Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Czech Technical University in Prague
Faculty of Electrical Engineering

Dr. Tech. Ing. Radim Sara

Pocitacové stereovidéni

Computational Stereopsis



Summary

Computational stereopsis is a multidisciplinary field that tries to model the process of
binocular image formation and formulate the algorithmic task of stereoscopic visual per-
ception. The field has about 40-year history that started by studying the psychophysics
of human stereovision. An artificial system that is able to perceive depth from passive
vision has a great application potential. Today the methods are advanced enough to make
computing three-dimensional geometric models of large real objects and scenes possible.

The algorithmic core of stereopsis is the matching problem. In this talk I will expose
the problems stereopsis faces and I will try to formalize the matching problem in a such a
way that perceptual illusions in complex scenes are avoided. This is where the traditional
stereo methods fail. The proposed solution is based on stability rather than optimality and
boils down to a graph-theoretic concept known as a directed graph kernel. I will generalize
this concept to what I call strong sub-kernel, which is a structure that possesses more
suitable properties for solving our problem.



Souhrn

Pocitacové stereovidéni je multidisciplindrni obor, ktery se snazi modelovat proces bi-
nokuldrniho formovani obrazu a formulovat algoritmickou tlohu stereoskopického vidéni.
Tento obor ma zhruba cCyficetiletou historii a ve svych pocatcich se zabyval studiem psy-
chofyziky lidského stereovidéni. Umély systém, ktery je schopny vnimat hloubku z pa-
sivniho vidéni, ma velky aplikac¢ni potencidl. Dnes metody pokrocily natolik, ze je mozné
z obrazu automaticky vypocitat trojdimenziondlni geometrické modely realnych objektu
a scén.

Algoritmickym jadrem stereovidéni je problém péarovani. V této prednasce ukazi
problémy, kterym stereovidéni celi a pokusim se formalizovat problém parovani tak, aby
nevznikaly vizudlni iluze ve slozitych scénach. Pravé v tomto pripadé tradicni metody
selhavaji. Navrzené feSeni je zalozeno na stabilité, ne na optimalité a vede k pojmu jadra
orientovaného grafu, ktery je zndm z teorie grafu. Zobecnim tento pojem na tzv. silné
sub-jadro, coz je struktura, ktera ma vlastnosti vhodnéjsi pro vyteseni naseho problému.
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1 Introduction to Computational Stereopsis

Computer Vision is a field whose goal is interpreting images of real scenes. A defining
characteristics of Computer Vision, as opposed to Image Processing, is that the scenes
of interest are complex and hard to constrain and that one is not necessarily interested
in interpreting the whole image. Another important characteristic is that interpretations
must be made under uncertainty (multiplicity of likely interpretations) and noise (random
noise due to sensor electronics and quantum nature of light but also non-random noise
due to artifacts of low-level vision algorithms).

Because of the expected scene complexity, it is rarely possible to construct prior models
that would be valid everywhere. But priors are needed to cope with uncertainty and noise.
As a result, a standard low-level computer vision task uses only weak prior models. These
tasks often involve matching (correspondence recognition) in general scenes. The ability
to match features over a set of images constitutes a necessary basis for solving very many
higher-level image interpretation problems.

Given two or more images, the goal of matching is to recognize which features in
the target image(s) correspond to the features in the reference image. Since the general
problem is difficult to tackle, two basic variants evolved over the course of history: The
Wide-Baseline Stereo Problem and the Semi-Dense Stereo Problem. Their character and
their solution covers most of the other cases as well. The Wide-Baseline Stereo Prob-
lem has applications in camera autocalibration, image stitching, recognition and image
retrieval, visual tasks for robotic manipulation and navigation, range image registration,
etc. Moreover, it is usually a necessary prerequisite to a successful solution of the Semi-
Dense Stereo Problem. The Semi-Dense Stereo Problem has most applications in 3D
modeling from images, in view synthesis, or in camera-based robotic obstacle avoidance.

1.1 Wide-Baseline Stereo Matching

The goal of Wide-Baseline Stereo in its simplest form is to recognize correspondences
(matches) between a (relatively small) sets of points in the reference and the target images,
as illustrated in Fig. 1. The images can be taken from very different viewpoints and
possibly over long time periods. The usual first step involves finding a set of interest points
in each image independently. These points are chosen to be well localized and stable under
allowed image transformations [MTST05]. A local image descriptor is then used to capture
the content of the image neighborhood of each interest point [MS05]. The descriptor
has to be invariant or at least insensitive to image deformations due to re-projection.
Locality of descriptors is important for correspondence recognition in the presence of
partial occlusion, time-induced image degradation factors, illumination changes, etc.

Let A and B be the interest point sets including their description in the reference
and target image, respectively. The elements of A x B are the putative correspondences
(pairs) p; of wide-baseline stereo. The computational problem is to find the largest par-
tial mapping M : A — B that has high probability and such that it satisfies additional
constraints. The cardinality of the mapping is not known a priori.

