the debugging and maintaining the final code in larger
programs.

If the number of the iterations in the loop can be ensured in the compile
time, i.e. if it can be represented as a constant in the program, the template
metaprogramming enables us to write a metacode that generates the linear code
in the final program and thus it may produce more effective code that the usual
code based on the loops (and without the repetitions in the source code).

So far the theory. Of course, the applicability of the metaprogramming
based optimizations is affected among other by the quality of the compiler, thus
the testing was necessary. The N times repeated computation of the dot product
of two vectors with 3 components were used as a test example with N == 109.
The time necessary for the computation was measured by the _ftime()
function. Note that this function is not the part of the C++ standard library, but it
is a usual extension of the C run time library.

We have compared four compilers, that were popular with many
programmers – the Borland C++BuilderX (BCX), the Microsoft Visual C++
2003 (MSVC), the Intel 7.1 and the GNU g++. Mainly different versions of the
Borland and Microsoft compilers were often used for the program development
and debugging; on the other hand, the production compiler is GNU g++. The
following table shows the results; average time of 10 program runs is given in
seconds, all compilers were used with full optimization setting.

 BCX GNU Intel MSVC
Loop 72.3 83.5 42.2 15.5
Metaprogram 10.8 52.3 2050 5.3
Linear code 3.0 4.1 2049 5.3

Absolute values of the time depends on the quality of the computer used

and is not relevant in this comparison, even though it may be taken as a kind of
benchmark for the compilers. The interesting result is the relative comparison of
the times for different compilers and for different forms of the source code,

5. Template metaprogramming in C++ as an optimization tool in physics computation

 21

which is in the next table; percentage share of the time for unwound loop is
given.

 BCX GNU Intel MSVC
Loop 100 % 100 % 100 % 100 %
Metaprogram 14.9 % 62.6 % -- 34.2 %
Linear code 4.1 % 4.9 % -- 34.2 %

As you can see, the time savings due to the metaprogram based

optimization varies – depending on the compiler – in the approximate range of
35–75 % with respect to the code containing the unwound loop.

Note that the Intel compiler failed at all.

6. Generic programming – the implementation
Template metaprogramming is a tool specific for the C++ programming

language. Nevertheless, generic constructs are available in many modern
programming languages, as in Java or C#. Programmers involved in the
COMPASS experiment often use these programming languages to design and
test the algorithms, even though the final implementation is done in C++.

Thus, the necessity of the analysis of implementation of generics in
different programming languages arises.

6.1 What is generics
Let us start with the formal explanation of the concept of generics; up to

now we have discussed the generics only in the context of the C++
programming language.

Generic types, also known as parameterized types, are object data types,
whose declaration contains the so called formal types – type names without
specified exact meaning in the moment of the declaration – where data type
names are expected. When the generic types are used, all the formal types are
replaced by particular types passed to the generic type by the programmer.

Similarly, the generic method is a method, whose declaration contains
formal types instead of some data types – usually instead of the types of the
formal parameters of the method or instead of the return type. When the generic
method is used, the formal types are replaced by particular types. These
particular types may be passed by the programmer, but sometimes they may be
deduced by the compiler from the context.

6. Generic programming – the implementation

 22

6.2 Main goals of the generics
The main goals of the generics in common programming languages, as

C++, Java or C#, are [6]:
• To provide means to express the algorithms as independent on the

data structures as possible.
• To provide means to create data structures as independent on the

algorithms for the manipulation with it as possible.
• To provide means to implement algorithms in as generally as

possible without any loss of the efficiency.
• If the general form of the algorithm is inefficient, unsuitable or

unusable in some special cases, the goal is to provide a special
implementation for these special cases.

• If the general form of the data structure is inefficient, unsuitable or
unusable in some special cases, the goal is to provide a special
implementation for these special cases.

• If there is a couple of equivalent algorithms for the solution of the
same problem, the goal is to provide a way to implement all these
algorithms and to let the programmer to choose one according to
some other criteria.

