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Summary 
 
COMPASS is an international fixed target experiment in CERN at the SPS accelerator. Its 
goal is to study the hadron structure and the hadron spectroscopy by means of the high energy 
beams of hadrons and muons.  
Heavy use of information technologies is indispensable in any high energy physics 
experiment. It is applied not only during late stage of the data processing, but also in the data 
acquisition process, control and checking of the devices, producing test data for the purpose 
of analytical software debugging and testing, etc. The object oriented approach on one hand 
and the efficiency of the final code on the other hand were emphasized during the software 
design and development process. The C++ programming language, used for the software 
development, was new for many programmers in the time when the software development 
started. (Up to middle 90s, Fortran was used in CERN as the main programming language.) 
Thus, not only the object oriented programming theory, but also the C++ features leading to 
inefficiencies, and innovative optimization methods, such as template metaprogramming, 
were investigated to overcome these problems.  
General aspects of the COMPASS experiment, as well as author’s contribution will be 
discussed in the presentation. 
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Souhrn 
 
COMPASS je mezinárodní fyzikální experiment s pevným terčem v CERN na urychlovači 
SPS. Jeho cílem je studium struktury hadronů a hadronové spektroskopie za pomoci 
vysokoenergetických svazků hadronů a mionů.  
Jakýkoli experiment v oboru fyziky vysokých energií je nemyslitelný bez rozsáhlého nasazení 
informačních technologií. Jedná se nejen o zpracování naměřených dat, ale i o sběr dat a 
jejich předzpracování, ovládání a kontrolu přístrojů, získávání testovacích dat pro ladění a 
testování analytického softwaru před započetím sběru dat atd. Při návrhu a vývoji softwaru 
byl kladen důraz na jedné straně na objektově orientovaný přístup a na straně druhé na 
efektivitu vytvořeného kódu. Situaci komplikovala skutečnost, že v době, kdy tvorba softwaru 
pro COMPASS začínala, byl pro většiny programátorů jazyk C++, použitý při vývoji 
softwaru, nový (do té doby se v CERN používal jako hlavní programovací jazyk Fortran). 
Proto jsme se věnovali nejen teorii objektově orientovaného programování, ale i vlastnostem 
jazyka C++, které mohou působit ztrátu efektivity, a netradičním optimalizačním technikám, 
jako je šablonové metaprogramování. 
V prezentaci budou diskutovány jak obecné aspekty experimentu COMPASS, tak i přínos 
autora. 
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1. Introduction: The COMPASS Experiment 
COMPASS is an international high-energy physics fixed target experim-

ent that runs at the SPS (Super Proton Synchrotron) accelerator at CERN in 
Geneva, Switzerland. The main purpose of this experiment is to study the 
hadron structure and hadron spectroscopy with high intensity muon and hadron 
beams.  

The code of this experiment at CERN is NA-58.  

1.1 Brief History 
This experiment was proposed in 1995, approved conditionally at CERN 

in February 1997 and finally approved in September 1998. Technical run started 
in 2000, physics run, as well as the data acquisition of this experiment started in 
2002. More than 240 scientists from 28 universities and research institutes in 10 
countries take part in this experiment now, including the Joint Czech Group. 

The proposed setup and the initial setup of the COMPASS experiment are 
shown in Fig. 1. 

 

 
 

Fig. 1 Proposed and initial setup of the COMPASS experiment [2] 
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In this figure, the particle beam from the accelerator comes from the left 
side and hits the polarized target (PT), that consists of the 6LiD or NH3 (the first 
behaves like polarized deuterons, the second like polarized protons). This target 
is cooled to the temperature about 50 mK and is embedded into the intense 
magnetic field – this allows to achieve and hold the polarization of the nuclei 
(deuterons or protons) in the target. 

Behind the polarized target follows the line of detectors. Note that the 
initial setup did not contain all the proposed detectors – these devices were 
constructed and installed later and this process continues up to now.  

1.2 The COMPASS aim 
 COMPASS was established as a union of two different initially proposed 
experiments, so it runs in two basic modes – with muon beam and with hadron 
beam [3]. 