A non-parametric condition on acceptable solutions M requires that each member of A
and each member of B be matched at most once. This is called the uniqueness constraint.
Assuming perspective camera, a parametric condition on acceptable solutions M has the
following compact form:

y(p:) "Fx(p;) = 0 for all p; € M, (1)



Figure 1: The goal of stereoscopic matching is to select a subset of putative (promising) corre-
spondences p; such that they are all consistent with a geometric model of a pair of cameras in
a parametric form (1) (the parameters are unknown) and match similar local image descriptors
(eg. image patches shown here).

where x(p;), y(p;) are image locations of an interest point in image A (B, respectively)
expressed in homogeneous representation (it is a 3-vector) and F is a homogeneous 3 x 3
fundamental matriz of rank 2. The epipolar constraint (1) predicts that the correspond-
ing point y(p;) must lie on the line Fx(p;) in the target image. The constraint has 7
independent parameters. The textbook [HZ03] gives a detailed description of geometric
constraints related to projective cameras.

One possibility is to see this as a robust regression problem with additional con-
straint (uniqueness). Robustness is a mechanism that allows us rejecting putative cor-
respondences that do not correspond to true correspondences. The standard, almost
exclusively used solution to the wide baseline stereo problem is robust fitting of (1) by
RANSAC [FB81, Tor00]. RANSAC (Random Sample Consensus) is a randomized method
that samples 7-tuples of putative correspondences and retains those that show greater
support in the set of putative correspondences (the consensus). The support is usually
obtained by residual analysis of (1) (after normalization). RANSAC finds the solution
with a given probability P. Insisting on P = 1 requires testing the support of all possible
T-tuples.

Such solution does not use all information available, namely the similarity of image
neighborhoods of our interest points. Putative correspondences p; that have similar de-
scriptors (image neighborhoods) are more likely to form a solution. This observation is
a basis for PROSAC, a variant of RANSAC that samples putative correspondences ex-
hibiting image similarity more often than putative correspondences that do not [CMO05].
RANSAC augmented with various speedups become quite wide-spread over its 25-year
history [Ran06].

1.2 Semi-Dense Stereo Matching

In Semi-Dense Stereo, the interest points are the set of all image points. The goal is similar
as above, with some simplifications that allow introducing additional models. Based on
the fundamental matrix F obtained from the wide-baseline stereo correspondences it is
possible to rectify (transform) the image domain so that the corresponding point in the
target image is located on the same row as in the reference image [AH88, Har99, LZ99,
GNO1, MSHO4]. After the transformation, the parametric constraint (1) is no longer
required. The image transformation not only means it is not necessary to search the
whole image for a correspondence but also eases the use of some useful constraints: It has
been observed [YP84] that in a wide class of scenes the left-to-right order in which interest



Figure 2: A binocular view of a scene of deep range (about 200 m) in which ordering is preserved
(except for a little twig in the foreground tree).

points occur in the reference image is preserved in their respective matching points in the
target image. This is called the ordering constraint which requires that the mapping M
has a monotonicity property. Ordering constraint is violated by close and thin objects
but in reality it holds in quite a broad class of scenes, as illustrated in Fig. 2.

Over the 40-year history of computational stereopsis, many different algorithms have
been proposed that attempt to solve the semi-dense stereo problem, see [BBH03, SS02] for
partial recent reviews (see also [DA89, Kos93] and Fig. 3). Among the least informed is
the Winner-Take-All (WTA) algorithm. For each pixel in the reference image it computes
image similarity with all possible corresponding pixels in the target image and accepts
correspondence p maximizing this similarity. This does not work well, cf. Fig. 4, where
the result is shown in the form of a disparity map in which color encodes relative depth.
One of the failure reasons is the lack of a prior model. Such model is typically based
on piecewise continuity of the solution. This is achieved by introducing the ordering
constraint and a local smoothness constraint.

1.3 Occlusion

To be able to cope with even moderately complex scenes, semi-dense stereoscopic matching
problem must include an occlusion model. This makes the matching problem significantly
more difficult, as opposed to the case when no occlusions are allowed. Moreover, as we
shall see shortly, there is no hope to make the model capture the whole world.

For simplicity, we assume only a single pair of cameras. We say a world point w (a
point on a surface or in midair) is ruled out by a binocularly visible point p if either w
is occluded by p in one of the cameras or if w is in front of p in one of the cameras.
The situation is illustrated in Fig. 5. There are two fundamental types of (binocular)
occlusion:

1. Half-occlusion: the set of surface points visible to both cameras rules-out all other
world points. This case is illustrated in Fig. 5b.