Implementation of generics
There are at least three main approaches to the implementation of the

generics.
• Generic constructs exist only in the source code and serve as a

template for the compiler for the creation the instances of the
generic type or generic method. Only the instances created this way
exist in the executable code. Different instances of one template
represent different data types or different methods.

• Generic constructs exist only in the source code and announce the

compiler, that it should use stricter type checking. This mechanism
produces only one data type or one method based on one generic
construct; unlike in the previous case, there are no instances, even
though the program may behave as if there were ones.

• Generic constructs in the source code are compiled to generic

constructs in the executable code. The executable code produces
instances in the run time.

6. Generic programming – the implementation

 23

The first approach is used e.g. in the C++ compilers. The C++ templates

behave in fact like macros, even though they are evaluated by the compiler, not
by the preprocessor. This approach imposes no overhead in runtime; its
drawback is, that the compiler needs the source code of the generic construct for
the compilation of its application.

The second approach is applied e.g. in the Java programming language.
The basic point of this approach, that the formal types are treated as the most
general type in this language at all – the java.lang.Object type. All the
occurrences of the generic type or method in the program refer to the same code
in compiled program; the compiler adds some run-time type checking.

This approach produces less efficient code than the first approach (this is
due to the run-time type checking). On the other hand, the compiler does not
need the source code when it compiles some code referring to the generic
constructs.

The third approach is partially applied e.g. in the .NET Framework (e.g. in
the C# language), where the compiler produces executable code containing the
generic construct; for different value types, different instances are produced in
the run time. For the reference types, only one instance (common for all these
types) is produced. (Thus, the second approach is applied to the reference types
in .NET.)

The compiler does not need the source code of the generic construct in the
case of the third approach; on the other hand, there is runtime overhead caused
by the creation of the instances and by run-time type checks.

References

 24

 References

1. The COMPASS Collaboration: Propsal. Common Muon and Proton
Apparatus for Strucrure and Spectroscopy. CERN/SPSLC 96-14

2. http://wwwcompass.cern.ch/compass/detector/welcome.html
3. COMPASS Collaboration (P. Abbon, …, M. Virius et al.): The Compass

Experiment at CERN. NIMA 577 (2007), str. 455 – 518.
4. M. Virius: Object Oriented Computing. In: J.E. Gentle, W. Hrdle, Y. Mori

(eds.): Handbook of Computational Statistics, p. 403–434. Springer
Verlag, Berlin 2004

5. M. Virius: Migration to C++. Efficiency problems. In: Proceedings of the
International Workshop on Symmetry and Spin, Praha 5. – 12. 9. 1999,
p. 371–374.

6. M. Virius: Template Metaprogramming in C++ as an Optimization Tool
in Physics Computation. In: Proceedings of the Advanced Studies
Institute Symmetry and Spin, Praha 19. – 26. 7. 2006, p. F353 – F360.

7. M. Virius: Generické programování – Cíle a možnosti implementace. In:
Torba softwaru 2005. VŠB Ostrava, ISBN 80-248-1082-4, str. 38 – 45.

Curriculum vitae

 25

Curriculum Vitae

Ing. Miroslav Virius, CSc.

Born: 1953

Education:
1976 Ing.: Czech Technical University in Prague, Faculty of Nuclear

Sciences and Physical Engineering
1987 CSc. in Nuclear and Subnuclear Physics: Czech Technical University in

Prague, Faculty of Nuclear Sciences and Physical Engineering

Employment:
August 1, 1976 Employee of the Czech Technical University in Prague,

Faculty of Nuclear Sciences and Physical Engineering, Dept.
of Mathematics

May 1, 1981 Senior lecturer, Dept. of Mathematics, Faculty of Nuclear
Sciences and Physical Engineering