The aim of the COMPASS experiment at CERN is to study in detail how 
nucleons and other hadrons are made up from quarks and gluons. At hard scales, 
Quantum Chromodynamics (QCD) is well established and the agreement of 
experiment and theory is very good. However, in the nonperturbative regime, 
despite the wealth of data collected in the previous decades in laboratories 
around the world, a fundamental understanding of hadronic structure is still 
missing. 

The COMPASS Experiment uses muon and hadron beams of very high 
intensity from the SPS accelerator at CERN. It investigates the spin structure of 
nucleons a hadron spectroscopy. Outgoing particles (one or more) are detected 
in coincidence with incoming  muons or hadrons. 

Large polarized target embedded in a superconducting solenoid is used for 
the measurement with muon beam. Outgoing particles are detected by large 
angle spectrometer with large momentum range. The apparatus consists of 
tracking detectors of different types corresponding to the expected amount of 
collisions necessary for the requested spatial and angular resolution. For the 
particle identification, the RICH detector (Ring Imaging Cherenkov) is used, as 
well as hadron and electromagnetic calorimeters. 

One basic feature of the COMPASS experiment is the detection of large 
statistical samples of charmed particles. The gluon polarization (∆G) 
measurement is based on the measurement of the open charm cross section 
asymmetry in deep inelastic scattering of polarized muons on polarized nucleons. 
There are predictions of the value of this quantity based on some numeric 
calculations and on the QCD models. 

The hadron beams enable us to study semileptonic decays of the charmed 
and doubly charmed baryons. 
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Both these measurements enable us to solve the basic problems of the 
structure of the hadrons and to examine the computations from the effective 
Heavy Quark Effective Theory (HQET). 

The setup of the experiment allows to perform the basic physical 
measurements with very high precision and sensitivity. This permits to 
investigate the exotic states, that are predicted by the QCD, but were not yet 
observed.  

The setup of the experiment allows to investigate both the longitudinal 
and the transverse spin distribution functions. The aims of the experiment may 
be summarized as follows:  

Muon beam experiments 
• Measurement of ∆G/G, 
• Measurement of g1, 
• Transverse spin effects, 
• Flavor decomposition of spin distribution functions, 
• Vector meson production, 
• Spin transfer in Λ-hyperon production. 
Hadron beam experiments 
• Pion and kaon polarizability, 
• Diffractive production of exotic states, 
• Glueball search, 
• Light meson spectroscopy,  
• Double charmed baryon production. 

1.3 Information Technologies in COMPASS 
 The main areas, where information technologies in COMPASS apply, are: 

• Data acquisition (DAQ), 
• Control of  several parts of the apparatus, 
• Slow control, 
• Monte Carlo simulation, 
• Data management 
• Data analysis. 

In this text, we will shortly discuss the DAQ and slow control. The main 
part will be devoted to special problems – mainly the optimization – of the 
software for the data analysis. 
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2. COMPASS Data Processing System 
  

2.1 COMPASS Data Acquisition System 
The COMPASS Data Acquisition system is derived from the DAQ system 

of the CERN LHC ALICE experiment.  

2.1.1 Requirements and conditions 
 The beam that hits the polarized target consists of the so called “spills” of 
particles. One spill is random flow of about 2 . 108 particles, which are 
approximately uniformly distributed in time interval about 6 seconds long. It is 
followed by a pause about 12 seconds long. 

Data from the detectors are collected by about 200.000 channels. The total 
data amount produced by one event, i.e. by the pass of one particle through the 
apparatus, is 40 – 50 KB. The exact value depends on the noise of the apparatus 
and on the settings of some triggers. 
 The total data amount for one spill is from 900 MB to 18 GB. 
 The data must be collected, preprocessed and saved; this is an on-line 
process. Next, the data are processed – analyzed; this is done off-line. 