2. Mutual occlusion: there are world points (in midair) that are not ruled-out by
surface points visible to both cameras. This case is illustrated in Fig. 5c. Once the
slit becomes wide enough for the background surface to enter the gray-shaded zone,
the zone shrinks or disappears (especially if ordering is to hold, see later).
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Figure 3: The annual number of publications on computational stereopsis. Sources: INSPEC,
SCI Expanded (February 2008). Total: 2734 hits. Some of the bi-annual variations are attributed
to the period of major Computer Vision conferences. Milestones that influenced interest in
computational stereovision are Marr’s book [Mar82] and the availability of digital cameras after
1995 that became widely affordable after about 2000. Results for 2007 are biased, not all
publications of that year were included in the sources.

The scene in Fig. 4 has both kinds of occlusion. The region on the left of the foreground
tree is half-occluded by the tree. The region between the foreground tree and the next
tree is mutually occluded. In the latter case, all algorithms that do not model occlusion
well, fail completely, cf. Figs. 4c-4e.

The uniqueness and ordering constraints are a half-occlusion models. Both are easy
to incorporate into the matching task. The mutual occlusion is hard to formalize, which
is perhaps the reason explicit attempts to formalize it have not been published in the
literature so far.

Occlusion, mutual occlusion in particular, means we do not know a priori how large
portion of the images can be interpreted as occluded or matched. It is clear that the
unknown or unconstrained cardinality of the solution poses a serious problem in these
tasks: The goal is not only to find a matching but also to determine which of the interest
points are to be discarded. Of course one should discard as little as possible but prior
knowledge useful for such disposal is hard if not impossible to obtain. With the exception
of [GYO05, Sar02, KZ02], none of the known algorithms models occlusion in a way that
allows rejecting part of input data that is required here.

1.4 Repeated Appearance

Repeated or constant appearance is another difficult problem in stereopsis, especially
when combined with occlusion: if the scene is a collection of small particles of equal color
floating in the air, no local decision can determine which of the dots in the target image
matches a particular dot in the reference image. The decision problem is somewhat easier
if more than three cameras view the scene, especially if it is known that the scene consists
of a surface visible to all cameras (i.e. when there are no occlusions) [BSK01, BSK03].
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(c) WTA (d) DP w / ordering [CHRM96] (e) GC w/o ordering [KZ01]

(f) SSK with ordering [KS03] (2)

Figure 4: Results of several semi-dense stereo algorithms on a non-trivial image pair. Color
(h) codes left-image disparity: large disparity of close objects is red, small disparity of distant
objects is blue, regions where no matches were assigned are gray.
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Figure 5: Occlusion: The surface point at the intersection of rays r1 and ¢; (solid) occludes a
world point at the intersection (r1,¢3) and implies the world point (r1,t2) is transparent, hence
(r1,t3) and (r1,t2) are ruled-out by (r1,%1) (a). In half-occlusion, every world point such as X;
or X» is ruled out by a binocularly visible surface point (b, solid dots). In mutual occlusion this

is no longer the case (c, gray region).



matching 1 matching 2

Figure 6: Structural ambiguity in stereopsis in the case of repeated appearance. Unless we know
all windows share a common facade plane, we cannot decide which matching is correct. But
planarity assumption is an unrealistic model even in this scene (consider the candelabrum).

Also, if a portion of the scene has a constant appearance (consider a perfectly white wall),
unique solution does not exist regardless of the number of cameras viewing it.

Figure 6 helps illustrate the repeated appearance problem. A way out is scene under-
standing: if we can segment-out the image region that corresponds to the facade (based
on the knowledge of the world of fagades and their images) and employ the knowledge
fagades are (almost) flat, we can match the images unambiguously. In fact, in this partic-
ular case, some simpler approach would work as well: ordering constraint disambiguates
the solution for the fagade (but is violated by the candelabrum, a minor element in the
scene). Alternatively, the minimum description length (MDL) principle [Ris78] could dis-
ambiguate the solution as well. But there is always a sufficiently complex scene where
MDL fails. Hence, a low-level problem (matching) becomes a scene interpretation prob-
lem in its full complexity. This is a typical example illustrating the complexity of vision.
In this work we will avoid dependencies between low-level and high-level vision by in-
troducing robustness. See Sec. 2. In our ongoing collaborative effort [eTR09] we try to
couple high-level scene interpretation with low-level image interpretation tasks.

1.5 Directional Reflectance

Another source of ambiguity are image descriptors themselves. This is because surface
reflectance is directionally dependent, which makes the descriptors not directly compara-
ble [NIK91]. The simplest illustration of the problem are specularities, see Fig. 7: they
tend to ‘shift’ on the surface with the change of the viewpoint. The motion strongly
coupled with differential surface properties [Kv80].

Even non-specular surfaces have directional reflectance (see [NIK91] for a review).
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Figure 7: Directional surface reflectance makes local image descriptors incomparable. Here, the
illuminant did not change as the camera moved.