1996 Member of the Dept. of Software Engineering in Economy,
Faculty of Nuclear Sciences and Physical Engineering

2006 — Deputy-head of the Dept. of Software Engineering in
Economy

Research projects:
1977—1978 Collaboration with the Slovnaft company – solution of large

systems containing linear and nonlinear equations
1978—1986 Member of the research team of project I-4-3/7-1 “Mathematical

processing of the experiments with oriented radioactive nuclei”
(part of the SPIN project in collaboration with the JINR, Dubna)
– mathematical processing of the gamma spectra

1984—1990 Collaboration with SVÚM (Research institute of materials) –
mathematical modeling of the neutron multiplier

1995— Member of the preparatory group of the Czech participation in
COMPASS

2002— Member of the Joint Czech Group in the COMPASS
Experiment (NA-58) at CERN, Genève, Switzerland)

2006— Deputy-head of the Joint Czech Group in the COMPASS
Experiment

Curriculum vitae

 26

2005— Member of the Joint Czech Group in the PHENIX Experiment
at Brookhaven National Laborarory, Upton, N.Y., USA

2005— Member of the Institution Board of the PHENIX Experiment

University courses:
Monte Carlo Method
Introduction to Programming
The C and C++ Programming Languages
The Java Programming Language
Basic Algorithms
Programming for the .NET Framework

Object Oriented Programming (seminary on advanced programming techniques)

Additional notes
Author of a chapter in monograph published by Springer Verlag, invited by the
editor.
Co-author of more than 40 papers by the COMPASS and PHENIX
collaborations, published in impacted journals and international conference
proceedings. Total number of citations exceeds 500 (including self-citations by
other co-authors).
Research results published as contributions on international and local
conferences.
Co-editor of the proceedings of international conferences (10).
Author or co-author of 19 books on programming; some of them are used as
textbooks on Czech universities and secondary schools.
Author of 7 university textbooks for FNSPE; at least four of them are or were
used outside FNSPE.
Author of 3 supplementary chapters for Czech translations of books on
programming (included on the request of the publisher).

Author of about 700 popularization articles dealing different aspects of
programming, programming languages, programming technologies, common
errors in programming etc. in Czech IT-oriented journals.

Curriculum vitae

 27

Top citations
The following table shows the number of citations of selected papers based on
the http://slac.stanford.edu/spires server by April 15, 2008. The “total” column
displays the total number of citations in printed or electronically published
articles according to the server, the “pure” column shows the number with self
citations removed.

No. Article total pure
1. PHENIX Collaboration (A. Adare, … M. Virius et al.).

Energy Loss and Flow of Heavy Quarks in Au+Au Collisions
at s(NN)**(1/2) = 200-GeV. Phys.Rev.Lett.98:172301,2007 67 43

2. PHENIX Collaboration (A. Adare, … M. Virius et al.).
J/psi Production vs Centrality, Transverse Momentum, and
Rapidity in Au+Au Collisions at s(NN)**(1/2) = 200-GeV.
Phys.Rev.Lett.98:232301,2007 65 38

3. COMPASS Collaboration (E.S. Ageev, … M. Virius et al.).
Measurement of the spin structure of the deuteron in the DIS
region.
Phys.Rev.Lett.98: 232002,2007 50 30

4. PHENIX Collaboration (A. Adare, … M. Virius et al.).
Scaling properties of azimuthal anisotropy in Au+Au and
Cu+Cu collisions at s(NN) = 200-GeV.
Phys.Lett.B612:154-164,2005 46 20

5. PHENIX Collaboration (A. Adare, … M. Virius et al.).
Measurement of high-p(T) single electrons from heavy-flavor
decays in p+p collisions at s**(1/2) = 200-GeV.
Phys.Rev.Lett.97:252002,2006 45 25

6. COMPASS Collaboration (E.S. Ageev, … M. Virius et al.).
Gluon polarization in the nucleon from quasi-real
photoproduction of high-p(T) hadron pairs.
 Phys.Lett.B633:25-32,2006 42 25

Total number of citations of these 6 articles is 315; number of pure citations of
these articles is 181.