2.1.2 DAQ Architecture 
The DAQ architecture consists of several layers. The first layer is the 

front end, i.e. the electronic equipment of the detectors. The front end converts 
analogue data to digital form, and gives it the format expected by the following 
layers. Beside this, the front end delays the data according to the distance from 
the polarized target to the given detector, so that all the data form one particle 
have the same time stamp. This enables to scan the events in this “time 
windows”. 

The next layer consists of the so called CATCH computers. (For GEMs 
and silicon detectors, there is a specialized version GeSiCa.) These computers 
are interconnected by the VME high speed bus. The CATCH computers check 
the formal consistence of the data and pass them to the next layer. 

Serial optical link to the next layer is based on the S-link standard 
developed at CERN. This is serial FIFO and connects the CATCH computers to 
Read Out Buffer computers (ROBs). ROBs serve as buffers for the collected 
data. Data wait in this layer to be taken by the Event Builder layer (EVB). 

The EVBs are interconnected with the previous layer by the gigabit 
Ethernet network available at CERN. EVBs eliminate unnecessary data and 
create files ready for further processing from the correct data.  In these files, the 
data are composed into events – i.e. in the form describing the pass of single 
particles. 
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Fig. 2  DAQ of the COMPASS experiment. [2] 
 
Data are stored in EVBs at least 24 hours. After that, they are transferred 

to the Central Data Recording. 
Fig. 2 shows the schema of the DAQ system of the COMPASS exper-

iment. 

2.3 Data Migration to CDR 
Central Data Recording is a tool for the transfer of the raw physical data 

from the on-line running DAQ system to the permanent data store. CDR exploits 
the CERN network infrastructure. It is based on the CASTOR system, that was 
developed at CERN. 

Castor runs now on 4 dedicated Linux file servers with RAID; these disks 
are organized as an array with 10 file systems. 
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A specialized computer inspects the EVBs twice per hour, selects data 
older than 24 hours and transfers them to CDR. Data are stored on magnetic 
tapes. At the same time, metadata describing the stored files are generated. The 
metadata are stored in the Oracle database system. 

2.4 Data organization 
Data are stored in the CASTOR system. They are divided into the so 

called chunks. A set of the chunks containing data from all the detectors is called 
run. A run together with the metadata and data in the log-book (log of the 
measurements) contains all the necessary information for the determination of 
the conditions (and problems) that occurred during the data taking for that run. 

Average size of one chunk is 0.82 GB; average run contains 200 chunks. 

2.5 COOOL 
The COOOL (COMPASS Object Oriented On-Line) program system is 

independent on the DAQ. The COOOL is a system of programs, that takes data 
from the CASTOR, or takes them on-line and preprocesses them: It finds data 
describing trajectories of single particles, rings indicating some particles in data 
from the RICH detectors etc.  

COOOL contains the tools for the data visualization, too. 
The COOOL is based on the ROOT system, which is an object oriented 

programming environment for data analysis written in C++. Some parts of the 
COOOL system serve for the graphic output used by the shift crew to check the  
examples of the measured data. This allows to check, whether all the apparatus 
works in preset bounds. 

Output of the COOOL system may be stored to be used later by the 
ROOT system. 

2.6 Data Processing 
We need to extract relevant data from the raw data stored on the CASTOR 

system; it follows from the size of the data, that the time necessary for these 
computations is a very important criterion. Special analytical program packages, 
named CORAL (CORe AnaLysis) and PHAST (PHysics Analysis Software 
Tool) are used for this purpose. 

Both the program packages need many subsidiary software tools; it is 
necessary to preset the environment for the programs, too. This is done by 
means of the so called option files. The options in these files may be considered 
as a kind of metadata controlling the behavior of the analytical software. 

The processing runs on the cluster at CERN. It follows that it is necessary 
to balance the load of single computers as uniformly as possible. Nevertheless, it 
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is necessary to be aware which data were already processed and which are still 
waiting to be processed. 

The cluster provides the mechanism for submitting a job for processing. 
The user has no means to access single nodes of the cluster, it is all solved by 
means of the cluster software. 

We implemented our own mechanism (see Fig. 3) for the control of the 
processing. 