Moreover, reflectance is a material-dependent property. A common brute-force approach
to the problem is normalization of the image descriptor so that it is invariant to some class
of allowed image transformation (eg. by linear normalization or Census Transform [ZW94))
or using an invariant correlation statistics (eg. normalized cross-correlation coefficient in-
variant to linear transformations or rank correlation invariant to all monotonic transfor-
mations [BN96]). The disadvantage of such approach is that the descriptor is losing its
discriminability potential (the ability to discriminate among many different image loca-
tions).

The only known way to circumvent the directional reflectance problem is Helmholtz
stereopsis [ZBKO02]. It employs reciprocity of the reflectance law [vH89] following from
time-reversal invariance [SWL98]. A Helmholtzian stereoscopic setup is possible when
lights and cameras are co-located. A stereoscopic image pair is obtained by (1) switching
on light L; in Location 1 and recording image I5 in camera (5 in Location 2 and then
(2) by switching on Ly and recording image I; in C). The pair Iy, I; has the remarkable
property that image values of corresponding pixels are the same, up to a scalar constant
that depends on depth and local surface normal orientation [MKZBO01].

1.6 Two Alternative Problem Formulations

The arguments reviewed so far suggest the complexity of the stereoscopic matching prob-
lem is probably beyond reasonable formalization if the task is considered in full complexity.
To approach the problem, simplifications must be made.

One way to avoid the multiplicity of interpretations is to use regularization. This
requires a prior model and will be discussed shortly in Sec. 1.6.1. Another way is to
employ stability. This is shortly discussed in Sec. 1.6.2.

1.6.1 Regularized Matching Problem

The regularized semi-dense stereo matching problem under smoothness (and optionally
ordering) constraint may be posed as a Bayesian decision task with unit cost that leads
to maximum aposteriori probability algorithm (MAP). Formalization of this task requires
some care. First, to properly model continuity, we need the concept of disparity space. 1t
is nothing but the discrete set of putative correspondences P(r) = A(r) x B(r), one per
rectified image row r and stacked to form a 3-dimensional array P. Putative hypotheses
become triples (7,14, j), where r is the common image row, 7 is a column index in the left
image and j is a column index in the right image. We say two correspondences p, ¢ in
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disparity space P are neighbors if they are neighbors in either image, i.e. if they fall on
neighboring optical rays in one or the other camera.

Assuming suitable probability distributions the MAP task becomes one of minimizing
discrete energy

M* = argJ\I/Ineijl\l/l Qg Z Via(p,q) + Z Vi(p), (2)

P,qEN (M) peEM

where oy > 0 is the relative weight of the prior model, M is the set of all one-to-one
matchings, possibly conforming to additional constraints like ordering, V; is energy related
to image similarity for putative correspondence p, and Vj, is related to prior continuity
or smoothness model in which N (M) is the set of all pairwise disparity space neighbors
included in matching M. To avoid degeneracy when solving the problem (2), the problem
must be formulated so that all matchings from M have the same cardinality. This is
discussed in the main thesis [Sar07].

Unfortunately, the solution to the general problem when the prior energy Vi includes
neighbors across the image row coordinate r is not known. In the known attempts to
formulate the problem the images play asymmetric role, eg. [KZ01], the elements of the
set of putative solutions M do not have all the same cardinality which leads to degen-
eracies and artifacts, eg. [CHRM96, Gim99], the formalization is not able to incorporate
uniqueness constraint, eg. [KZ01, BVZ01], or ordering constraint, eg. [KZ01, BVZ01] (let
alone model mutual occlusion), and/or discontinuities are not allowed at all, eg. [SFS04].

We may restrict ourselves to the case when there are no neighbors with respect to the
first coordinate in disparity space (across image rows) and ordering is strictly enforced.
In such case the problem reduces to finding a minimum-cost path in an acyclic directed
graph, where both node and arc costs are non-negative. This is a well-known problem.
Details are given in the main thesis [Sar07]. Results are shown in Fig. 4d.

The horizontal streaks in the disparity map in Fig. 4d are not caused by the lack
of regularization in the vertical direction. They are caused by the fact that there are
multiple optima of (2), especially if there are texture-less areas and/or if the prior model
(ordering) is violated. In such case a small noise causes the solution to be unstable. The
instability can be formalized, which is the main topic of the thesis [Sar07].

Attempts to incorporate isotropic continuity/smoothness prior have been made but
the problem was found of non-polynomial complexity. Generally, the task belongs to
consistent labeling problems [FS00, KZ04]. Fig. 4e shows a result using the approximation
algorithm described in [KZO01]. I believe the patchiness is mostly due to an insufficient
approximation power of the algorithm and the fact it uses smoothness constraint but
neither uniqueness nor ordering constraints. In this case the instability is manifested
by entire patches rather than streaks. Gong and Yee-Hong [GY05] tried to address the
instability within the framework of energy minimization.

1.6.2 Stable Matching Problem

We have seen in Fig. 4 that simple algorithms like WTA do not work because of lack of
prior models but that the MAP algorithm making use of such models suffer from artifacts,
most often from false positive ‘illusions.” Such illusions are then propagated up the image
interpretation process where it is difficult to suppress them. An example application field
where this is a serious problem is 3D scene reconstruction.