 

 
Fig. 3  Diagram of the data processing 

 
This system has the following properties: 
• The system can prepare one file for the processing. 
• The system can set the environment of the cluster so that it  

  corresponds the needs of the analytic software tools. 
• The system can communicate with the cluster. 
• The system can submit a job for the processing. 
• The system can identify the current state of the job. 
• The system is aware of the current state of all the computations 
• The system can show the summary of the current sate of the system  

  it the form of the tables and graphs. 
• The system can properly respond to the errors of the system (data  
 storage is not available, the processing is interrupted for reasons of  
 the breakdown of the computing node, there is an error in the 
  analytical software, etc.) 
• The system can process partial results of single jobs so that they are  

  stored in the form suitable for the physicist that will evaluate them. 
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The system detects non standard behavior of the job, and in the case of an 
error during the processing, it tries to recover (it prepares the job once again and 
resubmits it) or it informs the administrator by an e-mail. 

 

3. Object Oriented Computing 
The IT division of CERN decided to stop supporting the Fortran 

programming language, which had been used as the main programming 
language for the scientific computation, in the middle of 1990s. It was replaced 
by the C++ language. Special program libraries, such as the GEANT simulation 
library, had to be translated to the C++ language.  

Some problems emerged: 
• Object oriented computing, which is the most prevailing 

programming paradigm now, was new in the 90’s for many 
programmers.  

• The C++ programming language contains some constructs, that  
appear to be relatively ineffective under some circumstances. It was 
necessary to analyze the language and to find those ineffective  
constructs, that may appear in the analytical software. 

• In cross check computation, some new optimization techniques  
 were tested. This is the case of the so called template 
metaprogrammig. 

• The differences of the C and C++ languages may be confusing in  
  some context. Analysis of the relation of the C++ standard (issued  
  in 1998) and the new C standard (issued in 1999) was necessary. 

3.1 Basics 
Object oriented programming (OOP) is a methodology for the analysis of 

the requirements imposed on the software to be developed and for the 
development process. It is prevailing methodology now. 

Object oriented program consists of the program constructs called objects, 
that cooperate by sending messages to each other, and of course they respond to 
these messages. The OOP is based on four basic concepts in the simplest form – 
the class, the encapsulation, the inheritance and the polymorphism.  

The class is the same as an object data type. It is a data type describing 
some class of concepts from the problem domain – it serves as a program model 
of this concept. Of course this model reflects only the aspects of the concept that 
are important for the solution of the problem. 

An instance of the class is an object in object oriented program. 
The class is given by  
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• the data representation (data components of the separate instances 
and data of the class, i.e. data shared by all the instances), and 

• the operations that may be performed with single instances or with 
the class as a whole – the methods. 

The encapsulation is the hiding of the implementation and the separation 
of the interface and the implementation. No class should publish (present to 
other parts of program) more parts of the implementation than necessary for the 
use of it in the program.  

Note that the encapsulation concept is not new in OOP; this principle was 
first formulated in the modular programming in early 60s. In the context of the 
modular programming, the encapsulation is applied to the module; in the context 
of the OOP, it is applied to the class.  

The object oriented programming languages contain many tools that 
support – or even enforce – the encapsulation on the syntactic level. This 
enables to transform the encapsulation violations – i.e. the possible errors of the 
program design – into syntactic errors, that may be found by the compiler. 

The inheritance is a tool that allows us to derive a new object type form 
an existing one (the so called base type). The derived type inherits all the 
properties of the base type – i.e. it has all the data components and all the 
methods. The programmer can add new methods and data components; he may 
override existing method (define new implementation of it). He may not remove 
any method or data component. 

The derived class is always a subclass (specialization) of the base class. It 
describes more special concept than the base class. 

The concept of polymorphism represents the possibility to deal with 
different instances of different classes in the same way. It means that we can 
send the same message to a group of instances of different classes and all the 
instances will accept it and any of them will process it in its own way. 

In the most common programming languages, such as C++, the 
polymorphism is achieved through the inheritance. Newer programming 
languages, as Java or C#, use the implementation of the interfaces as another 
way to achieve the polymorphism. 

Object oriented analysis uses the Unified Modeling Language (UML). 
This is the set of rules for the creation of diagrams describing different aspects 
of the solved problem and designed program. Here are some most common 
UML diagrams: 

• The class diagram describes the classes in the solved problem and 
 the relations (inheritance, composition, association etc.) of these 
  classes. 
• The object diagram describes the objects (i.e. the instances of the 

classes) in the solved problem and their relations. 
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• The activity diagram describes the activities of the objects in the 
solved problem. It may be used for the description of the algorithms. 

• The use case diagram describes ways the described system is used. 
• The state diagram describes the states of the system or of its parts  

and the possible transitions between these states.  
• The deployment diagram describes the deployment of the applicat-

ion, i.e. the placement of different components of the application on 
different computers of the target system. 

3.2 Object Oriented computing in the COMPASS Experiment 
The Joint Czech Group in the COMPASS experiment participated in the 

preparation of this experiment since the beginning, even though at the start it 
was under the flag of JINR (Dubna). One very important part of the preparation 
was the development of the analytical software. In this stage, it was necessary to 
decide, what parts of the software will be developed from scratch, what third 
party software will be customized (this were usually programs used by previous 
or running experiments – this is the case e.g. of the DAQ system), etc.  

One the first task was the program model of the prepared experiment 
COMPASS based on the Monte Carlo Method. This model served  

• to examine some alternatives in the experiment setup, and 
• to get test data for the debugging of the analytical software that was 

developed. 
The program model of the apparatus consisted of the models of its parts. 

Some of its basic components were e.g. 
• the particle class, describing an abstract particle, 
• the target class, describing the polarized target, 
• the detector class, describing an abstract detector. 
The abstract classes, like detector and particle, served as base classes for 

the so called instance classes describing concrete detectors and particles.  
Similar models were used in other software pieces developed for the 

control of the apparatus etc. 
I participated on the design of this model and used its basic parts in [3]. 

Of course, the [3] does not contain the whole model, but only some selected 
parts of it.  

 

4. Migration to C++ – Efficiency Problems 
Owing to the amount of the data, that should be processed, the efficiency 

of the analytical software is crucial. The migration of the programmers from 
Fortran to C++ brought some unexpected problems in this area. The C++ 
programming language contains some constructs, where “no code is written, but 
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the compiler generates some”. The first analysis of this language was aimed to 
this “secret code” and to the ways how to avoid it. The result was published in 
[4]. 

Three basic levels of program optimization are usually distinguished: 
• The algorithmic level. This is the topmost level optimization and is 

of course the most important. This is done solely by a programmer; a good 
example is the choice between the bubblesort algorithm, which has the O(n2) 
complexity, and the quicksort algorithm with complexity O(n.log2n). 

• The second level is performed by the compiler in cooperation with 
the programmer: The programmer indicates to the compiler, what optimization it 
could do. A good example of this level of optimization is the inline modifier in 
the function declaration or the register modifier in the local variable declaration. 
The effect of the optimization on this level is usually less than the effect of the 
algorithmic optimization. 

• The third level is performed solely by the compiler, sometimes even 
in the case when the programmer disables all the optimizations. This 
optimization consists of the common subexpression elimination or the 
substitution of one instruction by another, which produces the same result, but 
faster. The results of this level optimization is usually negligible in comparison 
with the other two levels. 

4.1 Sources of C++ inefficiency 
Optimizations based on the result of the C++ inefficiencies analysis is 

usually on the second level, even though there are examples, when it may 
change the order of the complexity of the algorithm. 

The following main sources of the inefficiencies in the regular C++ code 
were found: 

• automatic conversions using the conversion constructor,  
• automatic conversions using the conversion operator defined by the 

programmer, 
• automatic constructor and destructor call, 
• superfluous use of named local variables. 
In the first three points, the programmer will not notice the potential 

inefficiency, because he or she does not write any code; the code is generated  
by the compiler. 

The automatic conversions in first two points may lead to the creation of 
temporary variables of object types. This produces additional constructor and 
destructor calls; under some circumstances, it may cause even the use of an 
algorithm with worse complexity. 