Results in Figs. 4f and 4g show disparity maps computed by algorithms that directly
address the instability mentioned at the end of previous subsection. The algorithms are
described in great detail in the main thesis [S4r07]. The theory will be sketched in Sec. 2.
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Figure 8: Min-cost solution M; to a perfect bipartite matching problem of cost 2.7 that is not
absorbing (a) because of the red unmatched element. An absorbing solution Ms to the same
problem with the same total cost of 2.7 and absorbance margin of 0.1 (b).

The point to be made here is that the energy minimization algorithm is unstable
because it does not guarantee absorbance. I will demonstrate it on a simple example. We
first need some notation: Given an element p = (i, 7) in a matching table like the one in
Fig. 8a we denote the set X (p) as

X(p) = {@R)ULI)k#j1#i} p=(.4), (3)

which is also illustrated in Fig. 9a. Note that a subset M of the matching table is a
matching iff for each p € M it holds X (p) = (). Note that if M is a perfect matching (i.e.
one that assigns a single match to every column and every row of the table), then each
q ¢ M has two elements in X (q) N M.

Suppose now we have a matching table with non-negative real entries, like the one in
Fig. 8 and our goal is to find a minimum-cost perfect bipartite matching. The result in
Fig. 8a shows a solution M; to the problem in gray table cells. The cost of the solution
is 2.7. Another solution M, of the same cost is shown in Fig. 8b. The latter solution M,
is stable since it is absorbing in the following sense: every unmatched element q ¢ My of
the table (in Fig. 8b) has at least one element in X (q) N My of a strictly lower cost than
q. In fact, in this example the absorbance margin is 0.1: even if any combination of the
unmatched elements decreased their costs by 0.1 (or increase their cost by any amount),
the solution M, would still be both optimal and absorbing.

The solution in Fig. 8a is not absorbing because it does not absorb the element of
cost 0.1 at position 3,3 of the table (shown in red). A very small change of its cost (to
0.1 — € for some small positive €) causes the optimal solution M; switch to M,. The stable
solution does not necessarily have the same cost as the optimal solution as the example
might suggest. Generally, its cost is just sub-optimal and the level of sub-optimality can
be characterized, see Sec. 2.2.

The problem with stability of the solution is not unique to just bipartite matching
problems. It pertains to all min-sum and max-sum problems.

There is an algorithm for finding (strongly) absorbing (stable) solutions. This is one
of the main contributions presented in the thesis [Sar07]. The algorithm is sketched in
Algs. 1 and 2. Interestingly, stability is related to robustness: If we increase the stability
margin, then, upon proper generalization of stability, eg. by Def. 1, the solution is no
longer complete and part of images remain uninterpreted (rejected). The rejection occurs
in case of local violation of prior models (like ordering), which is exactly the behavior
we need in a world which cannot be explained by a single universal model because the
complexity of such model would be overwhelming, as discussed at the end of Sec. 1.4.

Standard matching methods that are based on classical discrete energy minimization
cannot cope with the problem without explicitly introducing a special label ‘rejected,’
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Figure 9: Matching table representation of the sets X (p) (left) and F(p) (right). The solid
vertex is the pair p = (i, 7).

which necessarily destroys any structural properties of the label set [FS00, KZ04]. As a
result, the matching (correspondence recognition) problem becomes NP.

My program over the last several years has been exploring a formal definition of
stability to achieve robustness in the sense of selective data interpretation. The goal has
been to achieve algorithmic simplicity as well. The thesis [SérO?] shows that the intuitive
definition of stability introduced in the preceding subsection is related to digraph kernels.
The concept must be slightly modified to be more useful in computer vision tasks. The
thesis shows that in fact a variety of computer vision problems can be solved based on the
stability principle. I sketch the formalization in the rest of this section and then overview
some theoretical results in Sec. 2.

As before, A, B are two sets of participants of the matching game. Theset V C Ax B
are putative correspondences. One can imagine A, B to be the sets of optical rays (casted
by the aforementioned interest points) in the reference and target cameras, respectively,
and A X B to be the set of all their mutual spatial intersections, as in Fig. 6. Our goal
is to find the best partitioning of V' to three subsets: matched M, uninterpreted U and
ruled-out R (occluded or transparent). We will construct a simple graph G = (V| E) over
the set V' as follows. If there are two vertices vy, v9 € V that cannot be members of the
solution simultaneously, we add edge (v1,v2) to E. For instance, since the matching is
to be one-to-one (due to occlusion or transparency), each participant can be matched at
most once. Hence, the set of neighbors in G of a vertex p includes the set X (p) introduced
in (3) and Fig. 9a.