To the last point: The compiler can optimize out anonymous temporary 
variables. It is allowed to replace the creation of the temporary variable 
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containing the return value of a function and the process of copying it to the 
destination address by direct creation of the result in the destination address (this 
is the so called return value optimization). On the other hand, the compiler is not 
allowed to remove (“optimize out”) any named local variable during the 
optimization process. 

4.2 What is not source of inefficiency 
The programmers often believe that OOP as a whole is inefficient. The 

same delusion about the operator overloading is quite common. 
Analysis of the disassembled code of  OOP programs in C++ shows that 

this is not the case. 
An object is usually stored in the computer memory in the same way as 

the C structure and method call is a function call with one parameter more 
(pointer to the object, on which the method is called). Thus the use of objects in 
C++ has in many cases the same complexity as the use of the structures in 
analogous structured (not object oriented) program. 

The possible source of the inefficiency on OOP is the virtual method call 
and the use of virtual inheritance. 

The algorithm of the virtual method call in C++ seems to be quite 
complex, but analysis of the disassembled code shows, that only one additional  
instruction per method call is necessary (in comparison with the call of 
nonvirtual methods). 

If the virtual inheritance is used, some data members of the instance must 
be accessed by means of hidden pointers stored in the instance. This brings some 
overhead, but the access of the virtually inherited data members is a constant 
time algorithm. 

Note that virtual inheritance is feature that is seldom used in the programs 
and in physical computations is not used at all.  

The operator overloading is a syntactic feature of the language, that 
affects the compiler complexity, but it does not affect the complexity of the 
produced code. The use of an overloaded operator in the source code is 
equivalent to the function call and this is the way it is compiled.  

To be more precise: Overloaded operators are in C++ code declared as 
functions or as methods of object types. Given two instances, a and b, of object 
type T, and an overloaded operator +, that accepts operands of type T, the 
expression a + b is compiled as a function or method call in the form 
a.operator+(b) or operator+(a, b), depending on the declaration of 
this operator.  

It follows that the use of the overloaded operators leads to the programs of 
the same complexity as the use of the functions or the methods computing the 
same result. 
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Of course, the use of automatic conversions, superfluous local variables 
etc., as discussed in the previous section, may lead to inefficiency in the 
overloaded operators as well as in usual functions and methods – but this is not 
caused by the operator overloading.  

 

5. Template metaprogramming in C++ as an  
 optimization tool in physics computation 

Template metaprogramming is an advanced tool for metacomputation, i.e. 
for the computation in the time of the compilation. It is based on the C++ 
templates and may be used for some kind of control of the compiler and for 
optimizations like loop unwinding. The use of the template metaprogramming 
was considered as an optimization tool in the design of the cross check programs 
for the COMPASS experiment.  

5.1 Basics 
The C++ template is a tool for the production of an infinite set of classes, 

methods or functions in the program. Members of  that set differ only in some 
data types or integer constants. These data types and constants serve as template 
parameters. Note that the term generic types or generic functions (or simply 
generics) is often used instead of the term templates in the C++ language. 

The original purpose of the C++ templates was to simplify the 
programming of the co called containers (or collections) – data types like lists, 
queues, hash tables etc., serving as a store for some amount of data, and 
common algorithms, such as computing the maximum or minimum of two 
numbers, sorting a container or applying a transformation to all the data pieces 
stored in an array. 

The C++ programming language allows the programmer to define the 
following constructs side by side in one program: 

• The primary template. This is a common template of the class that  
  is valid for all the data types and for all the values of the constants  
  that are used as template parameters.  

• The partial specialization. This is another template with the same 
name that is valid for a selected group of data types or for 
selected values of the constants and selected (nonempty) group of 
data types passed as template parameters.  

• The full (explicit) specialization. It is the template definition for a 
given data type or types and/or for selected values of the constants 
passed as template parameters. 
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With the template mechanism of the C++ programming language, it is 
easy to map existing data types to another data types, as well as the integer 
constants to data types.  