Other constraints can be included as well. If ordering is assumed, the resulting match-
ing M must be monotonic and the set of all neighbors for p = (4, j) includes the set F'(p)
of all pairs (k,[) such that k < i and [ > j or k > ¢ and [ < j. In the matching table
representation the element (4, 7) is connected to all elements in two opposite quadrants,
see Fig. 9b.

Problems involving parametric constraints can be formalized as well. An example is
the WBS problem. Let the set of parametric constraints have m parameters and let a
single pair (i,7), i € A, j € B remove d degrees of freedom from the constraint set.
E.g., the constraint (1) has m = 7 parameters and each point correspondence removes
d = 1 degree of freedom. In this case we proceed as follows: the participants of the
matching game are the sets A*, B%, i.e. all interest point quadruples. A pair of octuples
{in,inai13,i14;j11,j12,j13,j14}, {izl,i22,i23,i24;j21,j22,j23,j24} € A* x B* are connected
by edge in E if the set of points x;,, and x,,, do not satisfy (1) for all £ = 1,2,3,4.

We need strictly more than % correspondences which requires participant sets to be r-
tuples A", B", where r is the smallest integer strictly greater than g%. The growth of
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O——=0 strict arc (s,t) d<—=0 reversible arc (s,t) or (t,s)

Figure 10: Strict and reversible arc of an oriented graph (G,w).

the dimension r of the problem can be avoided by more rich local image features: For
instance, if ellipses are used then d = 2 [HZ03], and the participant sets are just pairs
from A?, B2

Edges due to uniqueness or ordering constraints are as easy to add to the graph over
the vertex set A" x B" as above. To summarize, the graphis G = (V, E) where V= A" x B"
captures the structure of all geometric and parametric constraints of the given problem.
It is important to observe that independent vertex sets of graph G represent the set of
feasible solutions. This is the set on which we will be selecting the best solution, given
data and prior knowledge.

Let V(G) denote the vertex set of graph G. Let e(v) be a closed real interval for every
v € V(G). We call it the evidence interval here. The interval captures the probability
p(v € M | z), i.e. the probability that v is a correct match given measurement z. The
width of the interval represents our uncertainty on the true value of p(v € M | z) due to
data noise, known bias, approximation, and/or other reasons. The width of the interval
can be adjusted by a user-selected confidence parameter.

If the intervals are [0, 1] for all v € V(G), data is totally uninformative and we are
expecting an empty solution. The narrower the intervals the greater fraction of data is
expected to be interpreted (unambiguously).

We say a vertex ¢t € V(G) is a competitor to vertex s € V(G) if s and t are connected
by an edge in G and maxe(t) > mine(s) (the e(t) is greater than e(s) or the intervals
overlap). We say an independent vertex set M of V(G) is stable if every vertex q ¢ M
has at least one of its competitors in M, in other words, if there is a reason for such ¢
to be ruled-out. We can obtain a purely graph-theoretic representation of the matching
problem as follows: the underlying graph G is as before. We construct orientation w of
the edges of G as follows: if {s,t} € E(G) and maxe(t) > mine(s) we orient the arc
from s to t. If {s,t} € E(G) and the intervals e(t) and e(s) overlap we orient the arc
bidirectionally, see Fig. 10. We call the result an interval orientation of the underlying
graph to distinguish it from a general orientation of the graph. Interval orientations have
a number of important properties.

To summarize, the pair (G,w) is a digraph in which some arcs can have both ori-
entations. The stable set M of (G,w) is then an independent vertex subset such that
each vertex ¢ ¢ M has a successor in M. This structure is known as a directed graph
kernel [vNM44, BGO03].

The stable sets (kernels of (G,w)) are our prospective solutions. They are not yet
‘stable enough,’” consider the example in Fig. 11b, where it is not possible to choose which
solution (green or red) is better. We feel the red solution appears more stable because it
is not influenced by choosing a definite orientation for the top bidirectional arc. We will
now formalize strong stability that captures the difference.

We say an arc (s,t) € w is strict if (t,s) ¢ w. Otherwise it is called reversible (rather
than bidirectional). See Fig. 10. We say ¢ is a successor of s if there is arc (s,t) and we
say t is a strict successor of s if there is arc (s,t) but not (¢,s) in (G,w). To introduce
robustness to stable sets, we define strong sub-kernel as follows:

Definition 1 (SSK). Let (G,w) be an oriented graph. An independent vertexr subset
S C V(G) is a strong sub-kernel if every successor of each v € S has a strict successor
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(a)2/0  (b)2/1  (c)2/2 (d)0/0 e) 0/1

Figure 11: Several orientations with their kernels and maximum strong sub-kernels (SSK).
Kernels in (a)-(d) are distinguished by color. Number a/b indicates the orientation has a
kernels and b maximal SSKs. The orientation in (e) has no kernel but has a single maximal SSK
(red). Only (a) is an interval orientation.

m S.

Fig. 11 shows several examples of maximal strong sub-kernels (SSK) in several oriented
graphs: (a) and (d) have no SSK, (b) has one SSK (red), (c) has two SSKs (red, green),
and (e) has an SSK (red) despite the fact it has no kernel.

Let us check if SSK has the desired behavior. If data is not informative, all arcs are
reversible and the solution is empty. This was intended. If data is in contradiction with
the model (represented by the underlying graph G) then even in the absence of evidential
uncertainty, part (or all) of the graph gets rejected, as the example in Fig. 11e shows. In
the case of Fig. 11e we have partitioned the vertex set to three subsets: matched (red),
ruled out (gold) and uninterpreted (white).

The prefix sub- in ‘strong sub-kernel” has been chosen to indicate incompleteness: the
SSK is no longer a maximal independent set. Using standard terminology, a maximal SSK
is not extendible to a larger SSK and a mazimum SSK then has the largest cardinality of all
maximal SSKs. Note than incompleteness is necessary to obtain robustness. Maximality
of SSK implies minimality of the uninterpreted vertex subset.

As shown in the thesis [Sar07] the problem of finding an SSK in interval orientation
is solvable by a very simple algorithm:!

Algorithm 1 (Sink Stripping).

Input: An interval-oriented graph (G,w).
Output: Mazimum strong sub-kernel S.
Procedure:

1. Initialize S :=0).
2. If there is no sink in G, terminate and return S.
3. Find a sink s € V(G).

4. Add s to S.

5. Remove s and all its predecessors P(s) from G.
6. Go to Step 2.

This basic version of the Sink Stripping algorithm has worst-case complexity of O(an),
where « is the independence number of G and n is the number of its vertices. For interval

1Sink is a vertex with no successor. Isolated vertex is a sink.

12



orientations of graphs that occur in matching under uniqueness (and, optionally, ordering)
there is a faster algorithm of worst-case complexity O(nlogn) [Sar07].

Finding sinks in an oriented graph may be difficult, especially if the graph is dense and
not explicit. A better algorithm for the class of orientations to which interval orientations
belong is described the thesis [Sar07].

The class of oriented graphs for which Alg. 1 works is broader than interval orien-
tations. Unfortunately, there is no known algorithm for a general orientation of the
underlying graph. A solvable class will be discussed in the next section.

2 Strong Sub-Kernels in Oriented Graphs

In this section we briefly review the main theoretical results of the thesis [Sar07]. We

consider Definition 1 in which (G,w) will be a general orientation of a general underlying

graph G. We have seen several examples of SSKs of general oriented graphs in Fig. 11.
The thesis [Sar07] considered the following questions:

1. What is the class of orientations of general underlying graphs that have at most one
maximal SSK?

2. Are there any notable properties of the class found, especially those related to
robustness and optimality?

3. What are the algorithms?

I will brieﬂyv review the main results in the subsequent three subsections. The reader is
referred to [Sar07, Sar06, BS07] for proofs and detailed discussion.

2.1 Graphs with at Most One SSK

We say a subgraph C is an EC-subgraph of an oriented graph (G,w) if it is induced in
(G,w) by an even circuit (circuit of even length). The class is then characterized by the
following theorem:

Theorem 1 (No. 23 in [S&r07]). Let every EC-subgraph of oriented graph (G,w) have at
most one mazimal SSK. Then (G,w) has at most one maximal SSK.

There is a number of ways to achieve a single SSK per EC-subgraph. For instance,
there is a structural condition in the underlying graph G ensuring every even circuit C in G
has a an even chord (ie. one connecting two even (or two odd) vertices in C). Alternatively,
we may restrict the orientation w of G so that every even circuit in G has a reversible arc
(called sometimes a pseudo-chord [BKWO98]). It is easy to verify circuits with even chords
or pseudo-chords have at most one SSK.

Interval-oriented graphs fall in the class required in Theorem 1. More specifically,

Theorem 2 (No. 15 in [Sar07]). Every circuit in interval-oriented graph has at least two
consecutive reversible arcs.

Interval orientations also have some stronger properties that will be hinted in the next
section.
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2.2 Robustness and Optimality

Strong sub-kernels are stable with respect to uncertainty increase or reduction in oriented
graph (G,w) in the following sense:

Theorem 3 (Lemma 19 in [Sar07]). Let (G,w) have no SSK. Then every (G,w') con-
structed from (G,w) by making an arbitrary subset A of arcs in w reversible has no SSK.

Theorem 4 (Lemma 20 and Corollary 14.1 in [S&r07]). Let S be an SSK in (G,w),
let (G,w') be constructed from (G,w) by making an arbitrary subset of reversible arcs
irreversible and let S’ be the maximal SSK in (G,w'). Then S is an SSK in (G,u').
Moreover, if w is EO then S C S'.

EO orientations are such that every even circuit has an even and an odd reversible
arc. Interval orientations are EO [Sar07]. In interval orientations, Theorem 4 implies that
an SSK for a given set of intervals e(p) is the intersection of all SSKs, each obtained for
some choice of intervals ¢/(p) such that ¢’(p) C e(p) for all vertices p in (G,w) [S&r06].