 

5.2 Computational completeness 
It is easy to prove that the templates can be considered as a computation-

ally complete tool (in the domain of integer numbers) for the generation of the 
data types.  

Template mechanism enables us to map data types and integer constants 
to data types of special kind (and to retrieve the mapped type or value). 

It gives us the way implement the decisions in the algorithm of the 
metaprogram, i.e. to declare different data types depending on some condition, 
that is evaluated during the compile time. This is based on the partial 
specialization mechanism. 

There is a way to program the loops in metaprograms, too. This is done in 
a way very similar to the implementation of the loops in functionally oriented 
programming languages, e.g. in the Lisp programming language. There are no 
explicit  loops in the programming languages of this kind, the loops are replaced 
by the  recursion: 

• The class template with an integer parameter may refer to an 
 instance of the same template with another argument. This forces 
 the compiler to create recursively a sequence of different instances 
of the same template. 

• The recursion may be stopped using partial or explicit specializ- 
  ation for the final value of the template parameter. 

It is easy to write metaprograms that compute e.g. the factorial of a given 
number in the compile time; an example may be found in [5].  

Note that all the above mentioned constructs do not need to reserve any 
memory, thus they do not impose any overhead to the resulting program.  

 

5.3 Loop unwinding 
One possible use of the metaprograms is in program optimization, mainly 

in the loop unwinding. 
The loops appear very often it the physical computations. Usual 

optimizations in the compilers suppose that the number of the iterations in the 
loops are very large; this is contra productive in the case of the loops with a very 
small number of iterations that are embedded in the loops with very large 
number of the iterations. This is e.g. the case of the dot product of two vectors 
with 2 or 3 components in a many times repeated loop. 
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It is easy to see that the best optimization of such a computation is to 
unwind the inner loop (computing e.g. the dot product), i.e. to write a linear 
code instead of the loop multiplying the components and summarizing the 
partial products.  

On the other hand, if we do not know the number if iterations of the inner 
loop in the design time, such an optimization requires to write many times the 
code that is almost the same with only slight changes. This violates one the basic 
programming rule, which is “do not repeat yourself”. That would probably cause 
some problems in the debugging and maintaining the final code in larger 
programs. 

If the number of the iterations in the loop can be ensured in the compile 
time, i.e. if it can be represented as a constant in the program, the template 
metaprogramming enables us to write a metacode that generates the linear code 
in the final program and thus it may produce more effective code that the usual 
code based on the loops (and without the repetitions in the source code). 

So far the theory. Of course, the applicability of the metaprogramming 
based optimizations is affected among other by the quality of the compiler, thus 
the testing was necessary. The N times repeated computation of the dot product 
of two vectors with 3 components were used as a test example with N == 109. 
The time necessary for the computation was measured by the _ftime() 
function. Note that this function is not the part of the C++ standard library, but it 
is a usual extension of the C run time library. 

We have compared four compilers, that were popular with many 
programmers – the Borland C++BuilderX (BCX), the Microsoft Visual C++ 
2003 (MSVC), the Intel 7.1 and the GNU g++. Mainly different versions of the 
Borland and Microsoft compilers were often used for the program development 
and debugging; on the other hand, the production compiler is GNU g++. The 
following table shows the results; average time of 10 program runs is given in 
seconds, all compilers were used with full optimization setting. 

 
 BCX GNU Intel MSVC 
Loop 72.3 83.5  42.2 15.5 
Metaprogram 10.8 52.3 2050 5.3 
Linear code 3.0 4.1 2049 5.3 

 
Absolute values of the time depends on the quality of the computer used 

and is not relevant in this comparison, even though it may be taken as a kind of 
benchmark for the compilers. The interesting result is the relative comparison of 
the times for different compilers and for different forms of the source code, 
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which is in the next table; percentage share of the time for unwound loop is 
given.  

 
 BCX GNU Intel MSVC 
Loop 100 % 100 % 100 % 100 % 
Metaprogram 14.9 % 62.6 % -- 34.2 % 
Linear code 4.1 % 4.9 % -- 34.2 % 

 
As you can see, the time savings due to the metaprogram based 

optimization varies – depending on the compiler – in the approximate range of 
35–75 % with respect to the code containing the unwound loop.  