This behavior is related to robustness since widening the intervals is essentially a way
of increasing stability margins discussed in Sec. 1.6.2. Wide e(v) is a safeguard against
error or bias in the estimate of p(v € S | z) or represents our inability to provide its
accurate value based on data collected so far. Controlling the widths of the intervals
provides a way to control the ‘degree of stability.” Practical experience shows that SSK
indeed exhibits robust behavior by not explaining data that contradicts prior model. An
example is shown in Fig. 4f: Some of the trees in the background appear ‘chopped oft.’
This is because they locally violate ordering that has been assumed. If we remove ordering
constraint, we obtain the result in Fig. 4g. The price is, of course, more errors (numerous
isolated odd-colored pixels), since the model became weaker.

Let us now turn our attention to optimality. Of course, robustness and optimality
in the sense of energy optimization are contradictory requirements. The following two
theorems characterize the remaining weak optimality of SSK.

Let P(p) be the set of all predecessors of vertex p in (G,w). Let Q(p) be an in-
dependent? subset of P(p) and Q(p) be the set of all such subsets Q(p). We denote
e(p) = mine(p) and e(p) = maxe(p).

Theorem 5 (Weak Optimality I [Sar06]). Let (G,w) be an interval-oriented graph and
let M be a SSK which is also a mazimal independent vertex set of (G,w). If there is a
sequence of sinks s chosen in Step 3 of Alg. 1 such that each s satisfies
efs) 2 max > e(q) (4)
qeQ

at the moment of its selection in Step 3, then M also mazimizes the cost sum over all
possible independent vertex subsets M of (G,w),
M = argmax » €(p). (5)

KeM
peEK

The converse uses a much weaker condition: It requires each vertex of V(G) to sat-
isfy (4):

Theorem 6 (Weak Optimality IT [Sar07]). Let (G,w) be an interval-oriented graph, M
be a solution to (5) and let each vertex p € V(G) satisfy (4) in (G,w). Then M is a
mazimum SSK in (G,w).

2An independent vertex subset in subgraph induced by P(p) in (G,w).
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2.3 The Octopus Algorithm

Let every EC-subgraph of (G,w) have a reversible arc (we say it is ECRA). Then the
following algorithm finds the unique maximal SSK in (G, w):

Algorithm 2 (The Octopus Algorithm).

Input: An ECRA oriented graph (G, w), in which A are arcs in (G, w).
Output: Mazimum strong sub-kernel S'.
Working data-structures:
G wvertices with a strict successor which is not in R
R wertices with a successor which is not in G
Procedure:
1. Initialize R := ().
2. Reset G := 0.

3. For every irreversible arc e* = (vy, v9) € A, (vg, v1) & A do:

if vo ¢ R then G :=G U {v}.

4. For every arc e = (vy, vy) € A (reversible or not) do:
if vo & G then R:= RU {v;}.

5. Repeat Steps 2—4 until there is no change in R.
6. If G =10 or G C R terminate and return S =V \ R.
7. R:=RUG, go to Step 2.

The algorithm is essentially a message propagating procedure which waits until the
R-G coloring of graph vertices reaches an equilibrium. The messages are initially induced
by all arcs in (G, w).

The worst-case time complexity of Alg. 2 is O(m «), where m is the number of edges
in G and « is the independence number of G. It is easy to see |S| < a, where |S| is the
cardinality of the solution.

3 Conclusions

The principle of stability gives new robust algorithms for solving matching (and some
other) problems in computer vision. Unlike the popular randomized robust algorithm
RANSAC [FB81] and its variants [Ran06] the new algorithms are deterministic, of low-
order polynomial complexity and are fast in practice, which means they can be used in
large problems like dense stereo matching. Our experience suggests algorithms based on
stability tend to find more accurate solutions than RANSAC. A certain disadvantage of
the stable matching algorithms is that all the evidence intervals must be available prior
to running the algorithm. Further research is needed to overcome the problem, at least
partially.

So far, the stability principle has successfully been applied to several matching prob-
lems in computer vision: dense stereoscopic matching [SérOQ, KCSOB], including a very
fast on-line version of the algorithm [CS07], range image registration [SOS05, SSS07], and
homography estimation [BS07].
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There are a number of interesting open problems. The class of oriented graphs that
have at most one maximal strong sub-kernel is not yet explored well enough: the necessary
and sufficient condition for the existence of at most one SSK is unknown. It is not known
if the Octopus algorithm finds a maximum kernel in other oriented graphs than the ECRA
graphs, for instance, does it work for the class of graphs defined in Theorem 17 Is there
a weighted version of the strong sub-kernel? Can we find stable solutions to energy
minimization problems? There are many more open questions, some of which are stated
in the thesis [Sar07].
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