Note that the Intel compiler failed at all. 

 

6. Generic programming – the implementation 
Template metaprogramming is a tool specific for the C++ programming 

language. Nevertheless, generic constructs are available in many modern 
programming languages, as in Java or C#. Programmers involved in the 
COMPASS experiment often use these programming languages to design and 
test the algorithms, even though the final implementation is done in C++.  

Thus, the necessity of the analysis of implementation of generics in 
different programming languages arises. 

6.1 What is generics 
Let us start with the formal explanation of the concept of generics; up to 

now we have discussed the generics only in the context of the C++ 
programming language. 

Generic types, also known as parameterized types, are object data types, 
whose declaration contains the so called formal types – type names without 
specified exact meaning in the moment of the declaration – where data type 
names are expected. When the generic types are used, all the formal types are 
replaced by particular types passed to the generic type by the programmer. 

Similarly, the generic method is a method, whose declaration contains 
formal types instead of some data types – usually instead of the types of the 
formal parameters of the method or instead of the return type. When the generic 
method is used, the formal types are replaced by particular types. These 
particular types may be passed by the programmer, but sometimes they may be 
deduced by the compiler from the context. 
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6.2 Main goals of the generics 
The main goals of the generics in common programming languages, as 

C++, Java or C#, are [6]: 
• To provide means to express the algorithms as independent on the 

data structures as possible. 
• To provide means to create data structures as independent on the 

algorithms for the manipulation with it as possible. 
• To provide means to implement algorithms in as generally as 

possible without any loss of the efficiency. 
• If the general form of the algorithm is inefficient, unsuitable or 

unusable in some special cases, the goal is to provide a special 
implementation for these special cases. 

• If the general form of the data structure is inefficient, unsuitable or 
unusable in some special cases, the goal is to provide a special 
implementation for these special cases. 

• If there is a couple of equivalent algorithms for the solution of the 
same problem, the goal is to provide a way to implement all these 
algorithms and to let the programmer to choose one according to 
some other criteria. 

 

Implementation of generics  
There are at least three main approaches to the implementation of the 

generics. 
• Generic constructs exist only in the source code and serve as a 

template for the compiler for the creation the instances of the 
generic type or generic method. Only the instances created this way 
exist in the executable code. Different instances of one template 
represent different data types or different methods.  

 
• Generic constructs exist only in the source code and announce the 

compiler, that it should use stricter type checking. This mechanism 
produces only one data type or one method based on one generic 
construct; unlike in the previous case, there are no instances, even 
though the program may behave as if there were ones. 

 
• Generic constructs in the source code are compiled to generic 

constructs in the executable code. The executable code produces 
instances in the run time.  
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The first approach is used e.g. in the C++ compilers. The C++ templates 

behave in fact like macros, even though they are evaluated by the compiler, not 
by the preprocessor. This approach imposes no overhead in runtime; its 
drawback is, that the compiler needs the source code of the generic construct for 
the compilation of its application. 

The second approach is applied e.g. in the Java programming language. 
The basic point of this approach, that the formal types are treated as the most 
general type in this language at all – the java.lang.Object type. All the 
occurrences of the generic type or method in the program refer to the same code 
in compiled program; the compiler adds some run-time type checking. 

This approach produces less efficient code than the first approach (this is 
due to the run-time type checking). On the other hand, the compiler does not 
need the source code when it compiles some code referring to the generic 
constructs. 

The third approach is partially applied e.g. in the .NET Framework (e.g. in 
the C# language), where the compiler produces executable code containing the 
generic construct; for different value types, different instances are produced in 
the run time. For the reference types, only one instance (common for all these 
types) is produced. (Thus, the second approach is applied to the reference types 
in .NET.) 

The compiler does not need the source code of the generic construct in the 
case of the third approach; on the other hand, there is runtime overhead caused 
by the creation of the instances and by run-time type checks. 
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